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undergraduate calculus courses
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ABSTRACT
In this article we present the findings of a research study which
investigated the opportunities for creative reasoning (CR) made
available to first year undergraduate students in assessments. We
compared three first year calculus courses across two Irish
universities using Lithner’s framework. This framework sets apart
imitative reasoning (IR) (analogous to rote learning and mimicry of
algorithms) and CR (which includes plausible mathematically-
founded arguments). We report on the differences between
reasoning opportunities in specialist and non-specialist courses
and compare our findings with those of other similar projects. In
addition, we will provide a critical reflection on Lithner’s
framework as a method for classifying tasks in calculus courses
and suggest a modification.
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Introduction

This article reports on an investigation of the type of reasoning opportunities afforded to
first year undergraduate students in a range of calculus modules. In particular, we look at
differences in reasoning opportunities offered to specialist and non-specialist students. In
Ireland (the setting for our study), as well as in other countries, mathematics courses for
specialist and non-specialist students are usually distinguished by the level of complexity
of the mathematics encountered, and by the degree of rigour of the mathematical
approach. Neither of these implies that the quantity of reasoning opportunities should
necessarily be different: we address this question here. We carry out our analysis by study-
ing tasks from continuous assessment assignments and examinations using the reasoning
framework developed by Lithner (2008). Lithner defined reasoning as “the line of thought
adopted to produce assertions and reach conclusions in task-solving” (2008, p. 257); this is
not restricted to formal proof and can include both high and low quality arguments. The
framework classifies tasks as requiring imitative reasoning (IR) or creative reasoning (CR).
In this article, we will use the word task to mean any piece of student work including
homework assignments, tests, and final examinations.

It is a widely-held view that the study of mathematics promotes the development of
thinking skills. However, there is a growing concern that students “can pass courses via
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mimicry and symbol manipulation” (Fukawa-Connelly, 2005, p. 33) and, as such, may not
develop conceptual understanding or problem-solving skills. The type and content of
coursework issued plays a key role in student progress. A considerable amount of research
(for example Boesen, Lithner, and Palm (2010)) demonstrates that the types of tasks
assigned to students can affect their learning. Bergqvist and Lithner (2012) found that stu-
dents are more likely to use rote-learning if they are exposed repeatedly to tasks which
require lower levels of cognitive demand. As a result, students may become unable to
solve unfamiliar problems or to adequately transfer mathematical knowledge to other
areas. In contrast, Jonsson, Norqvist, Liljekvist, and Lithner (2014) showed that an empha-
sis on CR tasks could lead to higher levels of mathematical competence. Thus, tasks can be
seen as student learning opportunities (White & Mesa, 2014).

It is interesting then to ask what kinds of tasks are usually assigned in introductory
courses at university. Indeed Pointon and Sangwin (2003, pp. 671–672) emphasise that
“Since assessment is such a powerful tool for influencing students’ choice of learning
style, a subject specific understanding of assessment tasks appears to be a pre-requisite
for any serious educational dialogue.” They developed a taxonomy which they used to
classify course-work and examination questions. They considered 486 questions in total
from two first year undergraduate mathematics courses at UK universities. They con-
cluded that 84.5% of assignment questions and 71.2% of examination questions required
the use of routine procedures or the reproduction of previously seen material.

In Sweden, Bergqvist (2007) analysed 16 examinations from introductory calculus
courses at four universities. Using Lithner’s framework, she found that 70% of the exam-
ination questions could be solved using IR alone and that 15 of the 16 examinations could
be passed without using CR. Tallman, Carlson, Bressoud, and Pearson (2016) developed a
new classification method called the Exam Characterization Framework and used it to
classify 150 Calculus 1 examinations from a large range of university level institutions
in the US. They concluded that the questions on these examinations mostly required a
low level of cognitive demand, displayed a low level of real-life contexts, and rarely
asked for explanations or for a demonstration of understanding of core concepts. They
found that 85% of the tasks classified required students to either recall facts or apply pro-
cedures; they note however that their analysis did not factor in students’ experiences in
their calculus courses.

White and Mesa (2014) adapted an earlier version of the framework used in Tallman
et al. (2016) and used it to study tasks (both graded and non-graded) from different sec-
tions taught by different instructors of a single calculus module. Their new framework
concerns the cognitive orientation of a task and they summarised it by assigning their
tasks to three broad categories: simple procedures; complex procedures; and rich tasks.
They found differences in the cognitive orientation of tasks given by different instructors
even if each used the same textbook; they also found differences between the types of tasks
assigned as homework and those that appeared on examinations. Contrary to what might
be expected, the examination tasks had a higher proportion of rich tasks than was the case
for the homework tasks, although the majority of tasks in both cases were procedural. Dar-
lington (2014) considered examination questions from quite a different type of course –
that of first year Pure Mathematics modules in Analysis and Algebra in Oxford. She
found that more than half of the marks available (54.1%) were assigned to questions
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which asked students to apply conceptual knowledge to construct mathematical
arguments.

