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Abstract. Supramolecular membrane complexes of low 
abundance are difficult to study by routine bioanalytical 
techniques. The plasmalemmal complex consisting of 
sarcoglycans, dystroglycans, dystrobrevins and syntrophins, 
which is closely associated with the membrane cytoskeletal 
protein dystrophin, represents such a high-molecular-mass 
protein assembly in skeletal muscles. The almost complete 
loss of the dystrophin isoform Dp427-M and concomitant 
reduction in the dystrophin-associated glycoprotein complex is 
the underlying cause of the highly progressive neuromuscular 
disorder named Duchenne muscular dystrophy. This gives 
the detailed characterization of the dystrophin complex 
considerable pathophysiological importance. In order to carry 
out a comprehensive mass spectrometric identification of 
the dystrophin-glycoprotein complex, in this study, we used 
extensive subcellular fractionation and enrichment procedures 
prior to subproteomic analysis. Mass spectrometry identified 
high levels of full-length dystrophin isoform Dp427-M, 
α/β-dystroglycans, α/β/γ/δ-sarcoglycans, α1/β1/β2-syntrophins 
and α/β‑dystrobrevins in highly purified sarcolemma vesicles. 
By contrast, lower levels were detected in transverse tubules 
and no components of the dystrophin complex were identified 
in triads. For comparative purposes, the presence of organellar 
marker proteins was studied in crude surface membrane 
preparations vs. enriched fractions from the sarcolemma, 
transverse tubules and triad junctions using gradient gel 
electrophoresis and on-membrane digestion. This involved the 
subproteomic assessment of various ion-regulatory proteins and 
excitation-contraction coupling components. The comparative 
profiling of skeletal muscle fractions established a relatively 
restricted subcellular localization of the dystrophin-glycoprotein 

complex in the muscle fibre periphery by proteomic means 
and clearly demonstrated the absence of dystrophin from triad 
junctions by sensitive mass spectrometric analysis.

Introduction 

The study of the dynamic composition of the proteome and its 
adaptive modifications are of central importance for modern 
biomedicine. Mass spectrometry-based proteomics is the 
method of choice for the systematic identification of complex 
changes in protein constituents involved in human disease (1). 
Comparative cellular proteomic studies usually encompass: 
i) the efficient extraction of all assessable protein species from 
a select tissue specimen; ii) pre-fractionation steps to reduce 
sample complexity and enrich in low-abundance proteins; 
iii) large-scale protein separation using liquid chromatography 
and/or gel electrophoretic techniques; iv) the determination 
of proteins with an altered concentration or post-translational 
modifications due to pathological changes or adaptations; 
v) the unequivocal identification of protein species of interest 
by sensitive mass spectrometry; vi) the systems bioinformatics 
analysis of proteome-wide changes in relation to protein fami-
lies and biological functions; and vii) independent verification 
analyses using immunoblotting, biochemical activity assays 
and/or microscopical techniques (2-4).

However, routine proteomic surveys are often complicated 
by a variety of biological and technical issues. This includes 
the considerable concentration range of protein species 
within complex tissue proteomes, as well as the significant 
differences in the physicochemical properties of individual 
proteins in relation to charge, size and modifications. This may 
lead to the underestimation of certain subtypes of proteins, 
such as low-abundance proteins, proteins with extensive 
post-translational modifications, hydrophobic proteins or 
high-molecular-mass proteins. In the case of one of the 
most frequently inherited diseases of early childhood, the 
neuromuscular disorder Duchenne muscular dystrophy (5-7), 
the comparative pathoproteomic analysis is complicated due 
to the dynamic nature of the skeletal muscle proteome (8,9). 
Despite the fact that primary abnormalities in the Dmd gene, 
which encodes various isoforms of the protein dystrophin, 
cause Duchenne muscular dystrophy (10), the majority of 
comparative proteomic investigations have failed to detect 
dystrophin (11-16) due to technical issues associated with 
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high-throughput proteomic analyses of supramolecular 
complexes from skeletal muscle tissues (17). Therefore, 
considerable enrichment methods have to be used to routinely 
identify the low-abundance and high-molecular-mass Dp427-M 
isoform of dystrophin by mass spectrometry (18-22). 

Although it is well established that the dystrophin isoform 
Dp427-M is almost completely absent in dystrophic skeletal 
muscles (23), a variety of biochemical studies on dystrophin 
and its associated glycoprotein complex have resulted in 
contradictory findings in relation to the precise subcellular 
localization of this membrane cytoskeletal protein (24-28) and 
the status of the various dystrophin-associated glycoproteins 
in dystrophin‑deficient fibres (29‑33). Thus, to address these 
opposing results and establish the distribution of dystrophin in 
distinct muscle surface membranes by a more sensitive tech-
nique, the present study employed an advanced subproteomic 
profiling approach. The presence of dystrophin and its associ-
ated proteins, i.e. dystroglycans, sarcoglycans, syntrophins and 
dystrobrevins, was studied in the sarcolemma and transverse 
tubules as compared to triad junctions. Optimized pre-frac-
tionation and affinity enrichment steps in combination with 
efficient on‑membrane digestion (34) and mass spectrometric 
analysis was utilized to unequivocally identify dystrophin in 
isolated membrane preparations. For the assessment of subcel-
lular cross-contaminations, the proteomic identification of 
established sarcolemmal proteins was compared to markers 
of the sarcoplasmic reticulum, transverse tubules and other 
organelles (35). The most important finding of this study is that 
the dystrophin-glycoprotein complex was shown to be enriched 
in the sarcolemma and this proteomic result agrees with cell 
biological and ultrastructural studies of dystrophin localiza-
tion (36-39).

