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Stochastic Game in Remote Estimation
Under DoS Attacks

Kemi Ding, Subhrakanti Dey, Daniel E. Quevedo, and Ling Shi

Abstract—This letter studies remote state estimation
under denial-of-service (DoS) attacks. A sensor transmits
its local estimate of an underlying physical process to a
remote estimator via a wireless communication channel.
A DoS attacker is capable to interfere the channel and
degrades the remote estimation accuracy. Considering the
tactical jamming strategies played by the attacker, the sen-
sor adjusts its transmission power. This interactive process
between the sensor and the attacker is studied in the frame-
work of a zero-sum stochastic game. To derive their optimal
power schemes, we first discuss the existence of stationary
Nash equilibrium for this game. We then present the mono-
tone structure of the optimal strategies, which helps reduce
the computational complexity of the stochastic game algo-
rithm. Numerical examples are provided to illustrate the
obtained results.

Index Terms—Stochastic game, DoS attack, cyber-
physical systems security.

I. INTRODUCTION

CYBER-PHYSICAL systems (CPSs) [1] have attracted
much research interests in recent years. Taking advantage

of information and communication technology, these systems
equip the underlying physical processes with intelligent con-
trol which makes the system design and deployment much
easier. With a promising future, CPSs, the next generation
of engineering systems, have been applied in diverse areas
including smart grids, intelligent transportation/architecture,
self-driving cars and medical device network.

Despite the dramatic success of CPSs, there is an urgent
need to address the safety problems as a result of the close
integration of physical systems and the cyber world. Due to
the vulnerability of open communication networks, CPSs are
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easily exposed to cyber attacks. For large-scale CPSs, such
as transportation infrastructure and power grid, these attacks
may lead to severe economic losses (e.g., traffic congestion and
large-area power outage [2]) or even threaten human lives (e.g.,
Iran’s nuclear centrifuges accident [3]). Cardenas et al. [4]
categorized the cyber attacks into two typical classes: decep-
tion (integrity) attacks and denial-of-service (DoS) attacks.
The former attempts to manipulate the transmitted data pack-
ets stealthily, while the latter affects the availability of data
by blocking the communication channels. From the attacker’s
perspective, how to construct more subtle (or stealthy) attacks
with more severe system consequences was studied in many
preliminary works. Zhang et al. [5] investigated an energy-
constrained attack policy taken by a DoS attacker to degrade
the remote estimation accuracy. Teixeira et al. [6] charac-
terized the disastrous attack policy (including replay, zero
dynamics and bias injection attacks) in a general attack space.
A set of effective countermeasures was developed against
replay attacks [7], linear deception attacks [8], and DoS
attacks [9].

In this letter, we focus on remote state estimation under DoS
attacks. A sensor monitors a physical process and forwards
its data to a remote estimator over a communication channel
which can be interfered by an intelligent attacker. Our goal
is to design an energy-efficient transmission scheme for the
sensor to minimize the remote estimation error. We use game-
theoretical tools to model and analyze the interaction between
the sensor and the attacker. Several recent studies about CPS
security under the game-theoretic framework have been carried
out [7], [9], [10]. In [7] a finite-horizon zero-sum stochastic
game model was employed to capture the interaction between
a detector and a replay attacker. The authors used robust
game techniques to calculate the non-stationary equilibrium
solution, which, however, is more difficult to implement than
the stationary one. Zhu and Basar [10] designed an optimal
stationary cyber-policy to ensure system security through an
infinite-horizon zero-sum stochastic game between a defender
and an attacker. As for the Nash equilibria of the aforemen-
tioned stochastic games, their existence is easy to prove due
to the finiteness of state space or the boundedness of imme-
diate reward functions, and no structural results regarding
the associated optimal policies are provided. A preliminary
version of parts of the present manuscript [9] investigated
a jamming game where the sensor and the attacker possess
multiple discrete power levels. Different from [9], here we
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study continuous power sets and a general form of the packet-
dropout rate, which embeds [9] as a special case. The proof
of existence of the optimal solution also becomes more chal-
lenging due to the infinite state space and continuous power
sets. Furthermore, [9] uses a computational method (Nash Q-
learning) to solve the stochastic game numerically, while in
this letter, we prove that the optimal strategies belong to a
small class possessing certain structural properties. Similar
idea has been seen in the sensor scheduling area [5], [11].
However, they focused only on one side, i.e., either the attacker
or the defender. Compared with the previous works, our
contributions consist of the following:

1) We model the remote estimation problem under strategic
DoS attacks by a zero-sum stochastic game with countable
states and continuous action sets. The existence of a stationary
optimal policy pair for this game is proved via value iteration
(Theorem 1).

