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1 Introduction

In the past decade the study of the quark-gluon plasma at the Large Hadron Collider at

CERN and the Relativistic Heavy Ion Collider at BNL has matured into a quantitative area

of research, in which more detailed questions can be asked and answered – see e.g. refs. [1, 2]

and references therein. One topic of interest concerns the changes to the spectrum of QCD,

which are expected as hadrons are immersed in a hadronic gas at temperatures below the

deconfinement transition, and in the quark-gluon plasma (QGP) at higher temperatures.

This has been especially important for quarkonium, bound states of a heavy quark and

anti-quark, as their melting/survival pattern can act as a thermometer for the temperatures

reached in these collisions. Indeed, both the LHC [3, 4] and RHIC [5] have reported clear

suppression patterns for bottomonium states at high temperature. Ref. [6] contains a recent

comprehensive review and ref. [7] a discussion of open questions.

For light hadrons on the other hand, the emphasis has been on the statistical proper-

ties of the hadrons emerging from the system and on the dilepton spectrum [1]. Dileptons

are predominantly produced by the decay of vector mesons and hence properties of their
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spectrum provide a connection with chiral symmetry and its restoration at high temper-

ature. This observation has led to substantial activity on the role of chiral symmetry at

finite temperature in the mesonic sector [8].1

Due to the nature of the thermal transition in QCD, studies using lattice QCD can

provide important nonperturbative insight. Probably the cleanest signal with respect to

chiral symmetry comes from the analysis of mesonic screening masses, which are relatively

easy to compute in lattice simulations, see e.g. ref. [9], even though their relation to phe-

nomenologically relevant quantities is not immediately clear (see however ref. [10]). Direct

computation of spectral quantities in a medium, such as thermal masses, is considerably

harder, due to the need to consider analytical continuation on lattices with a finite tem-

poral extent. Recent interesting work on the pion in the hadronic gas can be found in

refs. [11, 12]. The vector meson correlator has been analysed extensively, not only due

its role in the dilepton rate but also in the context of the electrical conductivity and the

charge diffusion coefficient [13–18]. Concerning quarkonia, both charmonium [19–24] and,

more recently, bottomonium [25–28] have been studied on the lattice.

Surprisingly, even though light baryons are sensitive to chiral symmetry and play an

important role in the analysis of heavy-ion data, corresponding studies in the baryonic

sector are very limited. In the context of lattice QCD, baryon screening masses in a

gluonic medium were studied a long time ago in refs. [29, 30] and, at small baryon chemical

potential, in ref. [31]. More recently, screening and temporal correlators were analysed in

ref. [32]. All these studies were carried out in the quenched approximation.

In this work we aim to improve this situation substantially. We study the N (nucleon),

∆ and Ω baryons, employing simulations with Nf = 2 + 1 light flavours, with four temper-

atures below and four above the transition. This allows us to study the properties of these

baryons and in particular in-medium modification in the hadronic gas. Chiral symmetry

is closely linked to parity doubling and we analyse the emergence of parity doubling as the

transition is approached. We find a qualitative difference in the response to the increasing

temperature between positive- and negative-parity baryons, which may be of interest for

heavy-ion phenomenology. We also contrast the behaviour in the Ω channel with the N

and ∆ channel, to see the effect of the heavier s quark.

This paper is organised as follows. In section 2 we summarise the relations between

baryon correlators and spectral functions, emphasising the differences with the mesonic

case. We discuss positivity of the spectral functions, the role of charge conjugation, and

the connection between chiral symmetry and parity doubling, both at µ = 0 and µ 6= 0.

Section 3 contains details of our lattice computation. The main results of our study are

given in section 4: we analyse the euclidean correlators and draw conclusions for both the

hadronic gas and the quark-gluon plasma. These results are supported by the spectral

function analysis of section 5. The final section summarises and contains an outlook. We

note here that our previous work in the nucleon sector, with limited statistics, can be found

in ref. [33] and preliminary results have appeared in refs. [34–36].

1Note that throughout this paper chiral symmetry will refer to SU(2)A chiral symmetry, which is spon-

taneously broken in the vacuum (and explicitly by nonzero quark masses).
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2 Baryonic correlators and spectral functions

We start with a brief discussion of baryonic operators and spectral relations for fermionic

two-point functions. While for mesonic (bosonic) correlators the type of relations discussed

below are very well known [37], for fermionic ones this is slightly less so. Moreover, it allows

us to discuss how parity doubling manifests itself in correlators and spectral functions.

2.1 Baryonic operators

We consider two-point functions of fermionic operators, of the form

Gαα
′
(x) =

〈
Oα(x)O

α′
(0)
〉
, (2.1)

where α, α′ are Dirac indices and O = O†γ4.2 The simplest annihilation operators for the

nucleon, ∆ and Ω baryons are respectively [39, 40]

OαN (x) = εabc u
α
a (x)

(
d
T

b (x)Cγ5uc(x)
)
, (2.2)

Oα∆,i(x) = εabc

[
2uαa (x)

(
d
T

b (x)Cγiuc(x)
)

+ dαa (x)
(
u
T

b (x)Cγiuc(x)
)]
, (2.3)

OαΩ,i(x) = εabc s
α
a (x)

(
s
T

b (x)Cγisc(x)
)
, (2.4)

where C corresponds to the charge conjugation matrix, satisfying

C†C = 1, γ
T

µ = −CγµC−1, C
T

= −C−1, (2.5)

and hence γ
T

5 = Cγ5C
−1. We note here that as written eq. (2.3) describes the charged

∆+(uud) channel. However, since QED interactions are not incorporated and the two

light quarks are taken to be degenerate (isospin limit), the operator is also relevant for the

neutral ∆0(ddu) channel. The ∆++(uuu) and ∆−(ddd) states are in principle described

by an operator of the form (2.4), with s→ u, d, but again in the degenerate limit one can

show that Wick contractions coming from the latter are identical to the ones derived from

eq. (2.3).

Under parity, elementary quark fields transform as

Pψ(x)P−1 = γ4ψ(Px), P = diag (−1,−1,−1, 1). (2.6)

It is straightforward to verify that this property is inherited by the baryonic operators,

PO(x)P−1 = γ4O(Px). (2.7)

Hence one may introduce parity projectors and operators via

P± =
1

2
(1± γ4) , O±(x) = P±O(x), (2.8)

2We follow the conventions in ref. [38] and use euclidean gamma-matrices, γ†µ = γµ = γ−1
µ , with µ =

1, . . . , 4, and γ†5 = γ5 = γ1γ2γ3γ4.
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such that

PO±(x)P−1 = ±O±(Px). (2.9)

We refer to O± as positive- and negative-parity operators.

