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A B S T R A C T

Background: Multiple myeloma (MM) is a complex heterogeneous disease. Various risk stratification models
have been recommended including cytogenetic and FISH analysis to identify high-risk patients who may benefit
from novel treatments, but such facilities are not widely available. The International Scoring System (ISS) using
beta-2-microglobulin and albumin remains a widely used prognostic scoring system in many clinical practices;
however it is not useful in predicting response to treatment in MM. The aim of this study is to identify clinically
useful biomarkers to predict response to treatment containing bortezomib.
Methods: 17 MM patient serum samples (9 responders/8 non-responders) were used for the discovery phase
(label-free mass spectrometry) and an additional 20 MM patient serum samples were used for the ELISA-based
validation phase (14 responders/6 non-responders).
Results: CLU and ANG mean levels were higher in the responders group, while Complement C1q had lower
concentrations. The combination of all standard biomarkers (albumin, beta-2-microglobulin (ß2M), paraprotein
and kappa/lambda (K/L) ratio) had an AUC value of 0.71 with 65% correct classification, while an overall
combination of new candidate protein biomarkers with standard biomarkers had an AUC value of 0.89 with
85.3% correct classification.
Conclusions: A combination of new and standard biomarkers consisting of CLU, ANG, C1Q, albumin, ß2M,
paraprotein and K/L ratio may have potential as a novel panel of biomarkers to predict MM response to
treatment containing bortezomib.
General significance: Use of this biomarker panel could facilitate a more personalized therapy approach and to
minimize unnecessary side effects from ineffective drugs.

1. Introduction

Multiple Myeloma (MM) is a plasma cell disorder characterized by
bone marrow infiltration with clonal plasma cells, which secrete mono-
clonal immunoglobulin detectable in serum and/or urine. The develop-
ment of novel targeted therapies has markedly improved the response rate
and survival outcome, but MM remains incurable [1]. Bortezomib, which
was the first proteasome inhibitor anticancer drug, is one of the many
novel agents being used. It has numerous functionalities such as inducing
apoptosis and growth arrest in the myeloma cell cycle, altering the bone
marrow microenvironment, inhibiting nuclear factor kappa B and rever-
sing chemoresistance in myeloma cells [2,3]. It also demonstrates an

inhibitory effect on angiogenesis and DNA repair but also has no perma-
nent impact on normal hematopoietic stem cells.

Following the APEX and SUMMIT trials, bortezomib monotherapy
may overcome relapsed and refractory MM patients with poorer prog-
nosis [4,5]. Bortezomib is now established as the backbone agent for
combined induction therapy regimens [6–8].

Diagnostic criteria and frontline standards guidelines have been
shown to also play an important role in deciding the outcome of MM
disease and individualizing treatment [9,10]. Unfortunately, only a
minority of centers has such extensive access to molecular and genetic
sequencing studies and imaging facilities that will provide a better
stratification of patients according to their disease burden [11].
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While novel agents have improved treatment outcomes, identification
of biomarkers that will facilitate clinicians in determining which treatment
is optimum for high-risk patients following initial diagnosis is a crucial
area in the clinical management of MM. Quantitative measurement of
plasma/serum and urinary protein concentrations plays a significant role
in the monitoring of patients with MM. In 2005, an international con-
sortium of researchers used serum β2M and serum albumin to create the
International Staging System (ISS), which enabled clinicians to stage pa-
tients and predict their long-term prognosis, a process that has been re-
fined with the addition of fluorescent in situ hybridization (FISH) data
[12,13]. The serum free light chain assay also plays an important role in
prognosis, with the International Myeloma Working Group identifying
several uses for serum free light chain analysis in MM [14–16].