Materials and methods

Materials. Analytical grade chemicals and materials for gel 
electrophoresis were obtained from Amersham Biosciences/
GE Healthcare (Little Chalfont, Buckinghamshire, UK), National 
Diagnostics (Atlanta, GA, USA) and BioRad Laboratories 
(Hemel-Hempstead, Hertfordshire, UK). Protease inhibitor 
cocktails were purchased from Roche Diagnostics (Mannheim, 
Germany). Nitrocellulose membranes were from Millipore 
(Bedford, MA, USA). The reversible membrane stain Memcode 
was purchased from Thermo Fisher Scientific (Waltham, MA, 
USA) and sequencing grade modified trypsin was obtained from 
Promega (Madison, WI, USA). Liquid chromatography‑mass 
spectrometry Chromasolv water was purchased from Fluka 
(Milwaukee, WI, USA). Biobasic C18 Picofrit columns were 
from Dionex (Sunnyvale, CA, USA) and C18 spin columns 
were obtained from Thermo Fisher Scientific (Dublin, Ireland). 
N-acetylglucosamine agarose, Ponceau S-Red staining solution, 
polyvinylpyrrolidone-40 and formic acid, as well as all other 
analytical grade chemicals used in this study, were purchased 
from Sigma Chemical Company (Dorset, UK).

Skeletal muscle preparations. Adult New Zealand white rabbit 
hind limb and back muscle tissue was obtained as freshly 
dissected post-mortem specimens from the Bioresource 
Facility of the National University of Ireland. Rabbits were 
kept under standard conditions according to Irish legislation on 

the use of animals in experimental research. Muscle samples 
were immediately quick-frozen in liquid nitrogen and stored at 
‑80˚C prior to usage. Frozen tissue specimens were transported 
to Maynooth University on dry ice in accordance with the 
Department of Agriculture (animal by-product register number 
2016/16 to the Department of Biology, National University 
of Ireland, Maynooth). For the isolation of distinct surface 
membrane fractions, combined muscle samples were trimmed 
of excess fat and then minced with fine scissors on ice prior 
to tissue homogenization and subcellular fractionation (40). 
All procedures were carried out in a cold room at 4˚C and 
buffers were supplemented with a protease inhibitor cocktail 
containing 1 µM leupeptin, 0.5 µM soybean trypsin inhibitor, 
0.2 mM pefabloc, 1.4 µM pepstatin-A, 0.15 µM aprotinin, 
0.3 µM E-64 and 1 mM EDTA (41).

Subcellular fractionation of muscle membranes. Skeletal 
muscle homogenisation was carried out by the disruption 
of tissue pieces in 7 volumes of 10% (w/v) sucrose, 20 mM 
Tris-maleate, pH 7.0 and 3 mM EGTA (27) for 3 times 30 secs 
with the help of an Ultra-Turrax T25 homogenizer from 
IKA Labortechnik (Staufen, Germany). Initial differential 
centrifugation for the isolation of a crude micrososmal fraction 
was carried out by a 15-min centrifugation step at 13,000 x g, 
followed by filtration of the supernatant through 3 layers of 
cheesecloth and then a second 90-min centrifugation step 
at 23,400 x g. Protein concentration was determined by the 
Bradford dye binding method using bovine serum albumin 
as a standard (42). To further fractionate the suspended total 
microsomal pellet (10 mg protein/ml), an optimized sucrose 
density gradient technique was employed (27). The main 
rationale of this approach was to efficiently separate a crude 
sarcolemma-enriched fraction from isolated transverse tubules 
and triad junctions, with a minimum cross-contamination 
by the highly abundant non-junctional terminal cisternae 
and longitudinal tubules of the sarcoplasmic reticulum and 
mitochondria (41,43-45). Microsomal vesicles were centrifuged 
at 150,000 x g for 6 h through a continuous 10-60% (w/v) sucrose 
gradient buffered with 25 mM Tris-maleate, pH 7.0 and 3 mM 
EGTA using a SW‑28 rotor from Beckman Coulter (Palo Alto, 
CA, USA). Distinct vesicle bands containing enriched fractions 
of the crude surface membranes, transverse tubules and triad 
junctions were carefully harvested and diluted 4-fold with 
above buffer (41). Membrane fractions were then centrifuged at 
100,000 x g for 35 min and their protein constituents separated 
by gradient gel electrophoresis. The broad band containing the 
non-junctional sarcoplasmic reticulum (46) and pellets with 
mitochondria and cellular debris were discarded.