2) Under suitable conditions, we develop the monotone
structure of the optimal solutions for this game (Theorem 2).
Furthermore, when the action set for each player consists
of finite power levels, the optimal strategy for corresponding
player has a threshold-type structure (Section III-D).

The remainder of this letter is organized as follows.
Mathematical models of the system are described in Section II.
In Section III, a stochastic game is introduced and the main
results on the existence of the solution and structural analy-
sis are presented. An example and some concluding remarks
are shown in Sections IV and V. The proofs of lemmas are
presented in the full version [12].

Notations: R
n is the n dimensional Euclidean space. S

n+ is
the set of n by n positive semi-definite matrices. When X ∈ S

n+,
it is written as X ≥ 0. X ≥ Y if X − Y ∈ S

n+. E[ · ] is the
expectation of a random variable and Tr(·) is the trace of a
matrix. |A| represents the cardinality of set A. For functions
f1, f2 : S

n+ → S
n+, f1 ◦ f2 is defined as f1 ◦ f2(X) � f1

(
f2(X)

)
.

The function δkj(·) =
{

1, if k = j;
0, otherwise.

. π1,2 � {π1, π2}. ρ(A)

is the spectrum radius of A and diag(·) represents a diagonal
matrix.

II. PROBLEM SETUP

In this section, we introduce mathematical models of the
system of interest, see Figure 1.

A. Local Kalman Filter

Consider the following linear time-invariant system:

xk+1 = Axk + wk, yk = Cxk + vk, (1)

where xk ∈ R
n and yk ∈ R

m represent the system state vec-
tor and the sensor measurement at time k, respectively. The
noises wk ∈ R

n and vk ∈ R
m are assumed to be zero-mean

i.i.d Gaussian sequences with E[wkw�
j ] = δkjQ (Q ≥ 0),

E[vkv�
j ] = δkjR (R > 0), and E[wkv�

j ] = 0 ∀j, k. The ini-
tial state x0 ∼ N (0,�0) is uncorrelated with wk and vk. The
pair (A, C) is detectable and (A,

√
Q) is stabilizable.

The sensor runs a Kalman filter locally to estimate the
state xk based on all collected measurements at time k.

Fig. 1. Remote state estimation under DoS attacks.

Denote the local estimate as x̂s
k, i.e., x̂s

k = E[xk|y0, . . . , yk].
The corresponding estimation error es

k and the error covari-
ance matrix Ps

k are defined as es
k � xk − x̂s

k and Ps
k �

E[(es
k)(e

s
k)

�|y0, . . . , yk]. These terms are calculated via the
standard Kalman filtering algorithm, where the iteration starts
from x̂s

0 = 0 and Ps
0 = �0. For notational simplicity, we define

the Lyapunov and Riccati operators h and g̃ : S
n+ → S

n+ as
h(X) � AXA� + Q, g̃(X) � X − XC�[CXC� + R]−1CX.

Due to the detectability and stabilization assumptions, the
error covariance Ps

k converges exponentially to a unique fixed
point P of g̃ ◦ h [13]. Since we consider infinite time horizon,
we ignore the transient periods and assume that the Kalman
filter at the sensor has entered steady state; i.e., Ps

k = P, k ≥ 1.
To avoid trivial problems, we assume A is unstable. Define a
function hs(P) � h ◦ · · · h︸ ︷︷ ︸

s

(P), s ∈ {0, 1, . . .} with h0(P) = P.

As mentioned in [9], the function hs(P) has the following
property.