In view of the limited and restricted access to facilities such as ad-
vanced imaging and genetic testing, identifying the most specific and re-
liable prognostic biomarker remains a great challenge. We have focused
specifically on identifying a panel of protein biomarkers that could be used
to predict response following combined agent use in newly diagnosed MM
patients. The ability to combine routine laboratory measurements, for
example β2M, with newly discovered candidate biomarkers for predicting
response to bortezomib therapy was an important consideration. In this
investigation, all patients were naïve to bortezomib therapy at the time of
sampling in order to facilitate the identification of predictive biomarker of
treatment response. Some MM patients have de novo resistance to borte-
zomib therapy, with the identification of novel biomarkers of early re-
sistance critical for their clinical management [17].

The availability of predictive biomarkers would be useful in
avoiding ineffective treatments, and allow for the administration of
alternative regimens which are continuing to be approved for the
treatment of MM. Ineffective treatments can also be associated with
undesired side effects, such as peripheral neuropathy and thrombocy-
topenia, which are important to avoid particularly if no benefit is as-
sociated with the specific treatment.

2. Material and methods

2.1. Patients' selection and sample collection

Thirty-seven newly diagnosed MM patients from 2011 to 2013 were
selected for this study as shown in Table 1. They were naïve to borte-
zomib therapy. These patients were stratified to either responders or
non-responders group according to the International Myeloma Working
Group (IMWG) uniform response criteria for MM [16]. Responders were
considered Complete Response (CR), Very Good Partial Response
(VGPR) and Partial Response (PR) with non-responders considered
Progressive Disease (PD) and Stable Disease (SD) as determined using
the International Myeloma Working Group Uniform Response Criteria.
Seventeen patient samples were used in the discovery phase and all
samples were used in the validation phase.

Serum samples were obtained at diagnosis or prior to commencing
therapy. The participating subjects gave written informed consent in
accordance with the Declaration of Helsinki that was approved by local
ethics committees. These samples were collected according to standard
phlebotomy procedures. 10 ml of blood was collected into additive free
(serum) blood tubes and was allowed to clot for 30 min to 1 h at room
temperature. The serum was denuded by pipette from the clot and
aliquoted into a clean tube. The tubes were centrifuged at 400 ×g for
30 min at 4 °C. Serum was aliquoted in cryovial tubes, labeled and
stored at −80 °C until time of analysis. The time from sample pro-
curement to storage at −80 °C was< 3 h.

2.2. Serum protein sample fractionation and enzymatic digestion

The Proteome Purity™ 12 Human Serum Protein Immunodepletion
Resin from R&D Systems, United Kingdom was selected to remove high
abundance protein. It depletes the 12 most abundant proteins (alpha 1-

Acid Glycoprotein, alpha 1-Antitrypsin, alpha 2-Macroglobulin,
Albumin, Apolipoprotein A-I, Apolipoprotein A-II, Fibrinogen,
Haptoglobin, IgA, IgG, IgM, Transferrin) from the serum as described by
the manufacturer's protocol [18].

100 μL of the Blue Nanotrap particles (RB4VSA) from CeresNano
was added to each prepared immunodepleted sample that contained
Tris-HCl buffer. These particles were resuspended into the prepared
samples and allowed to incubate for 30 min at room temperature. The
suspension was centrifuged at 16,800 ×g (Hettich Mikro 200R, United
Kingdom) for 10 min at room temperature and the supernatant was
carefully removed from each sample and transferred to individually
labeled clean microcentrifuge tubes. The pelleted particles were re-
suspended in 500 μL of LC-MS grade water. Once more, the particles
were centrifuged at 16,800 ×g for 10 min at room temperature. The
supernatant was removed and discarded. A total of 3 washes with the
Ultra High Purity Water were performed leaving a pellet particle to be
resuspended in an eluent.