Lectin affinity agglutination of sarcolemma vesicles. Distinct 
sarcolemma vesicles were further isolated from the crude 
surface membrane fraction by an optimized lectin affinity 
agglutination technique (47). Importantly, during the vesicle 
agglutination-deagglutionation-centrifugation procedure (27), 
the above-listed protease inhibitor cocktail was added to 
all buffer systems in order to prevent excess proteolysis of 
the many high-molecular-mass proteins that are present in 
the sarcolemma (18). Wheat germ agglutinin was extracted 
from crude wheat germ by the method of Vretblad (48) and 
purified to homogeneity by affinity chromatography using 
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N‑acetylglucosamine agarose. Purified wheat germ lectin was 
resuspended at a protein concentration of 1 mg/ml in 50 mM 
sodium phosphate, pH 7.4, 0.16 M NaCl. A 30 ml aliquote of 
the lectin solution was gently mixed with an equal volume 
of crude surface membrane vesicles (1 mg protein/ml) and 
incubated for 30 min on ice (27). The lectin agglutinated 
membrane suspension was centrifuged for 90 sec at 14,000 x g 
and the pelleted vesicles resuspended in 20 mM Tris-HC1, 
pH 7.4 and 0.303 M sucrose. The resuspension of agglutinated 
vesicles and re-centrifugation was repeated twice to remove the 
non-agglutinated membrane fraction, which contained mostly 
cellular debris and non-sarcolemmal membrane systems. 
Importantly, to eliminate any trapped material in the interior 
space of enriched sarcolemma vesicles, the fraction was mildly 
washed with non-ionic detergent by incubation for 10 min with 
0.1% (v/v) Triton X.100, 0.3 M sucrose, 20 mM Tris-CI, pH 7.4 
on ice (28). Detergent-treated vesicles were centrifuged for 
90 sec at 14,000 x g and resuspended in above buffer lacking 
the detergent Triton X-100. Subsequently deagglutination 
was carried out by incubation for 20 min in 18 ml of 0.2 M 
of the competitive sugar N-acetyl-D-glucosamine in 20 mM 
Tris-HCl, pH 7.4 and 0.303 M sucrose. The deagglutinated 
suspension was centrifuged at 14,000 x g for 90 sec. The pellet 
consisted mostly of sarcoplasmic reticulum and transverse 
tubule vesicles and was discarded. The supernatant fraction 
containing enriched sarcolemma vesicles was then centrifuged 
at 150,000 x g for 20 min to yield a pellet with non-agglutinated 
and highly purified sarcolemma vesicles (27). Sarcolemma 
protein constituents were further separated by gradient gel 

electrophoresis. An overview of this comprehensive subcellular 
fractionation strategy is provided in the flow chart of Fig. 1.

Gradient gel electrophoresis. A 3-12% gradient gel system 
with 1.5-mm-thick and 16-cm-long slab gels using a Protean 
IIxi Cell (BioRad Laboratories) was used to carry out sodium 
dodecyl sulfate polyacrylamide gel electrophoresis at a 
constant setting of 200 V. Protein separation was carried out 
until the blue dye front had disappeared from the bottom of 
the gel (41). An ice bath-cooled large Transblot Cell (BioRad 
Laboratories) was employed to perform the electrophoretic 
transfer of gel-bound protein bands to nitrocellulose sheets for 
90 min at 100 V. The reversible protein dyes Ponceau S Red or 
MemCode were used to visualize the transferred proteins (14), 
whereby destaining was carried out with 0.9% (w/v) NaCl and 
50 mM sodium phosphate, pH 7.4 (42). 

On‑membrane digestion of muscle proteins. In contrast to 
previously published procedures that have focused on the 
on-membrane digestion of individual protein bands (18,46), 
in the present study, nitrocellulose membrane strips 
corresponding to the entire lane of proteins from individual 
subcellular fractions, i.e. crude surface membranes, transverse 
tubules, triads and highly purified sarcolemma vesicles, were 
used for peptide generation (34). Membrane strips were placed 
in 15 ml Falcon tubes, de-stained with 0.9% (w/v) NaCl and 
50 mM sodium phosphate, pH 7.4 and then washed 5 times 
with distilled water. The strips were subsequently blocked with 
0.5% polyvinylpyrrolidone (PV‑40) for 40 min at 37˚C with 

Figure 1. Flowchart of the bioanalytical strategy to determine the distribution of dystrophin and its associated glycoprotein complex in surface membranes from 
skeletal muscle. 
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gentle agitation (49-51). To remove excess PVP-40, membrane 
strips were washed extensively with distilled water and placed 
in new 15 ml Falcon tubes. Reconstituted sequencing grade 
trypsin was added to the digestion buffer consisting of 100 mM 
ammonium bicarbonate/10% acetonitrile (1:1, v/v). Each 
nitrocellulose strip was incubated with 4 ml of this mixture, 
corresponding to a 1:20 ratio of trypsin to muscle protein. 
The strips were digested overnight at 37˚C with agitation. 
Following the generation of distinct peptide populations, 4 ml 
of extraction buffer (5% formic acid/acetonitrile [1:2, v/v]) 
was added and strips incubated at 37˚C for 15 min with 
agitation (52). The supernatant was subsequently transferred 
to 1.5 ml micro-centrifuge tubes and dried by vacuum 
centrifugation (18). Dried peptides were re-suspended in 
0.5% trifluoroacetic acid/5% acetonitrile and centrifuged in 
22‑µm acetate cellulose spin filter tubes for 20 min to remove 
any membrane particles (46). Peptides were then desalted 
using C18 spin columns (Thermo Fisher Scientific) and dried 
by vacuum centrifugation. Dried peptides were stored at ‑80˚C 
until further usage in mass spectrometric analysis.

