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The diffusion of technology artifacts is often marked by abrupt events and incremental evolutionary moves,
resulting in shifts in diffusion parameters as well as the underlying mechanics. In this paper, we model the diffu-
sion of Android and iOS based handsets, where newmodels and operating system versions are released period-
ically. We relax a common assumption in IT diffusion studies, of holding diffusion parameters constant, and find
that there are clear breaks in their values at specific points in time. Using the system dynamics methodology, we
then develop and calibrate a causalmodel of the underlyingmechanics. Significant events during evolution of the
two platforms arematched temporally with the observed breaks, and the changingmechanics of diffusion across
the breakpoints are identified using this causal structure. We find that iOS and Android handset diffusion pat-
terns, although superficially similar, were driven by differentmechanics. Our study contributes to the IT diffusion
literature by (i) establishing the need to test for, andmodel, shifts in diffusion parameters over the horizon of in-
terest (ii) offering a method to identify changes in diffusion mechanisms accompanying these shifts and (iii)
demonstrating that similar temporal diffusion patterns need not imply similar underlying mechanics.
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1. Introduction

The diffusion of technology artifacts has been studied in the litera-
ture for a long time and from a variety of perspectives. One major per-
spective models the temporal pattern of diffusion, with the aim of
explaining the observed shape and/or forecasting how the pattern will
evolve in the future. The Bass diffusion model (Bass, 1969) is perhaps
the best known early work of this genre. Such models typically have
one or more parameters which are calibrated using temporal data
about the diffusion pattern. A common practice during calibration has
been to assume that the model parameters remain unchanged over
the time horizon of analysis (Gujarati, 2004). However, for IT artifacts
specifically, diffusion is marked by incremental as well as significant
abrupt events.

For instance, wireless routers have experienced incremental im-
provements in transmitted power and antenna design, aswell as abrupt
events such as introduction of the 802.11n standard. Flat panel displays
have incrementally increased in size and have also experienced abrupt
changes such as the introduction of liquid crystal technology over plas-
ma. Similar mixes of incremental and abrupt changes have been
witnessed in hard disk (magnetic to solid state) and optical drives (re-
cording formats). We also see that, while these events frequently affect
diffusion in a positive manner, it is not always the case. For example,
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shortly after Apple introduced iPhone 6 with iOS 8, it introduced an up-
date in the form of iOS 8.0.1. Many users complained about loss of net-
work connectivity and malfunctioning of the Touch ID fingerprint
sensor. This event did not help iOS 8 diffusion.

The specific IT diffusion context in our study is the diffusion of An-
droid and iOS based mobile handsets. We briefly review relevant char-
acteristics of their diffusion patterns which, together with the general
observations above, motive our research question that is presented im-
mediately following this discussion. Mobile operating systems (mOS)
offer a platform on which handsets can provide rich functionality to
end users, beyond telephony, through a variety of applications (Apps).
Worldwide, the installed base of smartphone handsets grew from 237
million in 2008 to 2562 million in 2016 (Statista, 2016). Table 1 shows
the share of mOS as a percentage of handheld units shipped1. Android
and iOS account for a lion's share of this market. Clearly, the growth of
these two platforms represents a major IT diffusion phenomenon.

Figs. 1 and 2 show annual sales and change in sales of Android and
iOS smartphones from inception until 2014 (Gartner, 2017). Note that
the sales curves for both platforms exhibit changing patterns like de-
cline, stagnation and growth. Moreover, during the timespan covered
by Figs. 1 and 2, both platforms experienced incremental and abrupt
events. Examples of the former include improvements in battery life
and ergonomics. The latter include new handset model and mOS ver-
sion introduction and developer policy changes instituted by Apple.
1 Data available from International Data Corporation at http://www.idc.com/prodserv/
smartphone-os-market-share.jsp, accessed 18th January, 2016.
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Table 1
Market share of mOS worldwide.

Period Android iOS Windows Phone BlackBerry Others

Q1 2016 84.1% 14.8% 0.7% 0.2% 0.2%
Q1 2015 78.0% 17.5% 2.5% 0.4% 0.5%
Q1 2014 81.2% 15.2% 2.5% 0.5% 0.7%
Q1 2013 75.5% 16.9% 3.2% 2.9% 1.5%
Q1 2012 59.2% 22.9% 2.0% 6.3% 9.5%

Fig. 2. Sales of iOS handsets.
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The presence of multiple archetypes – decline, stagnation, growth –
in the diffusion pattern of IT artifacts as seen above, and the accompany-
ing incremental and abrupt events, lead us to surmise that the underly-
ingmechanisms and parameters driving the diffusion change over time.
This leads to the following research question: how can wemodel IT dif-
fusion patterns in a way that reveals changes in underlying causal
mechanisms and which accommodates changes in model parameters
over time caused by incremental and abrupt events that frequently ac-
company these phenomena. As we will find in the literature review,
the common practice in modeling technology diffusion is to assume
that the driving mechanics and process parameters remain constant.
This ignores the reality that IT artifacts undergo both gradual and abrupt
changes during their diffusion. Hence our research question frames the
IT diffusion phenomenon in a more realistic manner and our findings
should therefore be of theoretical interest. Moreover, our interest in re-
vealing the changingmechanisms driving the phenomenon is of practi-
cal interest in managing the diffusion process because we get a better
understanding of the relationships between specific temporal events
and their effects on the diffusion patterns, and helps produce actionable
information for handset manufacturers and mOS firms.

The paper is organized as follows. In the next section we survey rel-
evant literature on IT diffusionmodels focusing onmodeling techniques
and assumptions. A summary of the evolution of iOS and Android fol-
lows, highlighting several abrupt events which illustrate the contextual
characteristics thatmotivated thismodelling effort. Then, using time se-
ries data, we check for the presence of ‘breaks’ in the diffusion pattern.
The existence of breaks suggests changes in the underlying diffusion
mechanism. In the subsequent section, a causal model of iOS and An-
droid growth is developed using the system dynamics methodology,
and then calibrated to accommodate the pattern shifts identified earlier.
This model is then analysed to identify the dominant mechanisms that
drive the diffusion patterns and how they change over time as the pat-
terns shift. We conclude with a discussion of the contributions of this
Fig. 1. Sales of Android handsets.
study to the IT diffusion literature, applications to other technology dif-
fusion settings, and limitations.

2. Literature review

Given the broad literature surrounding technology diffusion, it is
necessary to focus on the segment that is directly relevant to our inves-
tigation. As noted earlier, our specific interest is in modelling shifts in
the temporal pattern of diffusion and uncovering the changingmecha-
nisms that result in the observed pattern shifts. Thus we will review
the diffusion literature through this filter and exclude other established
themes, such as organizational and individual enablers of andbarriers to
diffusion (Gupta and Jain, 2014) and impact of public policy and regula-
tion (Cho and Choi, 2015).

