An easily accessible optical chemosensor for Cu\(^{2+}\) based on novel imidazoazine framework, its performance characteristics and potential applications

Lokesh Kumar Kumawat \(^{a}\), Manoj Kumar \(^{b}\), Priyanka Bhatt \(^{c}\), Anuj Sharma \(^{b,\ast}\), M. Asif \(^{d}\), Vinod Kumar Gupta \(^{a,\ast}\)

\(^{a}\) Department of Applied Chemistry, University of Johannesburg, Doornfontein Campus, Johannesburg, South Africa
\(^{b}\) Department of Chemistry, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand, 247667, India
\(^{c}\) Department of Chemistry, GITAM Institute of Science, GITAM University, Visakhapatnam, Andhra Pradesh, 530045, India
\(^{d}\) Chemical Engineering Department, King Saud University Riyadh, Riyadh, Saudi Arabia

Abstract

Despite the fact that a large number of chemical sensors for Cu\(^{2+}\) have been proposed by different groups in recent past, most of them fall into very few classes of molecular framework with similar utilities and limitations. In order to broaden the scope and to overcome the limitation of present day chemical sensors, design, synthesis and testing of molecular systems based on novel fluoro/chromophore is a research goal of significant interest. In the present report, two novel furan-2-yl substituted imidazoazole based optic chemosensors (IA-1 and IA-2) for Cu\(^{2+}\) have been disclosed for the first time. Proposed sensors were found to have high association constants \((10^4 \text{ M}^{-1})\), acceptable detection limits \((10^{-7} \text{ M})\), high selectivity and reversibility/reusability. Different aspects of this sensing phenomenon were studied using fluorescence spectroscopy and NMR based titrations. Designed probe have shown potential applications in the area of sample monitoring, photo-printing and membrane sensing.

© 2016 Elsevier B.V. All rights reserved.

1. Introduction

Copper is one of the indispensable micronutrients with ubiquitous presence in all the life forms from primitive bacteria, fungi to higher plant and mammalian eukaryotic cell [1]. Under physiological conditions, chemistry of this transitional metal is exquisitely governed by Cu\(^{2+}/\text{Cu}^{+}\) redox couple, which in turn administers the functions of several biologically relevant enzymes. This unique attribute of copper chemistry is highlighted by its participation in numerous cellular and sub-cellular events such as iron transport, cellular oxidation, electron transport shuttle (ETS), radical detoxification, biosynthesis of several important natural products etc [2–6].

For all this to happen in a well balance manner, a normal level of copper is required in the body. Under ordinary conditions, copper homeostasis remains under the tight control of different copper enzymes, transporters, carriers, chaperones etc [7,8]. Unfortunately, whenever this control loosens, it is manifested as several disease conditions such as neurogenetic disorders, sclerosis, ageing, partial anaemia etc. Extreme overexpressed or underexpressed states are even more life threatening [9–11]. Some recent studies have pointed out that the self-healing/self-cleaning capacity of close aquatic ecosystems such as lakes, ponds and other stagnant water bodies very much rely on [Cu\(^{2+}\)]/[H\(^{+}\)] ratio [12,13]. Elevated copper concentration has several negative effects on the population, growth and reproduction of aquatic microflora and fauna. In light of all these facts, it is worth recalling that normal copper level is vital for healthy functioning of all living organisms [14,15].

Acknowledging, its important role in various domains and forms of life, qualitative and quantitative estimation of copper at trace level seems to be research task of paramount importance. At present, several instrumental techniques are routinely employed for this purpose such as voltammetry, atomic spectroscopy (AAS and AES), inductively couple plasma hyphenated with mass spectroscopy (ICP-MS) etc [16–20]. Although these sophisticated techniques provides very precise results, yet marred with several limitations such as need of experts handling, high maintenance expenditure, operational complexities, tedious and destructive sample preparation, low portability, unsuitability for “on spot, real time, in vivo” experiments. Use of molecular systems...
(chemical sensors) with the ability to demonstrate measurable change (in any of the output signal such as optic/electric/magnetic etc) in the presence of a specific analyte is an effective solution of most of these problems. Indeed, discovery and design of new probing agent/sensing molecule is now a very active area of research with hundreds of reports each year. Because of several advantages such as fast response, higher selectivity and sensitivity, portability etc methods based on optical chemosensors (colorimetric/fluorescence) are particularly memorable in this regard [21–23].