Several considerations may explain the predominance of procedural questions on final
examinations in Calculus courses. Tallman et al. (2016) report discrepancies between
examination questions and instructors’ perceptions of the types of questions that they
set, with instructors overestimating the amount of high level questions on their papers.
Bergqvist (2012) considered university teachers’ perspectives on the reasoning required
in calculus examinations and concluded that lecturers felt that having too many CR
level questions would lead to high failure rates. Bergqvist (2005) suggested that some tea-
chers believed that higher level reasoning was only relevant to high-performing students as
these were the only students good enough to use and benefit from such reasoning. Iannone
and Simpson (2015) considered 148 undergraduate mathematics students’ opinions of
assessment methods across two universities in the UK. They found that these students
tended to have a preference for “traditional” assessment techniques rather than new inno-
vative ones and that “… these students are most interested in being accurately assessed
according to their abilities and … have deep-seated concerns about the unfairness of
achieving marks through shared endeavour, with luck, without effort or without ability”
(2015, p. 1063).

Ellis, Hanson, Nuñez, and Rasmussen (2015) highlighted the importance of appropriate
assignments as a means which “provide[s] students with the practice needed for develop-
ing understanding, but leaves much more of the responsibility of the construction of
knowledge to the students” (p. 270). Mesa (2010) focused specifically on the types of strat-
egy and arguments evident in examples (and related text and solutions) in textbooks for
both introductory and honours Calculus courses. She investigated the control structures
used, that is, how the textbooks explained: (1) how to decide what to do; (2) how to deter-
mine that the answer has been found; and (3) how to establish that the answer is correct
(Mesa, 2010). She found that in general, both textbook types gave explicit information on
how to solve a problem and recognise an answer, however the introductory textbooks had
less discussion of verification of correctness than the honours textbooks.

For our research, we considered many of the frameworks mentioned above when decid-
ing how to classify and compare tasks in undergraduate calculus modules. We were inter-
ested in the kinds of opportunities for genuine mathematical activity that are available in
first year undergraduate modules. We decided to focus on studying the kinds of arguments
that might be expected of students and so Lithner’s description of reasoning and method
of classifying reasoning opportunities seemed appropriate for this study. Given that
“reasoning” is not limited to formal proof, we felt that the reasoning framework is
useful in studying the types of tasks usual in calculus courses, where students are expected
to make plausible arguments and conclusions but rigorous proofs are often not required.
Because Lithner’s definition of reasoning can cover both high and low level arguments,
and since constructing arguments is something that students in any university calculus
module should be doing (Larsen, Glover, & Melhuish, 2015), the reasoning framework
allows for the comparison of rigorous and non-rigorous modules in a meaningful way.
This type of comparison is an important part of our study.

In White and Mesa’s (2014) framework, a degree of interpretation is required by the
researchers to categorise tasks. For example, it could be argued that their example of an
“Understand” task – to state in everyday language a mathematical representation of a
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rate of change – could be solved by the application of memorisation (and so become a
“Remember” task). That is, the written prompts and symbols in the task may lead a
student to provide a response without having “[determined] the meaning of the instruc-
tional messages” (White & Mesa, 2014, p. 679, emphasis added). In this framework, the
role of the researchers as experienced instructors is crucial, as it allows and requires
them to apply their familiarity with, e.g. “tasks that experience has told [them] were fre-
quently proceduralized” (White & Mesa, 2014, p. 679).

Our application of Lithner’s framework attempts to circumvent this subjectivity
(although it is not entirely absent; see below) by emphasising the number of previous
occurrences of tasks in module materials in the classification scheme.

Our research questions are:

1. What kinds of reasoning opportunities are available to students in first year calcu-
lus modules in Ireland?

2. What differences exist between the reasoning opportunities available in specialist
and non-specialist modules?

We also discuss our use of Lithner’s further sub-classification, our experience of using
the framework and our observations on how it could be refined to take account of more
complex IR tasks.

Conceptual framework

Lithner (2008) distinguishes between two types of reasoning: IR and CR. IR is further sep-
arated into: memorised (MR) and algorithmic (AR). Reasoning which is classified as MR
should be of the following nature:

1. The strategy choice is founded on recalling a complete answer.
2. The strategy implementation consists only of writing it down. (Lithner, 2008, p. 258)

At undergraduate level, MR is seen most often when students are asked in assessment to
recall a definition or to state and prove a specific theorem. AR is identified when:

1. The strategy choice is to recall a solution algorithm. […]
2. The remaining reasoning parts of the strategy implementation are trivial for the

reasoner, only a careless mistake can prevent an answer from being reached.
(Lithner, 2008, p. 259)

Lithner labels a reasoning sequence as CR if it has the following three properties:

1. Novelty. A new (to the reasoner) reasoning sequence is created, or a forgotten one
is re-created.

2. Plausibility. There are arguments supporting the strategy choice and/or strategy
implementation motivating why the conclusions are true or plausible.