One pervasive presence in diffusion modeling has been the Rogers
diffusion of innovations model (Rogers, 1962) whose underlyingmech-
anism is that of contagion, where actual adopters influence potential
adopters. Different parameters, such as propensity to innovate or
imitate, modulate the diffusion. Numerous studies have used this classi-
cal model to understand large scale technology diffusion (Baskerville
and Pries-Heje, 1998; Fichman, 1992, 2004), although a weakness in
capturing shifts in diffusion patterns has also been noted (Kauffman
and Techatassanasoontorn, 2009). Information technologies which
have been examined using this model include multimedia message
service (Hsu et al., 2007); mobile phone adoption (Kauffman and
Techatassanasoontorn, 2012; Watanabe et al., 2009); BITNET adoption
in academe (Levin et al., 2012); open source software such as Apache
web servers (Lakka and Michalakelis, 2012); and mobile social net-
working (Scaglione et al., 2015). Variants of the contagion mechanism
have also appeared, such as punctuated equilibrium (Loch and
Huberman, 1999), social networks (Susarla et al., 2012) and proportion-
al hazards (Greenan, 2015).

Bitnet growth was modeled in Gurbaxani (1990) using the Logistic
and Gompertz functions, both of which are consistent with a contagion
mechanism. The Gompertz model was found to be a good fit for diffu-
sion of mobile telephony in a developing country context (Gupta and
Jain, 2014). Internet growth was earlier modeled in Rai et al. (1998)
using the same two functions and the exponential function. Interesting-
ly, although the exponential function is not based on a contagionmech-
anism, it produced the best fit among the three models. One reason
offered by the authors for the poorer fit of the Logistic and Gompertz
models was the assumption that contagion parameters remain un-
changed over theperiod of analysis. Some recent studies have examined
this scenario of changing diffusion parameters.Meade and Islam (2006)
review diffusion studies which attempt to capture the time varying
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nature of the model parameters, also termed adaptive estimation.
Change in marketing mix variables, introduction of successive genera-
tions of a technology and diffusion of the same technology in multiple
countries were some of the contexts that were examined (Lakka et al.,
2013). For example, Watanabe et al. (2009) modelled growth of mobile
phones in Japan as waves of diffusion using a Bi-Logistic model where
model parameters change from one wave to the next.

The preceding review confirms the extensive attention devoted to IT
diffusion, and also reveals some of the gaps in the literature that we aim
to address in our work. The first shortcoming evident in the literature is
the widespread assumption of constant model parameters. This is sus-
pect particularly in technology diffusion scenarios for a variety of rea-
sons. Technology capabilities change over time, sometimes rapidly.
The switch from analog to digital signal transmission, the introduction
of CDMA or GSM standards for mobile telephones, are examples of
such abrupt technology advances that affected diffusion. Second, Con-
sumer or user perceptions of the value proposition evolve over time, es-
pecially when additional offerings become available through the
technology (Ceccagnoli et al., 2012), such as in the case of e-commerce
on the Internet or mobile value added services in the case of
smartphones (Koch and Kerschbaum, 2014). Third, regulations evolve
and affect the interaction between technology and individuals, such as
limits on the number of competing mobile carriers (Casey and Töyli,
2012; Kauffman and Techatassanasoontorn, 2009). In short, the drivers
of the contagion process in technology settings may cause diffusion pa-
rameters to change over even relatively short periods of time. So the
first contribution by our study to the literature is that it quantitatively
identifies breakpoints in the diffusion pattern and allowsmodel param-
eters to change across them.

The second shortcoming that emerges from the preceding review is
that these models strive to fit the observed diffusion pattern well, but
essentially view the diffusion process itself as a black box. There is min-
imal focus on themechanics of diffusion.While thismaymeet the needs
of some applications such as forecasting, it is inadequate for other appli-
cations where one is seeking to deliberately intervene and manage the
diffusion process by design. For example, policy makers may be inter-
ested in understanding the potential impact of changes in password
policies on diffusion behavior (Baskerville and Pries-Heje, 1998). Unless
one understands the cause effect relationships between drivers and the
observed behavior, meaningful intervention in the diffusion process is
not possible. This, our second contribution to the literature, is by devel-
oping a causal model of the diffusion pattern, using the system dynam-
ics methodology, which opens the black box and reveals underlying
mechanisms and how they change over time. This allows our model to
address another shortcoming in the current models which is their in-
ability to represent periods of slowdown, or outright decrease, in the
diffusion pattern (Gary et al., 2008; Paich and Sterman, 1993).

System dynamics (SD) (Richardson, 1996) offers an alternate ap-
proach tomodel technology diffusion andhas complementary strengths
to models discussed above (Casey and Töyli, 2012; Choi et al., 2010;
Daim et al., 2006; Dutta and Roy, 2005). By representing cause-effect re-
lationships among the underlying variables in the phenomenon, one
can offer a causal explanation for the observed growth pattern using
the reinforcing and balancing feedback loops present in the structure,
understand the impact of different policy scenarios and identify handles
which can be used to alter the course of the phenomenon. In summary,
our study addresses two gaps evident from the preceding review. One is
the need to recognize that incremental and abrupt events accompany
diffusion of IT artifacts and the diffusion parameters can shift as a result.
Second, while it may be acceptable to view the diffusion process as a
black box for some applications, there are interventional settings in
which it would be useful to know the changing mechanics of diffusion
in order to assess the potential consequences of interventions. In the re-
mainder of the paper, we develop a diffusion model to address these
shortcomings using the specific context of iOS and Android based
handsets.
3. Evolution of Android and iOS

As noted earlier, mobile operating systems (mOS) provide a plat-
form for handsets to offer enhanced functionality through various
Apps developed by third parties. Together, Android and iOS account
for a lion's share of this market. We briefly discuss the evolution of An-
droid and iOS to paint a picture of the context within which their diffu-
sion has occurred.

3.1. The Android story

Android is a Linux-based operating system for mobile telephones
and tablets, that has been developed by the Open Handset Alliance in
partnership with Google and other companies (Burgelman et al.,
2009). The source code is available under free and open source licenses.
To use the Android trademark, device manufacturers must ensure that
the device complies with the Compatibility Definition Document
(CDD) and get permission from Google. They then have complete free-
dom to use and customize without having to pay a royalty to Google.

Several versions of Android have been released since the original
Alpha - Beta (1.1), Cupcake (1.5), Donut (1.6), Eclair (2.0–2.1), Froyo
(2.2–2.2.3), Gingerbread (2.3–2.3.7), Honeycomb (3.0–3.2.6), Ice
Cream Sandwich (4.0–4.0.4), Jelly Bean (4.1–4.3.1), KitKat (4.4–4.4.4,
4.4W–4.4W.2) and Lollipop (5.0–5.1). The inter-version release time
has been approximately 147 days. Some of the important events are
shown in Fig. 3.

While Android diffusion has been rapid, user experience has not
been uniformly good. Fig. 4 shows a plot of normalized count of
searches for the key words ‘Android Issues’ and ‘Android Problems’
alongside introductions of different versions of Android. The pattern
points to growing usability issues until about December 2011.

The price/performance profile of Android handsets has improved
over time. The first device, launched on 22nd October 2008, ran on a
528 MHz processor, offered 300 min of talk time, weighed 5.6 oz., had
a 3.2 in. screen, and a 3.2megapixel camera. The pricewas $399. During
2008 to 2011 the number of manufacturers increased from one to elev-
en (German, 2011), ninety-five models were launched, the minimum
price dropped from $330 to about $30. However, the user satisfaction
level fell from 3.50 (on a scale of 1–5where 5 indicates highest satisfac-
tion level) to 2. Table 2 summarizes these changes.