In recent past, a large number of sensing molecules have been proposed for Cu²⁺ ion by different research groups. But a careful survey of the literature revealed that most of these probes are not more than a structural modification of few well established molecular scaffolds such as fluorescein, naphthalimide, anthracene/anthraquinone, quinolones, triazoles, pyrene, BODIPY core [24–53] etc. with similar drawbacks and applicability. Therefore, design and discovery of new sensing molecules with different molecular framework would be a scientifically stimulating and rewarding exercise.

In a continuation of our previous work on chemical sensors [54–62], we herein report two new furan-2-yl functionalized imidazooazines (or Gröebke product) IA-1 and IA-2 [63,64] for easy, effective and fast detection of Cu²⁺ in mixed aqueous phases. Despite its easy synthetic accessibility presence of donor N and O atoms in attached groups and intense fluorescence nature, this molecular system have never been explored for its metal sensing abilities. This work not only shed light on the different aspects of this particular sensing phenomenon but also explores the practical applicability of these newly disclosed systems in the realm of sample monitoring, membrane sensing and photoprinting.

2. Experimental

2.1. General information

All solvents and chemicals (analytical grade) were purchased from Sigma-Aldrich® and were used as received. Poly(vinylpyrrolidone) (PVP) and additive for membrane preparation were obtained from Acros Organics (Thermo Fisher Scientific), New Jersey, USA. Progresses of the reactions were monitored by thin layer chromatography (TLC, Merck 60 FΣ254, All 1H and 13C NMR spectra were recorded on a Jeol Resonance ECX-100 II spectrometer. Chemical shift values were reported in parts per million (ppm) using TMS as an internal standard. Spectral data were processed using MestReNova® software. High resolution mass spectrometry (HRMS) and elemental analysis experiments were carried out using a Bruker Daltonics micrOTOF-QII® (ESI mode of ionization) and Elementar vario MICRO cube respectively. UV–vis absorption and fluorescence spectra were recorded on a Shimadzu UV-2450 spectrophotometer® and Horiba fluoromax-4 spectrofluorometer® respectively. For all the runs excitation and emission slit widths were kept constant at 1.0 nm. ChemDraw Ultra 8.0 was used for drawing structures and Origen 6.0 was used for mathematical and graphical work.

2.2. Synthetic procedure

Pyridin-2-amine (1.0 mmol), furan-2-carbaldehyde (1.0 mol) and isonitrile (1.2 mmol) were taken in 5 ml stoppered round bottom flask. This mixture was stirred and heated at 160 °C in an oil bath for about 2 h. Progress of the reaction was monitored by TLC plates. Products were recrystallized from EtOH. Both the compounds were characterized by 1H NMR, 13C NMR and HRMS analysis.

2.3. Analytical data

2.3.1. N-tert-butyl-2-(furan-2-yl)H-imidazo[1,2-a]pyridin-3-amine (IA-1)

Yield: ~95%; brownish solid; 1H NMR (400 MHz, DMSO-d6): δ (ppm) 1.13 (s, 9H), 3.51 (br s, 1H), 6.50 (q, 1H, J = 1.5 Hz), 6.72 (t, 1H, J = 6.7 Hz), 6.87 (d, 1H, J = 3.4 Hz), 7.06–7.13 (m, 1H), 7.45–7.49 (m, 2H), 8.22 (dd, 1H, J = 6.9 & 1.0 Hz), 13C NMR: (100 MHz, DMSO-d6): δ (ppm) 29.7, 52.3, 109.1, 101.1, 11.1, 112.6, 117.5, 126.4, 126.7, 138.2, 143.6, 144.0, 159.9. HRMS (ESI) m/z calculated for [C15H16N3O]+ [M+Na]+: 278.3048, found: 278.3042. Anal. Calcd for C15H16N3O: C, 70.56; H, 6.72; N, 16.46 Found: C, 70.62; H, 6.80; N, 16.48.