Similarly, under charge conjugation quark fields transform as

CψC−1 ≡ ψ(c) = C−1ψ̄
T
, Cψ̄C−1 ≡ ψ̄(c) = −ψTC. (2.10)

Again, this is inherited by the baryonic operators, and

O(c) = C−1O
T

, O
(c)

= −OT
C. (2.11)

2.2 Spectral relations

We now derive some general spectral relations and properties of the two-point functions

Gαα
′
(x). We work in spatial momentum space,

Gαα
′
(τ,p) =

∫
d3x e−ip·xGαα

′
(τ,x), (2.12)

and τ denotes the euclidean time, 0 ≤ τ < 1/T , with T the temperature. Fermionic

fields and operators satisfy anti-periodic boundary conditions in euclidean time. A Fourier

transform yields the correlator as a function of the fermionic Matsubara frequencies ωn =

(2n+ 1)πT , n ∈ Z, which can be written as a spectral integral

Gαα
′
(iωn,p) =

∫ ∞
−∞

dω

2π

ραα
′
(ω,p)

ω − iωn
. (2.13)

The spectral function ραα
′
(ω,p) is then given by twice the imaginary part of the retarded

Green function,

ραα
′
(ω,p) = 2 ImGαα

′
(iωn → ω + iε,p), (2.14)

or, in terms of the operators, by

ραα
′
(x) =

〈
{Oα(x), O

α′
(0)}

〉
, (2.15)

as always [37]. Transforming back to euclidean time yields the integral relation

Gαα
′
(τ,p) =

∫ ∞
−∞

dω

2π
K(τ, ω)ραα

′
(ω,p), (2.16)

with the kernel, for 0 < τ < 1/T ,

K(τ, ω) = T
∑
n

e−iωnτ

ω − iωn
=

e−ωτ

1 + e−ω/T
= e−ωτ [1− nF (ω)] , (2.17)

which can e.g. be shown by contour integration [37]. Here nF (ω) = 1/(eω/T + 1) is the

Fermi-Dirac distribution. We note that K(τ, ω) is neither even nor odd, but satisfies

K(1/T − τ, ω) = K(τ,−ω). (2.18)
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A decomposition of the kernel in terms of its even and odd parts yields

K(τ, ω) =
1

2
[Ke(τ, ω) +Ko(τ, ω)] , (2.19)

with

Ke(τ, ω) =
cosh(ωτ̃)

cosh(ω/2T )
= [1− nF (ω)] e−ωτ + nF (ω)eωτ ,

Ko(τ, ω) = − sinh(ωτ̃)

cosh(ω/2T )
= [1− nF (ω)] e−ωτ − nF (ω)eωτ ,

(2.20)

where τ̃ = τ − 1/(2T ). Note that the normalisation is such that all kernels reduce to e−ωτ

in the zero-temperature limit (for positive ω). These kernels should be contrasted with the

kernel appearing in bosonic spectral relations,

Kboson(τ, ω) =
cosh(ωτ̃)

sinh(ω/2T )
= [1 + nB(ω)] e−ωτ + nB(ω)eωτ , (2.21)

where nB(ω) = 1/(eω/T −1) is the Bose-Einstein distribution. The different denominators,

cosh(ω/2T ) versus sinh(ω/2T ), reflect the quantum statistics. Note that as a consequence

the problems associated with the singular behaviour of the bosonic kernel, Kboson(τ, ω)→
2T/ω as ω → 0, relevant for transport [41], are absent in the fermionic case.

In order to resolve the Dirac indices, we use the decomposition (other tensor structures

will not appear in our application)

Gαα
′
(x) =

∑
µ

γαα
′

µ Gµ(x) + 1αα
′
Gm(x), (2.22)

ραα
′
(x) =

∑
µ

γαα
′

µ ρµ(x) + 1αα
′
ρm(x), (2.23)

such that

Gµ(x) =
1

4
tr γµG(x), Gm(x) =

1

4
trG(x), (2.24)

where the trace is over the Dirac indices, and similarly for ρµ,m.

Below we will specialise to zero spatial momentum, for which Gi and ρi vanish. It

is convenient to combine the two remaining components with the help of positive- and

negative-parity projectors (2.8) as

G±(x) = trP±G(x) = tr
〈
O±(x)O±(0)

〉
= 2 [Gm(x)±G4(x)] , (2.25)

ρ±(x) = trP±ρ(x) = tr
〈
{O±(x), O±(0)}

〉
= 2 [ρm(x)± ρ4(x)] , (2.26)

related via

G±(τ,p) =

∫ ∞
−∞

dω

2π
K(τ, ω)ρ±(ω,p). (2.27)

We will now prove a number of properties of ρ±(x) and ρ4,m(x).
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2.3 Positivity

We start with positivity: we will show3 that ±ρ±(p), ρ4(p) ≥ 0 for all ω, while ρm(p) does

not have a definite sign, even when restricting to ω ≷ 0.

Suppressing Dirac indices and using the KMS condition [37], valid in thermal equilib-

rium, we can write

ρ(p) = G>(p)−G<(p)
KMS
=
(

1 + e−p
0/T
)
G>(p)

=
(

1 + e−p
0/T
)∫

d4x e−ip·xG>(x), (2.28)

where G≶ are the usual Wightman functions [37],

G>(x− x′) =
〈
O(x)O(x′)

〉
, G<(x− x′) = −

〈
O(x′)O(x)

〉
. (2.29)

We first consider ρ4(p) and take the trace with γ4. This yields

ρ4(p) =
(

1 + e−p
0/T
)∫

d4x e−ip·x
1

4
tr
〈
O(x)O†(0)

〉
. (2.30)

To proceed, we use the Heisenberg representation O(x) = e−ix·KO(0)eix·K and insert com-

plete sets of eigenstates |n〉 of the translation operator Kµ (here K0 is the Hamiltonian

H with eigenvalues k0
n). Recalling that the expectation value denotes the thermal average

with Boltzmann weight e−H/T /Z, we find, after some rearrangement,

ρ4(p) =
1

Z

(
1 + e−p

0/T
)∑
n,m

e−k
0
n/T

1

4
tr |〈n|O(0)|m〉|2

∫
d4x e−i(p+kn−km)·x

=
1

Z

∑
n,m,α

(
e−k

0
n/T + e−k

0
m/T

) 1

4
|〈n|Oα(0)|m〉|2 (2π)4δ(4)(p+ kn − km), (2.31)

where we have written the Dirac index α explicitly again. It is easy to see that the terms

added within the summation are nonnegative and hence we arrive at positivity: ρ4(p) ≥ 0

for all p.