Google Playstore was built for distributing third party Apps for An-
droid. For App developers, the Android market offers several attractive
features. The source code was open source, the Software Development
Kit (SDK) needed to connect their Apps with Android was distributed
free, and Apps did not have to undergo a review and acceptance process
before being hosted on Playstore. Google exercised little control over
the Apps developed and hosted on the Android Market. However, the
experience of Android App developers has not been uniformly positive.
Given the large number ofmanufacturers and phonemodels having dif-
ferent input mechanisms, processor types and screen sizes, developers
had to test their software for this multitude of hardware configurations.
Coexistence of different versions of the Android operating system com-
plicated the situation further.

3.2. The iOS story

Apple's iOS, the operating system for Apple smartphones and tablets
was unveiled on January 9th 2007 as the iPhone operating system and
was not referred to as iOS until its fourth major release in April 2010.
Like Android, iOS also runs on a Unix core. Its installed base is much
smaller than that of Android. The iOS platform, like the OSX operating
systemof Apple, is very vertically integrated and has been limited to de-
vices made by Apple. When iOS was introduced, it was well behind
WindowsMobile, PalmOS, Symbian, and even BlackBerry in a strict fea-
ture-to-feature comparison. Yet the first device using iOS, Apple's
iPhone, experienced strong sales.



Fig. 3.Major events during evolution of Android.
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While the rest of the mobile handset market competed on technical
specifications and features, iOS focused on the core user experience, on
speed, consistency between apps, and onmaking a few features (such as
browser, maps, itunes ecosystem, keyboard, touch interface) signifi-
cantly better than anything available at that time (Bohn et al., 2013).
Some of the major events accompanying iOS evolution are presented
in Fig. 5.

Table 3 shows changes in characteristics of iOS handsets. Note that
the user rating does not fall below 3, indicating high user satisfaction
(JDPower, 2013). Fig. 6 shows the pattern of Web searches based on
the keywords ‘iOS issues’ and ‘iOS problems’. The frequency of inquiries
about iOS spiked just before the release of new versions, but also drops
sharply in a month or two thereafter. This is in contrast to Fig. 4 where
one also sees spikes in web searches around the time of the release of
Fig. 4.Web Search interest in Android Issues a
new Android versions, but the search level does not die down, indicat-
ing continuing issues and problems. One milestone in iOS' evolution
was the introduction of the App-store for iOS developers. It opened in
July 2008 with 552 Apps and, as of September 9, 2014, it hosted
1,300,000 Appswhich together experienced 75,000,000,000 downloads
and average 62,500 downloads per app. Apple earns 30% of revenue
generated from app sales.

In summary,we can see that the growth of Android and iOS handsets
has occurred through complex interaction among consumers,
mOS builders (Apple and Google), handset manufacturers, and app de-
velopers. Understanding mOS based handset diffusion therefore re-
quires models that take this interaction into account and
accommodates the impact of abrupt events that accompany their
evolution.
4. Modelling mOS handset diffusion

We use a two-phase approach, where the first phase consists of identifying the presence and timing of structural breaks in the diffusion pattern.
The second phase consists of developing a causal model that represents the mechanics of diffusion and uses the structural break information from
phase one for estimating parameters and identifying changes in causal mechanisms.
nd Problems (Data from Google Trends).



Table 2
Changes in Android handset model characteristics.

Month-year Number of models Min user rating Min MSRP Max talk time minute Min weight Max screen size (inch)

Oct-08 1 3.50 330 300.00 5.60 3.2
Oct-09 6 2.50 179 385.00 5.70 3.7
Mar-10 12 2.00 100 350.00 4.70 3.1
Nov-10 54 1.00 30 540.00 3.60 3.8
Jul-11 95 2.00 129 624.00 3.88 4.3

Fig. 5.Major policy changes during evolution of iOS.

Table 3
Changes in iOS handset model characteristics.

Month-year Handset model User rating Talk time (hours) Weight (grams) Diagonal screen size (inch)

Jun-07 iPhone 3.50 8 135 3.5
Jul-08 iPhone 3G 3.00 5 133 3.5
Jun-09 iPhone 3GS 3.50 5 135 3.5
Jun-10 iPhone 4 3.50 7 137 3.5
Oct-11 iPhone 4S 4.00 8 140 3.5
Sep-12 iPhone 5 4.00 8 112 4.0
Sep-13 iPhone 5C 2.50 10 132 4.0
Sep-13 iPhone 5S 3.50 10 112 4.0
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4.1. Testing for structural breaks

If the parameters of a time seriesmodel are not constant over time, structural changes are said to bepresent (Gujarati, 2004), and there are several
methods for detection of them (Andrews, 2003; Bai and Perron, 2003; Chow, 1960). We choose to use the Bai-Perron test as it can find the optimal
number of break points based on rigorous criteria. The test uses either Akaike's Information Criterion (AIC) or the Bayesian Information Criterion
(BIC) scheme (Burnham and Anderson, 2004) to appropriately address the trade-off between complexity and goodness of fit. The model with the
Fig. 6.Web search interest in iOS issues and problems.



Table 4
BIC values for different number of breaks.

No. of breaks BIC values (Android sales) BIC values (iOS sales)

0 29.04 29.85
1 28.61 28.97
2 28.46 28.68
3 28.08 28.84
4 28.02 29.00
5 28.26 29.89

33A. Dutta et al. / Technological Forecasting & Social Change 118 (2017) 28–43
lowest AIC or BIC is chosen. Researchers often prefer BIC over AIC (Burnham and Anderson, 2004) on the grounds that AIC is liberal in its criteria and
frequently prefers a more complex, wrong model over a simpler, true model. So we used the Bai-Perron test with BIC to identify structural breaks.
Data was obtained from a variety of sources and included handset sales, user ratings surveys, as well as narratives on various events associated
with the handset diffusion. These sources are summarized in the section on model calibration. For the time series analysis that follows, we used
monthly sales data (in number of units) for iOS and Android spanning January '09–April '12.

Nonlinear time series regression equationswere fitted using handset sales at time t as the dependent variable and powers of time (t, t2, t3 etc.) as
the independent variables. A quadratic equation was found to have the best fit, yielding Yt = β1t + β2t2 + εwhere Yt is the handset sales at time t.
Table 4 gives the BIC values for different number of breaks and the lowest BIC for Android is obtained with 4 breaks. For iOS, the lowest BIC occurs
with 2 breaks. The timing of those breaks is at 14, 20, 26 and 34 months for Android and at 16 and 32 months for iOS handset sales.

Confirmation of structural breaks suggests that there are events that are likely reasons behind these changes. In trying to identify such events, we
choose as a first approximation, those that most closely precede the break dates. We examined App store–developer license agreements, company
press releases and searched other publicly available information. Articles on technology websites like Wired, Endgadget, Mashable, and CNET were
particularly informative. The significant Android-related events that temporally precede its breakpoints are launch of OS version 2.1 (12/01/2010),
2.3.3 (09/02/2011) and 4.0 (19/10/2011), SDK upgrades released on20/05/2010, and introduction of in-app billing system inMarch 2011. Onewould
expect a break date close to an OS version release as it impacts both handset sales and complementary innovation by developers. Similarly, SDK im-
provements significantly impact the developer community by reducing the effort to build Apps. In-app billing systems have significantly impacted
the magazine/news genre of Apps. Instead of a one-time charge for purchasing an app, users can now install for free and subscribe to the features
they need.