100 μL of freshly made protein elution buffer (70% acetonitrile,
ACN from Sigma-Aldrich/10% ammonium hydroxide from Sigma-
Aldrich) was added to the particles before vortexing and then soni-
cating using the water-bath method (Precision ultrasonic cleaning,
DP201–00, Ultrawave, UK) for 2 min. These samples were centrifuged
(Hettich Mikro 200R, United Kingdom) at 16,800 ×g for 7 min at room
temperature and the eluted proteins obtained were carefully removed
and transferred to a clean microcentrifuge tube. The protein elution
step was repeated for a total of 200 μL. The combined eluent, collected
in the microcentrifuge tubes, was vacuum-dried at room temperature.
Samples were then digested with trypsin overnight according to stan-
dard procedures [19].

2.3. Nano HPLC and mass spectrometry analysis

The nano LC-MS/MS analysis of responders versus non-responders
patient samples was carried out using an Ultimate 3000 nanoLC system
(Dionex) coupled to an LTQ XL Orbitrap mass spectrometrer (Thermo
Fisher Scientific, Dublin, Ireland) in the Proteomics Facility of the
National Institute for Cellular Biotechnology, Dublin City University.
Peptide mixtures (5 μl volume) were loaded onto a C18 trap column
(C18 PepMap, 300 μm id × 5 mm, 5 μm particle size, 100 Å pore size;
Dionex). Desalting was achieved at a flow rate of 25 μl/min in 0.1%
TFA for 3 min. The trap column was switched on-line with an analytical
PepMap C18 column (75 μm id × 500 mm, 3 μm particle and 100 Å
pore size; Dionex). Peptides generated from the digestion were eluted
with the following binary gradients: solvent A (2% ACN and 0.1%
formic acid in LC-MS grade water) and 0–25% solvent B (80% ACN and
0.08% formic acid in LC-MS grade water) for 160 min and 25–50%
solvent B for a further 20 min. The column flow rate was set to 350 nl/
min. Data was acquired with Xcalibur software, version 2.0.7 (Thermo
Fisher Scientific). The MS apparatus was operated in data-dependent
mode. Survey MS scans were acquired in the Orbitrap in the
400–1200 m/z range with the resolution set to a value of 30,000 at m/z
400 and lock mass set to 445.120025 m/z. CID fragmentation was
carried out in the linear ion trap with the three most intense ions per
scan. Within 40 s, a dynamic exclusion window was applied.
Normalized collision energy of 35%, an isolation window of 2 m/z and
one microscan were used to collect suitable tandem mass spectra.

2.4. Quantitative protein profiling by label-free LC-MS/MS analysis

Processing of the raw data generated from LC-MS/MS analysis was
carried out with Progenesis QI for Proteomics label-free LC-MS software
(version 3.1; Non-Linear Dynamics, Newcastle upon Tyne, UK). Data
alignment was based on the LC retention time of each sample, allowing
for any drift in retention time given and adjusted retention time for all
runs in the analysis. A reference run was established with the sample
run that yielded most features (i.e. peptide ions). The retention times of
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all of the other runs were aligned to this reference run and peak in-
tensities were then normalized. Prior to exporting the MS/MS output
files to Proteome Discoverer 1.4 (Thermo Fisher Scientific) for protein
identification, a number of criteria were employed to filter the data
including: (i) peptide features with ANOVA< 0.05 between experi-
mental groups, (ii) mass peaks (features) with charge states from +2,
+3, and (iii) greater than one isotope per peptide. The exported MS/
MS file from Progenesis label-free LC-MS software was searched using a
dual algorithm search with both MASCOT and SEQUEST in Proteome
Discoverer 1.4 against the human Uni-SwissProt database (taxonomy:
Homo sapiens). The following search parameters were used for protein
identification: (i) MS/MS mass tolerance set at 0.6 Da, (ii) peptide mass
tolerance set to 20 ppm, (iii) carbamidomethylation set as a fixed
modification, (iv) up to two missed cleavages were allowed and (v)
methionine oxidation set as a variable modification. The following
criteria were applied to assign positively identified proteins: (i) an
ANOVA score between experimental groups of ≤0.05, (ii) proteins
with ≥1 peptides matched and (iii) a MASCOT score > 40.