Next we consider ρ±(p) and take the trace with P±. We now encounter

trP±O(x)O(0) = ±trO±(x)O†±(0), (2.32)

where we used γ4 = P+ − P−, P 2
± = P±, P+P− = 0, cyclicity of the trace, and eq. (2.8).

Proceeding as above then yields

ρ±(p) =
±1

Z

∑
n,m,α

(
e−k

0
n/T + e−k

0
m/T

) ∣∣〈n|Oα±(0)|m〉
∣∣2 (2π)4δ(4)(p+ kn − km), (2.33)

i.e. we find positivity of the spectral functions ±ρ±(p) ≥ 0 for all p.

Positivity of ρ4(p) also follows from ρ4(p) = [ρ+(p)− ρ−(p)]/4 ≥ 0; on the other hand,

ρm(p) = [ρ+(p) + ρ−(p)]/4 does not have a definite sign and is indeed not sign-definite for

ω ≷ 0, already at leading order in perturbation theory [42, 43].

3Note that we use the notation p = (p0,p) with p0 = ω.
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To contrast, we note that for bosonic operators the spectral decomposition takes the

form as above, but with a minus sign between the two thermal factors [37]. In addition, if

the operator satisfies J† = ±J ,4 it follows that the corresponding spectral function ρB(p)

is odd under ω → −ω, and ωρB(ω,p) ≥ 0. This can be seen by swapping n ↔ m in the

summation. For the fermionic operators we consider here, this argument does not apply,

since O† 6= ±O. Hence in general fermionic spectral functions are neither even nor odd.

2.4 Charge conjugation

Next we relate, in the case of vanishing baryon chemical potential (or baryon density),

positive- and negative-parity correlators and spectral functions, i.e. we show that

G±(τ,p) = −G∓(1/T − τ,p), ρ±(−ω,p) = −ρ∓(ω,p). (2.34)

We follow ref. [46], where this is demonstrated at the level of the single-quark prop-

agator. Here we consider baryonic (or fermionic in general) operators, transforming

under charge conjugation as in eq. (2.11). We assume isotropy, i.e. invariance under

p→ −p, throughout.

The time-ordered correlation function is given by

Gαα
′
(x− x′) =

〈
Tτ

[
Oα(x)O

α′
(x′)

]〉
, (2.35)

with the imaginary-time-ordered product

Tτ

[
A(τ)B(τ ′)

]
≡ θ(τ − τ ′)A(τ)B(τ ′)± θ(τ ′ − τ)B(τ ′)A(τ). (2.36)

Here the minus (plus) sign applies to fermionic (bosonic) operators.

At zero chemical potential, thermal expectation values are invariant under charge

conjugation. We hence find, suppressing Dirac indices,

G(x− x′) =
〈
Tτ

[
CO(x)O(x′)C−1

]〉
=
〈

Tτ

[
O(c)(x)O

(c)
(x′)

]〉
= −

〈
Tτ

[
C−1O

T

(x)O
T

(x′)C
]〉

=
〈
C−1Tτ

[(
O(x′)O(x)

)T ]
C
〉

= C−1G
T
(x′ − x)C. (2.37)

From now on we take x = (τ,x), x′ = (0,x′), with 0 < τ < 1/T . Using the cyclicity of

thermal expectation values [37] then gives

G(x′ − x) = G(−τ,x′ − x) = −G(1/T − τ,x′ − x). (2.38)

Applying this to eq. (2.37), we find, in momentum space,

G(τ,p) = −C−1G
T
(1/T − τ,p)C. (2.39)

4This is e.g. the case for mesonic operators of the form J = ψ̄Γψ, where Γ is a Dirac matrix selecting

the channel, since J† = ψ̄γ4Γ†γ4ψ = ±J [44, 45].
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We can now take the trace with P±, which yields

G±(τ,p) = trP±G(τ,p) = −trP±C−1G
T
(1/T − τ,p)C

= −tr (CP±C−1)
T
G(1/T − τ,p) = −trP∓G(1/T − τ,p)

= −G∓(1/T − τ,p) (2.40)

where we used that

(CP±C−1)
T

= P∓. (2.41)

We have now demonstrated the first relation in eq. (2.34). The second relation immediately

follows, when using the integral relations (2.27) as well as the property (2.18). Physically

it reflects that positive-parity states propagate forward in euclidean time, when using G+,

and backward in time when using G−, and vice versa for negative-parity states. In terms of

spectral functions, this relates the positive part of the spectrum of ρ+ with the negative part

of ρ−, and again vice versa. Explicitly, if the spectrum is dominated by single groundstates

with masses m±, this implies

±G±(τ) = A±e−m±τ +A∓e−m∓(1/T−τ). (2.42)

Using the relation ρ±(−p) = −ρ∓(p), we can subsequently note that

ρ4(p) =
1

4
[ρ+(p)− ρ−(p)] =

1

4
[ρ+(p) + ρ+(−p)] , (2.43)

ρm(p) =
1

4
[ρ+(p) + ρ−(p)] =

1

4
[ρ+(p)− ρ+(−p)] , (2.44)

and hence these are even, respectively odd under ω → −ω. Their spectral relations hence

involve the even and odd kernels Ke,o(τ, ω) respectively, see eq. ( 2.20). We remark that

this only holds when there is no net density, i.e. when the density matrix is invariant under

charge conjugation.

2.5 Chiral symmetry and parity doubling

The final relations we derive are for the case of unbroken chiral symmetry. Here we work in

the harmonious world of thermal field theory in which chiral symmetry is simply expressed

as {γ5, G} = 0, sidestepping momentarily the issues related to chiral symmetry in realistic

lattice QCD computations, to be discussed below.

From the anti-commutation relation of the correlator with γ5, it immediately fol-

lows that

Gm(x) = ρm(x) = 0, (2.45)

and hence

G+(τ,p) = −G−(τ,p) = G+(1/T − τ,p) = 2G4(τ,p), (2.46)

ρ+(p) = −ρ−(p) = ρ+(−p) = 2ρ4(p). (2.47)

– 8 –



J
H
E
P
0
6
(
2
0
1
7
)
0
3
4

These relations imply that the lattice correlators are symmetric around the centre of lattice

(τ = 1/2T ), the spectral functions are even functions in ω and that identical spectral

information is contained in ρ±(p). We refer to this as parity doubling. We emphasise that

any of these signatures are equivalent statements of parity doubling.