For iOS, the break points coincidewith twomajor events. In April 2010Apple banned use of Flash on the iPhone compiler as a result of the ongoing
battle with Adobe over Flash on iOS. There was substantial resentment from the developer community alongwith demands to reverse the ban. Over
the next fewmonths therewas a significant drop in the rate of additions to the App-store, and Apple retracted the restriction on usage of any private
APIs. We surmise the first break in month 16 points to effects of this policy change. The second break is in month 32 (Sep 2011) and coincides with
the release of iOS 5 in June 2011. Fig. 6 shows a steep increase in iOS related queries around that time.

The temporal association between structural breaks in the diffusion patterns of iOS and Android handsets and events related to Android and iOS
evolution discussed in the preceding paragraphs suggests an underlying web of cause-effect relationships. In the next section, we develop a simple
causal model of the underlying mechanics that captures these interactions.

4.2. A causal model of Android and iOS growth

To develop a causal model of the handset diffusion process, we used the system dynamics methodology (SD) (Forrester, 1961). It has been suc-
cessfully applied to study the temporal behavior of systems in a wide variety of application domains (Forrester, 1994) including supply chain and
inventory management (Morecroft, 1983), environmental policy making, managing research and development strategies (Garcia et al., 2003), pro-
ject management, collusion in auctions (Padhi et al., 2016) etc. For brevity, the conceptual building blocks of SD are presented in parallel with the
development of the models themselves. Additional technical details can be found in (Sterman, 2000). We present the model in a top-down fashion
beginning with a ‘sectoral’ model which shows the major interacting causal components. That is followed by a detailed stock-flow model that was
used for parameter estimation and evaluation. Such top-down presentation of system dynamics models is not uncommon in the literature
(Soydan and Oner, 2012).

Fig. 7 shows a Causal LoopDiagram(CLD) of the cause-effect relationships in thebasic contagionmechanism that drives the diffusion process. This
structure will form the foundation for the sectoral model and hence deserves some elaboration.

A CLD consists of variables connected by cause-effect relationships, the latter being represented by a signed arrow. Positive links (marked as ‘S’)
imply that the cause and effectmove in the Samedirection (more Adopters causesmore Adoption through contagion)while negative links (marked as
‘O’) indicate that cause and effect move in Opposite directions (more Adoption reduces Potential Adopters and the market saturates).

A closed sequence of links yields a feedback loop. Positive feedback loops have an even number of negative links, while negative loops have anodd
number of negative links. Negative (balancing) loops are goal seeking in that they try tomove thebehavior back to a steady state if anydeviation from
Fig. 7. CLD for basic contagion mechanism.
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that state is observed. Positive (reinforcing) loops are unstable in that once initiated, they move the system further and further away from the initial
state. The structure in Fig. 7 shows two feedback loops:
1. Reinforcing loop L1 on the right (Contagion Effect): Adoption ➔ +Adopters➔ +Adoption
2. Balancing loop on the left L2 (market saturation): Adoption ➔ −Potential Adopters➔ +Adoption.

The parameter Contagion Strengthmodulates the adoption process. L1 reflects the reinforcing Contagion Effect stemming fromword of mouth. L2
represents the throttling mechanism of Market Saturation. The exogenous representation of Contagion Strength reflects an assumption that the pa-
rameter is unaffected by the diffusion itself. Of course, we know from the preceding review of the evolution of iOS and Android, that the diffusion of
both these platforms exhibit changes in patterns at different points in time, indicating that the Contagion Strength parameter is itself affected by the
diffusion process – i.e. it is endogenous. The sectoralmodel, shown in Fig. 8, recognizes this reality and thusmodifies and builds on the basic structure
of Fig. 7 in two ways. First, it shows the causation structure for the individual sectors and second, it shows the interconnections across the sectors.

There is one sector for each player – iOS and Android – and the two players draw from the same pool of Potential Adopterswhich constitutes the
third sector which is the full market for mOS based handsets. Since the sector structure for each player is the same, wewill explain the two sectors in
parallel. The two sectors in Fig. 8, for Android and iOS respectively, build on the basic contagion and market saturation feedback loops mentioned
earlier, using additional loops that capture influences present in the context of mOS handset diffusion. These additional loops capture the feedback
effects of the diffusion process itself, on the contagion strength, resulting in this parameter becoming endogenous as suggested above.

L11 (Android Adoption, Android Adopters), L21 (iOS Adoption, iOS Adopters): These two loopsmodel the basic contagionmechanism shown earlier
in Fig. 7, but for Android and iOS separately.

L13 (Android Adopters, Positive Effects of Android Adopters on Attractiveness, Android Contagion Strength, Android Adoption), L23 (iOSAdopters, Pos-
itive Effects of iOS Adopters on Attractiveness, iOS Contagion Strength, iOS Adoption): The diffusion of Android or iOS, which are two-sided platforms,
depends on network effects (Evans and Schmalensee, 2010) among end-users and application developers. The direct network effect occurs as
new end-users join the platform, increasing its value for existing users as well (Economides, 1996). The increasing adopter pool also invites applica-
tion developers who derive value by selling goods that enhance value of the mOS (Park, 2004; Werden, 2001). The positive contribution of the net-
work effects is built into the variable Positive Effects of Android Adopters on Attractiveness and Positive Effects of iOS Adopters onAttractiveness. These two
Fig. 8. Sectoral model of Android/iOS handset diffusion.
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loops model how growth in handset adopters endogenously strengthens their respective contagion parameters instead of being held constant
exogenously.

L14 (Android Adopters,Negative Effects of Android Adopters on Attractiveness, Android Contagion Strength, Android Adoption), L24 (iOSAdopters,Neg-
ative Effects of iOS Adopters on Attractiveness, iOS Contagion Strength, iOS Adoption): As noted in the section on iOS and Android evolution, adoption
experience is not always positive. For instance, as the adopter pool grows large, maintaining service levels becomes more difficult, causing deterio-
ration in user experience andweakening the contagion strength. The indirect network effect could also experience unanticipated side effects similar
to the Atari experience (Coughlan, 2004). Initially, there was an influx of high quality games driven by the increasing user base. However, in later
periods, lower quality games, and even some games deemed objectionable by segments of the user population, appeared, leading to negative net-
work effects. Halaburda et al. (2010) also offer evidence that the increasing variety of Android handset models has made App development difficult
andmay haveweakened the indirect network effect through dissatisfaction among developers. L14 and L24model the negative outcomes that erode
attractiveness and weaken the contagion process.

L15 (Android Adoption, Positive Effects of Android Sales on Attractiveness, Android Contagion Strength), L25 (iOSAdoption, Positive Effects of iOSSales on
Attractiveness, iOS Contagion Strength): Attractiveness improves with growing sales, which increases product awareness; falling handset price from
economies of scale and learning effects; improvement in handset features and quality (Tables 1 and 2). L15 and L25 model these positive effects.

L16 (Android Adoption,Negative Effects of Android Sales on Attractiveness, Android Contagion Strength), L26 (iOSAdoption,Negative Effects of iOSSales
on Attractiveness, iOS Contagion Strength): However, Tables 1 and 2 shown earlier indicate that growing sales have not beenwithout negative impacts
on user satisfaction, albeit to different degrees for Android and iOS. With these two feedback loops we havemodeled the negative effects of growing
sales that can weaken the contagion process.

L3 (Potential Adopters, Market Expansion): The market for smart phones expands due to general economic and demographic factors. This loop
models that effect and constitutes the third sector named Market for Mobile Operating Systems.