2.5. Enzyme-linked immunosorbent assays (ELISA)

ELISA kits were used to verify the different levels for selected pro-
teins identified from the discovery phase using label free mass-spec-
trometry analysis. Four potential biomarkers were chosen and were
validated using raw unfractionated serum samples from the same co-
hort of patients. Four commercially available kits for these four pro-
teins; angiogenin (ANG) [Abcam, UK - ab99970], clusterin (CLU)
[R &D system, UK - DCLU00], C-C Motif Chemokine 18 (CCL18)

[Abcam, UK - ab100620], and Complement C1q [Abcam, UK -
ab170246] were used. Duplicate and triplicate serum samples were
used during this analysis. Each of these ELISA assays was performed
according to their individual manufacturer's protocol and guidelines.
The concentration of each protein in the serum samples was measured
by comparing the optical density (OD) using a microplate reader (Bio-
Tek and Luminex). Standard curves were calculated for each ELISA kit.

2.6. Statistical analysis

Proteins differentially expressed in responder and non-responder
groups underwent statistical analyses. Multivariate logistic regression
(LR) and receiver operating characteristic (ROC) curve analysis were
selected to interpret the various protein combinations. The ROC plots
were obtained by plotting all sensitivity values (true positive fraction)
on the y-axis against their equivalent (1-specificity) values (false posi-
tive fraction) for all available thresholds on the x-axis (MedCalc for
Windows 8.1.1.0, Medcalc Software, Mariakerke, Belgium). The prob-
ability of correctly predicting a given model was calculated from the
ROC curve by determining the area under curve (AUC) [20,21]. In our
study, we considered AUC values ranging from 0.5 → 0.7 as poor,
0.7 → 0.8 as average, 0.8 → 0.9 as good and> 0.9 as outstanding.
Proteins and any combination of proteins providing an AUC value>
0.8 was deemed to be effective for the discrimination of responders
from non-responders [22].

Table 1
Patient clinical details.

Patient details used in the study with 23 responders and 14 non-responders.

Code Gender Age ISS Immunofixation Predicted response Bortezomib IMIDs Overall survival (mo)

1 Female 65 3 IgG Lambda Responder Y 17.00
2 Male 54 1 Kappa Light Chain Responder Y Y 27.00
3 Female 61 1 IgG Kappa Responder Y 57.00
4 Female 60 2 Kappa Light Chain Responder Y Y 19.00
5 Male 51 1 Lambda Light Chain Responder Y Y 28.00
6 Male 70 2 IgG Kappa Responder Y Y 28.00
7 Male 69 1 IgA Kappa Responder Y Y 50.00
8 Male 56 3 Kappa Light Chain Responder Y Y 17.00
9 Female 75 2 IgA Lambda Responder Y 53.00
10 Male 58 2 IgA Kappa Responder Y Y 27.00
11 Female 78 3 Lambda Light Chain Responder Y Y 31.00
12 Female 64 2 IgA Lambda Responder Y 31.00
13 Male 76 2 Kappa Light Chain Responder Y Y 62.00
14 Female 64 2 IgA Kappa Responder Y 70.00
15 Male 80 3 IgG Kappa Responder Y Y 30.00
16 Male 67 2 IgG Kappa Responder Y 48.00
17 Female 54 1 IgG Kappa Responder Y 16.00
18 Male 64 2 IgG Kappa Responder Y Y 50.00
19 Male 44 1 IgG Kappa Responder Y Y 52.00
20 Male 64 2 IgG Lambda Responder Y Y 23.00
21 Male 68 2 IgG Lambda Responder Y Y 33.00
22 Male 77 3 IgA Kappa Responder Y Y 9.00
23 Male 78 3 IgA Kappa Responder Y Y 14.00
24 Male 66 3 IgG Kappa Non-responder Y Y 17.00
25 Female 55 1 IgG lambda Non-responder Y Y 3.00
26 Female 75 2 IgG Lambda Non-responder Y Y 9.00
27 Male 83 2 IgG Lambda Non-responder Y 7.00
28 Female 58 2 IgA Kappa Non-responder Y 81.00
29 Male 76 2 IgG Kappa Non-responder Y 3.00
30 Male 65 2 IgA Kappa Non-responder Y 4.00
31 Male 87 2 IgA Kappa Non-responder Y Y 47.00
32 Male 76 3 IgA Lambda Non-responder Y 14.00
33 Female 83 2 IgA Lambda Non-responder Y Y 35.00
34 Male 67 2 IgG Kappa Non-responder Y 17.00
35 Male 67 3 IgG Lambda Non-responder Y 31.00
36 Female 45 1 IgG Kappa Non-responder Y Y 20.00
37 Female 58 1 IgG Lambda Non-responder Y 78.00
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3. Results