3. Mathematical foundation. The arguments are anchored in intrinsic mathematical
properties of the components involved in the reasoning. (Lithner, 2008, p. 266)
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CR can be separated into two subcategories: Local creative reasoning (LCR); and Global
creative reasoning (GCR). An LCR-task is solvable using an algorithm but the student
needs to modify the algorithm locally in a non-’trivial’ way. A GCR-task does not have
a solution that is based on an algorithm and requires CR throughout (Bergqvist, 2007).

In this study, we relate mathematical tasks to the type of reasoning they require. Using
Lithner’s criteria and based on the provided module material (i.e. lecture notes, textbooks,
assigned tasks) we categorise the tasks as MR, AR, LCR or GCR tasks.

Methodology

The modules

We selected three first year undergraduate calculus courses from two Irish universities. We
selected modules which would span the range of such courses on offer in Irish universities
(from the more rigorous to the more computational) and for which we had access to full
sets of notes and assessments. The three courses were: a business mathematics module, a
module for science students, and a module for pure mathematics students. We will refer to
the students in the pure mathematics modules as specialists (as they intend to complete a
degree in mathematics) and to the other students as non-specialists (as they intend to
complete degrees in other subjects). The students in the specialist modules usually have
a stronger mathematical background than those in the non-specialist modules, and this
is reflected in the differences in the minimum entry requirements of these courses.
Entry to university in Ireland is based on the results of a high-stakes examination called
the Leaving Certificate. Students in the pure mathematics module studied here are
required to enter university with at least 110 points (out of a possible 125) in Mathematics,
while students in the other two modules need to obtain at least 20 points in Mathematics.
In practice, the majority of students in the non-specialist courses have higher mathematics
scores than these minimum requirements. To elucidate the context, we give a brief outline
of the mathematics encountered by students taking the different modules.

Module A: Business Mathematics
The focus of the content of this module is on applications of linear and low-degree poly-
nomial functions in economics and business. The applications are described to students,
who are expected to carry out prescribed routines and to supply interpretations of their
results. Students are also required to construct and interpret graphs of functions of the
types mentioned above, to study and apply the compound interest formula, and are
required to calculate partial derivatives of low-degree polynomial functions of two vari-
ables. The emphasis is on learning to use and interpret mathematical procedures that
have applications in the principal areas of the students’ studies (economics and business).
Students completed five online homework sets, each worth 3% of the total module mark.
Each set comprised between six and 10 short-answer questions.

Module B: Science Mathematics
This module aims to develop an appreciation and understanding of Differential Calculus.
The course started with a short introduction to functions in general and specific families of
functions such as polynomials, rational functions, exponential and logarithm functions,
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and trigonometric functions. The focus then turned to understanding limits and continu-
ity (without formal definitions or proofs), and to the use of these concepts to sketch graphs
and to motivate the calculation of rates of change. Students saw how to establish and use
derivative rules. The course finished with applications of differentiation. There were seven
written assignments worth, in total, 15% of the module grade, and each assignment
required that students submit between six and eight questions.

Module C: Pure Mathematics (Integration)
The purpose of this module was to familiarise students with the concept of the Riemann
Integral and introduce them to the standard tools for the calculation of integrals. Defi-
nitions of the Riemann Integral were given for step functions and later for functions in
general. This was followed by a discussion about which functions are Riemann-integrable,
the Fundamental Theorem of Integration and the application of the integral for calculating
the area underneath a curve. This part of the course had a mathematically rigorous empha-
sis and the lecturer proved many results. The rest of the course was dedicated to tech-
niques of integration, as well as applications. The course concluded with a brief
introduction to numerical integration. The continuous assessment consisted of five assign-
ments worth a total of 30%. Each assignment required that students submit between 10
and 12 questions.

Of the three modules described above, Module C was the most rigorous, which can be
seen from the frequent use of formal definitions and proofs. The other two modules
focused on developing students’ intuition and on calculation. It could be said that
Module A was less mathematically demanding than Module B; for example, the course
concentrated on low-degree polynomials as opposed to the wider range of functions in
the Science module, and the emphasis was on using procedures while there was more
time spent in Module B on providing a mathematical validation of these procedures.
This would be normal for these types of modules in the Irish university system.