Proposition 1: Tr[hs(P)] is increasing in s ∈ {0, 1, . . .}: for
0 ≤ s1 < s2, Tr[P] ≤ Tr[hs1(P)] < Tr[hs2(P)].

B. Communication Channel

We assume the channel between the sensor and the estimator
is memoryless and it has independent additive white Gaussian
noises (AWGN). To measure the non-ideal packet losses, we
introduce the conventional packet-error-rate (PER), which is
monotonically decreasing with the signal-to-noise-ratio (SNR)
for any modulation scheme. An intelligent attacker launches
DoS attacks by jamming the channel which reduces the packet
arrival rate. Let bk ∈ Es and ak ∈ Ea denote the transmission
power of the sensor and the interference power of the attacker
at time k, respectively, where Es and Ea represent the available
power sets for the sensor and the attacker. Define

d(γk) � d(ak, bk), γk � L
h2bk

h1ak + n0
, (2)

where d(·) is some general form PER depending on the spe-
cific modulation used, n0 is the power of the additive white
channel noise, the parameter h2 (h1 resp.) is the channel gain
from the sensor (the attacker resp.) to the remote estimator,
and L is the spreading gain of the communication system.
These channel parameters are assumed to be time-invariant.
According to [14], d(·) is strictly concave and decreasing in
γk. For this erasure channel, the arrival of the packet can be
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characterized by a binary random process ηk, and ηk = 0 rep-
resents the packet loss. From the previous discussion, we have
Pr(ηk = 0) = d(ak, bk).

C. Remote State Estimation

Based on the received data packets up to time k, the remote
estimator computes its own estimate of xk, which is denoted
by x̂k with corresponding error covariance Pk. The estimate
x̂k is obtained as follows [9]: x̂k = ηkx̂s

k + (1 − ηk)Ax̂k−1.
Consequently, the recursion of the error covariance Pk is

Pk � ηkP + (1 − ηk)h(Pk−1). (3)

Recall that P is the error covariance in the steady state.
According to (3), the possible values that Pk can take form
an infinite set {P, h(P), h2(P), . . .}.

To simplify the notations, define τk ∈ Z as the holding
time: τk � k − max0≤l≤k{l : ηl = 1}, which represents the
intervals between the present moment k and the most recent
time that the data packet has successfully arrived at the remote
estimator. By definition, the iteration of the holding time is

τk =
{

0, if ηk = 1,

τk−1 + 1, otherwise.
(4)

Without loss of generality, we assume η0 = 1. Then it is
straightforward to show that Pk = hτk(P). We assume that ηk

is obtained by the sensor based on some short acknowledge-
ment frames (ACKs) up to time k, which are sent back from
the estimator through a reliable channel. The ACKs are also
known to the attacker via eavesdropping the feedback channel.

D. Problem of Interest

The sensor and the attacker aim to design some energy-
efficient transmission/jamming power schemes with opposite
goals, i.e., the sensor wishes to minimizes the remote estima-
tion error while the attacker tries to maximize it. This inter-
active decision-making process is analyzed under a stochastic
game framework in the next section.

III. MAIN RESULTS

In this section, a dynamic game framework is introduced
to model the strategic interaction between the sensor and the
attacker. Notice that we consider infinite state space and con-
tinuous action sets for this game. Analyzing the solution of
such game is well-known to be difficult and challenging [15].
Besides an existence result, some structural properties of the
solution are also provided.

A. Game Model

We introduce a stochastic game which is composed of five
tuples [16]: G �< I,S,A, q,R >.

1) Player: I = {1, 2} is the set of the players, where
i = 1 represents the attacker, and i = 2 the sensor. For the
subsequent equilibrium analysis, we assume both players are
rational.

2) State: S = {0, 1, 2, . . .} is the state space. We define
the state of the game at time step k as the holding time, i.e.,
sk � τk and sk ∈ S. Note that the state is equivalent to the
estimation error covariance Pk.