3.1. Sample group

The study group consists of 14 females and 23 males; mean age of
patients was 66.5 ± 10.5 years (range 44–87 years). As per
International Myeloma Working Group (IMWG) uniform response cri-
teria, 14 patients were identified as non-responders and 23 patients
were responders to induction therapy containing bortezomib (Fig. 1 and
Table 1). Age was closely matched for both groups with responders
mean age of 65 ± 9.5 years (range 44–80 years) and non-responders
mean age of 68.7 ± 11.9 years (range 46–87 years). As ISS classifica-
tion remains important in providing prognostic outcome of MM disease,
patients were also classified to each respective stages; I (n= 11 cases),
II (n = 17 cases) and III (n = 9 cases).

3.2. Proteomic profiling and identification

16 proteins showing differential expression with significant p-values
and fold changes were identified using Progenesis QI for Proteomics.
Four proteins (ANG, CLU, CCL18 & C1Q) were selected for further va-
lidation based on the availability of commercial ELISA kits to evaluate
the abundance of these proteins in the validation cohort (Table 2).
ANG, CLU, CCL18 & C1Q also had the following criteria: p-value
≤0.05, protein fold change> 1.5 and proteins with ≥2 peptides
matched.

3.3. ELISA data and ROC curve analysis

Standard markers such as albumin, ß2M, paraprotein and K/L ratio
that are routinely used in clinical practice were measured and com-
pared with the new candidate biomarkers. CLU, ANG, C1Q and CCL18
levels were compared between the responder and non-responder pa-
tients (Table 3). A similar analytical approach was applied to this co-
hort of patient as described in our previous study with thalidomide-
based therapy samples [23].

CLU showed higher levels in the responders compared to non-re-
sponders with a mean of 291.123 ± 243.13 ng/mL and
181.760 ± 208.096 ng/mL respectively; corresponding with the dis-
covery phase pattern observed by LC-MS analysis. The ROC curve from
this ELISA data was found to have an AUC of 0.651 (p = 0.129). ANG
levels were also significantly higher in the responders compared to non-
responders group with a mean of 14.383 ± 0.436 ng/mL and
13.839 ± 0.635 ng/mL respectively. ROC curve analysis for ANG had
an AUC value of 0.748 (p = 0.012). No significant difference in the
mean and AUC for CCL18 protein was observed.

C1Q was found to have higher levels in the non-responders com-
pared to responders group that was also observed in the discovery
phase. Mean levels for non-responders were 249.170 ± 190.604 μg/L
and 149.675 ± 138.883 μg/L in the responders group. An AUC of
0.722 with a p-value of 0.032 was calculated from the ROC curve.

Albumin and K/L ratio mean abundance levels were higher in the
responders group as shown in Table 3. ß2M and paraprotein mean le-
vels were higher in the non-responders group. Paraprotein was the only
protein to have a significant p-value (0.027) and an associated AUC
value of 0.719.