Task classification

There were four types of data in this study: lecture notes, assignments, end of module
examination questions, and for two courses, recommended textbooks. All data was
assembled with the cooperation of the module lecturers. In order to experience and fam-
iliarise ourselves with the classification process as described in the previous section, we
first selected and classified a sample of exercises from a textbook. We used the procedures
presented by Lithner (2008) and Bergqvist (2007); the suggested method is that coders first
construct a solution to the task, then compare it to the course notes and textbook
examples, and make a judgement as to whether the task could be solved by IR, or
whether CR is needed. The tasks are further classified into the MR/AR/LCR/GCR sub-cat-
egories using the descriptions provided by Lithner (2008). Note that, in a manner similar
to that employed by White and Mesa (2014), the tasks are classified using only the
hypothetical arguments constructed by coders and the information arising from course
notes and textbooks, and not by using any real arguments constructed by students. We
classified the sample tasks independently and then met to finalise our procedures. This
process allowed us to discuss and agree on our classification methods for the module
material.
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The most challenging part of the process concerned our consistent classification of
tasks into either the AR or LCR categories, or the LCR or GCR categories. After reviewing
our initial coding, we decided to adjust the framework as follows: Classify a task as an
LCR-task if the solution was based on an algorithm and students had to modify one
sub-procedure; Classify a task as a GCR-task if two or more sub-procedures were new,
if a proof aspect was the novel element, or if mathematical modelling was the novel
element.

We then applied Lithner’s framework to the assignment (both submitted questions and
practice or tutorial questions) and examination tasks for each module. Each module was
classified independently by two authors, neither of whom worked in the home university
of the module. This inter-rating approach ensures reliability of the analysis of the course
material from the different modules (see e.g. Cohen, Manion, & Morrison, 2000). We
classified 632 tasks in total; examples of these classifications are illustrated below and
further examples are available in Macan Bhaird, Nolan, O’Shea, and Pfeiffer (2014).

Example 1 - Module A, Task 6.1.2 Determine the APR of an account if the nominal rate of
9% is compounded continuously. How long will it take an amount of money invested in this
account to double in value?

This exam question was classified as IR, specifically AR. Similar examples and questions were
covered in lectures, available in the textbook and had been asked on homeworks. Thus, stu-
dents may solve the task by recalling and implementing a familiar algorithm.

Example 2 - Module B, Task 3.6 Solve for x: (x + 3)4/3 = 16.

This practice question was classified as CR, specifically LCR. Students had not seen an
example displaying all of the mathematical features of this task in either the lectures or text-
book. The ideas for answering the question were covered in both, however students had not
seen methods for solving equations involving non-integer powers of linear algebraic
expressions, so this was regarded as new element.

Example 3 - Module C, Task 3.1.1 Let f and g be integrable functions over the interval [a,b]
such that f ≥ g ≥ 0.Furthermore, let A denote the area of the region bounded by the graphs of f
and g between x = a and x = b. Explain why

A =
∫b
a
f (x)− g(x)dx.

This additional practice question was classified as CR, specifically GCR. Students had seen
the definition of the area under the graph of a non-negative function, and had seen
sample calculations. The task quoted requires an argument based on intrinsic mathematical
properties: no algorithm is available to students to provide this argument.

The level of agreement between the raters was high: 98% for Business Mathematics; 91%
for Science Mathematics; 71% for Pure Mathematics. These percentages refer to the classi-
fication of questions as IR or CR-tasks; the corresponding rates for the classification into
the subcategories MR/AR/LCR/GCR were slightly lower (96% for Business Mathematics;
85% for Science Mathematics; 60% for Pure Mathematics). When we used Cohen’s Kappa
statistics to measure inter-rater reliability we found similar results: for the division into IR
or CR tasks we found values of kappa of 0.957 (Business Mathematics), 0.767 (Science
Mathematics) and 0.414 (Pure Mathematics). According to Landis and Koch (1977),
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these correspond to outstanding, substantial and moderate levels of reliability respectively.
Since the subcategories are ordinal, we used the intra-class correlation to measure
reliability and obtained values of the ICC of 0.945 (Business Mathematics), 0.777
(Science Mathematics) and 0.569 (Pure Mathematics). These values correspond to excel-
lent, good and fair levels of reliability (Cicchetti, 1994). One reason for the lower agree-
ment in the Pure Mathematics course may be the higher proportion of CR tasks and
the challenges involved in categorising such tasks. We report on results and challenges
in the sections below. The researchers met and discussed items on which they differed
to settle on agreed final classifications.

It should be noted that in this type of analysis, we are unaware of the individual stu-
dents’ backgrounds, motivation, engagement levels and especially their learning environ-
ments outside of the lecture hall – for example in tutorials, in Mathematics Learning
Support Centres, etc. This is outside the scope of our study, and there are other works,
e.g. Maciejewski and Merchant (2016), which consider students’ study approaches and
strategies and how these impact on their grades. In applying Lithner’s classification
method, we only use information gleaned from the textbooks and notes. This is a possible
weakness with the study. However, this difficulty resonates with the position in which the
lecturer finds themselves: they must make decisions on teaching and assessment in the
absence of detailed knowledge of their students’ prior learning experiences.