An alternative proof for two massless flavours goes as follows [38]. When chiral sym-

metry is unbroken, i.e. the quarks are massless and chiral symmetry is not broken spon-

taneously, the theory is unchanged when the following chiral rotation is performed on the

quark fields,

ψ → exp(iαγ5T3)ψ, ψ̄ → ψ̄ exp(iαγ5T3), (2.48)

where ψ = (u, d)T and T3 = σ3/2 acts in flavour-space. Choosing α = π, we get distinct

chiral transformations on the spinor fields:

u→ iγ5u, ū→ iūγ5, d→ −iγ5d, d̄→ −id̄γ5. (2.49)

It is then easy to check that the N and ∆ operators, see eqs. (2.2), (2.3), transform as

ON → iγ5ON , O∆ → −iγ5O∆, (2.50)

and hence

ON± = P±ON → iγ5O
N
∓ , O∆

± = P±O∆ → −iγ5O
∆
∓ . (2.51)

In both channels the correlator then transforms as

G±(x) = tr
〈
O±(x)O±(0)

〉
→ −tr

〈
O∓(x)O∓(0)

〉
= −G∓(x), (2.52)

which was to be shown.

2.6 Nonzero chemical potential

For completeness, we indicate here how the properties derived above are modified in pres-

ence of a nonzero baryon chemical potential µ, such that the Hamiltonian in the Boltzmann

weight is changed from H → H − µQ, with Q the baryon number.

First we consider positivity. Following the same steps as in section 2.3, in which

the KMS condition (2.31) is modified as p0 → p0 − µ, and using that the states |n〉 are

simultaneous eigenstates of H and Q (with eigenvalues qn), we arrive at

ρ4(p) =
1

Z

∑
n,m

(
e−(k0n−µqn)/T + e−(k0m−µqm)/T

)
×1

4
tr |〈n|O(0)|m〉|2 (2π)4δ(4)(p+ kn − km), (2.53)

and similar for ρ±(p). Hence positivity holds, as before.

At nonzero chemical potential, the density matrix is not invariant under charge con-

jugation, since baryon number changes sign. Therefore invariance is obtained by simulta-

neously changing µ→ −µ, which yields the relations

G±(τ,p;µ) = −G∓(1/T − τ,p;−µ), (2.54)

ρ±(−ω,p;µ) = −ρ∓(ω,p;−µ). (2.55)

– 9 –



J
H
E
P
0
6
(
2
0
1
7
)
0
3
4

Ns Nτ T [MeV] T/Tc Nsrc Ncfg

24 128 44 0.24 16 139

24 40 141 0.76 4 501

24 36 156 0.84 4 501

24 32 176 0.95 2 1000

24 28 201 1.09 2 1001

24 24 235 1.27 2 1001

24 20 281 1.52 2 1000

24 16 352 1.90 2 1001

Table 1. Ensembles used in this work. The lattice size is N3
s × Nτ , with the temperature

T = 1/(aτNτ ). The available statistics for each ensemble is Ncfg ×Nsrc. The sources were chosen

randomly in the four-dimensional lattice. The spatial lattice spacing as = 0.1227(8) fm, the inverse

temporal lattice spacing a−1
τ = 5.63(4) GeV, and the renormalised anisotropy ξ = as/aτ = 3.5.

G4,m are then no longer (anti)symmetric around τ = 1/2T , but satisfy instead

G4(1/T − τ,p;µ) = G4(τ,p;−µ), (2.56)

Gm(1/T − τ,p;µ) = −Gm(τ,p;−µ). (2.57)

Again explicitly, if the spectrum is dominated by single groundstates, eq. (2.42) is modi-

fied as

G+(τ ;µ) = A+(µ)e−(m+−µ)τ +A−(−µ)e−(m−+µ)(1/T−τ), (2.58)

−G−(τ ;µ) = A−(µ)e−(m−−µ)τ +A+(−µ)e−(m++µ)(1/T−τ). (2.59)

Finally, in the case of unbroken chiral symmetry, Gm(x) = ρm(x) = 0 still holds and

G+(τ,p;µ) = −G−(τ,p;µ) = G+(1/T − τ,p;−µ) = 2G4(τ,p;µ), (2.60)

ρ+(p;µ) = −ρ−(p;µ) = ρ+(−p;−µ) = 2ρ4(p;µ). (2.61)

3 Lattice setup

We have computed baryon correlators using the thermal ensembles of the FASTSUM collab-

oration [15, 16, 27]. These ensembles are generated with 2 + 1 flavours of Wilson fermions

on an anisotropic lattice, with a smaller temporal lattice spacing, aτ < as; the renor-

malised anisotropy is ξ ≡ as/aτ = 3.5. The lattice action used is the Symanzik-improved

anisotropic gauge action with tree-level mean-field coefficients and a mean-field-improved

Wilson-clover fermion action with stout-smeared links and follows the Hadron Spectrum

Collaboration [47]. Details of the action and parameter values can be found in refs. [16, 27].

The choice of masses for the degenerate u and d quarks yields a pion with a mass of

Mπ = 384(4) MeV [48], which is heavier than in nature, while the strange quark has been

tuned to its physical value. Configurations and correlation functions have been generated

using the CHROMA software package [40], via the SSE optimizations when possible [49].
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We use a fixed-scale approach, in which the temperature is varied by changing Nτ ,

according to T = 1/(aτNτ ). Table 1 gives an overview of the ensembles. Access to

the “zero-temperature” configurations (Nτ = 128) has been kindly provided to us by

the Hadron Spectrum Collaboration. An estimate for the pseudo-critical temperature,

Tc = 185(4) MeV, follows from an analysis of the renormalized Polyakov loop [16] and is

higher than in nature, due to the large pion mass. Note that there are four ensembles in

the hadronic phase and four in the quark-gluon plasma.

Concerning the baryonic correlators, Gaussian smearing [50] has been employed to

increase the overlap with the groundstate. In order to have a positive spectral weight, we

apply the smearing on both source and sink, i.e.,

ψ′ =
1

A
(1 + κH)n ψ, (3.1)

where A is a normalisation factor and H is the spatial hopping part of the Dirac operator.

The hopping term contains APE smeared links [51] using α = 1.33 and one iteration. We

tuned the parameters to the values n = 60 and κ = 4.2, by maximising the length of the

plateau for the effective mass of the groundstate at the lowest temperature. Smearing is

applied only in the spatial directions, equally to all temperatures and ensembles.

4 Thermal baryon correlators

In this section we present the results for the baryon correlators at all temperatures. Based

on the determination of the pseudo-critical temperature Tc via the renormalised Polyakov

loop, the discussion is organised in terms of the hadronic gas (T < Tc) and the quark-gluon

plasma (T > Tc). Since the transition is a crossover, it is not immediately obvious at which

temperatures light and strange baryons cease to exist.5 However, below we will find clear

indications that the baryonic bound states are absent at T/Tc = 1.09, in the three channels

we consider.