2.3.2. 2-(furan-2-yl)-N-(2,4,4-trimethylpentan-2-yl)H-imidazo[1,2-a]pyridin-3-amine (IA-2)

Yield: ~93%; brownish solid; 1H NMR (400 MHz, DMSO-d6): δ (ppm) 1.02 (s, 9H), 1.40 (s, 6H), 1.60 (s, 2H), 3.41 (br s, 1H), 6.40 (q, 1H, J = 1.5 Hz), 6.61 (t, 1H, J = 6.6 Hz), 6.77 (d, 1H, J = 3.4 Hz), 6.947.30 (m, 1H), 7.30–7.40 (m, 2H), 8.11 (dd, 1H, J = 6.8 & 1.0 Hz). 13C NMR: (100 MHz, DMSO-d6): δ (ppm) 28.8, 31.6, 31.9, 54.0, 56.4, 109.0, 110.1, 111.9, 112.6, 117.5, 126.4, 126.7, 138.2, 143.4, 144.0, 161.7. HRMS (ESI) m/z calculated for [C19H25N3O]+ [M+Na]+: 334.4111, found: 334.4106. Anal. Calcd for C19H25N3O: C, 73.28; H, 8.09; N, 13.49. Found: C, 73.32; H, 8.14; N, 13.52.

2.4. UV–vis and fluorescent study

For UV and fluorescence studies, stock solutions of the compounds and metal ions Na+, Ca²⁺, Cd²⁺, Mg²⁺, Mn²⁺, Co²⁺, Cu²⁺, Ni²⁺, Hg²⁺, Zn²⁺, Pb²⁺, Al³⁺, Cr³⁺, Nd³⁺ and Fe³⁺ were prepared (1.0 × 10⁻³ M) in MeOH/H₂O (2/8, v/v). For spectral recordings, the stock solutions were further diluted to 2.0 × 10⁻⁵ M. All fluorescent spectra were recorded from 390 to 700 nm in a quartz cell (1 cm path length) at room temperature (1.0 nm excitation and emission slit). Solutions were added through a Hamilton burette equipped with 1 ml syringe. For real time analysis ACN/H₂O (2/8, v/v) and pH experiments MeOH/H₂O (2/8, v/v) was used as a solvent.

2.5. Synthesis of polymeric membrane for sensing

3 mg of ionophore [1As], plasticizers 2-nitrophenoxylic ether (o-NPOE) and dioctylphthalate (DOP) (65 mg), additive NaTPB (around 2 mg) and high molecular weight PVC (30 mg) were dissolved in THF with continuous stirring. This viscous oily substance was then poured into a polyacrylate ring placed on a smooth surface. After evaporation of solvent fluorescent membranes of about 0.5–1.0 mm thickness were obtained which were then cut to the desired size and glued to one end of a 2 cm diameter Pyrex glass tube and kept at the room temperature for full night. Metal solutions of appropriate concentrations can be directly applied to these thin layers [65].

3. Results and discussion

3.1. Synthesis of furan-2-yl substituted imidazo[1,2-a]-pyridine

Both functionalized imidazo-azines were synthesized through three components (3-CR) Gröebke–Blackburn–Bienaymé reaction (Scheme 1). This reaction proceed through a Schiff base (A) (from 2-aminooxime with furfuryl), containing both nucleophilic and electrophilic centres. This imine intermediate then undergoes a [4 + 1] cycloaddition with isocyanide input leading to a bicyclic
completely lent presence compounds aqueous to 3.2. Fig.
cycloadduct (B), followed by 1,3-proton shift to a desired aminoidazole (IAS).