Results

We classified the tasks in the three courses under consideration using Lithner’s frame-
work. In the Business Mathematics and Pure Mathematics modules, the lecturers assigned
practice questions (to be done in tutorials or in the students’ own time), questions to be
submitted (these counted toward the module mark), and examination questions. The
Science Mathematics lecturer followed this pattern too but also provided the class with
more challenging tasks (labelled optional questions). Tables 1–3 below show the results
of our task classification for the three modules.

We found differences in the types of tasks used both between the three modules and
between practice and summative assessment tasks within modules. Since our data is cat-
egorical and we wished to investigate the association between the reasoning levels and
either the type of modules or the type of assessment, we used chi-squared tests, and
when the numbers in the sub-categories were small we used the analogous Fisher Exact
test (FET). There was a statistically significant difference between the proportion of ques-
tions classified at the CR level in the three courses (X2(2, N = 630) = 99.538, p < 0.001). We
saw a heavier emphasis on CR in the Pure Mathematics course, but in all three modules we

Table 1. Numbers of questions in each category for Business Mathematics.
Required Reasoning Type Practice Questions Submitted Questions Exam Questions Total

IR 93 100 20 213
MR 0 0 0 0
AR 93 100 20 213
CR 55 2 2 59
LCR 33 2 2 37
GCR 22 0 0 22
Total 148 102 22 272
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saw a higher proportion of CR tasks in the practice questions and a smaller proportion on
the summative assessments.

When we considered examination questions only (Table 4), we found a statistically sig-
nificant difference in the proportion of questions classified in each subcategory between
the Specialist (Pure Mathematics) and the Non-specialist (Business and Science Math-
ematics) modules (FET, p = 0.017); the specialist course was more likely to have more
LCR tasks and fewer AR tasks than the non-specialist courses.

Table 5 shows the data for submitted questions and we see that there was a significant
difference between the proportion of questions in each category for the Specialist and
Service modules (FET, p < 0.001). The same was true also for the proportion of practice
questions (FET, p < 0.001). In both cases, the relevant tasks in the specialist course were
more likely to be classified as LCR or GCR than the tasks from the non-specialist courses.

Discussion

Reasoning opportunities in calculus courses

We have considered the reasoning opportunities made available to students in modules for
specialists and non-specialists: it seems that most of the literature on the classification of
the cognitive demand of university mathematics tasks concentrates on courses for one or
other of these groups but not both. One of the benefits of Lithner’s framework is that it is
appropriate for use in both types of courses, allowing for comparisons between them.

Using the reasoning framework, we have been able to classify tasks in each of the three
calculus modules in this study. We found that the Pure Mathematics Integration module
had the highest proportion of CR questions for both practice tasks and assessment tasks
(final examination as well as continuous assessment questions). The Business Mathemat-
ics module had a slightly higher percentage of practice tasks classified at the CR level than
was the case in the Science Mathematics module, but the proportion of continuous assess-
ment tasks at the CR level in the Business Mathematics module was very low. The fact that

Table 2. Numbers of questions in each category for Science Mathematics.
Required Reasoning Type Practice Questions Submitted Questions Optional Questions Exam Questions Total

IR 97 40 1 15 153
MR 0 0 0 0 0
AR 97 40 1 15 153
CR 19 15 27 2 63
LCR 15 11 5 2 33
GCR 4 4 22 0 30
Total 116 55 28 17 216

Table 3. Numbers of questions in each category for Pure Mathematics.
Required Reasoning Type Practice Questions Submitted Questions Exam Questions Total

IR 13 24 7 44
MR 2 0 1 3
AR 11 24 6 41
CR 51 43 4 98
LCR 27 25 3 55
GCR 24 18 1 43
Total 64 67 11 142
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the Pure Mathematics module had significantly more CR questions than the two non-
specialist modules is unsurprising. The results found here for the service modules (i.e.
89.7% of examination questions were classified as AR-tasks) are very similar to those
reported in the studies of examination questions in the US and Canada by Tallman
et al. (2016) and Maciejewski and Merchant (2016), and slightly lower than those reported
by Bergqvist (2007) for Swedish university examinations. The results appear significantly
different to those reported in White and Mesa (2014). The proportion of examination
tasks at the CR level in the Pure Mathematics course (36.4%) is lower than the correspond-
ing results given by Darlington (2014), however the module in our study was a Calculus
module and not an Analysis one, which may account for the different emphasis. MR-tasks
were very rare in our data; we found none at all in the service modules and three in the
module for specialists with one of these on the final examination.