In clinical settings, patients would generally have several different
markers measured to assess their disease burden and progression. To
identify a predictive panel of protein biomarkers, the standard bio-
markers consisting of albumin, ß2M, paraprotein and K/L ratio were
assessed initially. A combination of proteins that are used alone in the
ISS (albumin, ß2M) had an AUC of 0.66 with 67.6% correct classifi-
cation. By combining albumin and ß2M with paraprotein and K/L ratio,
the AUC increased to 0.708 with 64.9% correct classification. Based
upon this analysis, further combinations of proteins were performed to
identify a better predictive model.

Four new combinations of biomarkers from this study were found to
be successful in predicting response to bortezomib therapy (Table 4).
These combinations consist of either all four new candidate biomarkers
(ANG, CLU, C1Q and CCL18) with an AUC = 0.850 and 76.5% correct
classification, or three new candidate biomarkers without CCL18,
AUC = 0.802 and 76.5% correct classification. The other two combi-
nations include all four standard biomarkers that are routinely used in

Fig. 1. Survival data.
Overall survival for responders and non-responders patients following induction therapy
containing bortezomib.

Table 2
Label-free mass spectrometry data.

List of statistically significant discovered proteins using LC-MS analysis. Proteins (in bold) were selected for further validation using ELISAs.

Accession Peptide count Confidence score Anova (p) Max fold change Highest mean condition Lowest mean condition Description

P10909 3 139.15 0.003 1.87 Responders Non-responders Clusterin
P01024 3 100.75 0.01 1.85 Responders Non-responders Complement C3
P08603 10 369.28 0.02 2.75 Responders Non-responders Complement factor H
P01009 3 71.37 0.02 2.09 Responders Non-responders Alpha-1-antitrypsin
P55774 2 106.68 0.02 2.26 Responders Non-responders C-C motif chemokine 18
P10720 2 103.88 0.02 2.53 Responders Non-responders Platelet factor 4 variant
P02790 2 118.53 0.03 1.58 Non-responders Responders Hemopexin
Q14624 3 125.97 0.03 3.62 Responders Non-responders Inter-alpha-trypsin inhibitor heavy chain H4
P03950 3 92.77 0.03 1.86 Responders Non-responders Angiogenin
P02647 1 49.62 0.03 1.56 Responders Non-responders Apolipoprotein A-
Q03591 6 208.05 0.03 1.93 Responders Non-responders Complement factor H-related protein 1
P00751 1 68.05 0.04 1.73 Responders Non-responders Complement factor B
P01031 1 71.55 0.04 4.15 Responders Non-responders Complement C5
P00747 1 46.69 0.04 2.13 Responders Non-responders Plasminogen
P02745 2 64.53 0.05 2.96 Non-responders Responders Complement C1q subcomponent subunit A
Q9BXR6 1 63.61 0.05 2.32 Responders Non-responders Complement factor H-related protein 5
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most clinical settings with either 3 new candidate biomarkers (ANG,
CLU and C1Q) with an AUC = 0.890 and 85.3% correct classification or
4 new candidate biomarkers including CCL18, AUC = 0.905 and 82.4%
correct classification.

4. Discussion

Numerous clinical trials have shown a dramatic improvement in the
clinical outcome for MM patients over the last decade but all patients
will still relapse following treatment. Over the last decade, the US Food
and Drug Administration (FDA) have approved the use of bortezomib as
a front-line treatment for MM. Despite the developments of novel bio-
logical agents such as first and second-generation proteasome inhibitors
(bortezomib and carfilzomib), many MM patients will develop drug
resistance and in some cases have de novo resistance to these novel
agents [17,24,25]. Furthermore, bortezomib has a range of adverse
reactions such as thrombocytopenia, neutropenia, anemia, infections,
gastrointestinal discomfort, musculoskeletal pain and commonly per-
ipheral neuropathy that may affect a patient's subsequent treatment
[26,27]. The ability to avoid side effects from ineffective treatments is a
crucial area where biomarkers can play a significant role.