3.2. Cu$^{2+}$ sensing assays

Representative absorption spectra (Fig. 1 and SS1*) of synthesized IAs in MeOH/H$_2$O (2/8, v/v) displayed four intense bands centred near 224, 251, 339, 392 nm (IA-1) and 222, 311, 342, 377 nm (IA-2). While the excess (5 equivalent) presence of other metal ions such as Al$^{3+}$, Cd$^{2+}$, Co$^{2+}$, Cr$^{3+}$, Hg$^{2+}$, Na$^+$, Mg$^{2+}$, Mn$^{2+}$, Nd$^{3+}$, Ni$^{2+}$, Pb$^{2+}$, Zn$^{2+}$. These cationic species and heavy metal ions are commonly present in the aqueous and environmental samples. So this selectivity study clearly marked the practical applicability of the entitled sensors. Similar effects were also noticed in fluorescence spectra of both the compounds and emission at 473 nm and 453 nm got quenched in the presence of cupric ion in solution phase (Fig. 2 and SS2*). Both the probes retained their sensing properties in other organic solvents such as ACN, MeOH, DMSO and mixed aqueous phase such as MeOH/H$_2$O (1/9 to 9/1, v/v) and ACN/H$_2$O (1/9 to 9/1, v/v). Since water is a common solvent in most of the biologically and ecologically relevant media, hence it is important to examine the utility of our sensors in aqueous phase. Since our compounds are only partially soluble in the water, hence mixed aqueous phase (MeOH/water, 2/8, v/v) was used in our study. Use of organic phase ensures higher availability of probe molecule in medium.

Next, some complexometric and stoichiometric titrations were performed to determine different performance characteristics of this sensing phenomenon. In MeOH/H$_2$O (2/8, v/v), there was a gradual decrease in fluorescence intensity [473 nm (IA-1) and 453 nm (IA-2)], with the continuous addition of Cu$^{2+}$ from 0.0 to 2.0 equivalents (Fig. 3 and SS3*). Detection limits (LOD) for IA-1 and IA-2 were found to be 1.84 × 10$^{-7}$ M and 3.14 × 10$^{-7}$ M respectively by universal method (LOD = 3s/slope) (Fig. 3 and SS3*). For many ecological and biological samples, these detection limits are quite acceptable, indicating the potential utility of these systems (annulated azines) in trace level analysis.

In Benesi–Hildebrand plots [66] (between 1/1 – I$_0$ and 1/[Cu$^{2+}$], for 1:1 stoichiometry) a linear relationship with excellent correlation coefficient (r>0.99) were obtained for both compounds (Fig. 4 and SS4*). Association constants for IAs-Cu$^{2+}$ were calculated to be 4.51 × 104 M$^{-1}$ (IA-1) and 1.99 × 104 M$^{-1}$ (IA-2) reflecting higher affinity of furanyl imidazoazines toward Cu$^{2+}$ at equilibrium. In Job’s method [67], Intensity minima was observed at 0.5 molar fraction of Cu$^{2+}$, suggesting 1:1 binding between probe and ion under investigation (Fig. 5 and SS5*). This fact was further confirmed by high resolution mass spectra of the complex in methanol/acetonitrile (5/5, v/v) (see spectra in electronic Supporting information). For some biological studies, it is highly desirable that chemosensor must have a wide operation pH range.
Gratifyingly, our amino substituted imidazoazine displayed optimum pH response in the range of 5–11, suggesting its utility in physiological mediums (Fig. 6).

3.3. Selectivity studies

For a scaffold to be labelled as sensor it must have higher degree of selectivity towards a particular analyte/ion and this response should largely remain unaffected by the presence of other interfering species or ions. Determination of matrix effects and selectivity studies are thus very important for sensing applications. In a series of experiments, fluorescence intensities of probe IAs were recorded in the presence and absence of other metal ion such as Al^{3+}, Cd^{2+}, Co^{2+}, Cr^{3+}, Hg^{2+}, Mg^{2+}, Mn^{2+}, Ni^{2+}, Na^{+}, Pb^{2+}, Nd^{3+}, Fe^{3+} and Zn^{2+}. Recorded data (Table 1) and graphs (Fig. 7 and SS6*) suggested that synthesized probe IAs were successful in retaining their selectivity towards Cu^{2+} even in the excess presence of other metal ions.