Our analysis shows that the differences in proportions notwithstanding, all three lec-
turers made efforts to include CR tasks in their courses. This was achieved in different
ways in each module. In the Business Mathematics course, the continuous assessment
assignments were submitted through an online homework system and took the form of
multiple choice short answer questions. The course instructor was able to choose the ques-
tions used but did not write new tasks, and this may account for the very low proportion of
CR tasks in the marked assessments. However, the lecturer also assigned 148 practice
questions, and 37% of these were classified at the CR level (with 15% at the GCR level
and 22% at the LCR level). Thus, the students in this module were presented with high
level reasoning opportunities in the coursework. The lecturer in the Science Mathematics
module assigned two different types of practice questions; those designated as practice
questions were mostly classified at the IR level (83.6%) but all but one of those designated
as optional questions were CR tasks (96.4%), with 79% classified in the GCR category. It
seems that both of these lecturers were aiming to strike a balance between the need for
their students to practise basic calculus skills and giving them opportunities to work on
more challenging problems. Ellis et al. (2015) identified the importance of high-level
tasks (complex word problems questions requiring justifications or multiple represen-
tations …) in the homework assigned at institutions with successful calculus programmes;
it is unclear whether the presence of more demanding tasks as practice questions on
assignments has the same effect. The practice and optional tasks give students opportu-
nities to engage in CR but if these questions are not submitted it is possible that students
do not engage with them fully.

Table 4. Classification of examination questions.
Course Type MR AR LCR GCR Total

Non-Specialist 0 35 (89.7%) 4 (10.3%) 0 39 (100%)
Specialist 1 (9.1%) 6 (54.5%) 3 (27.3%) 1 (9.1%) 11 (100%)
Total 1 (2%) 41 (82%) 7 (14%) 1 (2%) 50 (100%)

Table 5. Classification of submitted questions.
Course Type MR AR LCR GCR Total

Non-Specialist 0 140 (89.2%) 13 (8.3%) 4 (2.5%) 157 (100%)
Specialist 0 24 (35.8%) 25 (37.3%) 18 (26.9%) 67 (100%)
Total 0 164 (73.2%) 38 (17%) 22 (9.8%) 224 (100%)
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When we consider the finer classification into MR/AR/LCR/GCR tasks we see that
there were very few GCR tasks in general, and especially on final examinations: there
were none in either of the service modules and only one on the Pure Mathematics
module. The numbers of GCR-tasks on submitted assignments was not much higher
(none on the Business Mathematics module, four [7%] on the Science Mathematics
Module, and 18 [27%] on the Pure Mathematics module). There were significantly
more CR tasks on the Pure Mathematics examination than appeared on the service
course examinations, however in all three modules, the proportion of CR questions on
the final examination was much lower than the corresponding proportion for the tasks
assigned during the course. This is to be expected, especially given the time constraints
in a final examination. The low proportion of CR tasks may also be due to concerns
about making the final examination too difficult (Bergqvist, 2012), and may relate to
the thinking that results in different emphases in textbooks for specialist and non-special-
ist students (Mesa, 2010).

Reflection on applying Lithner’s framework

We now discuss our experience of using Lithner’s framework. We comment on the
benefits and the challenges that this presented, and make some tentative proposals as to
how the framework could be adapted to maximise these benefits.

Benefits of using the framework
Our experience of using Lithner’s framework reinforced much of its original purpose in
that it provided us with a tool for “use-inspired basic research” aimed at both “increased
fundamental understanding and at contributing to developing teaching” (Lithner, 2008,
p. 256). In particular, we found that it provided an empirically validated language for dis-
cussing key aspects of the teaching and learning of calculus. The framework reifies con-
cepts of major concern to university mathematics departments (rote learning, teaching
for understanding, teaching by, through and for problem-solving …) that are (in our
experience) often discussed in less formal and less productive ways. It provided us with
a tool to analyse and compare different calculus modules, and to re-think assessment strat-
egies for those modules. The framework is well-adapted to the situation in which we find
ourselves as mathematics lecturers: assessment tasks must be selected without having
detailed knowledge about the students’ prior learning experiences and engagement with
different modes of reasoning. This framework and its categories provide a means of
addressing this.

Challenges in working with the framework
Certain words used in the description of the categories of the framework required particu-
larly careful interpretation. In describing Algorithmic Reasoning (AR), a key feature is that
“the reasoning parts of the strategy implementation are trivial for the reasoner …”
(Lithner, 2008, p. 259, emphasis added). The subjective nature of the adjective “trivial”
is explicit in the qualifier “for the reasoner”. We sought a degree of objectivity in rating
the trivial/non-trivial character of different tasks. This was done on a consensus basis,
where considerations such as our agreed opinion of the mathematical capacities of the
median student in each given cohort were used. These were naturally different for each
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of the three modules and were based on our experiences as mathematics educators in Irish
universities and on the high degree of homogeneity of the prior mathematical experiences
of those students. (A similar assessment influenced our classification of tasks as new or not
new: see below.) Other factors also led to an unambiguous characterisation of a reasoning
step as trivial, e.g. when that step required a near-identical reproduction of a text-book
example (with, say, coefficients of a quadratic equation changed in a way that leaves the
structure of the task-solution unaltered). This characterisation of trivial is provided in
Lithner (2008, p. 264): nevertheless, we felt that a decision on how to deal with the (sub-
jective) issue of triviality was required.