Biomarkers have been effective in individualizing treatments in
various malignancies including breast, lung and nasopharyngeal can-
cers [28–30]. In MM, there are still limited published studies on bio-
markers that could be used to predict treatment (e.g. bortezomib) re-
sponse. Recently, Cereblon (CRBN) has been found to be a target for
immunomodulatory agents (IMiDs) and its lack of expression shows a
high correlation with resistance to these agents [31,32]. Employing
CRBN as a biomarker in MM, accurately predicts response rate and
survival in patients treated with IMiDs.

Albumin, ß2M, paraprotein and kappa/lambda ratio are the stan-
dard biomarkers currently used in the clinical setting. Despite that,

these panels of blood tests are not specific to predict response to any
form of therapy [12]. In this study, a number of proteins were found to
be significantly changed in abundance between responders and non-
responders to treatment containing bortezomib. C1Q is a hexamer of
three unique protein subunits (A, B, and C) and plays a key role in
apoptotic cell, immunological and inflammatory processes. It is a
460 kDa protein composed of 18 polypeptide chains of (6 A-chains, 6 B-
chains and 6 C-chains) [33]. Its role has been thought to be involved
with advanced glycation end (AGEs) products through its binding
properties in human serum [34], and studies have shown that these
proteins have the ability to induce precipitation of soluble gamma
globulin complexes [35]. C1Q receptors are directed to the heavy
polypeptide chains of IgG and IgM [36]. It has been suggested that some
myeloma IgG proteins undergo unusual glycosylation processes during
disease progression [37]. These glycosylation studies together with our
current findings suggest that there is an association between the in-
creased levels of C1Q in the non-responders group.

ANG, a 14 kDa angiogenic ribonuclease, is an actin-binding protein
on the surface of endothelial cells, promoting cell invasion and migra-
tion [38]. Various studies have shown that immunomodulatory drugs
such as thalidomide have an inhibitory effect on angiogenesis in cancer,
thus reinforcing the importance of ANG's role in MM disease progres-
sion [39–41]. A study has recently shown that myeloma patients who
were treated with bortezomib and had responded well, displayed a
significant decrease in microvessel density, which suggests that borte-
zomib may have an anti-angiogenic effect [42].

CLU, a ubiquitous extracellular protein is expressed in a range of
diseases that arise from protein misfolding and deposition of highly
structured protein [43]. CLU exists in several isoforms; secretory and
nuclear CLU. Its exact mechanism of action remains unknown but it is
thought to play a role in promoting cancer cell survival through the
activation of Akt and NFκB pathways [44–47]. Studies have shown that

Table 3
ELISA Data.

Mean, SD, Area under the curve (AUC) and p-value for each of the new and standard proteins found in the two groups of patients compared.

Proteins n Mean Std. deviation AUC p-value

Candidate biomarkers
Clusterin (ng/mL) Responders 23 291.12 243.13 0.651 0.129

Non-responders 14 181.76 208.10
Complement C1q (μg/mL) Responders 21 149.68 138.88 0.722 0.032

Non-responders 13 249.17 190.60
Angiogenin (ng/mL) Responders 23 14.38 0.44 0.748 0.012

Non-responders 14 13.84 0.64
C-C motif ligand 18 (ng/mL) Responders 23 7.00 0.40 0.549 0.633

Non-responders 13 6.96 0.41

Standard biomarkers
Albumin (g/L) Responders 23 33.04 7.11 0.672 0.082

Non-responders 14 28.21 7.68
Beta 2 Microglobulin (mg/L) Responders 23 3.45 2.24 0.565 0.511

Non-responders 14 4.39 3.16
Paraprotein (g/L) Responders 23 16.13 19.12 0.719 0.027

Non-responders 14 29.07 18.34
Kappa/Lambda ratio Responders 23 176.33 425.43 0.512 0.908

Non-responders 14 102.09 257.69

Table 4
Logistic regression analysis data.