Intersector linkages: The three sectors are linked among themselves as follows. Thepair of links betweenAndroid Adoption andMarket forMobile
Operating Systems represents the linkage between the variables Android Adoption and Potential Adopters. This loop models how the Potential
Adopters pool is depleted as people buy Android handsets and join the pool of adopters. Similarly, a pair of links connects the sector iOS Adoption
to Market for Mobile Operating Systems. Both players draw from the same pool of Potential Adopters. There is also a pair of links between the iOS
and Android adoption sectors. These two linkages reflect the fact that the likelihood of an Android adopter influencing a potential adopter to buy
an Android handset depends on the number of iOS adopters aswell, and vice versa because both platforms are drawing on the same pool of potential
adopters.

In summary, the sectoral model shows that Android and iOS diffusion is driven endogenously by both positive and negative influences, and they
affect each other's growth by drawing on a common pool of potential customers. We proceed now to present a detailed stock-flow model corre-
sponding the sectoral model shown above.

4.3. Simulation model construction

The sectoralmodel of Fig. 8was converted into a stock-flowdiagram that appears in Fig. 9. A simulationmodel was then generated by developing
appropriate functional expressions for the different cause-effect relationships. Following the discussion in the sectoral model, the two stocks vari-
ables iOS Adopters and Android Adopters draw from a common stock variable called Potential Adopters, through two flow variables iOS Adoption
Fig. 9. Stock flow model of Android and iOS diffusion.



36 A. Dutta et al. / Technological Forecasting & Social Change 118 (2017) 28–43
and Android Adoption, respectively. This structure can be represented by the following equations:

d Android Adoptersð Þ
dt

¼ Android Adoption–Android Adopters Churn ð1Þ

d PotentialAdoptersð Þ
dt

¼ –Android Adoption–iOS AdoptionþMarket Expansion ð2Þ

An equation similar to Eq. (1) is associatedwith iOS adoption, and the variableMarket Expansion in Eq. (2) captures the expansion referred to ear-
lier due to demographic factors. The flow variable Android Adoption is the fraction of Potential Adopters converting to Android Adopters through the
contagion process. This fractionwill depend on the likelihood that a Potential Adoptermeets anAndroid Adopter and the likelihood that this encounter
will lead to Adoption. Eq. (3) below captures that mechanism. Market Expansion, as has been written in Eq. (4), aggregates adopters rejecting their
respective platforms and the expansion of themarket happening over time. Eq. (5) represents a simple exponential decay process inwhich a fraction
of Android adopters reject the Android platform.

Android Adoption ¼ Android Contagion Strength � Potential Adopters� Android Adopters
Potential Adoptersþ Android Adoptersþ iOS Adopters

ð3Þ

Market Expansion ¼ Potential Adopters �Market Growth Factionþ iOS Adopters Churnþ Android Adopters Churn ð4Þ

Android Adopters Churn ¼ Android Adopters
Average Handset life Android

ð5Þ

The sectoralmodel in Fig. 8 was simplified bymerging four pairs of loops (L13, L14), (L15, L16), (L23, L24) and (L25, L26) into four loops bywrit-
ing each pair as a single equation. Each pair represents the same relationship although the direction of causation of the first (e.g. L13) was positive
while that of the second (e.g. L14) was negative. Since we are interested in the ‘net effect’ of the positive and negative externalities on attractiveness
we allowed the polarity to be determined empirically as shown in Fig. 9.

Thus, to capture both negative and positive externalities, Android Contagion Strength was first rewritten as:

Android Contagion Strength ¼ Kandroid;0 � e Kandroid;1�Android AdoptersþKandroid;2�Android Adoptionð Þ ð6Þ

Kandroid,0 is a constant. Initialmodel testing showed that both iOS Contagion Strength andAndroid Contagion Strength reached a steady state value
asymptotically. We therefore chose an exponential form with polarity to be determined from the data. Furthermore, Kandroid,1, Kandroid,2 were
expressed in a form that incorporated knowledge about structural breaks identified earlier. Pulse (start-time, duration) functionswere used to inject
disruptions at break points, as in Eqs. (7) and (8).

Kandroid;1 ¼ Kandroid;11 � Pulse 0;14ð Þ þ Kandroid;12 � Pulse 14;6ð Þ þ Kandroid;13 � Pulse 20;6ð Þ þ Kandroid;14 � Pulse 26;8ð Þ þ Kandroid;15 � Pulse 34;6ð Þ ð7Þ

Kandroid;2 ¼ Kandroid;21 � Pulse 0;14ð Þ þ Kandroid;22 � Pulse 14;6ð Þ þ Kandroid;23 � Pulse 20;6ð Þ þ Kandroid;24 � Pulse 26;8ð Þ þ Kandroid;25 � Pulse 34;6ð Þ ð8Þ

Use of Pulse functions enabled Kandroid,1, Kandroid,2 to take different values across break points. Thus Kandroid,1 took the value of Kandroid,11 between
t = 0 and t = 14, Kandroid,2 took the value of Kandroid,25 between t = 34 and t = 39 and so on. This method of writing Kandroid,1, Kandroid,2 also enables
the causal structure to generate exponential growth (positive exponent) or logarithmic growth (negative exponent) in different time segments, de-
pending on the relative magnitude of the two terms Kandroid,1 ∗ Android Adopters and Kandroid,2 ∗ Android Adoption. Equations for iOS Contagion
Strength were written similarly to incorporate its breakpoints.

iOS Contagion Strength ¼ KiOS;0 � e KiOS;1�iOSAdoptersþKiOS;2�iOSAdoptionð Þ ð9Þ

KiOS;1 ¼ KiOS;11 � Pulse 0;16ð Þ þ KiOS;12 � Pulse 16;16ð Þ þ KiOS;13 � Pulse 32;8ð Þ ð10Þ

KiOS;2 ¼ KiOS;21 � Pulse 0;16ð Þ þ KiOS;22 � Pulse 16;16ð Þ þ KiOS;23 � Pulse 32;8ð Þ ð11Þ

Data for estimatingmodel parameters came from secondary sources shown in Table 5. A large segment of the data was purchased from a German
mobile analytics firm that maintains platform-wise databases. Policy changes were identified through extensive Internet based search on official
Table 5
Sources of data for model calibration.

Description Periodicity Period Source

Android sales Monthly Jan'09–Jul'12 Research2Guidance, Mobile Analytics Firm – Paid Source
Apps -Google Play (Android MARKET) Monthly Jan'09–Jul'12
iOS sales Monthly Apr'07–Jul'12
Appstore Apps Monthly Jul'08–Jul'12
Apps (category wise) (Android/iOS) Monthly Dec'08–Jun'12
Downloads (platform wise) Daily Dec'08–Jun'12
Policy changes (Android and iOS) NA Till Jun'12 Android official developer blog, iOS developer license agreements, CNET, Mashable, Wired, Techcrunch
Handset specifications NA Till Jun'12 GSMArena.com
OS version ratings NA Till Jun'12 CNET
String search data Daily Till Jun'12 Google Analytics



Fig. 10. Observed and simulated values of Android adoption.

Fig. 11. Observed and simulated values of iOS adoption.
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Android/iOS blogs, websites, developer agreements and popular tech websites. We sifted through 200+ articles on various tech websites to search,
validate and understand all the policy changes that took place in the evolution of Android and iOS. For the user experience of different versions of
Android and iOS, we used the user ratings available on CNET as a proxy for the same.