A similar situation arose in determining if a sub-procedure was “new” (Lithner, 2008,
p. 266). This influences the categorisation of a task as requiring CR (and in distinguishing
LCR/GCR). Our starting point was that an element of reasoning/strategy was considered
new if it had not been used in the lecture notes or in the textbook. Occasionally this guide-
line did not suffice to make a decision: for example, if a previous question from the same or
another set of homework tasks, for example, had required the same procedure. We agreed
to categorise an element as not new if students had been required to complete it for sum-
mative assessment on a previous occasion, otherwise it was considered as new.

Many learners have difficulty with using their mathematical knowledge and skills in
new contexts (Barnett & Ceci, 2002). Thus, we considered the question of context when
rating reasoning as new or not new. If a task/procedure/sub-procedure required the appli-
cation of mathematics in a context in which it had not previously been applied by the
student, then it was seen as a new element. This could be a relatively simple step such
as factorisation or finding a derivative, or demand a more advanced strategy or
method. The key features leading to the categorisation of a (sub-)procedure as novel
was that it was non-trivial (see above) and was not the central focus of the task at
hand. For example, the application of a trigonometric identity in a definite integral was
categorised as a new sub-procedure – provided this application had not previously
arisen (in lecture notes, a text-book or a compulsory assessment task) in the same context.

The category GCR embraces a wide spread of reasoning demands. A sufficient con-
dition for a task to be considered GCR-task is if a proof is required. While Lithner
(2008) provides a commentary on the role of formal logical reasoning in his framework,
we found instances where it was not easy to decide if a proving element was involved in a
particular task. For example, the Pure Mathematics (Integration) module presented stu-
dents with the following task:

Task 2.2(3): Determine the derivative of [the function] f (x) = xt for t [ R and x > 0. (Recall
that xt = exp (t. ln (x)) and use the Chain Rule).

Here students are required to apply the Chain Rule to develop a general rule. Is this just
an application of the Chain Rule or should the fact that a general rule is being developed be
seen as a proving element? We chose the latter, and considered this task as GCR-task. This
is consistent with Lithner’s categorisation of CR as involving new elements of mathemat-
ically grounded argumentation. This is consistent with the sequence of tasks in the rel-
evant exercise set: the previous question asks students to determine the derivative of
xn, where n is a positive integer. Students are advised to “use induction and the
product rule”. Thus, it is made clear that argumentation based on intrinsic mathematical
properties is required.
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Is there room for an additional category?
We have highlighted that “the framework is intended for use-inspired basic research”
(Lithner, 2008, p. 256), and on this basis, we tentatively suggest that the addition of a
new category as described below may be of use to researchers applying the framework.

We have noted that a task was categorised as GCR (rather than LCR) task if several
challenging sub-procedures are required – and that these sub-procedures meet the criteria
of a CR task (novelty, plausible reason, anchoring to intrinsic mathematical properties).
Lithner links such tasks to the use and development of important mathematical compe-
tencies by students (2008, pp. 269–270). The creative input is linked to the qualities of
“fluency, flexibility and novelty” discussed by Silver (1997; cited in Lithner, 2008).
These qualities come to the fore in tasks that avoid the reduction in complexity associated
with IR tasks. However, in our research, we came across tasks which maintained a high
degree of complexity, but which nevertheless required for their completion algorithmic
(and hence imitative) reasoning only. Examples include certain integration tasks in the
Pure Mathematics (Integration) module, for example:

Task 4.5 (4): Use an appropriate substitution to verify the following integral (take the point
of view that you don’t know the answer, so differentiating the right-hand side […] is not an
option).

∫
x2

��������
a2 + x2

√
dx = x

8
(a2 + 2x2)

��������
a2 + x2

√
− a4

8
ln x +

��������
a2 + x2

√∣∣∣
∣∣∣+ c

Such tasks appeared to require “structural conceptions” on the part of the students, and
to breach the “modest dimensions of human working memory” in order to be successfully
solved (Lithner, 2008, p. 269). In other words, students must show a degree of understand-
ing of the relevant intrinsic mathematical properties of the components of the task; they
must display fluency in the execution of a variety of sub-procedures, and they must be flex-
ible in their choices of solution algorithms for those sub-procedures. But it may also be the
case that there are no sub-procedures in the task-solution that require the novel reasoning
associated with CR tasks. Hence it may be appropriate to introduce a new (sub-)category
that has the characteristics described above as its defining property – a non-trivial,
complex synthesis is at work, that requires more than working memory and leverages stu-
dents’ fluency and flexibility. Such tasks possess many of the features that, in Lithner’s fra-
mework, play a central role in developing valuable mathematical capacities. We
acknowledge that we have no empirical evidence – based, for example, on observations
of students working on tasks (Lithner, 2000) – that such a separate category can be ident-
ified, nor that such tasks do indeed engender positive mathematical capacities. But given
our experience as researchers using the framework for basic research, we consider that the
question of the existence of this separate category of algorithmic reasoning (AR) – tenta-
tively titled Complex Algorithmic Reasoning – is worthy of further investigation.