3) Action: A = ∏
i∈I Ai is the joint action set, where Ai

is a compact set denoting the actions available to player i. At
time k, the attacker selects the jamming power ak ∈ A1 �
[amin, amax], and the sensor decides the transmission power
bk ∈ A2 � [bmin, bmax]. Let Pi denote the space of measures
on B(Ai), the Borel subsets of Ai, endowed with the weak
topology (hence it is Polish space, a complete and separable
metric space [17]). Denote by π1

k ∈ P1 and π2
k ∈ P2 mixed

strategies for the attacker and the sensor, respectively. The
joint action (or pure strategy) at time k is denoted by (ak, bk).

4) Transition Probability: The transition probability
q(sk+1|sk, ak, bk) ∈ [0, 1] : S × A → S. From (4), sk has the
Markov property. Let m, m′ ∈ S and (a, b) ∈ A, then ∀k ≥ 0,
q(sk+1 = m′|sk = m, ak = a, bk = b)

=
⎧
⎨

⎩

d(a, b), if m′ = m + 1;
d(a, b) = 1 − d(a, b), if m′ = 0;
0, otherwise.

5) Immediate Reward: R = {Ri, i ∈ I} is the reward set
and Ri represents the immediate reward function for player i
with Ri : S ×A → R. The reward function for the attacker is
given by

R1(m, a, b) = r(m) + θ(a) + ϑ(b), m ∈ S, (a, b) ∈ A,

where r(m) � Tr[hm(P)] with r(0) = Tr[P], θ(·) ≤ 0 is a
decreasing function in a and ϑ(·) ≥ 0 is an increasing func-
tion in b. Notice that the attacker attempts to maximize the
state estimation error in an energy-efficient way. More trans-
mission energy consumed by the sensor is also preferred by
the attacker. The immediate reward function for the sensor is
R2(m, a, b) � −R1(m, a, b). For simplicity, we ignore the sub-
scription of R1(·) and instead represent the immediate reward
for the attacker by R(m, a, b) without ambiguity.

The game is played as follows.Whenever the system is in
state sk at time k ≥ 0, they independently and simultane-
ously take actions (ak, bk) according to randomized stationary
policies to be described in details in the next paragraph. As
a consequence, the following happens: the attacker receives
an immediate reward R(sk, ak, bk) (or a cost −R(sk, ak, bk) is
incurred for the sensor simultaneously); the system moves to
a new state sk+1 with a transition probability determined by
q(sk+1|sk, ak, bk). The goal of the attacker is to maximize its
reward (whereas the sensor aims to minimize its cost) with
respect to the discounted performance criterion J(·), which is
defined in (6).

The decision rule for player i is a sequence of mixed strate-
gies π i = {π i

0, π
i
1, . . . , π

i
k, . . .} with π i

k ∈ Pi, i ∈ {1, 2}.
Among the admissible strategies for each player, we consider
the randomized stationary ones. Denote by �i the family
of all randomized stationary strategies for player i ∈ {1, 2}
with their stochastic kernels satisfying: for each k ≥ 0 and
s ∈ S, π i

k(·|s) is a probability measure on Ai, and for every
D ∈ B(Ai), π i

k(D|s) is a Lebesgue measurable function; for
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each s ∈ S, there is a probability measure π i(·|s) ∈ Pi such
that π i(·|s) = π i

k(·|s),∀k ≥ 0.
Hence, the pair of stationary strategies for the players

depends only on the current state s ∈ S and with abuse of nota-
tion, the stationary strategy for player i is denoted by π i(·|s)
with π i

k(D|s) representing the probability with which a partic-
ular set of action D ∈ B(Ai) will be played. As a shorthand
notation, for each pair of strategies (π1, π2) ∈ � � �1 ×�2,
the associated transition probabilities are defined as follows:

q(s′|s, π1, π2) �
∫

A
q(s′|s, a, b)π1(da|s)π2(db|s), s′ ∈ S,

(5)

and R(s, π1, π2) is defined similarly, with R(s, a, b) in lieu of
q(s′|s, a, b). Note that R(s, a, b) and q(s′|s, a, b) are continu-
ous on A, which implies that q(s′|s, π1, π2) and R(s, π1, π2)

are continuous on �.
The accumulated expected reward for the attacker under the

discounted criterion is defined as follows:

Jα(m0, π
1,2) � E

π1,2

[ ∞∑

k=0

αkR(sk, ak, bk)|s0 = m0

]

, (6)

in which m0 ∈ S and α ∈ [0, 1) is the discount coefficient.
Considering the stationary property, we introduce the solu-

tion concept for the stochastic game, a stationary Nash
equilibrium (SNE):

Definition 1: For the zero-sum stochastic game G, a sta-
tionary policy π i,�,∀i ∈ I is a stationary Nash equilibrium if
for all players i ∈ I, for all π i ∈ Pi and for any initial state
m0 ∈ S,

Jα(m0, π
1,�, π2) ≥ Jα(m0, π

1,�, π2,�) ≥ Jα(m0, π
1, π2,�).

Thus the SNE is a sequence of distribution over actions from
which no player is motivated to deviate unilaterally. The
stochastic game problem is to find (π1, π2) ∈ � to obtain

Jα(s) � sup
π1∈�1

inf
π2∈�2

Jα(s, π1, π2), ∀s ∈ S. (7)

The optimal strategies and the value of the game is denoted
by π1,�, π2,� and Jα(s), respectively.

B. Relation to a One-Stage Game

For a given state s, the sup-inf problem in (7) is analogous
to a one-stage game G′ (specifically, a two-player zero-sum
game on the unit square), in which the expected reward func-
tion Jα(s, π1, π2) is replaced by the utility function U(a, b).
Hence, before discussing the existence and the structural prop-
erty of the SNE for the stochastic game G, we introduce some
preliminary results for the one-stage game.

First, we define a point of the spectrum [16] of mixed
strategy for G′ as follows.

Definition 2: A pure strategy z0 for a player is called a
point of the spectrum of the mixed strategy Z if ∀ε > 0, ω �
{z:|z − z0| < ε}, the integral

∫
ω

dZ(z) is positive.
Note that this definition degenerates to the definition of

support when considering finite action set. Based on (7), we
define an operator for G′ to find its game value: val(U) =

sup
π1∈P1

inf
π2∈P2

∫
a,b U(a, b)dπ1(a)dπ2(b) (π1 and π2 are the

mixed strategies or probability distributions over action sets
A1 and A2, respectively). Here, we have the following
properties for G′.

Lemma 1: For the two-player zero-sum game G′ on the unit
square, we have

(1) If one player possesses a pure optimal strategy a�, the
other player also plays a pure optimal strategy: val(U) =
min

b
U(a�, b);

(2) If the utility function U(a, b) is continuous in both vari-
ables, for a pair of arbitrary optimal strategies (π�

1 , π�
2 ), and

for any a0 (b0 resp.), a point of the spectrum of π�
1 (π�

2 resp.),
val(U) = U(a0, π

�
2 ) = U(π�

1 , b0).
Next, we illustrate the connection between the stochastic

game G and G′ via value iteration method. Let K be the set
of all real-valued functions on S. Define the operator C : S ×
A × K → R as

C(s, a, b, f ) � E[f (sk+1)|sk = s, ak = a, bk = b]

= d(a, b)f (sk+1 = s + 1) + d(a, b)f (sk+1 = 0),

in which f (·) ∈ K and d(a, b) is the packet-dropout rate when
the pair of action (a, b) is taken. Moreover, define the operator
W : S × A × K → R as

W(s, a, b, f ) � R(s, a, b) + αC(s, a, b, f ).

For given (s, f ), we regard C(s, f ) and W(s, f ) as a one-stage
game with utility functions C(s, a, b, f ) and W(s, a, b, f ), and
similar to (5), C(s, π1, π2, f ) and W(s, π1, π2, f ) are well-
defined. Denote by Tαf (s) : K → K the operator associated
with the stochastic game G, that is, Tαf (s) = valW(s, f ),∀s ∈
S. The property of this operator Tα is shown in Lemma 2.

