Aminoquinoline Fluorescent Labels Obstruct Efficient Removal of N-Glycan Core α(1–6) Fucose by Bovine Kidney α-L-Fucosidase (BKF)

Róisín O’Flaherty,*† Aoife M. Harbison,‡ Philip J. Hanley,§ Christopher H. Taron, § Elisa Fadda,*‡ and Pauline M. Rudd†

†NIBRT GlycoScience Group, National Institute for Bioprocessing, Research and Training, Foster’s Avenue, Mount Merrion, Blackrock, Co., Dublin, Ireland
‡Department of Chemistry, Maynooth University, Maynooth, Kildare Ireland
§New England Biolabs, Ipswich, Massachusetts 01938, United States

ABSTRACT: Here we report evidence that new aminoquinoline N-glycan fluorescent labels interfere with the release of core α(1–6) fucose from N-glycans by bovine kidney α-L-fucosidase (BKF). BKF is a commonly employed exoglycosidase for core α(1–6) fucose determination. Molecular simulations of the bound and unbound Fuc-α(1–6)-GlcNAc, where GlcNAc is situated at the reducing end for all N-glycans, suggest that the reduced BKF activity may be due to a nonoptimal fit of the highest populated conformers in the BKF active binding site at room temperature. Population analysis and free energy estimates suggest that an enhanced flexibility of the labeled sugar, which facilitates recognition and binding, can be achievable with extended reaction conditions. We provide these experimental conditions using a sequential exoglycosidase digestion array using high concentrations of BKF.

KEYWORDS: aminoquinoline (AQC), bovine kidney fucosidase (BKF), N-glycan, ultra performance liquid chromatography (UPLC)

1. INTRODUCTION

N-Glycan fucosylation, with fucose linked via α(1–2), α(1–3), α(1–4), α(1–6) linkages to Gal or GlcNAc residues, plays major roles in plants, mammals, and other biological systems and therefore can be exploited as tools for biomarker discovery.1,2 They play important roles in cellular recognition processes including blood transfusion reactions, selectin-mediated leukocyte-endothelial adhesion, and host–microbe interactions.2 Fucosylation is a critical quality attribute for characterization of biotherapeutics such as monoclonal antibodies and is becoming increasingly important for product solubility, stability, pharmacokinetics, and immunogenicity studies as well as for the regulation of safe and efficacious drugs.3

N-Glycan analysis of glycoproteins involves glycoprotein purification, denaturation, and enzymatic release of N-glycans using Peptide-N-Glycosidase F (PNGase F).4 The N-glycans can be fluorescently and stoichiometrically labeled with 2-amino-benzamide (2-AB) and quantified using (ultra)-high performance liquid chromatography (HPLC/UPLC),5 electrophoresis or by coupled liquid chromatography mass spectrometry techniques.6 Exoglycosidase digestion assays6 in combination with databases such as Glycobase® are performed to structurally elucidate the glycans. In these arrays, individual glycosidases remove terminal sugars with specificity for a particular type of sugar, its anomeric configuration (α or β), and its linkage to an adjacent sugar. For elucidation of N-glycan core α(1,6) fucose, the enzyme bovine kidney fucosidase (BKF) α(1–2,3,4,6) is most commonly used and has been successfully employed on various different substrates including N-glycans on glycoproteins IgG,7 IgM,7 and O-glycans, respectively.

New labels have recently been developed for improved fluorescent labeling of released N-glycans for structural analyses. Recently we described the use of an aminoquinoline carbamate fluorescent label, 6-aminoquinoly-N-hydroxysuccinimidyl carbamate (AQC) in place of the traditional 2-AB label (see Figure 1).10 This glycan label gives a 20-fold improvement in fluorescent detection, compared to 2-AB. Additionally, Waters’ RapiFluor-MS, also an aminoquinoline glycan label, significantly overcomes the low MS ionization efficiency of 2-AB and increases sensitivity beyond 100-fold (see Figure 1).11 Despite the obvious analytical advances aminonquinoline labels represent, they have also dramatically altered the ease at which N-glycan core fucose can be...
enzymatically verified. In the present study, we show that BKF has a significantly reduced ability to remove core α(1,6) fucose from both AQC- or RapiFluor-MS-labeled N-glycans. We further present molecular simulation of BKF’s active site to explore the possible basis for its inability to efficiently act in the presence of this new family of labels. We provide optimized exoglycosidase digestion array conditions using stringent conditions for the successful characterization of N-glycans.