To calibrate themodel, we used the automatic calibration feature of the Vensim®package,2 and used the three-point heuristic proposed by Oliva
(2003) to guide the process.

I. Include all available knowledge about system parameters in the calibration process.
II. Apply automatic calibration to the simplest possible calibration problem.
III. Use automatic calibration to test the hypothesis “The estimated parameter matches the observable structure of the system.”
The model was calibrated by minimising two cumulative error terms (i) the sum of absolute differences between actual and simulated Android
Adoption values over forty months and (ii) sum of absolute differences between actual and simulated iOS Adoption over the same forty data points.
The parameters to be calibratedwere Kandroid,0, Kandroid,ij (i= 1, 2; j= 1… 5), KiOS,0, KiOS,km (k=1, 2;m=1… 3),Market Growth Fraction and initial
value of Potential Adopters. The optimization feature of Vensim Professional was used during calibration. It uses a hill climbing algorithm and com-
pleted the calibration in 15,794 runs. A mean absolute percentage error (MAPE) of 8.92% and 9.84% was obtained for Android and iOS sales, respec-
tively. Figs. 10 and 11 show post-calibration simulated values of Android Adoption and iOS Adoption against their respective observed handset sales
values.

4.4. Evaluation of calibrated model

To evaluate the calibratedmodel, we ran it for a fairly long span fromMay 2012 to April 2016 – i.e. period 40 to 87 – and compared the simulated
results to actualmonthly sales data for Android and iOS handsets for that period. During this period, breakpointswere not identified and consequent-
ly that information was not used in altering any model parameters. The results are shown in Figs. 12 and 13, and the equations for the calibrated
model are shown in Appendix A - Table 11.
2 Vensim is a simulation software created and distributed by Ventana Systems Inc., www.vensim.com. The calibration feature is available in Vensim Professional and Vensim DSS.

http://www.vensim.com


Fig. 12. Observed and simulated values of Android adoption (in calibration and prediction phase).
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The MAPE for the predicted values are shown in Table 6 where they are also compared with the calibration phase. Not unexpectedly, error per-
formance is poorer in the prediction phase compared to the calibration phase. However, two interesting observations can bemade regarding the sim-
ulated versus actual values graphs forMay 2012 to April 2016. First, by comparing theMAPE of the calibration and prediction phases, the significance
of using structural break information inmodeling IT diffusion becomes clear.Wedeliberately did not use this information during theprediction phase
because the significance of events associatedwith structural breaks often becomes evident only after some passage of time. Second, the causal model
was able to predict the general slowdown and decline in sales pattern for both platforms – note the dip after about January 2015. While statistical
models, such as moving average, can quantitatively fit these patterns, they do not give us much insight as to what caused them. However, our causal
model is able to capture changes in the underlying mechanisms over time as elaborated on in the next section.
Fig. 13. Observed and simulated values of iOS adoption (in calibration and prediction phase).



Table 8
Polarity of L23–24 and L25–26 across time intervals.

Interval KiOS,1 Nature of L23–24 KiOS,2 Nature of L25–26

0 ≤ t b 16 Negative Balancing Negative Balancing
16 ≤ t b 32 Positive Reinforcing

Negative Balancing
32 ≤ t Negative Balancing Positive Reinforcing

Table 6
Comparison of fit for Android and iOS across the two phases.

Android iOS

Calibration MAPE: 8.92% MAPE: 9.19%
Correlation: 0.999 Correlation: 0.991

Prediction MAPE: 23.41% MAPE: 19.93%
Correlation: 0.959 Correlation: 0.684
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5. Deconstructing the mechanics of handset diffusion

The causalmodel presented in Fig. 8 posited that the diffusion of An-
droid and iOS handsets can be explained with a set of mechanisms
where the following held true.

a) Contagion mechanism is at the core of diffusion. A section of Poten-
tial Adopters join the pool of Adopters as a result of information ex-
change between these two groups.

b) The time rate of change of Adopters pool for Android or iOS is propor-
tional to the number of Potential Adopters and Adopters for the corre-
sponding mOS. The proportionality constant Contagion Strength,
modulates the pace of change.

c) Contagion Strength is a time-varying parameter whose magnitude is
moderated by Network Effects (L13–14 & L23–24) as well as the
Supply Effects (L15–16 & L25–26). Recall that these loops model
the mutual dependence of Adopters, Adoption Rate and Contagion
Strength, and can result in either exponential or logarithmic diffusion
patterns over different segments of the period of analysis, depending
on the parameter values.

To gain a deeper understanding of the shifting patterns of diffusion
of Android and iOS handsets we would need to extend the core conta-
gion mechanism and include the feedback mechanisms that result in
changes in Contagion Strength over time. The calibrated simulation
model provides empirical evidence of these temporal changes in param-
eter values, which can then be used to get a more detailed understand-
ing of changes in the underlying mechanisms that drive diffusion
behavior. This analysis is presented in the next two sections.

5.1. Characterization of feedback loops

The simplified causalmodel in Fig. 8 had left the polarities of L13–14,
L23–24, L15–16 and L25–26 ambiguous since their net effect could im-
pact diffusion in both positive and negative ways. The simulationmodel
was built such that signs of associated parameters would determine the
polarity of respective loops. The calibration process described above re-
sulted in the loop polarities shown in Tables 7 and 8. The signs of the pa-
rameters KAndroid,1, KAndroid,2, KiOS,1, KiOS,2 during different time intervals
are shown alongside.

Tables 7 and 8 show how the nature of Network Effects (L13–14 &
L23–24) and Supply Effects (L15–16 & L25–26) changed during differ-
ent time intervals. The changing polarities of the loops – reinforcing or
Table 7
Polarity of L13–14and L15–16 across time intervals.

Interval KAndroid,1 Polarity of L13–14 KAndroid,2 Nature of L15–16

0 ≤ t b 14 Positive Reinforcing Negative Balancing
14 ≤ t b 20 Negative Balancing

Positive Reinforcing
20 ≤ t b 26 Negative Balancing

Positive Reinforcing
26 ≤ t b 34 Positive Reinforcing

Negative Balancing
34 ≤ t Positive Reinforcing Negative Balancing
balancing – offers insight into changes in underlying mechanisms that
occurred over the course of the diffusion. For example, in Table 7 we
see that during the first 14 months, L13–14 behaved as a reinforcing
loop implying that positive effects of the expanding pool of Android
Adopterswere more pronounced than negative effects. In contrast, dur-
ing interval 14–20, the same loop behaved as a balancing loop, indicat-
ing the opposite net effect. During the interval 0–14, L15–16 behaved
like a balancing loop implying that the negative effects of increasing An-
droid Adoption (e.g. variability across handset models) were more pro-
nounced than the positive effects (falling price, feature improvement).
In the next section, we combine this loop characterization with loop
dominance patterns to get a more complete picture of the diffusion
mechanisms.