While the presence of commonly occurring anionic species such as AcO^−, Br^−, Cl^−, F^−, I^−, NO_3^−, SCN^− and SO_4^{2−} in MeOH/H_2O (2/8, v/v) didn’t produce any observable change in IAs-Cu^{2+} selectivity, a sharp increase in fluorescent intensity was observed in the presence of S^{2−} (Fig. 8 and SS7*). In fact, 1.5 equiv. amount of S^{2−} was found sufficient for complete removal of the quenching effect.
Table 1

Effects of interfering species on the fluorescence signal of the optical sensor—.abc

<table>
<thead>
<tr>
<th>Interfering ion</th>
<th>Relative error in%</th>
<th>Interfering ion</th>
<th>Relative error in%</th>
<th>Interfering ion</th>
<th>Relative error in%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Na$^+$</td>
<td>+1.7</td>
<td>Hg$^{2+}$</td>
<td>+0.2</td>
<td>Cd$^{2+}$</td>
<td>–2.3</td>
</tr>
<tr>
<td>K$^+$</td>
<td>+1.3</td>
<td>Pb$^{2+}$</td>
<td>+1.1</td>
<td>Nd$^{3+}$</td>
<td>+2.7</td>
</tr>
<tr>
<td>Ca$^{2+}$</td>
<td>–0.88</td>
<td>Mn$^{2+}$</td>
<td>+0.7</td>
<td>Al$^{3+}$</td>
<td>+3.9</td>
</tr>
<tr>
<td>Mg$^{2+}$</td>
<td>+0.67</td>
<td>Ni$^{2+}$</td>
<td>+1.9</td>
<td>Cr$^{3+}$</td>
<td>–1.7</td>
</tr>
<tr>
<td>Co$^{2+}$</td>
<td>+4.9</td>
<td>Zn$^{2+}$</td>
<td>+2.7</td>
<td>Fe$^{3+}$</td>
<td>–2.1</td>
</tr>
</tbody>
</table>

a Concentration of Cu$^{2+}$ and IA-1 was kept fix at 20 μM (pH 6.0).
b Conc. of all interfering species were kept constant at 10 mM.
c ΔF is the difference of fluorescence intensities before and after exposure to interfering species.
d MeOH/H$_2$O (2/8, v/v) was used as a solvent system in all measurements.

![Image](Image355x273 to 604x453)

Fig. 8. Determination of selectivity of IA-1 towards Cu$^{2+}$ (20 μM) in the presence of various anionic species (5 equiv.), such as AcO$^-$, Br$^-$, Cl$^-$, F$^-$, I$^-$, NO$_3^-$, SCN$^-$, SO$_4^{2-}$ and S$^{2−}$ in MeOH/H$_2$O (2/8, v/v).

produced by cupric ion. This observation was in accordance with some of the previous reports, where fluorescent effect produced by Cu$^{2+}$ in solution phase, was removed by sulphide ions [68–72].

3.4. Reversibility studies

For several practical reasons, reversible nature of bonding between designed probe and ligand is important because it ensure the recyclability and reusability of the probe. When 1.5 equimolar amount of EDTA, a sequestering agent (at neutral pH), was added to a quenched solution of IAAs-Cu$^{2+}$, re-emergence of fluorescence was observed. From this solution Probe IAAs can be recovered again (90% recovery) and can be used for cupric ions sensing without losing much efficiency. These experiments can be repeated 3–4 times while retaining the same level of efficiency (Figs. 9 and 10). Slight excess of EDTA probably displaced Cu$^{2+}$ from its interaction sites with the regeneration of fluorescence. Similar reversibility experiments can be performed using S$^{2−}$ in place of EDTA.

3.5. NMR titration and complementary studies

In order to locate the possible binding site, 1H NMR titrations and complementary experiments were carried out. Furan-2-yl oxygen (from aldehyde) and aminoalkyl nitrogen (from isocyanide) atoms of both the synthesized imidazoazines (IA-1 and IA-2) seemed critical for this binding event, because compounds (IA-3 to IA-6) lacking these atoms didn’t display any interaction with Cu$^{2+}$ (Table 2).

These observations were further supported by 1H NMR titrations (Fig. 11 and SS8b). Since Cu$^{2+}$ is paramagnetic in nature, it would surely affect the electronic environment and peak position of the coordinated protons. Proton NMR spectra of both the compounds were recorded in the absence and presence of Cu$^{2+}$ in DMSO-d_6. While aliphatic protons remained unchanged in their peak positions, aromatic protons in the region 6–8.5 ppm displayed a slight downfield shift. The most noticeable change was observed in NH proton (at 3.49) of aminoalkyl substituents. These protons displayed a gradual broadening with a significant downfield shift in the area of 3.9–4.5 ppm and at about 1.5 equivalent concentration of Cu$^{2+}$: NH proton completely merged with the base line and disappeared (Fig. 11 and SS8b). These observations clearly marked the role of NH proton in Cu$^{2+}$ coordination and in satisfying secondary valency (Fig. 12). Less basicity of the imidazole ring nitrogen and possible construction of six membered ring with furanyl oxygen
Table 2
Response of different imidazoazines (IA-1 to IA-6) toward MeOH/H2O (2/8, v/v) solution of Cu2+.