2. MATERIALS AND METHODS

2.1. Materials and Chemistry

All chemical reagents and solvents were purchased from Sigma-Aldrich (St. Louis, MO). Human IgG was purchased from Sigma-Aldrich (I4506) for reduction, alkylation, and N-glycan labeling with 2-AB and AQC as sources for 2-AB- and AQC-labeled IgG N-glycans. Waters RapiFluor-MS glycan performance standard (186007983) was used as a source of RapiFluor-MS-labeled IgG N-glycans. Recombinant PNGase F (P0709L), ABS (α2−3,6,8,9 Neuraminidase A, P0722L, 20 μU/mL), BTG (bovine testes β(1−3/4)-galactosidase, 2 μU/mL), GUH (β-N-Acetylgalcosaminidase S, 4 μU/mL), and BKF (α1−2,3,4,6 Fucosidase, 2 μU/mL) were obtained from New England Biolabs (Ipswich, Massachusetts). BTG (PZGKX-5013, 5 U/mL), BKF (PZGKX-5006, 500 μU), and JBM (PZGKX-5010, 150 U/mL) were purchased from Prozyme (San Leandro, California). 10K Nanosep centrifugal devices were purchased from Pall (Port Washington, NY) and Hypersep Diol cartridges from Thermo Fischer Scientific (Waltham, Massachusetts). Samples were analyzed on a Waters Acquity H-Class UPLC instrument (Milford, MA).

2.2. Glycan Nomenclature

Colored Oxford nomenclature is used throughout, which provides embedded linkage information. Structure abbreviations: all N-glycans have two core GlcNACs; F at the start of the abbreviation indicates a core-fucose α(1,6) linked to the inner GlcNAc; Mx, number (x) of mannose on core GlcNAcs; Ax, number of antenna (GlcNAc) on trimannosyl core; A2, biantennary with both GlcNAcs as β(1,2) linked; B, bisecting GlcNAc linked β(1,4) to β(1,4) mannose; Gx, number (x) of β(1,4) linked galactose on antenna; Sx, number (x) of sialic acids linked to galactose.

2.3. Preparation of 2-AB-Labeled N-Glycans from Human IgG

A pool of released N-glycans from human IgG was prepared for subsequent fluorescent labeling for visualization by UPLC chromatography. For eight separate vials, reduction of human IgG (525 μg in 100 μL phosphate buffer per vial, pH 7.4) was afforded by addition of dithiothreithol (DTT, 40 μL per vial, 100 mM) by incubation at 700 rpm at 65 °C for 45 min. Alkylation was afforded by treatment with iodoacetamide (IAA, 40 μL per vial, 20 mM) by incubation at rt for 1 h. PNGase F (25 μL per vial) was added and incubated at 37 °C overnight. The eight 10K Nanosep centrifugal devices were pre-equilibrated with 50:50 water:acetonitrile, spun at 7000 rpm for 10 min, and the supernatants were discarded. The N-glycan mixtures were added to each spin cartridge and centrifuged at 12,000 rpm for 2 min collecting the purified supernatants. The filters were washed with 800 μL of water by centrifugation at 12,000 rpm for 10 min, and the supernatants were pooled. Each vial was pooled and vacuum-dried to give a stock solution of unlabeled IgG N-glycans. A portion of the unlabeled glycans were dissolved in 2-AB labeling mixture (350 mM 2-AB, 1 M NaCNBH3 AcOH:DMSO 30:70), incubated at 70 °C at 700 rpm for 2 h. The reaction was quenched with 200 μL of 95% MeCN. SPE Clean-up was performed using pre-equilibrated HyperSep Diol cartridges (washing with 1 mL 95% MeCN, 100% H2O and 95% MeCN respectively), whereby the supernatant was transferred to the HyperSep Diol cartridges, washed with 2 × 1 mL of 95% MeCN, followed by elution with 2 × 1 mL of 20% MeCN. The supernatant was collected and dried for UPLC chromatography.

2.4. Preparation of AQCLabeled N-Glycans from Human IgG

AQC-labeled N-glycans from IgG were denatured, alkylated, and AQC-labeled according to the literature reference.