This new category would mirror to some extent the “Complex Procedures” category of
White and Mesa (2014): there is a shared feature of requiring multiple steps to solve the
task. Their category contains just one type of task – Recognise and Apply Procedures –
which they define as one where “students must recognise what knowledge or procedures
to recall without being directly prompted.… Students may have to string together several
procedures” (White &Mesa, 2014, p. 680). This category owes its existence to the difficulty
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in categorising tasks on the boundary between the categories of simple procedures and
rich tasks.

We see we a link with mathematical creativity in the following way. Veale (2012)
emphasises the computational and algorithmic mechanisms that underpin linguistic crea-
tivity. He argues that the creative use of language (for example, in humour or in poetry) is
founded on, inter alia, “a mastery of everyday language” (2012, p. 15), and on the finessed
search of constrained conceptual state spaces (2012, Chapter 3). (A poet, for example,
might begin with a state that includes both a blank page and his vivid memory of some
daffodils, and searches his word-stock – and engages in other creative processes – to
produce a reflection on this memory that meets the constraints [conventions] of lyric
poetry written in iambic metre with a particular rhyme structure.) The computational per-
spective ascribes an important role to these two features: mastery of everyday language,
and skilful, subtle searching. We see these as analogous to the concepts of fluency and
flexibility mentioned above. This leads us to conclude that the Complex Algorithmic
Reasoning category tentatively described above, in which fluency and flexibility must be
leveraged, may have an important role in developing students’ mathematical creativity.
More generally, these tasks (and likewise the Complex Procedures of White and Mesa,
2014), may have a useful role to play in what is referred to in Sonnert and Sadler
(2015) as Ambitious Teaching; this term was defined by Jackson, Garrison, Wilson,
Gibbons, and Shahan (2013) as pedagogy that seeks to actively engage students in class
and to promote mathematically-founded class discussions.

Conclusion

Iannone and Simpson note that “… there is strong evidence in the research literature
(Scouller, 1998) that the higher the stakes, the more assessment influences students’
approaches to learning” (2013, p. 19). Seeing that development of mathematical reasoning
skills is an important objective of teaching of mathematics at all levels, in particular at uni-
versity, including tasks that require such reasoning in summative assessment seems
imperative. However, several studies of assessment tasks indicate that often a relatively
small amount of these tasks require CR. Findings from our study, which is based on
three distinct first year calculus courses, indicate that in Ireland the situation may be
different for specialist and non-specialist modules. While we found that the specialist
module offered a relatively high amount of summative assessment tasks requiring CR,
the corresponding proportion for the two service modules may raise concern. The less
mathematically complex non-specialist modules need not have a lower proportion of
CR tasks: advanced mathematical thinking is not “tied to a particular level of mathemat-
ics” (Edwards, Dubinsky, & McDonald, 2005). For example, the compulsory homework
tasks of these courses required mostly AR or LCR, and limited numbers of these tasks
required GCR. (One reason for this may be the difficulty of including tasks which
require GCR when using an online-homework service). Final examinations for these
modules again included mostly AR-tasks and minor LCR-tasks: GCR was not required.

Lithner’s framework for categorising types of mathematical reasoning and ultimately
mathematical tasks turned out to be very beneficial, both from a researcher’s as well as
from a lecturer’s perspective. After gaining experience during a “test run”, we agreed on
classification criteria that were designed to be clear and unambiguous. Occasionally a

160 C. MAC AN BHAIRD ET AL.



discussion between researchers was needed to agree on the categorisation of certain tasks.
Thus, for research purposes, involvement of at least two researchers to categorise the same
tasks is advisable. The framework provides an efficient lens to compare mathematical
modules, for example modules for specialists and non-specialists. As the classification is
based primarily on the course material, the framework would also be suitable for inter-
national comparisons. Lecturers may also consider the framework a useful tool to
reflect on their own assessment practice. As we have seen from the work of Tallman
et al. (2016), lecturers may consider that they are assigning high-level assessment tasks
when closer analysis reveals that they are not. An awareness of the proportion of tasks
requiring CR in summative assessment may trigger an informed debate on what a reason-
able proportion of such tasks should be, in both specialist and non-specialist courses. After
all, if one of our aims when teaching mathematics is to develop students’ reasoning skills,
then we should give them ample opportunities to do this.
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