<table>
<thead>
<tr>
<th>Compound/Code</th>
<th>Response to Cu2+</th>
<th>Compound/Code</th>
<th>Response to Cu2+</th>
</tr>
</thead>
<tbody>
<tr>
<td>IA-1, [90]</td>
<td>Turn off fluorescence</td>
<td>IA-2, [90]</td>
<td>Turn off fluorescence</td>
</tr>
<tr>
<td></td>
<td>Turn off colorimetric</td>
<td></td>
<td>Turn off colorimetric</td>
</tr>
<tr>
<td>IA-3, [90]</td>
<td>No response (No furan-2-yl oxygen)</td>
<td>IA-4, [90]</td>
<td>No response (No furan-2-yl oxygen)</td>
</tr>
<tr>
<td>IA-5, [90]</td>
<td>No response (No furan-2-yl oxygen)</td>
<td>IA-6, [90]</td>
<td>No response (No aminoalkyl nitrogen)</td>
</tr>
</tbody>
</table>

Fig. 11. 1H NMR spectra of IA-1 in the presence of different conc. of Cu2+. Disappearance of NH peak at 3.54 ppm and slight downfield shift of aromatic protons are obvious from figure (DMSO-d6 was used as NMR solvent and TMS as internal standard).

and alkylamino nitrogen, seem to be critical factor for Cu2+ binding.

3.6. Logic gate representation

Cyclic response of IA5s towards Cu2+/EDTA and Cu2+/S2− is similar to the behaviour of molecular switch and hence can be represented by suitable logic gate and truth table (Fig. 13). Two inputs are Cu2+ and EDTA or S2− and their presence and absence can be marked as “1” and “0”. At output on and off states of fluorescence can be labelled as “1” and “0” respectively. Presence of Cu2+ alone is responsible for quenching of fluorescence, while addition of EDTA/S2− in this quenched state again regenerate fluorescence. This behaviour can be epitomised by “OR” gate with a “NOT” at input-1 (Fig. 13).
3.7. Comparative studies

Proposed sensors (IA-1 and IA-2) have very high association constants (10^4 M$^{-1}$) and low LOD (10$^{-7}$ M). These results are comparable to or better than most of the recently reported systems (Table 3). Instantaneous response, higher selectivity, recyclability, reusability and wide operation pH range make these furan-2-yl containing Gröbke products a perfect choice for several important sensing applications.

Although similar in performance and in substitution pattern, there is a basic difference between annulated furanones and imidazoazines in binding site (Table SS1*). In annulated furanones, interacting oxygen atom is a part of main scaffold itself [61,62], while in bicyclic imidazoazine this oxygen atom comes from attached furan-2-yl substituent. As a result, while almost all amino substituted furanones display detection abilities to Cu$^{2+}$ irrespective to the nature of attached aldehydic group, only furan-2-yl (furan-2-carbaldehyde or aldehydes with oxygen atom at this position) containing imidazoazines can be used as a probe for this purpose.

3.8. Applications of the proposed sensors

3.8.1. Naked eye detection of copper

As mention earlier, both the probes can be used for naked eye detection of copper in solution phase. Addition of trace amount of Cu$^{2+}$ in yellowish solution (in MeOH) of IA-1 or IA-2 immediately made it colourless with the quenching of fluorescence (Fig. 14 and SS9*). IAs retained this distinct behaviour in other organic solvents such as ACN, DMSO and mixed aqueous-organic phases such as ACN/H$_2$O (8/2 to 2/8, v/v), MeOH/H$_2$O (8/2 to 2/8, v/v).