2.5. Standard Exoglycosidase Digestion Conditions for 2-AB-, RapiFluor-MS-, and AQC-Labeled IgG N-Glycans

All enzymes were obtained from NEB ((Ipswich, Massachusetts). The 2-AB-, RapiFluor-MS-, and AQC-labeled glycans were digested in a volume of 10 μL for 18 h at 37 °C in 50 mM sodium acetate buffer, pH 5.5 using arrays of the following enzymes: ABS (α2−3,6,8,9 Neuraminidase A, P0722L, final concentration 2 μU/mL), BTG (bovine testes β(1−3/4)-galactosidase, final concentration 400 U/mL), GUH (β-N-Acetylgalcosaminidase S, final concentration 800 U/mL), and BKF (α1−2,3,4,6 Fucosidase, final concentration 800 U/mL). After incubation, enzymes were removed by filtration through 10 kDa protein-binding EZ filters (Millipore Corporation). N-Glycans were then analyzed by HILIC UPLC Chromatography.
The labeled glycans were also generated with *t*leap and solvated with the TIP3P water model. To ensure exhaustive conformational sampling, four different starting conformations of the α(1→6) glycosidic linkage, which included *gt*, *gg*, and *fg* conformers, were used as starting points for the MD simulations.

2.8.1. Molecular Dynamic Simulations. The minimizations and MD simulations were performed using AMBER 12. Production for each of the four starting conformations was set to 100 ns, for a cumulative sampling time of 400 ns for both labeled glycans. Energy minimizations through 500 k cycles of steepest descent with a restraint of *5 kcal/molÅ*² applied to all heavy atoms. For the 2-AB-labeled glycans, an additional 500k unrestrained minimization was carried out, to relax the acylc GlcNAc conformation. Following the minimization stage(s), the system was heated from 5 to 298.5 K over 50 ps and then equilibrated at 300 K for 250 ps. This step was followed by a 100 ns production run. The resultant trajectory files were stripped of water using the *ptraj* module of AMBER 12. The trajectories were visualized using VMD v.1.9.3 beta 1,21 and the highest populated conformers identified in terms of the torsion angle values and relative populations over 100 ns.

2.8.2. Sequence Alignments and Homology Model. The PDBs search engine available through the EMBL European Bioinformatics Institute (EBI) Web site was used to select protein structures with sequence identity higher than 30% relative to BKF (GenBank reference: AA112589.1). *Thermotoga maritima* alpha fucosidase (TMF, 1ODU PDBid) with 35.7% identity was selected as template, and two sequence alignments were used to build BKF homology models, one obtained with the program MODELER v.9.15,29 which was also used for the structure generation and scoring, and one with Clustal Omega.28 A total of 10 BKF 3D structures were visually analyzed by structural alignment to their TMF template using PyMol v.1.4.1.25 The most suitable structures were selected in terms of the conservation of the position of critical residues, such as the nucleophile and assisting base relative to the TMF template and the discrete optimized protein energy (DOPE) score.

2.8.3. MD Conformational Analysis of the AQC-Labeled Fuc-α(1→6)-GlcNAc. The conformations visited during the 100 ns production from one of the MDs can be described in terms of the values of the α(1→6) linkage ψ, ϕ, and ω torsions. A typical distribution is shown in *SI Figure S-3* as an example. Conformational propensity was determined based on bins of width of ±40°, centered around the average values of the highest populated conformers identified through graphs as the one shown in *SI Figure S-3*. The torsion angle values and relative populations of the four highest populated AQC-tagged sugars are shown in *SI Table S-3*.

2.8.4. MD Conformational Analysis of the 2-AB-Labeled Fuc-α(1→6)-GlcNAc. The same approach was taken to perform the conformational analysis of the 2-AB-labeled glycan. A typical distribution is shown in *SI Figure S-4* as an example. The four highest populated conformers identified during the cumulative 400 ns simulation of the 2-AB-labeled glycan are shown in *SI Table S-4*. All other conformers not included in the table have a population of less than 3%.

2.8.5. Potential Structure of the 2-AB-Labeled Glycerol in Complex with BKF. The structural alignment of the fucose co-crystallized with TMF to the ring atoms of the fucose of the highest populated conformers obtained through MD was used.
as a method to establish the potential fit of the labeled glycan into the BKF binding site. As shown in SI Figure S-5 panels C and E, conformers 1 (40.3% populated) and 3 (6.7% populated) have the 2-AB label pointing out of the active site, while conformers 2 (36.5%) and 4 (5.8%), shown in SI Figure S-5 panels D and F, have the label pointing toward the inside of the enzyme, suggesting that these conformation would not bind.