4.1 Hadronic gas

We have computed the baryon two-point functions in the N , ∆ and Ω channels on the lattice

ensembles discussed above, at zero spatial momentum p = 0 (we drop the momentum labels

from now on). The results are shown in figure 1, at all the eight temperatures available. The

positive- and negative-parity channels are shown separately, i.e. the negative-parity channel

is obtained using eq. (2.34), and the correlators are normalised to the first Euclidean time

point, τ/aτ = 1, Nτ − 1 respectively, such that

G+(τ) =
G+(τ)

〈G+(aτ )〉 , G−(τ) =
G+(Nτaτ − τ)

〈G+(Nτaτ − aτ )〉 . (4.1)

At low temperatures (open symbols), the correlators show exponential decay, indi-

cating the presence of a well-defined groundstate. As the temperature is increased, some

temperature dependence on the positive-parity side is observed, but considerably more

5We remind the reader that the temperatures closest to Tc are T/Tc = 0.95 and 1.09.
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Figure 1. Correlators G(τ) for the positive- and negative-parity channels at different temperatures,

in the N , ∆ and Ω sectors, on a logarithmic scale
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temperature dependence is visible on the negative-parity side. The correlators naturally

bend upwards around the minima, which are, however, not in the centre of the lattice

(τ/aτ = Nτ/2), due to the absence of parity doubling, see e.g. eq. (2.42). Above Tc (filled

symbols), the correlators appear to drop slower than exponential, indicating the absence

of a well-separated groundstate.

To analyse this quantitatively, we have fitted the correlators to a combination of simple

exponentials, see eq. (2.42),

G+(τ) = A+e
−m+τ +A−e−m−(1/T−τ), (4.2)

with m± the groundstate masses in both parity channels. While figure 1 shows the positive-

and negative-parity channels separately, the fit is carried out to the correlator G+(τ) in

one go. Around the minimum of the correlator, one might become susceptible to signal-

to-noise problems, but we found this to be relevant at the lowest temperature only. Here

we excluded points around the minimum of the correlators from the analysis, based on

the quality of the fit and error analysis.6 In order to estimate the systematic uncertainties

of the four fit parameters, we have considered various Euclidean time intervals and, to

suppress contributions from excited states, we have excluded very small times. We used

the so-called Extended Frequentist Method [52, 53] to carry out the statistical analysis:

this method considers all possible variations and weighs the final results according to the

obtained p-value, which measures how extreme an outcome is, see refs. [52, 53] for more

details. In the confined phase we found that it is possible to extract the mass parameters

m±, whereas above Tc the exponential fits are no longer adequate, as can be expected in

the deconfined phase (see below).

Table 2 lists the results for the masses m± in all three channels, at the four temperatures

below Tc. The results are shown in units of MeV, using the estimate for the temporal

lattice of a−1
τ = 5.63(4) GeV [47]. Also shown are the PDG [54] values at T = 0. Since our

light quarks are heavier than in nature, the groundstate masses in the N and ∆ channels

at the lowest temperature are larger as well. The splitting between the positive- and

negative-parity groundstate masses, denoted with δm, is of the right order, however. The

strange quark mass is tuned to the physical value [48] and the result for the Ω+ mass

is consistent with the PDG value (within errors). Surprisingly, the Ω− particle has not

been unambiguously identified in the PDG and there are three candidates. The value we

obtain at T = 0.24Tc seems to favour the candidate with the lowest mass, but a systematic

analysis (continuum extrapolation and physical u and d quarks) is necessary to make a

more stringent prediction. Our results for the spectrum at the lowest temperature are in

agreement with those of the HadSpec collaboration for the positive-parity states [48]; for

the negative-parity baryons the masses obtained in ref. [55] on a smaller spatial lattice (163

instead of 243) are somewhat lower, at the 2σ level.

As the temperature is increased, we find that the groundstate mass in the positive-

parity channels is largely unaffected by temperature; the deviation from the results at the

lowest temperature is always less than 5%. Very close to Tc, the values drops slightly

6For example, in the nucleon channel we included the intervals τ/aτ = 5 − 40, 105 − 124.
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T/Tc 0.24 0.76 0.84 0.95 PDG (T = 0)

mN
+ [MeV] 1159(13) 1192(39) 1169(53) 1104(40) 939

mN
− [MeV] 1778(52) 1628(104) 1425(94) 1348(83) 1535(10)

m∆
+ [MeV] 1459(58) 1521(43) 1449(42) 1377(37) 1232(2)

m∆
− [MeV] 2138(117) 1898(106) 1734(97) 1526(74) 1710(40)

mΩ
+ [MeV] 1661(21) 1723(32) 1685(37) 1606(43) 1672.4(0.3)

mΩ
− [MeV] 2193(30) 2092(91) 1863(76) 1576(66) 2250–2380–2470

δmN [MeV] 619(54) 436(111) 256(108) 244(92) 596(10)

δm∆ [MeV] 679(131) 377(114) 285(106) 149(83) 478(40)

δmΩ [MeV] 532(37) 369(96) 178(85) -30(79) 578–708–798

δN 0.211(19) 0.155(35) 0.099(40) 0.100(35) 0.241(1)

δ∆ 0.189(37) 0.110(31) 0.089(31) 0.051(28) 0.162(14)

δΩ 0.138(10) 0.097(23) 0.050(23) -0.009(25) 0.147–0.175–0.192

Table 2. Groundstate masses m± in both parity sectors in the N , ∆ and Ω channels below Tc.

Estimates for statistical and systematic uncertainties are included. The final column shows the

T = 0 values in nature [54]. Note that there are several candidates for mΩ
−. The difference δmN,∆,Ω

is defined as δm = m− −m+ and the dimensionless ratio δN,∆,Ω as δ = (m− −m+)/(m− +m+).
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Figure 2. Temperature dependence of m± of the N and ∆ (left, slightly shifted horizontally

for clarity) and Ω (right) baryon, below Tc. The masses are normalised by m+ at the lowest

temperature, T0 = 0.24Tc, in the channel under consideration.

below the ones at T/Tc = 0.24. This is further illustrated in figure 2, where the data are

plotted normalised by m+ at the lowest temperature, in the channel under consideration.