Table 3

<table>
<thead>
<tr>
<th>S.No.</th>
<th>Sensor/probe</th>
<th>Interaction</th>
<th>Association constant (K_a) M$^{-1}$</th>
<th>LOD in M</th>
<th>pH range</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>IA-1 (This work)</td>
<td>Turn off (fluor and color) Reversible</td>
<td>$4.51 \times 10^4 \ 1.99 \times 10^4$</td>
<td>$1.84 \times 10^{-7} \ 3.14 \times 10^{-7}$</td>
<td>5–11</td>
</tr>
<tr>
<td>2 [22]</td>
<td>Fig. 13</td>
<td>Conc. dependent Turn off (fluor)</td>
<td>6.82×10^4</td>
<td>4.0×10^{-7}</td>
<td>–</td>
</tr>
<tr>
<td>3 [25]</td>
<td>Fig. 13</td>
<td>Turn off (fluor) Irreversible</td>
<td>–</td>
<td>0.5×10^{-7}</td>
<td>5–7</td>
</tr>
<tr>
<td>4 [26]</td>
<td>PQs</td>
<td>Turn on (fluor) irreversible</td>
<td>–</td>
<td>1.5×10^{-6}</td>
<td>7–9</td>
</tr>
<tr>
<td>5 [34]</td>
<td>Fig. 13</td>
<td>Turn off (fluor)</td>
<td>–</td>
<td>1.27×10^{-4}</td>
<td>–</td>
</tr>
<tr>
<td>6 [37]</td>
<td>Fig. 13</td>
<td>Turn off (fluor)</td>
<td>5.0×10^4</td>
<td>1.5×10^{-6}</td>
<td>4–11</td>
</tr>
<tr>
<td>7 [39]</td>
<td>Fig. 13</td>
<td>Turn on (fluor)</td>
<td>1.1×10^{10}</td>
<td>0.15×10^{-6}</td>
<td>–</td>
</tr>
</tbody>
</table>

Fluor = fluorescence, color = colorimetric.
Fig. 14. Colorimetric (A) and fluorescence (B) response of IA-1 in the presence of different metal ion in MeOH/H2O (2/8, v/v) solution.

Table 4
Real time applications of sensor IA-1 in determination of Cu²⁺ conc.

<table>
<thead>
<tr>
<th>Added (A) µg/lt</th>
<th>Found (B) µg/lt</th>
<th>% recovery = B × 100/A</th>
<th>Added (A) µg/lt</th>
<th>Found (B) µg/lt</th>
<th>% recovery = B × 100/A</th>
</tr>
</thead>
<tbody>
<tr>
<td>30 (distilled water)</td>
<td>29.7 ± 0.6</td>
<td>99</td>
<td>50 (canal water)</td>
<td>51.9 ± 0.6</td>
<td>103.8</td>
</tr>
<tr>
<td>30 (canal water)</td>
<td>31.6 ± 0.9</td>
<td>105.33</td>
<td>100 (distilled water)</td>
<td>99.4 ± 0.6</td>
<td>99.4</td>
</tr>
<tr>
<td>50 (tap water)</td>
<td>50.8 ± 0.7</td>
<td>101.6</td>
<td>100 (canal water)</td>
<td>101.8 ± 0.4</td>
<td>101.8</td>
</tr>
</tbody>
</table>

Fig. 15. Response of membrane sensors toward different metal ions. Distinct behaviour towards Cu²⁺ is apparent from the figure.

3.8.2. Real sample application

Proposed sensor can be successfully used for trace level detection of Cu²⁺ in organic and organo-aqueous medium under laboratory condition. Compound IA-1 was dissolved in acetonitrile/water (2/8, v/v), because of the poor solubility of imidazoline in water alone. These samples were spiked with different known concentration of copper and standard addition method was used to cancel out any matrix effect. Added and found Cu²⁺ concentration with recovery percentage (in different water sources) is given in Table 4.

3.8.3. Membrane sensing applications [100]

Polymeric membrane of thickness 0.5–1.0 mm was prepared by mixing PVC, suitable plasticizer, additive and IAs (detail of preparation method is given in the Experimental section). Under UV light, these membranes display an intense florescence, which can...
be removed by spraying/applying it with Cu^{2+} solution (other metals show no response) and hence can be used for detection of Cu^{2+} (Fig. 15). These membrane sensors retain their efficiency for about one month. Because of their easy preparation, long storage time, light weight and fast response time, these membranes have some practical benefits over direct solution phase use of IAs.