Liquid‑chromatography mass spectrometric analysis. Prior to 
label-free liquid chromatography mass spectrometric (LC-MS/
MS) analysis, dried peptides were re-suspended in loading 
buffer consisting of 2% acetonitrile and 0.05% trifluoroacetic 
acid in LC-MS grade water. The LC-MS/MS analysis of 
peptides obtained from on-membrane digestion was carried out 
using an Ultimate 3000 NanoLC system (Dionex Corporation, 
Sunnyvale, CA, USA) coupled to a Q-Exactive mass spectrom-
eter (Thermo Fisher Scientific). Peptide mixtures were loaded 
by an auto-sampler onto a C18 trap column (C18 PepMap, 
300 µm id x 5 mm, 5 µm particle size, 100 A pore size; Thermo 
Fisher Scientific). The trap column was switched on‑line with an 
analytical Biobasic C18 Picofrit column (C18 PepMap, 75 µm 
id x 50 cm, 2 µm particle size, 100 A pore size; Dionex). Peptides 
were eluted using a 65-min method over the following gradient 
(Solvent A: 80% (v/v) acetonitrile and 0.1% (v/v) formic acid in 
LC-MS grade water): 3% Solvent A for 5 min, 10% Solvent A 
for 30 min, 40% Solvent A for 5 min, 90% Solvent A for 5 min 
and 3% Solvent A for 10 min. The column flow rate was set 
to 0.3 µl/min. Data were acquired with Xcalibur software 
(Thermo Fisher Scientific). The Q‑Exactive mass spectrom-
eter was operated in positive, data-dependent mode and was 
externally calibrated. Survey MS scans were conducted in the 
300-1,700 m/z range with a resolution of 140,000 (m/z 200) and 
a lock mass of 445.12003. Collision-induced dissociation (CID) 
fragmentation was carried out with the fifteen most intense 
ions per scan and at 17,500 resolution. A dynamic exclusion 
window was applied within 30 sec (53). An isolation window of 
2 m/z and one microscan were used to collect suitable tandem 
mass spectra.

Data analysis. Mass spectrometry raw files were processed 
using the Proteome Discoverer 1.4 (Thermo Fisher Scientific) 
software with Sequest HT as the search engine and the UniProt 
sequence database. The following search parameters were 
used for protein identification: i) peptide mass tolerance set 
to 10 ppm; ii) MS/MS mass tolerance set to 0.5 Da; iii) up to 
two missed cleavages; iv) carbamidomethylation set as a fixed 
modification; and v) methionine oxidation set as a variable 

modification (14). Since the rabbit genome is incomplete, 
mass spectrometry raw files were searched against both 
the Oryctolagus cuniculus database and the Mammalia 
database (54). Peptides were filtered using a minimum XCorr 
score of 1.5 for 1, 2.0 for 2, 2.25 for 3 and 2.5 for 4 charge states, 
with peptide probability set to high confidence. For inclusion 
into Tables I‑IV, identified proteins had to meet a minimum 
inclusion criteria of ≥2 peptides and a coverage ≥5%.

Results

Skeletal muscle membrane proteomics. The systematic 
enrichment of distinct muscle membrane fractions across 
an optimized separation scheme was used to perform a 
detailed subproteomic analysis of core members of the 
dystrophin-glycoprotein complex. The proteomic profile of 
the full-length dystrophin isoform, Dp427-M, was compared 
to the subcellular localization of established protein markers 
of the sarcolemma, transverse tubules and triad junctions. In 
addition, the presence of marker proteins representative of the 
highly abundant sarcoplasmic reticulum, as well as the contrac-
tile apparatus, mitochondria and other major types of muscle 
organelles was evaluated by mass spectrometric analysis. The 
present study was carried out on rabbit skeletal muscle, since 
relatively large amounts of tissue were needed as starting mate-
rial for the extensive subcellular fractionation and biochemical 
enrichment procedures prior to on-membrane digestion of 
proteins and mass spectrometry, particularly in relation to the 
sarcolemma-enriched fraction.

The affinity lectin agglutination technique requires a 
considerable amount of membrane material for a successful 
enrichment of sarcolemma vesicles (28,47). Since this proce-
dure was originally optimized using rabbit muscle tissue (27), 
we selected the same animal species for this comprehensive 
proteomic profiling of the dystrophin complex. Muscle biopsy 
samples from human patients would have been too small to 
produce a suitable tissue homogenate for extensive subcellular 
fractionation studies, as judged by our earlier experience with 
analysing patient specimens (30,55‑58). A major finding of our 
study is that dystrophin and its associated glycoprotein complex 
are highly enriched in the surface membrane and are apparently 
absent from the triad junctions. Thus, future proteomic studies 
comparing normal vs. dystrophic human muscles, where only 
restricted amounts of tissue are available, should ideally focus 
on the sarcolemma-enriched fraction.