Assumption 1: The maximum packet-dropout rate and the
system matrix A satisfy that d(amax, bmin)ρ

2(A) < 1.
Notice that this type of assumption is common in state

estimation problem with intermittent observations [18]. For
unstable systems, if the condition is not satisfied, the attacker
can choose to attack with a certain jamming power constantly
to gain an unbounded expected error covariance (i.e., the
attacker dominates this game), thus there exists no equilibrium.
A statement and proof of the equilibrium existence result are
demonstrated in Theorem 1 and Lemma 2 below.

Lemma 2: Suppose Assumption 1 holds, then
(1) Jα is the unique solution to the optimality equation, i.e.,

Jα(s) = TαJα(s);
(2) Any stationary policy pair (π1, π2) achieving

valW(s, Jα(s)),∀s ∈ S is optimal for the game G;
(3) For every initial value function f (s) ∈ K, then {Tn

αf (s)}
is a convergent sequence in K and lim

n→∞ Tn
αf (s) = Jα(s).

Theorem 1: There exists a SNE for the attacker-sensor
game G if Assumption 1 is satisfied, and for each state s,
it is a NE solution to a one-stage game with utility function
W(s, a, b, Jα(s)).

The proof for this theorem follows directly from Lemma 2.
Furthermore, Lemma 2 implies that the α-discounted value
iteration algorithm converges to the unique point (i.e., the
game value). Intuitively speaking, Assumption 1 restricts the
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�1 � W(m, a2, ν(·|m), Jα) − W(m, a1, ν(·|m), Jα) − [W(m − 1, a2, ν(·|m − 1), Jα) − W(m − 1, a1, ν(·|m − 1), Jα)]

< 0. (8)

�2 � W(m, μ(·|m), b2, Jα) − W(m, μ(·|m), b1, Jα) − [W(m − 1, μ(·|m − 1), b2, Jα) − W(m − 1, μ(·|m − 1), b1, Jα)]

> 0. (9)
�1 = E

ν(·|m)
[
R(m, a2, b) + αC(m, a2, b, Jα) − R(m, a1, b) − αC(m, a1, b, Jα)

]

− E
ν(·|m−1)

[
R(m − 1, a2, b) + αC(m − 1, a2, b, Jα) − R(m − 1, a1, b) − αC(m − 1, a1, b, Jα)

]

= α[Jα(m + 1) − Jα(0)]Eν(·|m)[d(a2, b) − d(a1, b)] − α[Jα(m) − Jα(0)]Eν(·|m−1)[d(a2, b) − d(a1, b)]. (10)

W(m, a1, b2, Jα) − W(m, a1, b1, Jα) − [W(m − 1, a2, b2, Jα) − W(m − 1, a2, b1, Jα)]

= α[d(a1, b2) − d(a1, b1)][Jα(m + 1) − Jα(0)] − α[d(a2, b2) − d(a2, b1)][Jα(m) − Jα(0)]. (11)

value of the maximum data-packet dropout rate to guarantee
the existence of SNE. For subsequent structural analysis, we
present the property of the game value function in Lemma 3.

Assumption 2: There exists s0 ≥ 0 such that ∀s ≥ s0, r(s +
1) − c0r(s) + (c0 − 1)r(0) ≥ c1, where constants c0 > 1 and
c1 = (c0 − 1)[θ(amin) + ϑ(bmax) − θ(amax) − ϑ(bmin)].

Similar assumptions on the reward function (for exam-
ple, linearity [19]) are widely adopted in the analysis of
structural strategies for stochastic games. For scalar systems,
Assumption 2 holds if and only if A2 ≥ c0. An example to
demonstrate its feasibility in a higher dimensional system is
given in Section IV. Notice that Assumption 2 is critical in
the proof of the following lemma.

Lemma 3: For the stochastic game G,
(1) The function Jα(s) is monotonically increasing in s;
(2) For any c0 > 1, if Assumption 2 holds, then the value

function Jα(s) satisfies Jα(s+1)−Jα(0)
Jα(s)−Jα(0)

≥ c0 for s ≥ s0.

C. Structure of Optimal Stationary Strategies

The existence of SNE is proved via value iteration conver-
gence in Lemma 2, which can be computed as a one-stage
game with the optimal value function Jα(s). In this section,
we present some special structure of the SNE of G.