In the negative-parity channel we observe a stronger temperature dependence, which is

remarkably similar in all three channels. Already at 0.75Tc, the masses have dropped

noticeably (see again figure 2) and this trend continues towards Tc. Very close to Tc the

parity channels are nearly degenerate. This is further quantified by the dimensionless ratio

δ ≡ m− −m+

m− +m+
, (4.3)
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Figure 3. Groundstate masses in the positive- and negative-parity channels at all temperatures,

assuming the exponential decay of eq. (4.2), in the N (left) and Ω (right) channels.

also included in table 2. The smaller value of δΩ at all four temperatures is due to both

mΩ
+ being larger and δmΩ being smaller. Both of these effects are presumably due to

the s quark being heavier than the u and d quarks, which makes the contribution to the

groundstate mass due to chiral symmetry breaking less important in the Ω channel.

4.2 Quark-gluon plasma

We now turn to the temperatures above the deconfinement transition. To start, we have

considered the same analysis as above, using exponential fits, assuming that the hypothesis

of separated well-defined groundstates still holds. The results are shown in figure 3, in the N

and Ω channels. We observe a clear qualitative change when going from T/Tc = 0.95 to 1.09

(or reducing Nτ from 32 to 28). The error on the would-be groundstate masses, obtained

by combining systematic and statistical uncertainties, is substantially larger, which cannot

be simply explained by the reduction in the number of time slices used in the fits. This,

and other results presented below, lead us to conclude that bound states are absent at

T/Tc = 1.09, both for the light baryons and in the Ω channel. Hence even though the

transition is a crossover, we find that the spectrum changes rather drastically between 0.95

and 1.09Tc.

We hence focus on the signal for parity doubling, i.e. the emergent degeneracy in the

positive- and negative parity channels. Following ref. [32], we study the ratio

R(τ) =
G+(τ)−G+(1/T − τ)

G+(τ) +G+(1/T − τ)
, (4.4)

which approaches 1 in the case that separated groundstates dominate, with m− � m+, but

vanishes in the case of parity doubling. We have previously shown R(τ) for all temperatures

in the nucleon sector [35]. Here we present the outcome at two selected temperatures in

figure 4 in the N , ∆ and Ω channels. We note the clear qualitative and quantitative

difference: below Tc the ratio is significantly different from zero,7 while at the highest

temperature it is much smaller. It should be emphasised that if chiral symmetry is exactly

7We note that by construction R(τ) approaches zero at the centre of the lattice, τ/aτ = Nτ/2.
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Figure 4. Ratio R(τ) in the N , ∆ and Ω channels, at T/Tc = 0.76 (left) and 1.90 (right).
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Figure 5. Temperature dependence of R in the N , ∆ and Ω channels.

restored, complete degeneracy in the positive- and negative-parity channels is expected

and R(τ) = 0. In our lattice simulations such a clear signal cannot be expected for a

number of reasons. First of all we use Wilson fermions, which break chiral symmetry at

short distances. We have found that smearing suppresses these contributions, yielding a

better signal for parity doubling [35]. Moreover, the quarks are not massless, with the two

light flavours heavier than in nature. Hence this explicit symmetry breaking also affects

the signal. However, this is expected to become less important at higher temperature,

being suppressed as mq/T . The effect of the finite quark mass can be seen in the splitting

of R(τ) in figure 4 (right) between the N,∆ channels and the Ω channel at the highest

temperature; this is most likely due to the larger s quark mass.

In order to summarise the results for all temperatures, we show in figure 5 the

summed ratio

R ≡
∑Nτ/2−1

n=1 R(τn)/σ2(τn)∑Nτ/2−1
n=1 1/σ2(τn)

, (4.5)

where τn = aτn and σ(τn) are the statistical uncertainties, used as weights.
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temperatures, all normalised by G∆(0)/GN (0) at T/Tc = 1.90.

Assuming that m+ < m−, R lies between 0 and 1, with R = 0 corresponding to a

symmetric correlator and parity doubling. We observe clear crossover behaviour in all three

channels. The location of this transition is consistent with Tc, which has been determined by

an analysis of the renormalised Polyakov loop. Hence it is natural to associate the transition

with the approximate restoration of chiral symmetry in the quark-gluon plasma and to

interpret R as a quasi-order parameter. We also note that the effect is less pronounced in

the Ω channel, due to the larger s quark mass. It will therefore be interesting to study the

effect of strangeness on parity doubling. At the highest temperature available, R > 0 in

the Ω channel; it is expected that the effect of the quark mass will eventually disappear as

ms/T → 0.

The N and the ∆ baryon have the same quark content but different spin structure. In

the confined phase this results in the mass splittings listed in table 2. In the positive-parity

channel the mass splitting is of the order of 300 MeV at all four temperatures, consistent

with the PDG; in the negative-parity channel the mass difference is larger than in the

PDG, but so is the uncertainty. In the deconfined phase, however, the quarks are quasi-

free and the spin structure may become less important.8 To investigate this, we show in

figure 6 the logarithm of the ratio of the ∆ and N correlators. All ratios are normalised

by a single constant factor, G∆(0)/GN (0) at T/Tc = 1.90. As expected, this ratio is falling

exponentially below Tc, due to the (approximately constant) mass difference between the N

and the ∆ baryons (in both parity channels). Above Tc, however, we observe a flattening of

the ratio, approaching 1 at the highest temperature. We interpret this as an approximate

degeneracy in the N and ∆ channels at very high temperature, which would be of interest

to study further analytically. We also note the qualitative change in the ratio immediately

at T/Tc = 1.09, consistent with the observed changes in the spectrum.

8We thank Thomas Cohen for raising this question.
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5 Thermal baryon spectral functions

5.1 Results

The information in the thermal correlators discussed above is also present in the corre-

sponding spectral functions, via relation (2.27)

G±(τ) =

∫ ∞
−∞

dω

2π
K(τ, ω)ρ±(ω), K(τ, ω) =

e−ωτ

1 + e−ω/T
. (5.1)

As is well-known [56], a simple inversion of this type of relation, using numerically de-

termined correlators, is not possible. Hence we use the Maximum Entropy Method

MEM [56, 57], which extremises a combination of the standard likelihood (χ2) function,

determined by the data, and an entropy function,

S =

∫ ∞
−∞

dω

2π

[
ρ(ω)−m(ω)− ρ(ω) ln

ρ(ω)

m(ω)

]
, (5.2)

encoding prior knowledge, via the default model m(ω). The conditional probability to

be extremised is of the form exp(−1
2χ

2 + αS), with α a parameter balancing the relative

importance of the data and the prior knowledge. Both m(ω) and α are further discussed

below. In the past 15 years, this method, and related ones, have been used by a num-

ber of groups, mostly for mesonic correlators, i.e. charmonium, the dilepton rate and the

electrical conductivity, see e.g. refs. [13–24]. Applications to bottomonium, in which some

simplifications occur, can be found in refs. [25–28]. Here we give the first application

to baryons.