Subproteomic profiling of skeletal muscle membranes. The 
diagram in Fig. 2 outlines the subproteomic profiling approach 
used in this study to assign the dystrophin-glycoprotein 
complex to specific subcellular localisations in skeletal muscle. 
Skeletal muscle microsomes were isolated by differential 
centrifugation and further separated into distinct fractions 
enriched in crude surface membranes, transverse tubules 
and triads by density gradient centrifugation (27). For the 
detailed evaluation of the muscle plasma membrane, an 
elaborate lectin affinity agglutination method was employed 
to isolate highly purified sarcolemma vesicles that exhibit a 
minimum contamination with components derived from the 
sarcoplasmic reticulum and other abundant organelles (28,47). 
An on-membrane digestion method was used for the optimum 
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generation of representative peptide populations from the 
different membrane fractions (18,34,46). The raw data files 
from the mass spectrometric analysis were searched against 
the Oryctolagus cuniculus database. However, the rabbit 
genome is incomplete and we therefore had to supplement the 
data analysis by also screening the Mammalia database, as 
previously described by Liu et al (54).

Following initial database searches, the identified proteins 
were filtered extensively. For inclusion in tables with significant 
proteomic hits, the identification of individual muscle protein 
species had to strictly meet the following inclusion criteria: 
i) number of peptides ≥2; ii) sequence coverage ≥5%; 
iii) identification by peptides that were filtered using a 
minimum XCorr score of 1.5 for 1, 2.0 for 2, 2.25 for 3 and 
2.5 for 4 charge states; and iv) peptide probability with high 
confidence. Detailed information on peptide lists for the crude 
surface membrane, transverse tubules, triads and sarcolemma 
can be viewed as supplementary material on the publicly 
available online digital repository named Figshare (https://
figshare.com) with the file name ‘Peptide Lists for crude surface 
membrane, transverse tubules, triads and sarcolemma’ (doi: 
10.6084/m9.figshare.4906436).

Mass spectrometric identification of subcellular markers in 
surface membrane preparations. Prior to the identification of 
the dystrophin-glycoprotein complex in distinct subcellular 
fractions from skeletal muscle, the subproteomic assessment of 
established ion-regulatory proteins and excitation-contraction 
coupling components of the crude surface membrane, sarco-
lemma and transverse tubules was carried out. Following 
mass spectrometry, the data analysis of sarcolemma identi-
fied 566 proteins when searched against the rabbit database 
of which 330 protein species had ≥2 unique peptides. A 
total of 784 proteins were established when searched against 
the amniota database with 316 proteins that exhibited ≥2 
unique peptides. The analysis of transverse tubules revealed 
675 proteins when searched against the rabbit database of 
which 374 proteins had ≥2 unique peptides. The searched of the 
amniota database revealed 907 proteins of which 377 proteins 
had ≥2 unique peptides.

Marker proteins of the muscle surface, such as the major 
α-subunit of the Na+/K+-ATPase, the sarcolemmal PMCA 
isoform of the Ca2+-pumping ATPase and β-integrin were 
all identified in crude membrane preparations and shown 
to be enriched in the sarcolemma, as well as the transverse 

Table I. Mass spectrometry‑based subproteomic profiling of sarcolemma marker proteins in surface membrane fractions from 
rabbit skeletal muscle.

Organellar   Surface membrane Sarcolemma peptides Transverse tubules Triads peptides
marker protein Gene no. peptides (coverage) (coverage) peptides (coverage) (coverage)

α-Na+/K+-ATPase ATP1A2 15 (19.0%) 30 (32.2%) 21 (26.7%) -
β-Na+/K+-ATPase ATP1B1 - 3 (11.9%)   5 (23.8%) -
PMCA Ca2+-ATPase ATP2B1 6 (8.3%) 14 (14.6%) 15 (16.7%) -
β-Integrin ITGB1 7 (11.9%) 7 (11.0%)   8 (13.8%) -

Figure 2. Overview of the subproteomic profiling of organellar marker proteins from skeletal muscle tissue. 
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tubules (Table I). Mass spectrometric analysis also established 
the minor β-subunit of the Na+/K+-ATPase being present in the 
sarcolemma membrane and its invaginations. In stark contrast, 
these surface membrane markers were shown to be absent from 
enriched triad preparations (Table I). Distinct subunits of the 
voltage-sensing protein complex of the transverse tubules, often 
referred to as the dihydropyridine receptor, were used as marker 
proteins of surface membrane invaginations. The α2/δ1- and 
β1-subunits of the voltage-dependent Ca2+-channel were shown 
to be present in crude surface preparations, sarcolemma vesicles 
and triad junctions, but mass spectrometry showed their highest 
coverage in purified transverse tubules (Table II). Of note, the 
major α1S-subunit of the dihydropyridine receptor was only 
identified in the transverse tubular fraction (by 27 peptides 
and a 14.8% sequence). The stringent criteria of a minimum 
of 5% sequence coverage used in the present study excluded 
the listing of the principal ion channel subunit in relation to 
other membrane types. The α1S-subunit was only covered 
by 3.8% (5 peptides), 4.7% (7 peptides) and 3.2% (5 peptides) 
sequence in crude surface membranes, purified sarcolemma 
vesicles and triad junctions, respectively.