Definition 3: For a stationary strategy taken by the attacker
{μ(·|s), s ∈ S} with μ(·|s) ∈ P1, denote by asup(π1 = μ|s)
(ainf(π1 = μ|s) resp.) the greatest (smallest resp.) point
a ∈ A1 in the spectrum of μ(·|s). This strategy is strongly
monotone nondecreasing if asup(π1 = μ|s = s2) ≤ ainf(π1 =
μ|s = s1) holds for any s1, s2 ∈ S with s2 < s1.

Note that similar definition is applied to the stationary strat-
egy played by the sensor. Before establishing the structure of
the SNE for the stochastic game G, we introduce the following
result.

Lemma 4: For any SNE (μ, ν) ∈ {(π1,�, π2,�)} of the
stochastic game G, if (8) (or (9)), as shown at the top of this
page, holds for any a1 > a2 (or b1 > b2) and for any m ∈ S,
then μ (or ν) is monotone nondecreasing.

The inequalities in (8) and (9) are referred to the sub-
modularity and super-modularity for a two-player zero-sum
stochastic game. Note that in order to prove �2 is positive,
it suffices to show that for any b1 > b2 and any a1 and a2,
W(m, a1, b2, Jα) − W(m, a1, b1, Jα) − [W(m − 1, a2, b2, Jα) −
W(m − 1, a2, b1, Jα)] > 0. We now present the structure of
the SNE.

Theorem 2: Suppose Assumption 2 holds, then any of
the SNE {μ, ν} of the attacker-sensor game is (partially)
nondecreasing monotone for s ≥ s0.

Proof: First, suppose the optimal strategy ν is monotone
nondecreasing. In order to prove the monotonicity of μ, it is
sufficient to verify �1 < 0 in (10), as shown at the top of
this page, for any a1 > a2 and m ∈ S. Define δ1(a1, a2, b) =
d(a2, b) − d(a1, b) < 0. One easily obtains that ∂δ1(a1,a2,b)

∂b <

0 since d(a, b) is concave in γ (a, b). As binf(νm) ≥
bsup(νm−1), δ

sup
1 (a1, a2, b|ν, m) � δ1(a1, a2, binf(ν|m)) ≤

δinf
1 (a1, a2, b|ν, m − 1) � δ1(a1, a2, bsup(ν|m − 1)). Hence,

E
ν(·|m)δ1(a1, a2, b) ≤ E

ν(·|m)δ1(a1, a2, b) < 0. Based on
Lemma 3, Jα(m + 1) − Jα(0) > Jα(m) − Jα(0) > 0 and it
follows that �1 < 0.

Next, we establish the monotonicity of ν via checking a
sufficient condition for �2 > 0 as mentioned previously. For
any a1, a2 and b1 > b2, we have (11), as shown at the top
of this page. Define δ2(b1, b2, a) = d(a, b2) − d(a, b1) > 0
and we have ∂δ2(b1,b2,a)

∂a = ∂d(a,b2)
∂a − ∂d(a,b1)

∂a < 0. If (11)

is positive, Jα(m+1)−Jα(0)
Jα(m)−Jα(0)

>
δ2(b1,b2,a2)
δ2(b1,b2,a1)

should be satisfied.

Define δ3(a1, a2, b1, b2) � δ2(b1,b2,a2)
δ2(b1,b2,a1)

, in which a1, a2 ∈ A1,
b1, b2 ∈ A2 and b1 ≥ b2. Since δ3(·) is continuous on a com-
pact set with removable discontinuous points, according to the
extreme value theorem the function δ3(·) has an upper bound,
which is denoted by δmax

3 > 1. Hence, we obtain a sufficient
condition for the monotonicity structure of optimal strategies
{μ, ν}, that is, Jα(m+1)−Jα(0)

Jα(m)−Jα(0)
> δmax

3 . According to Lemma 3,
this inequality holds for m ≥ m0 with c0 = δmax

3 .
The special structure of the optimal policy pair (μ, ν) helps

reduce the computational complexity of the stochastic game
algorithm significantly. From previous discussions, the optimal
SNE {μ, ν} for G follows the monotonicity when s ≥ s0;
however, the structure of SNE is irregular for s < s0.