5.2. Analysis of loop dominance

The basic structural component in an SDmodel is the feedback loop,
and amodel typically consists of numerous loops. To get a parsimonious
understanding of the mechanics, it is useful to identify a limited subset
of loops which have the most impact on behaviour. We use the formal
method of loop dominance analysis (LDA) for this purpose. Theoretical
underpinnings of this technique may be found in the literature (Ford,
1999; Kampmann, 1996; Mojtahedzadeh, 1997; Richardson, 1996).
We adopted Ford's technique because of its intuitive appeal and ease
of implementation. Ford's method determines loop dominance by des-
ignating onemodel variable as the Variable of Interest (VoI). A feedback
loop is said to dominate if deactivating it, without changing model
structure and other system parameters, alters the pattern of VoI's be-
havior in any time interval. The behavior of a system variable can be
viewed as a sequence of atomic behaviour patterns, which can be one
of three types namely Linear (VoI grows or decays at a constant rate);
Exponential (VoI grows or decays at an increasing rate); Logarithmic
(VoI grows or decays at a decreasing rate).

We carried out loop dominance analysis twice, with Android Adop-
tion and iOS Adoption as the VoI, respectively. For Android Adoption we
checked dominance of L11, L12, L13–14 and L15–16while for iOS Adop-
tion loops L21, L22, L23–24 and L25–26were checked. Appendix B – Fig.
14 shows results of the analysis with Android Adoption as the VoI. For
completeness, we also show polarities of L13–14 and L15–16 presented
earlier in Table 7. Dominance results for iOS Adoption appear in
Appendix B – Fig. 15 along with polarities of L23–24 and L25–26.3

Ideally a platform owner would like growth to be dominated by re-
inforcing loop(s). However, external events can switch dominance to
balancing loop(s) that slow down growth to a logarithmic form. By
sensing such occurrences, one can intervene appropriately such that
dominance switches back to reinforcing loop(s). The growth for An-
droid was exponential until Sep '10 during which two reinforcing
loops, L11 theWord-of-Mouth loop, and L13–14, the network external-
ity loop, took turns in boosting growth. Loop L13–14, however, behaved
as a balancing loop from Jan '10. In October '10, Android experienced a
3 Since these two figures require a different page orientation these have been presen
as Appendices.
ted



Table 9
Growth type and dominant loop in Android diffusion.

Growth type

Exponential Logarithmic

Proportion of periods showing growth type 79.49% 20.51%
(a) Network effect dominant within growth type 25.81% 37.50%
(b) Supply effect dominant within growth type 12.90% 62.50%
(c) Word-of-mouth effect dominant within growth
type

61.29% 0.00%

(d) Market saturation effect dominant within growth
type

0.00% 0.00%

Total of (a), (b), (c) and (d) 100.00% 100.00%

Table 10
Growth type and dominant loop in iOS diffusion.

Growth type

Exponential Logarithmic

Proportion of periods showing growth type 38.46% 61.54%
Network effect dominant within growth type 20.00% 16.67%
Supply effect dominant within growth type 6.67% 41.67%
Word-of-mouth effect dominant within growth type 73.33% 0.00%
Market saturation effect dominant within growth type 0.00% 41.76%
Total of (a), (b) (c) and (d) 100.00% 100.00%
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Malware Attack and the growth pattern immediately became logarith-
mic. Our analysis shows that the network externality loopwas dominat-
ing Android diffusion at this time. This couldmean that potential buyers
perceived the large installed base to be a strong attractor for hackers,
resulting in a negative effect on the buying decision. Developers also
had similar perception about the increasing installed base while choos-
ing the platform to develop apps. The loop at this point was a balancing
one, implying the negative effect of increasing installed base. Thereafter,
the growth started stagnating.

The next disruption in diffusion happened in April 2011, which was
about the time Apple went to court against Samsung. Dominance
switched to the L15–16 loop and the growth pattern became logarith-
mic. Google released a few improvements in May '1. Dominance
switched to L13–15 and the growth pattern became exponential
again. In Oct 2011, Android announced the Ice Cream Sandwich
(4.0.0) operating system. The market was euphoric but there were con-
cerns regarding compatibility (Nickinson, 2011). During October '11–
March '12 Google released three updates for Ice Cream Sandwich
(4.0.2–4.0.4) to incorporate bug fixes, performance improvements and
compatibility with manufacturer specific handsets (e.g. minor bug
fixes for Samsung Nexus in Oct '11 and minor bug fixes for Verizon Gal-
axy Nexus in Nov '11).4 Of and on, during this period, concerns about
the new OS shifted dominance to the loop L15–16. But Google was
quick to launch several upgrades which shifted dominance to L13–14.

In the case of iOS, interventions by Apple that resulted in dominance
shifting to reinforcing loop(s) have mostly been short lived, spanning
one or twomonths. We surmise this has occurred as a result of the con-
straint that the pool of potential iPhone/iPad buyers has imposed on the
diffusion of iOS. iPhone was initially available in only a few countries
and its growth until May 2010 had been logarithmic, dominated
throughout by balancing loop(s). However, when Apple launched the
products in other countries (Sep '10, Mar '11, Nov '11), dominance
shifted to reinforcing loops, albeit for a short while. Similar shift also oc-
curredwhen featureswere added to iOS (Jun '11). Notably, in the case of
intervention leading to market expansion, the shift happened almost
immediately, whereas in the case of feature enhancement the effect
came after some time.5,.6

Table 9 summarizes the growth type and loop dominance observed
for Android diffusion. It shows that in about 79% of the periods under
study, Android Adoption grew at an increasing rate. In 61% of such expo-
nential growth periods, growth came from word-of-mouth effect. In
about 21% of the periods the growth was logarithmic (increasing at a
decreasing rate) and Supply Effect dominated the system behaviour. In-
terestingly, system behaviour was never dominated by Market Satura-
tion effect (L12), which leads us to conclude that up until the end of
the study period, the Android Market is yet to be saturated.
4 Wikipedia Page on Android Version History, https://en.wikipedia.org/wiki/Android_
version_history accessed 18th January 2016.

5 iOS Version History Wikipedia page, https://en.wikipedia.org/wiki/IOS_version_
history accessed 18th January 2016.

6 Apple Press Releases, http://www.apple.com/pr/library/2011/, accessed 18th January
2016.
One noteworthy observation in the case of iOS diffusion, compared
to Android, is the shorter spells of dominance. The average span of dom-
inance (number of time intervals/number of change overs) is 1.82 pe-
riods per change-over in comparison to 3.33 Android. Table 10
summarises the Loop Dominance findings for iOS diffusion. Growth in
iOS Adoptionwas predominantly logarithmic (increasing at a decreasing
rate), since about 61% of the periods exhibited this behaviour. During
these periods of logarithmic growth, Supply Effect dominated system
behaviour about 42% of the time, and Market Saturation about 42% of
the time. Supply Effect did not dominate the periods of exponential
growth in any significant way. The periods of exponential growth
were mostly (73%) dominated by positive word-of-mouth. Network Ef-
fect had limited influence in energising exponential growth pattern as
indicated by the 20% number for the proportion of periods in which it
was dominant. The fact that exponential growth pattern accounted for
only 38% of the periods analysed, points to more sluggish adoption of
iOS compared to Android.

Comparison of the loop dominance patterns of Android Adoption and
iOS Adoption offers insight into why, in spite of being the early mover,
iOS was overtaken by Android.

(a) iOS diffusion, in the beginning, had a short spell (3 periods) of ex-
ponential growth followed by a longer spell (14 periods) of
slower logarithmic growth. But Android experienced a long ini-
tial spell (23 periods) of exponential growth followed by a
short spell (3 periods) of slower logarithmic growth. This helped
it to catch up and overtake iOS handset sales.