2.8.6. DFT Conformational Analysis of the AQC-Labeled Fuc-α(1–6)-GlcNAc. All DFT calculations were run with NWChem v.6.3,26 at the B3LYP/6-311G** level of theory.27 A DFT analysis of the relative stability of the different conformers identified through the MD simulation was carried out to verify the identity of such conformers as local energy minima and ultimately as a validation of the force field combination chosen to describe the fluorescently labeled glycans. During such analysis, we took into consideration that while the MD was ran in explicit solvent, all DFT calculations were ran in vacuo, which could alter considerably the relative stabilities of some conformations, due to the formation of internal hydrogen bonds, not populated (or relevant) in bulk water.28 Calculations were run at the B3LYP/6-311G** level of theory. Conformer 2 from the MD simulations was not stable in vacuo, because the internal hydrogen bonds formed in the geometry optimization stabilizes the structure. The glycosidic bond has to rotate to allow this hydrogen bonding to occur. The DFT B3LYP/6-311G** global minimum corresponds to the highest populated conformer obtained through MD, i.e. conformer 1. The difference in conformer 2 from MD and the optimized conformer (labeled conformer A) from DFT can be seen in SI Figure S-6. Conformers 1, 3, and 4 were identified as minima by DFT, and their relative energies are shown in SI Table S-5.

2.8.7. DFT Conformational Analysis of the 2-AB-Labeled Fuc-α(1–6)-GlcNAc. The DFT geometry optimization of the different conformers obtained for the 2-AB-labeled glycan through the MD simulations was carried out with the same protocol used in the case of the AQC-labeled glycan. Conformer 1 from MD simulations was not stable in vacuo,
with the DFT B3LYP/6-311G** global minimum corresponding to a populated conformer identified from MD simulations, listed as conformer B in SI Table S-6. Conformer B has a relative population of 2.1. SI Figure S-7 shows the internal hydrogen bonding that stabilizes conformer B in vacuo and the difference in torsion angles between conformer 1 (from MD) and conformer B. Conformers 2, 3, and 4 were identified as minima, and their relative energies were calculated, as shown in SI Table S-6.

3. RESULTS AND DISCUSSION

We first explored if the presence of aminoquinoline labels affected the performance of exoglycosidase arrays. RapiFluor-MS- or AQC-labeled immunoglobulin G (IgG) N-glycans were sequenced using standard exoglycosidase digestion conditions and compared to 2-AB-labeled IgG N-glycans as a control (see experimental details and SI Figure S-1, Table S-1). As shown in Figure 2, negligible removal of core α(1–6) fucose was observed for RapiFluor-MS- and AQC-labeled IgG N-glycans, compared to 2-AB-labeled IgG N-glycans. In contrast, complete sialidase, galactosidase, and hexosaminidase reactions were observed for each of the three labels. Thus, only removal of core α(1–6) fucose by BKF was adversely affected by the presence of an aminoquinoline label.

Reaction conditions were optimized to create an exoglycosidase array fully capable of sequencing aminoquinoline-labeled N-glycans (including core α(1–6) fucose removal). This involved the use of sequential enzyme digests (SI Table S-2), higher BKF concentrations, and longer reaction times. Using this approach, it was possible to improve BKF removal of core α(1,6) fucose from AQC-labeled N-glycans (see experimental details and SI Figure S-2, Table S-2). However, this array procedure took 3–4 days to execute, compared to ~18 h with 2-AB-labeled glycans. These data illustrate that inhibition of BKF by aminoquinoline labels is not exhaustive, suggesting that creation of BKF variants that more efficiently remove core α(1,6) fucose might be plausible. In the meantime, these conditions provide analysts a procedure for sequencing aminoquinoline-labeled N-glycans in an extended protocol.

To understand the molecular basis for the reduced ability of BKF to remove core α(1,6) fucose from for AQC-labeled N-glycans, we used a combination of molecular simulation techniques, namely, molecular dynamics (MD), ab initio density-functional theory (DFT), and homology modeling, to study the recognition of the AQC- and 2-AB-labeled Fuc-α(1–6)-GlcNAc, designed to assess the structural complementarity of the BKF binding site with the labeled sugar conformations at 300 K, as well as the intrinsic conformational flexibility of the labeled sugars. Because of the lack of structural data on BKF, we built 3D models of the complexes with the AQC- and 2-AB-labeled minimum binding motif Fuc-α(1–6)-GlcNAc via homology modeling. The BKF model was based on the structure of T. maritima α-L-fucosidase cocrystallized with fucose (PDBid 1ODU),23 with which BKF shares 36% sequence identity.24 The cocrystallized fucose was used as reference for the structural alignment of the AQC- and 2-AB-tagged Fuc-α(1–6)-GlcNAc conformers obtained through molecular dynamics (MD) in solution. We ran a collective 400 ns MD simulation for each labeled sugar, based on four independent and uncorrelated 100 ns trajectories at 300 K and 1 bar. Parameters for the were set based on a GLYCAM06/ GAFF force field scheme. The highest populated conformers were verified as energy minima by hybrid DFT (B3LYP) calculations. Further details on the computational method and data are included in the experimental section (see Computational Methods, SI Figures S-3–S-6, Tables S-3–S-6).