D. Discussion of Discrete Power Levels

Next, we demonstrate the structure of {μ, ν} for some spe-
cial cases. Without loss of generality, s0 is assumed to be
zero. Consider the scenario where the action space Ai, i ∈ I
is discretized with finite power levels. According to Lemma 1
(1), μ(·|s1) and ν(·|s2) are mixed strategies iff s1 = s2 since
{μ(·|s), ν(·|s)} are NE for the one-stage game with utility
function W(s, Jα). Moreover, based on Def. 3, it follows that
the randomization of the monotone nondecreasing stationary
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Fig. 2. SNE for the attacker/sensor under different states.

strategy μ (ν resp.) is over no more than min(|A1,A2|) − 1
states. Assume there are only two actions for each player (i.e.,
A1 = {amin, amax} and A2 = {bmin, bmax}) and Assumption 2
is satisfied. Then a SNE for G is constructed with the thresh-

old structure: μ(·|s) =
⎧
⎨

⎩

(1, 0), if s < s1;
(p1, p1), if s = s1;
(0, 1), otherwise,

and ν(·|s) =
⎧
⎨

⎩

(1, 0), if s < s2;
(p2, p2), if s = s2;
(0, 1), otherwise,

where the parameters p1, p2, s1 and s2

satisfy either s1 = s2 or p1 = p2 = 1.

IV. SIMULATION

In this section, we illustrate the structural equilibrium
result with an example arising in a collision avoidance sys-
tem. Consider the remote state estimation of relative distance
and relative speed between two unmanned-ground-vehicles
(UGVs) [20], which is based on noisy measurements of the
distance between them. This is a simplified version of nav-
igation, as we here only focus on one directional motion.
Define the state vector consisting of distance Lk and veloc-
ity Vk as xk = [Lk Vk]�. The state equation described
in (1) is, for discrete time with sampling period T , xk+1 =[

1 (1 + ς
2 )T

0 1 + ς

]
xk +wk, in which ς is the ratio of the accelera-

tion to the velocity (i.e., Vk+1 −Vk = ςVk). The measurement
is imperfect, i.e., yk = [1 0]xk + vk. Consider the following
parameters ς = 0.25, T = 0.5, Q = diag(0.5, 0.5), R = 0.5.
Notice that the two UGVs transmit local estimates to the
remote estimator through a fading channel, which is vulner-
able to DoS attacks. The energy levels are A1 = [0.6 0.7]
and A2 = [3 4]. The channel noise is 0.5 and the packet-
dropout rate (notice that PER follows d(γ ) = γ − 1

2 [21]) is

D =
[

0.61 0.52
0.63 0.55

]
where D(i, j) represents PER under the i-th

jamming power level and the j-th transmission power level.
As for the discounted criterion, α = 0.96, θ(a) = −a and
ϑ(b) = 2b. By calculation, we have c0 = 1.04, c1 = 0.09
and r(0) = 2.79. It is easy to verify that Assumption 1 is
satisfied and Assumption 2 holds for s0 = 0. We apply the
Nash-Q learning algorithm1 to obtain SNE for this game. We
summarize the optimal stationary strategies for each player
in Figure 2: the optimal transmission strategy for the sen-
sor is to send packets with minimum power 3 under states
s = 0 and use power 4 for state s ≥ 1; while the attacker

1The algorithm is omitted due to limited space. Interested readers are
suggested to see [9] for reference.

adopts jamming power 0.6 when s ≤ 3 and 0.7 for other
states. This demonstrates the threshold-type strategies for the
attacker-sensor game G with discrete action sets.

V. CONCLUSION

This letter studied remote estimation under strategic DoS
attacks, which is formulated under a stochastic game frame-
work. It was shown that the SNE possesses some special
structures. In particular, when the actions sets are discrete,
a threshold-type strategy can be obtained, which helps design
algorithm to calculate optimal strategies with improved com-
putation efficiency.
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