(b) Supply Effect acted both as an inhibitor (supply shortage, usage
issues) and an enabler (price cuts, feature enhancement). The in-
hibitor effect was relatively more pronounced compared to the
enabler effect for both platforms, as is evident from Tables 9
and 10. Popular wisdom held that Android diffusion was spurred
mainly by handset price cuts and feature enhancements (Seltzer
et al., 2015) – i.e. Supplier effect. But the results in Tables 9 and 10
show thatwas not the case andword ofmouthwas the dominant
drivingmechanism for the exponential growth in both platforms.

(c) Network Effects also helped drive exponential growth in both
platforms. It therefore appears that the growing pool of comple-
mentary goods (Apps) facilitated Adoption although the impact
was more pronounced (12% of periods in exponential growth)
in the case of Android Adoption compared to iOS adoption (8%).

(d) Market Saturation constrained growth only in the case of iOS
Adoption.

Overall, this analysis of loop dominance leads us to infer that iOS
exploited its market in bursts while Android exploited the market in a
more sustained manner. For both platforms, the pattern changed to
pairs of short spell of exponential growth followed by short spell of log-
arithmic growth reflecting a series of S-shaped diffusion patterns. How-
ever, an initial sustained spell of exponential growth boosted Android
Adoption towards building a very large pool ofAndroid Adopters and sub-
sequent sustained market dominance.

https://en.wikipedia.org/wiki/Android_version_history
https://en.wikipedia.org/wiki/Android_version_history
https://en.wikipedia.org/wiki/IOS_version_history
https://en.wikipedia.org/wiki/IOS_version_history
http://www.apple.com/pr/library/2011/
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6. Conclusion

Despite a rich body of literature, IT diffusion continues to interest re-
searchers (Kauffman and Techatassanasoontorn, 2012). One thread in
this body ofwork focuses onmodeling the temporal pattern of diffusion.
Our study makes a contribution by addressing two issues which have
received insufficient attention in this stream of work. First, due to the
nature of technology innovation, the parameters driving an IT diffusion
phenomenon need not remain constant over the duration of analysis as
is commonly assumed. Hence, one needs to detect and allow for possi-
ble shifts in these driving parameters. Second, there are circumstances
when the descriptive approach of characterizing the temporal diffu-
sion pattern as y(t) = f(t), however elaborate f(t) might be, is not
enough. Rather, in situations where managerial interventions are
contemplated to deliberately affect the diffusion process, one needs
to know the underlying mechanics of the diffusion process. The
above approach was demonstrated by studying the diffusion of
handsets based on two popular mobile operating systems platforms,
Android and iOS.

We addressed these two issues with a 2-phase approach, first de-
tecting statistically significant breakpoints, followed by a second phase
where a systems dynamics based model was developed and calibrated
using the breakpoints determined in the previous phase. Loop domi-
nance analysis of themodel provided insights into themechanics of dif-
fusion and how it changes over time. One revealing illustration of the
benefits of a causal approach could be seen during themodel evaluation
shown in Figs. 12 and 13. There, the simulated graphs for both iOS and
Appendix A

Table 11
Equations of calibrated model.

And CS K0 0.0490719
And CS K1 (AndK11 ∗ Pulse(0,14) + AndK12 ∗ Pulse(14
And CS K2 (AndK21 ∗ Pulse(0,14) + AndK22 ∗ Pulse(14
AndK11 32.8508
AndK12 −0.225999
AndK13 −0.613815
AndK14 0.32844
AndK15 2.23803
AndK21 −1041.11
AndK22 61.1013
AndK23 36.5481
AndK24 −46.8698
AndK25 −216.549
Android adopters churn Android adopters/average handset life Andr
Android adoption Android Contagion Strength ∗ Android Adop
Android contagion strength EXP(And CS K0 + Android Adopters / 1e +
Average android adoption SMOOTHI(Android Adoption,1,575,300)
Android adopters INTEG(Android Adoption-Android Adopters
Average handset life Android 33.1285
Average handset life iOS 19.6363
Average iOS adoption SMOOTHI(iOS Adoption,2,3.85e + 06)
Initial potential adopters 6.60773e + 06
iOS adopters INTEG (iOS Adoption-iOS Adopters Churn,3.
iOS adopters churn iOS Adopters/Average Handset life iOS
iOS adoption iOS Contagion Strength ∗ iOS Adopters ∗ Pot
iOS contagion strength EXP(iOS CS K0 + iOS Adopters / 1e + 10 ∗ i
iOSK11 −61.9317
iOSK12 79.992
iOSK13 −12.4662
iOSK21 −66.5437
iOSK22 −1151.53
iOSK23 108.52
Market expansion iOS Adopters Churn + Android Adopters Ch
Market growth fraction 0.589785 ∗ Multiplier from Market Size((An
Potential adopters INTEG ((Market Expansion-Android Adoptio
Android show an exponential growth pattern for a long time followed
by saturation and decline. Examination of the feedback loops shows
that the saturation and decline occurred due to slowdown in market
expansion. Once we know this cause, interventions can be contem-
plated, such as developing ultra-cheap handsets with very simple
functionality (Economist, 2014), that could reach people at the
‘bottom of the pyramid’, which in turn would expand the market
considerably along with the pursuit of new growth opportunities
that come from expanding the mOS reach to other devices including
wearables (Gartner, 2017).

Both strengths and limitations of our study are a consequence of
characteristics of the SystemDynamicsmethod. It offers a powerful con-
ceptual construct – the feedback loop – to identify mechanisms under-
lying a temporal phenomenon such as diffusion. Understanding these
mechanisms can help engineer purposeful interventions to change the
observed diffusion behaviour. However, SD models are weak at captur-
ing heterogeneity. For example, adopters and handset manufacturers
will exhibit heterogeneity in their defining characteristics. In capturing
the complexity of interactions among different factors, the richness
with which each factor is characterized is simplified. Other techniques
such as agent based modelling are capable of modelling heterogeneity
(Kiesling et al., 2011), but do not offer constructs to capture the under-
lying causal structure that is generating observed behaviour. We sur-
mise that an SD based approach will be applicable to other technology
diffusion settings. One that comes to mind is adoption of cloud comput-
ing, where potential cost reductions act as reinforcing influences while
security concerns act in the opposite direction.
,6) + AndK13 ∗ Pulse(20,6) + AndK14 ∗ Pulse(26,8) + AndK15 ∗ Pulse(34,6))
,6) + AndK23 ∗ Pulse(20,6) + AndK24 ∗ Pulse(26,8) + AndK25 ∗ Pulse(34,6))
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ters ∗ Potential Adopters / (Android Adopters + Potential Adopters + iOS Adopters)
09 ∗ And CS K1 + Average Android Adoption/1e + 10 ∗ And CS K2)

Churn,575,300)

8481e + 06)

ential Adopters/(iOS Adopters + Potential Adopters + Android Adopters)
OS CS K1 + Average iOS Adoption/1e + 10 ∗ iOS CS K2)

urn + Market Growth Fraction ∗ Potential Adopters
droid Adopters + iOS Adopters + Potential Adopters)/9.0E09)
n-iOS Adoption), Initial Potential Adopters)
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Fig. 14. Loop dominance in Android adoption.

Fig. 15. Loop dominance in iOS adoption.
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