These subproteomic findings indicate a reasonable 
separation of different surface membrane fractions by the 
subcellular fractionation protocol employed in this investiga-
tion. Importantly, various cytoskeletal markers were shown to 
be present in the sarcolemmal fraction, including ankyrin-1 
(ANK1, 3 peptides, 3.6% coverage), β-tubulin (TUBB, 
14 peptides, 28.4% coverage), desmin (DES, 26 peptides, 
52.0% coverage) and vimentin (VIME, 11 peptides, 
29.0% coverage). Therefore, the linkage of the subsarcolemmal 
membrane cytoskeleton to the general cytoskeletal network 
appears to have been preserved during membrane fractio 
nation. This is a crucial finding in relation to the subsequent 

mass spectrometric analysis of the membrane cytoskeletal 
protein dystrophin.

Mass spectrometric identification of abundant organelles in 
purified sarcolemma. Since the sarcoplasmic reticulum is by 
far the most abundant membrane system in skeletal muscle, the 
presence of key marker proteins of junctional triad sites, longi-
tudinal tubules and the lumen of the sarcoplasmic reticulum 
was evaluated. As listed in Table III, a considerable amount 
of sarcoplasmic reticulum proteins is associated with purified 
sarcolemma vesicles. This included the RyR1 isoform of the 
junctional ryanodine receptor Ca2+-release channel, the CSQ1 
isoform of the luminal Ca2+-binding protein calsequestrin, 
the SRL-2 isoform of the Ca2+-shuttle protein sarcalumenin 
and the fast SERCA1 type of the Ca2+-pumping ATPase of 
the longitudinal tubules and terminal cisternae region. Hence, 
despite extensive subcellular fractionation by differential 
centrifugation and density gradient ultracentrifugation, as well 
as lectin affinity agglutination and mild detergent washing, a 
certain degree of cross-contamination of sarcolemma prepa-
rations by the abundant sarcoplasmic reticulum could not be 
avoided. Besides sarcoplasmic reticulum proteins, markers of 
other organelles or subcellular structures could also be identi-
fied as being present in purified sarcolemma vesicles.

This included cross-contamination with the contractile 
apparatus markers myosin heavy chain MyHC-IIb (MYH2B, 
23 peptides, 13.4% coverage), myosin light chain MLC2 
(MYLPF, 8 peptides, 55.3% coverage), tropomyosin α1-TM 
(TPM1, 14 peptides, 33.2% coverage) and α-actin (ACTA1, 
20 peptides, 55.2% coverage), the mitochondrial markers 
succinate dehydrogenase (SDHA, 6 peptides, 14.2% coverage), 
aconitate hydratase (ACO2, 8 peptides, 13.0% coverage) 
and cytochrome c oxidase subunit 2 (COX2, 4 peptides, 

Table III. Mass spectrometry‑based subproteomic profiling of sarcoplasmic reticulum marker proteins in surface membrane 
fractions from rabbit skeletal muscle.

  Surface Sarcolemma Transverse 
  membrane peptides peptides tubules peptides Triads peptides
Organellar marker protein Gene no. (coverage) (coverage) (coverage) (coverage)

Ryanodine receptor Ca2+-release channel RyR1 31 (8.9%) 29 (6.9%) 65 (18.3%) 40 (10.9%)
Fast SERCA1 Ca2+-ATPase ATP2A1 39 (35.8%) 53 (38.4%) 55 (48.3%) 38 (36.7%)
Calsequestrin-1 CASQ1 6 (26.3%) 7 (18.5%) 5 (17.7%)   5 (21.5%)
Sarcalumenin-2 SRL-2 5 (16.7%) 9 (15.3%) 22 (37.2%)   4 (12.5%)

Table II. Mass spectrometry‑based subproteomic profiling of transverse tubules marker proteins in surface membrane fractions 
from rabbit skeletal muscle.

  Surface Sarcolemma Transverse 
  membrane peptides peptides tubules peptides Triads peptides
Organellar marker protein Gene no. (coverage) (coverage) (coverage) (coverage)

α2/δ1-voltage-dependent Ca2+-channel CACNA2D1 18 (23.9%) 19 (21.2%) 33 (36.2%) 10 (14.6%)
α1S-voltage-dependent Ca2+-channel CACNA1S - - 27 (14.8%) -
β1-voltage-dependent Ca2+-channel CACNB1 3 (7.3%) 12 (31.3%) 20 (55.0%)   8 (16.2%)
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14.5% coverage), the ribosomal marker elongation factor 1-α2 
(EEF1A2, 4 peptides, 11.2% coverage), the lysosomal marker 
lysosome-associated membrane glycoprotein 1 (LAMP1, 
2 peptides, 5.9% coverage), the cytosolic marker enzymes 
aldolase (ALDOA, 16 peptides, 42.9% coverage) and glyce 
raldehyde-3-phosphate dehydrogenase (GAPDH, 6 peptides, 
21.0% coverage), the nucleus marker lamin-A (LMNA, 
3 peptides, 6.2% coverage), the glia cell marker myelin basic 
protein (MBP, 7 peptides, 24.2% coverage) and the serum 
markers β-haemoglobin (HBB2, 2 peptides, 15.7% coverage) 
and albumin (ALB, 9 peptides, 12.2% coverage). Thus, lectin 
affinity agglutinated surface membranes are highly enriched 
in sarcolemma vesicles, but also contain a considerable amount 
of cross-contaminating protein populations derived from the 
contractile apparatus, mitochondria, ribosomes, lysosomes, 
cytosol, nucleus, glia cells and serum.