Generic details of our implementation can be found in previous work [13, 16, 25, 27].

Here we briefly mention some differences with the bosonic (mesonic) case. We are interested

in the spectrum for both positive and negative ω, since ρ−(ω) = −ρ+(−ω). Hence the

negative part of the spectrum of ρ+ informs us of ρ−, and vice versa. To bring the spectral

relation (5.1) to a numerically tractable form, we employ a cutoff −ωmax < ω < ωmax,

with aτωmax = 3.0 (ωmax = 16.9 GeV). The remaining finite interval is discretised using

Nω = 2000 bins. We have varied both ωmax and Nω to verify robustness. In the MEM

analysis we used all the euclidean-time points, except for the time slices closest to the source

and sink. At the lowest temperature, we have left out the points around the minimum of

the correlators; this will be further discussed below. As default model, we use a featureless

constant, m(ω) = m0, where the value of m0 is determined by a fit to the correlation

function using ρ(ω) = m0 in eq. (5.1). Above Tc we have fixed the default model to ensure

a similar normalisation for all temperatures. We come back to the choice of default model

below as well.

We now discuss the results. We have performed MEM on the normalised correlators

G+(τ)/(aτG+(τ = 0)) and denote the associated dimensionless spectral functions with

ρ̄(ω). We note that the normalisation only affects the vertical scale but not the ω de-

pendence. Figure 7 contains the spectral functions in the three channels below Tc (left)

and above Tc (right). Spectral information for the positive-parity channel can be found at

ω > 0, whereas ω < 0 refers to the negative-parity channel. Below Tc, the groundstate
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Figure 7. Spectral functions below (left) and above (right) Tc in the N (top), ∆ (centre) and Ω

(bottom) channels.
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peaks on the positive-parity side are clearly visible and their positions agree with m+, dis-

cussed in the previous section. Excited states are suppressed, due to the choice of smearing

parameters. Some broadening is observed as the temperature is increased, but given the

data and resolution, it is not clear whether this is a physical effect or due to the limitations

of MEM. The negative-parity groundstates are visible as well, but are considerably less

pronounced. The asymmetry between the positive- and negative-parity sides below Tc is,

however, clearly visible.

Above Tc, sharp groundstate peaks are no longer discernible. The broad peaks present

above Tc are most likely a combination of physical spectral features for deconfined quarks,

as seen at very high temperature in perturbation theory [42, 43], and lattice artefacts due

to the finite Brillouin zone, similar to in the mesonic case. To make this statement more

quantitative would require a repetition of the calculation on finer lattices, which is one of

our future aims. Nevertheless, parity doubling manifests itself as ρ+(ω) = ρ+(−ω), see

eq. (2.47). Hence the most important feature here is the emerging symmetry between the

positive- and negative-parity sides as the temperature is increased. This is clearly visible

for the N and ∆ channels, in which the position and height of the main features become

comparable at positive and negative ω. On the other hand, parity doubling is not yet

complete in the Ω channel, as the positive-parity side is still enhanced. Nevertheless, the

difference with spectral functions in the confined phase is manifest. This is consistent with

the analysis of the correlators above. We note that in these plots we have not shown error

bands for clarity; these will be discussed below.

The combined results in all three channels are shown in figure 8, at the lowest (left) and

highest (right) temperature. The difference between the spectral functions in the confined

and deconfined phase is clear. We also note that below Tc the negative-parity state is best

visible in the nucleon sector.
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Figure 9. Default model dependence in the nucleon channel at T/Tc = 0.76 (left) and 1.52 (right).

For clarity error bands are shown for one default model only.

5.2 Default model and operator dependence

We now discuss some systematic effects in the construction of the spectral functions. We

start with the default model dependence. The results above were obtained with a flat

default model, m(ω) = m0. We have also used m(ω) = m0|ω| and m(ω) = m0|ω|3, where

in each case m0 is determined by a fit to the correlation function. The absolute value

ensures positivity. In the continuum theory at leading order in weak coupling [42, 43], the

spectral functions increase as |ω|5 for large |ω| � T,mq, but this behaviour is modified

on a finite lattice [42, 43]. Results are shown in figure 9. The error band indicates the

variation with the α parameter using Bryan’s method [57] and is shown for one default

model only, for clarity. We observe that even though the default models are widely different,

the resulting spectral functions are consistent within the uncertainty. The second peaks in

the confined phase at both ω > 0 and ω < 0 are presumably a combination of excited states

and lattice artefacts. Whether a structure is due to a finite lattice cutoff or represents a

physical feature can ultimately be tested by repeating the computation at smaller lattice

spacings. One may also test the robustness with regard to the operators used, to which we

turn now.

The dependence on the operator and the amount of smearing requires some discussion.

In previous studies in the mesonic sector, it has been common to use a fixed local oper-

ator of the form ψ̄Γψ, without smearing.9 Locality is well motivated when the problem

under investigation is related to a symmetry, such as electromagnetism (electrical con-

ductivity, charge diffusion, dilepton production) and in refs. [15, 16] the conductivity and

charge diffusion coefficient were determined using the exactly conserved lattice vector cur-

rent. For spectral questions at zero temperature, smearing and optimised operators aim

to increase the overlap with the ground (or other) state, in such a way that the spectrum

remains invariant, but spectral weight is redistributed. On the other hand, at finite tem-

9For charmonium, smearing has been employed in ref. [19].
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Figure 10. Operator dependence in the nucleon channel at T/Tc = 0.76 (left) and 1.52 (right), in

the correlators (above) and the corresponding spectral functions (below). For clarity, error bands

are shown for operator 4 only.

perature, where spectral functions are broadened and bound states eventually dissolve,

spectral weight will potentially be nonzero at all energies. It is then less clear which fea-

tures of the spectral function are invariant (and reflect the underlying physics) and which

are e.g. operator dependent.

Smearing was already discussed to some extent in ref. [33]. Here we study the role of

different operators. We focus on the nucleon, with the interpolator chosen to be

OαN (x) = εabcu
α
a (x)

(
d
T

b (x)CYnuc(x)
)
, (5.3)

where n = 4, 5, 6 and operators Y4 = γ5, Y5 = γ4γ5 and Y6 = 1
2(Y4 +Y5) (this nomenclature

follows Chroma [40]). Note that in the main part of the paper we have used operator Y4.