The conformational analysis of the unbound AQC-labeled Fuc-α(1–6)-GlcNAc shows that only four conformers are significantly populated (>10%) in solution, with the highest populated at 40%, see SI Table S-3. These conformers are characterized by distinct values of the α(1–6) glycosidic linkage ψ and ω angles, which determine the spatial orientation of the structurally rigid AQC group and of the O-4 on the GlcNAc residue where the N-glycan GlcNAc-trimannose group are attached to, see Figure 3, panel A.

Figure 3. Panel A, structural alignment of the four highest populated conformers obtained from the analysis of a cumulative 400 ns MD of the AQC-labeled Fuc-α(1–6)-GlcNAc. Panel B, structural alignment of the four highest populated conformers on to the fucose in the BKF 3D model binding site. Panels C, D, E, and F, close up of the spatial orientation of the different conformers, with populations 40% (yellow), 25% (purple), 11% (cyan), and 10% (green), respectively. The GlcNAc O4, where the N-glycan chain is attached, is shown as a red sphere.

Structural alignment of the highest populated AQC-labeled conformers onto the fucose in the BKF binding site, shows that only the conformation with a relative population of 10% over 400 ns, fits in the binding site without major steric clashes for the AQC tag and for the remainder of the sugar linked to the O-4 on the GlcNAc residue. As shown in Figure 3C–F, because of the narrow structure of the BKF binding site, the three highest populated conformers are a very tight fit, not only for the AQC tag but also for the remainder of the glycan at position O4 of GlcNAc residue. The relative populations...
obtained through MD suggest that between the optimally fitting (10%) and the highest populated conformer (40%), the free energy (ΔG) barrier is relatively low, i.e. ΔG = +3.4 kJ/mol (1.4 kT). This is in agreement with the experimental observation that digestion can be brought to completion by stressing the reaction conditions, for example, through prolonged reaction time or increased fucose concentrations. In case of the 2-AB-labeled sugar, because of the characteristic acyclic structure of the GlcNAc, the conformational dynamics visits only two significantly populated conformations through 400 ns, see SI Table S-2, with comparable relative populations, i.e. 40% and 36%. Only one of the two has a near perfect fit in the BKF binding site, and the almost equal population distribution, due to the intrinsic flexibility of the acyclic GlcNAc, corresponds to ΔG = +0.3 kJ/mol (0.5 kT), suggesting a high degree of conformational flexibility at room temperature that would facilitate substrate recognition and binding.

■ CONCLUSIONS

Biochemical evidence is provided that core α(1,6) fucose removal in the presence of aminoquinoline labels such as AQC or RapiFluor-MS for glycan characterization is hindered using standard exoglycosidase digestion conditions. Optimized experimental conditions using high concentrations of BKF and longer reaction times are presented to show core α(1,6) fucose removal in the presence of AQC. This biochemical data is supported by our computational model that suggest a rationale for the poor ability of BKF to remove α(1,6) fucose from aminoquinoline labeled N-glycans. This rationale is essentially based on the low degree on intrinsic flexibility of the aminoquinoline group. MD simulations show that only four distinct conformations of the AQC-labeled sugar are significantly populated in solution (>10%). Based on the structure of BKF obtained from homology modeling, only one of these conformers fits in the binding site without major steric clashes with the protein. We acknowledge that such experimental conditions may not be suitable in analytical applications where cost and/or time are significant factors. Thus, future work will involve attempts to improve BKF’s ability to hydrolyze core fucose from aminoquinoline-labeled N-glycans using structure-guided mutagenesis strategies.

■ ASSOCIATED CONTENT

Supporting Information
The Supporting Information is available free of charge on the ACS Publications website at DOI: 10.1021/acs.jproteome.7b00580.

■ REFERENCES

(2) Becker, D. J.; Lowe, J. B. Fucose: biosynthesis and biological function in mammals. Glycobiology 2003, 13 (7), 41R–53R.