3.8.4. Photo-printing applications

Square strips of ordinary Whatman filter papers (3.5 × 1.5 cm²) were sprayed with a IA solution containing small amount of PVP (IA-1 0.5% wt of PVP and 0.5 gm of PVP in MeOH). After drying, these strips displayed an intense fluorescence under long wavelength UV torch.

Dilute methanolic solution of Cu^{2+} can be used as an ink and some pattern, design, word or number can be drawn onto this fluorescent surface. These patterns or words can be visualized under UV light again because of the different intensity of fluorescence in this area than that of the remaining surface (Fig. 16). These patterns/designs didn’t disappear even after 15 days. Because of high dilution, these filter papers didn’t display any patterns/designs in daylight and can be used as invisible/hidden ink.

4. Conclusions

For the first time, two furan-2-yl substituted Gröbke multicomponent products IA-1 and IA-2 have been identified as an effective molecular sensor for Cu^{2+} ion in variety of solvents. Both the imidazoazine products displayed high association constants (10⁴ M⁻¹), acceptable detection limits (10⁻⁷ M), high selectivity, reversibility, wide pH operational range and fast response in fluorescence based experiments. Designed systems have multiple applications in the domain of trace level quantification, sample monitoring, photo-printing and membrane sensing.

Declaration of interest

The authors have no competing interests to declare.

Acknowledgement

Authors MK and LKK would like to acknowledge CSIR-New Delhi (India) and University of Johannesburg (South Africa) respectively for JRF (Ext.) and global excellence Postdoctoral fellowships. The authors are also thankful to departmental Instrumentation labs (IITR, UJ and GITAM) for providing necessary facilities. M. Asif appreciates the support of the Deanship of Scientific Research at King Saud University for the Prolific Research Group PRG-1437-31.

Appendix A. Supplementary data

Supplementary data associated with this article can be found, in the online version, at http://dx.doi.org/10.1016/j.snb.2016.08.184.

References

M. Kumar, K. L. Kumawat, V. K. Gupta, A. Sharma, Rational design of the first furoquinolinol molecular systems for easy detection of Cu²⁺ with potential applications in the area of membrane sensing, RSC Adv. 5 (2015) 106030–106037.

S. Vidycharan, A.H. Shinde, B. Satpathi, D.S. Sharada, A facile protocol for the synthesis of 3-aminoimidazo-fused heterocycles via the Groebke–Blackburn–Bcyanine reaction under catalyst-free and solvent-free conditions, Green Chem. 16 (2014) 1168–1175.

Anuj Sharma was obtained his Ph.D. degree in chemistry from the Institute of Himalayan Bioresource Technology, CSIR, Palampur, Himachal Pradesh in 2006. Now he is holding the position of Associate Professor in Department of Chemistry, IIT Roorkee, Uttarakhand, India. His interest primarily lies in the development of affordable, environmentally friendly chemical methods such as multicomponent reactions in pursuit of novel putative heterocycles obtained through rational drug design.

M. Asif is a full Professor at KSU Riyadh, Saudi Arabia and has published many paper.

Vinod Kumar Gupta obtained his Ph.D. degree in chemistry from the University of Roorkee (now Indian Institute of Technology Roorkee) Roorkee, India, in 1979. Since then he was pursuing research at the same institute and holding the position of Professor, Chemistry Department, at Indian Institute of technology Roorkee, Roorkee. He worked as a post-doctoral fellow at University of Regensburg, Germany, in 1993 as an EC fellow and was DAAD visiting professor at University of Chemnitz and Freie University of Berlin in 2002. He has published more than 550 research papers, many reviews and four books which fetched him more than 42,000 citations with h-index of 131. He was awarded the Indian Citation Laureate Award in 2004. His research interests include chemical sensors, waste water treatment, environmental and electro analytical chemistry. Prof. Gupta is an elected Fellow of the World Innovation Foundation (FIWF) since July 2004 and Fellow of the National Academy of Sciences (FNASC) since 2008. Currently he is a SARChi Chair at University of Johannesburg, Johannesburg, South Africa.