The operator dependence is shown in figure 10 for two temperatures. We observe that the

correlators depend on the operator, as expected, since the overlap with ground- and excited

states will differ. This manifests itself e.g. in the skewness of the correlator below Tc, while

at high temperature approximate parity doubling is visible for all three operators. Below

Tc, we can quantify the spectral properties more precisely by comparing the masses mN
±
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T/Tc operator 4 5 6

0.24 mN
+ [MeV] 1157(13) 1156(13) 1156(13)

mN
− [MeV] 1779(52) 1824(48) 1934(101)

0.76 mN
+ [MeV] 1192(39) 1190(45) 1212(47)

mN
− [MeV] 1628(104) 1698(106) 1548(201)

Table 3. Operator dependence of mN
± at T/Tc = 0.24, 0.76.

from exponential fits, see table 3. We observe that the positive-parity mass mN
+ is stable

and consistent within the error. The negative-parity mass mN
− is consistent for operator

4 and 5, while for operator 6 the error is twice as large. This can be explained by noting

that in figure 10 (top, left) the correlator is most skewed for operator 6, which leads to the

smallest temporal range available on the negative-parity side, which is then reflected in the

larger uncertainty.

Figure 10 (bottom) shows the corresponding spectral functions, where at T/Tc = 0.76

we observe groundstate peaks on the positive-parity side for all three operators. The

position of the second peak at ω > 0 depends on the operator used; hence no physical

relevance can be assigned to it. On the negative-parity side the overlap with the groundstate

is less pronounced. In particular operator 6 seems to have especially poor overlap with low-

energy features on the negative-parity side. Just as above, this finding can be understood

from the asymmetric shape of the correlator: the number of data points available for MEM

is very limited. At T/Tc = 1.52, the approximate symmetry between the two parity sides

is emerging, with the positive side still slightly enhanced, for all three operators. The fact

that the overall area under the spectral curves appears different is related to the choice

of normalisation. Yet the emerging symmetry, i.e. parity doubling, is present in all three

cases, independent of the operator.

At the lowest temperature, we left out the points around the minimum of the correla-

tors, both in the mass fits and the spectral function analysis, to handle a (mild) signal-to-

noise problem. The effect of choosing various time ranges in the MEM analysis is shown

in figure 11 (left). For both ranges the groundstates are clearly distinguishable and in

agreement, while differences appear for the possible excited states, which is as expected.

In the results presented above, smearing was used to single out the groundstate at

low temperature and suppress contributions from highly excited states at all temperatures.

As a final result we show in figure 11 (right) the spectral function obtained at the lowest

temperature in the nucleon channel, using local sources and sinks, i.e. without smearing.

We observe a large contribution at higher energy, which is however not related to the low-

energy states discussed above. The groundstate in the positive-parity channel is in fact still

visible, as indicated in the inset, albeit much suppressed. When taken at face value, the

mass is larger than found above, which is presumably due to the difficulty of extracting a

signal from the local correlator. This figure therefore indicates the importance of smearing

in this analysis, from a spectral function point of view.

In conclusion, we find that smearing and the choice of operator affects the correlators

and hence the associated spectral functions at all temperatures. This is expected. At zero
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Figure 11. Nucleon spectral function at T/Tc = 0.24. Left: dependence on the time range used

in the MEM analysis; τ/aτ = [20, 34]∪ [106, 119] for range 1 and τ/aτ = [6, 66]∪ [90, 126] for range

2. Right: result obtained without smearing, using operator 4 as local sources and sinks. The inset

shows a blow-up around the positive-parity groundstate.

temperature, the masses of the groundstates are stable against these variations, as long as

the groundstates are clearly identifiable. At nonzero temperature, the information gleaned

from spectral functions is at a more qualitative level. Nevertheless, the conclusions drawn

from the correlators and spectral functions are in agreement.

6 Conclusion

We studied the fate of the N , ∆ and Ω baryons as the temperature is increased, using

simulations with Nf = 2+1 flavours of light quarks on anisotropic lattices. In the hadronic

phase, we observed a strong temperature dependence of the groundstate masses for the

negative-parity baryons, while the masses of the positive-parity baryons are stable up to

the deconfinement transition. The temperature dependence is such that the positive- and

negative-parity groundstates become approximately degenerate close to this transition.

Degeneracy, i.e. parity doubling, is expected to coincide with chiral symmetry restoration

and hence the transition from the hadronic to the quark-gluon plasma, but the precise

manner in which this occurs is not known a priori. It would therefore be interesting to

compare and contrast our nonperturbative predictions with model approaches, such as

those discussed in refs. [58–66], to reach further insight and understanding.

In the deconfined phase, we found strong indications that the light baryons no longer

exist. Here we study parity doubling directly from an analysis of the correlators, using

the R parameter (4.5), relating the positive- and negative-parity channels. We find a clear

signal for the emergence of parity doubling, with the R parameter acting as a quasi-order

parameter. In the case of the Ω baryon, with the heavier s quark, we find that parity

doubling is not yet fully realised for the temperatures we considered. The effect of the

quark mass is expected to vanish at higher temperatures, as mq/T → 0.
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The conclusions from the correlator analysis are supported by the results obtained from

the associated spectral functions. In the baryonic sector in vacuo, it is well understood that

smearing and the use of optimised operators are essential to find clear signals for the ground-

and other states. At finite temperature, with nonzero spectral weight at all energies, it is

not immediately clear how to proceed with smearing and operator choice. In this paper we

choose to optimise the smearing parameters and operators at zero temperature and keep

them fixed as the temperature increases. With this prescription we found it is possible

to obtain quantitative results from the correlator analysis and qualitative insight from the

spectral functions, which are mutually consistent. It would be interesting to consider this

question further and e.g. employ variational bases, widely used in vacuum, also at finite

temperature, as suggested in ref. [67].

As an outlook, there are various directions in which this study can be taken further,

in addition to those mentioned above. From the viewpoint of lattice QCD, an important

role is played by chiral symmetry. Since the Wilson-clover quarks employed here break

chiral symmetry at short distances (and the two light flavours are still somewhat heavy), it

would be interesting to repeat this calculation with manifestly chiral (domain wall/overlap)

fermions. The signal for parity doubling should then be easily visible in the correlators,

without the need to suppress short-distance contributions. A physical question is related

to the role of strangeness, since a finite s quark mass breaks chiral symmetry explicitly.

For the Ω baryon, we indeed observed the effect of the strange quark mass in the signal

for parity doubling, but a more comprehensive study of strange baryons would enlighten

this further. Finally, we observed strong in-medium effects for the negative-parity baryons

in the hadronic phase. It would hence be interesting to investigate whether and how this

affects heavy-ion phenomenology, e.g. in the context of the hadron resonance gas or the

statistical hadronisation model [68].
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