Subproteomic localization of dystrophin and its associated 
glycoprotein complex. Following the mass spectrometric 
characterization of marker proteins in the subcellular frac-
tions enriched in the sarcolemma, transverse tubules and triad 
junctions, the proteomic identification of dystrophin isoform 
Dp427-M and the core members of the dystrophin-associated 
glycoprotein complex was carried out. Table IV lists the findings 
from the comprehensive LC‑MS/MS analysis of the purified 
sarcolemma fraction vs. other membrane preparations. Major 
components of the dystrophin-glycoprotein complex, with the 
exception of dystroglycans and sarcospan, were identified in 
crude surface membranes. The lack of dystroglycan and sarco-
span recognition is probably due to high glycosylation levels 
and extreme hydrophobicity of these dystrophin-associated 
proteins, respectively, which often complicates their routine 
proteomic identification. However, the characterization of sarco-
lemma preparations clearly showed a high level of coverage of 
the core dystrophin complex, including dystrophin, dystrogly-
cans, sarcoglycans, syntrophins and dystrobrevins (Table IV). 
Representative mass spectra of 2 peptides derived from the 
digested dystrophin molecule in the sarcolemma-enriched 
fraction are shown in Fig. 3. Detailed information on MS/MS 
data of dystrophin, sarcoglycan, dystrobrevin and syntrophin 

can be viewed as supplementary material on the publicly avail-
able online digital repository named Figshare (https://figshare.
com) with file name ‘Mass spectra of alpha dystrobrevin, beta 
syntrophin, alpha sarcoglycan and dystrophin’ (doi: 10.6084/
m9.figshare.4906448).

In contrast to the high levels of the membrane cytoskeletal 
protein Dp427-M and the α/β-dystroglycan subcomplex 
in sarcolemma, a lower coverage was found in transverse 
tubules and no presence in triads. In addition, α-, β-, γ- and 
δ-sarcoglycans were shown to be enriched in sarcolemma 
vesicles and absent from triad junctions. A minor component of 
the sarcoglycan complex, ε-sarcoglycan (SGCE), is not listed, 
since it was identified by only 1 peptide (5.8% coverage) in the 
sarcolemma. Cytosolic binding partners of dystrophin, α1/β1/
β2-syntrophins and α/β-dystrobrevins, were also shown to be 
present at high coverage in sarcolemma vesicles (Table IV). In 
contrast, lower levels were detected in transverse tubules and 
none were identified in the enriched triad fraction.

Discussion

Subcellular fractionation in combination with mass spectro 
metry is a powerful biochemical tool to catalogue organ-
ellar proteomes and compare the composition of distinct 
subproteomes (59-61). The partial separation of organelles 
and affinity purification of distinct membrane vesicles across 
an optimized fractionation scheme, coupled with sensitive 
protein identification techniques, can also be extremely 
helpful for the prediction of protein subcellular localisa-
tion (62). Here, we used such an approach with a combination 
of subcellular fractionation, gradient gel electrophoresis, 
on-membrane digestion and mass spectrometry to assign 
the dystrophin isoform, Dp427-M, and its tightly associated 
glycoprotein complex to specific subcellular localisations in 
skeletal muscles.

The protein constituents of distinct subcellular fractions 
from skeletal muscle have previously been identified by a 
variety of comprehensive subproteomic studies (35). This has 
included systematic proteomic cataloguing approaches or the 
more focused mass spectrometric characterization of subsets of 

Table IV. Subcellular localization of dystrophin isoform Dp427-M and its tightly associated glycoprotein-complex in rabbit 
skeletal muscle using liquid chromatography/mass spectrometry-based proteomics.

Member of the dystrophin-  Surface membrane Enriched sarcolemma Transverse tubules Triad junction
glycoprotein complex Gene no. peptides (coverage) peptides (coverage) peptides (coverage) peptides (coverage)

Dystrophin, Dp427-M DMD 9 (10.6%) 17 (16.4%) 8 (9.0%) -
α/β-Dystroglycan DAG1 - 7 (6.4%) 3 (5.3%) -
α-Sarcoglycan SGCA 6 (24.0%) 9 (23.0%) 4 (13.4%) -
β-Sarcoglycan SGCB 3 (18.9%) 8 (35.9%) 2 (14.9%) -
γ-Sarcoglycan SGCG 3 (16.5%) 6 (27.5%) 4 (17.2%) -
δ-Sarcoglycan SGCD 3 (16.5%) 10 (35.3%) 4 (22.8%) -
α1-Syntrophin SNTA1 4 (13.5%) 8 (24.2%) 4 (13.5%) -
β1-Syntrophin SNTB1 9 (26.1%) 20 (42.8%) 7 (16.9%) -
β2-Syntrophin SNTB2 - 8 (17.7%) - -
α-Dystrobrevin DTNA 4 (9.8%) 10 (20.8%) 3 (12.2%) -
β-Dystrobrevin DTNB - 5 (6.2%) - -
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proteins in mitochondria (63-65), contact zones between mito-
chondria and the sarcoplasmic reticulum (66), the unconjugated 
sarcoplasmic reticulum (46,67), nuclei (68), plasmalemma (18), 
cytosol (69-71) and the contractile apparatus (72,73). Building 
on these protein databases, it is possible to evaluate the findings 
from new proteomic screening surveys of subcellular fractions.