List of different protein combinations used to establish the best model that can be used as a predictive panel for response to induction therapy containing bortezomib regime.

Protein combinations AUC Hosmer & Lemeshow test (p value) Correct classification (%)

International Scoring System: albumin and ß2M 0.660 0.702 67.600
Standard biomarkers: albumin, ß2M, paraprotein and K/L Ratio 0.708 0.750 64.900
Candidate biomarkers: Angiogenin, Clusterin, Complement C1q 0.802 0.760 76.500
Candidate biomarkers: Angiogenin, Clusterin, Complement C1q, CCL18 0.850 0.636 76.500
4 standard and 3 candidate biomarkers (Angiogenin, Clusterin and Complement C1q) 0.890 0.495 85.300
4 standard and 4 candidate biomarkers (Angiogenin, Clusterin, Complement C1q, CCL18) 0.905 0.238 82.400
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bortezomib plays an important role with transcription nuclear factor kB
(NFκB) by blocking the degradation of its inhibitor, IkB [48].

CCL18, also known as macrophage inflammatory protein 4, is a
chemotactic cytokine that has no known receptor. Yuan and co-workers
recently found using survival and multivariate analysis that CCL18 was
an independent favorable prognostic factor in patients with colorectal
cancer. Similarly in this investigation, CCL18 levels were found to be
significantly increased in the responder group [49].

By combining these new candidate biomarkers (ANG, CLU, C1Q)
with standard biomarkers (Albumin, ß2M, Paraprotein and K/L ratio),
we have developed a novel panel of biomarkers to predict response to
bortezomib treatment in MM. These ELISA kits are widely available and
inexpensive in comparison to other prognostic methods. This novel
biomarker panel may assist clinicians in choosing a more personalized
and efficacious treatment, whilst minimising unnecessary side effects.
Further prospective multi-centre randomized studies will be useful to
determine the efficacy of this panel of biomarkers. MM is not one dis-
ease and therefore for any potential biomarker to be useful in mon-
itoring or predicting response to treatment, it will most likely be as part
of a panel of disease relevant biomolecules with direct connection to
the phenotypic machinery associated with MM. Most biomarkers cur-
rent used in MM management are either diagnostic or prognostic. This
study has demonstrated that by combining biomarkers that are cur-
rently used in the management of MM, with additional candidate pro-
tein biomarkers, it is possible to develop a sensitive test that predicts
response to bortezomib treatment, an established component of anti-
myeloma therapy.

In this study, a combination of fraction methods was employed to
reduce the dynamic range of proteins under investigation and facilitate
the detection/quantification of more low abundant molecules by high
abundant protein removal/depletion. However, high abundant proteins
sequestering low abundant cargo proteins can help to increase their
abundance and protect them from elimination by the body. A drawback
of compressing the dynamic range by protein removal/depletion is the
potential loss of information on the abundance levels for these proteins
under different conditions (response to treatment) and the valuable
proteins that can be found attached to these molecules [50].

The ISS predicts survival of newly diagnosed MM patients by using a
combination of two routine biomarkers, ß2M and albumin, and uses
this information to separate patients into three stages with a distinct
prognosis. However this approach is not specific to any individual
treatment. Therefore, the focus of this investigation was to combine
routine biomarkers, such as those used by the ISS, with novel bio-
markers discovered using proteomics analysis of MM patient samples.
Ultimately the aim is to develop a predictive model using easily
quantifiable and accessible platforms, directly associated with specific
therapeutic options, such as bortezomib. Such theranostics are intended
to give clinicians the means to implement a treatment plan customized
for each patient. Prospective studies will be planned to validate the
proposed risk stratification panel in this study and will also take into
account the revised International Staging System (R-ISS), to improve
risk stratification by evaluating the presence of chromosomal abnorm-
alities detected by iFISH (t(4;14), t(14;16) and del17p) and elevated
serum lactate dehydrogenase in addition to ISS.
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