The purified sarcolemma vesicles studied in this report by 
mass spectrometry showed a high content of surface membrane 
markers such as the α-subunit of the Na+/K+-ATPase and the 
sarcolemmal PMCA isoform of the Ca2+-ATPase, which suggests 
a considerable enrichment of plasma membrane structures by 
lectin affinity agglutination (27). This in turn demonstrates that 
dystrophin and its associated glycoproteins are highly enriched 
in the sarcolemma of skeletal muscle fibres (36‑39,74) and not 

as initially assumed in the triad junctions (24,25). However, 
almost all subcellular fractionation studies are complicated 
by a certain degree of cross-contamination by abundant 
membrane systems. This is probably due to complex alterations 
that occur during tissue homogenization and subcellular 
fractionation steps, including i) protein desorption/adsorption 
processes; ii) the entrapment of proteins and smaller vesicles in 
larger membrane vesicles; and iii) the formation of mixtures of 
membrane sheets, inside-out vesicles and right-side-out vesicles. 
In skeletal muscles, especially the sarcoplasmic reticulum with 
its high density of Ca2+-regulatory proteins (75), as recently 
confirmed by subproteomic profiling studies (46,67), is often 
present in purified vesicle preparations of other organelles. 
This was also shown to be the case in this study. However, 

Figure 4. Diagrammatic presentation of the findings from the subproteomic profiling of the dystrophin‑glycoprotein complex from skeletal muscle.

Figure 3. Proteomic identification of the membrane cytoskeletal protein dystrophin in the sarcolemma‑enriched fraction from skeletal muscle. Shown are 
representative mass spectra of 2 peptides derived from the digested dystrophin molecule.
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despite the fact that the purified sarcolemma fraction contains 
a certain degree of other abundant membrane systems, the 
dystrophin-glycoprotein was clearly shown to be enriched in 
the sarcolemma membrane.

The key findings from the mass spectrometry-based 
subproteomic survey presented in this report are summarized 
in Fig. 4, showing diagrammatically the subcellular localiza-
tion of most of the components of the dystrophin-glycoprotein 
complex in the sarcolemma. This is based on the high sequence 
coverage of dystrophin isoform Dp427-M, α/β-dystroglycan, 
α-sarcoglycan, β-sarcoglycan, γ-sarcoglycan, δ-sarcoglycan, 
α1-syntrophin, β1-syntrophin, β2-syntrophin, α-dystrobrevin 
and β-dystrobrevin, as determined by mass spectrometric 
analysis. Thus, with the exception of the minor and highly 
hydrophobic dystrophin-associated protein named sarco-
span, all other core elements of the dystrophin complex were 
unequivocally identified by subproteomic means. This included 
the integral glycoprotein β-dystroglycan as the direct cytoskel-
etal linker of dystrophin to the plasmalemma, in conjunction 
with the extracellular laminin-binding protein α-dystroglycan. 
The main subunits of the integral sarcoglycan subcomplex, 
consisting of α-, β-, γ- and δ-subunits, were also shown to 
be enriched in the sarcolemma. Furthermore the cytosolic 
binding partners of full-length muscle dystrophin, i.e. α1/β1/
β2-syntrophins and α/β‑dystrobrevins, were clearly identified 
in the subfractionated plasmalemma.

In conclusion, the dystrophin-glycoprotein complex was 
unequivocally shown to be highly enriched in the sarcolemma 
fraction and appears to exist at a lower density in the trans-
verse tubular part of the surface membrane. In agreement with 
extensive cell biological and ultrastructural studies (36-39), 
dystrophin and its associated glycoprotein complex seem to be 
absent from triads. Thus, the sensitive subproteomic analysis 
presented in this study could clearly establish a restricted 
subcellular localization of dystrophin, which may be of 
considerable biomedical importance for future comparative 
investigations into the molecular pathogenesis of X-linked 
muscular dystrophy. Forthcoming studies with human biopsy 
samples can now build on these subproteomic findings and 
attempt to isolate sarcolemma-enriched fractions from dystro-
phic vs. normal human muscles. Using highly sensitive mass 
spectrometry, the comparative proteomic profiling of skeletal 
muscle specimens from Duchenne patients may identify new 
dystrophin-associated protein species and protein-protein 
interaction patterns within the surface membrane and its asso-
ciated sub-sarcolemmal cytoskeleton. The biochemical and cell 
biological characterization of the dystrophin complex and its 
wider network of binding proteins in human muscles should 
establish new biomarker candidates for improving diagnostic, 
prognostic and therapy-monitoring approaches in X-linked 
muscular dystrophy.
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