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Within the past decade, microbiologists have moved from detecting single antibiotic resistance genes (ARGs) to
detecting all known resistance genes within a sample due to advances in next generation sequencing. This has
provided a wealth of data on the variation and relative abundances of ARGs present in a total bacterial population.
However, to use these data in terms of therapy or risk to patients, they must be analyzed in the context of the
background microbiome. Using a quantitative PCR ARG chip and 16S rRNA amplicon sequencing, we have
sought to identify the ARGs and bacteria present in a fecal sample of a healthy adult using genomic tools. Of the
42 ARGs detected, 12 fitted into the ResConl category of ARGs: c¢fxA, cphA, bacA, sul3, aadE, blatem, aphAl,
aphA3, aph(2’)-1d, aacA/aphd, catAl, and vanC. Therefore, we describe these 12 genes as the core resistome of
this person’s fecal microbiome and the remaining 30 ARGs as descriptors of the microbial population within the
fecal microbiome. The dominant phyla and genera agree with those previously detected in the greatest abundances
in fecal samples of healthy humans. The majority of the ARGs detected were associated with the presence of
specific bacterial taxa, which were confirmed using microbiome analysis. We acknowledge the limitations of the
data in the context of the limited sample set. However, the principle of combining qPCR and microbiome analysis
was shown to be helpful to identify the association of the ARGs with specific taxa.
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Introduction The aims of this study were to identify and measure the
relative abundances of ARGs and bacteria present in a fecal
sample of a healthy adult using molecular biology tools. As
we move further toward genomic analysis of ARGs and

bacteria, we must generate guidelines for the interpretation

To MINIMIZE THE BURDEN of antibiotic resistance and to
identify the areas of greatest risk to human health, we
must understand how antibiotic resistance genes (ARGs)
selection and proliferation occur in a complex bacterial

system such as the human gut microbiome. There is not yet
a consensus on the selection of ARGs and bacterial changes
required for the proliferation of ARGs and increases in ARG
abundances in complex bacterial populations.' To under-
stand the influence of antibiotics on mixed complex popula-
tions, such as the gut microbiome, we must first identify and
understand the background or baseline resistance genes and
intrinsic resistance mechanisms present in the human gut
bacteria. Only then can we identify the risks and potential
pathways of ARG transfer from the gut microflora to patho-
genic bacteria. If an ARG identified in the gut microbiome is
present on the chromosome of an anaerobe, it does not pose
the same risk to the treatment of a patient as if the same gene
is present on a highly mobile plasmid. Thus, the genes must
be identified in their bacterial or microbiome context.

of the data generated. To do this, we must understand which
bacteria and ARGs are present in the healthy human and
then what constitutes a risk to the treatment of a patient in
terms of likelihood of transfer to pathogenic bacteria.

Materials and Methods
Sample preparation and DNA extraction

A fecal sample was collected from a healthy adult who had
taken no antibiotics in the previous 2 years. It was immedi-
ately homogenized and 0.6 g was added directly to the Mo-
Bio™ Power Soil® DNA isolation kit tube in step one of the
protocol. The DNA was extracted using the kit protocol.
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experimental protocols (application reference number
BRSERC-2014-007). All methods were performed in ac-
cordance with ethical guidelines and regulations. Written
informed consent was obtained from the subject.

16S rRNA amplicon sequencing

The V3 and V4 regions of the 16S rRNA genes were am-
plified and sequenced using the Illumina MiSeq® primers and
protocol.” A 2x 150 paired-end configuration was used for
sequencing. The image analysis and base calling were pro-
cessed using MiSeq Control Software. The data were quality
control checked and trimmed and analyzed initially using the
Tlumina BaseSpace app.'® The sequencing data were processed
using Quantitative Insights Into Microbial Ecology version
1.5.0."' Shannon diversity, collectors curve, and Chao-1 were
used to determine the evenness of the 16S rRNA results.'

ARG relative abundance (qQPCR)

DNA extracted from the fecal samples was used to analyze
the relative abundances of the ARGs using a highly parallel
quantitative PCR (qPCR) platform (Wafergen Smartchip).'?
The samples analyzed comprised three biological replicates for
each sample and three technical replicates of each biological
replicate. The samples were analyzed for the relative abun-
dance of 384 primer sets targeting known ARGs and mobile
genetic elements (Supplementary Table S1; Supplementary
Data are available online at www.liebertpub.com/mdr). The C;
values of each primer pair were normalized using the 16S
rRNA gene values (deltaC,=CARG—C16SrRNA). Results
with a C, value of >28 were removed. The deltaC, values and
fold change were calculated according to Relative Gene Ex-
pression Data Using Real-Time Quantitative PCR and the
deltadeltaC, method.'* The SmartChip has been validated by
comparison with metagenomics.'?

Results
ARG resistome

Forty-two different ARGs (plus six mobile elements and two
repressor genes) were detected in the fecal sample (Table 1).
Using the definitions of ARGs provided by Martinez et al.
would exclude efflux genes, ampC genes, the erythromycin
resistance genes, and the tetracycline resistance genes as these
are not considered ARGs from an ecological viewpoint.'® The
erythromycin and tetracycline resistance genes are frequently
identified on the chromosomes of anaerobes commonly found
in the human gut microbiome and are not considered to confer
resistance in these bacteria. Their presence identified the bac-
teria harboring these genes, rather than a resistance reservoir.
Of the 42 ARGs detected, 12 fitted into the ResConl category
of ARGs as defined by Martinez er al.'® These were ARGs
¢fXA, cphA, bacA, sul3, aadE, aphAl, aphA3, aph(2’)-1d, aacA/
aphd, blatgy, catAl, and vanC. Therefore, we describe these
12 genes as the core resistome of this person’s fecal micro-
biome and the remaining 30 ARGs as descriptors of the mi-
crobial population within the fecal microbiome.

Relative abundances of genes

The relative abundances of each ARG were determined by
comparison with the 16S rRNA gene abundance. This en-
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sured that variations in DNA quantities were not responsible
for variations in the ARG abundances in the sample (Ta-
ble 1). The genes with the highest relative abundances
comprised mobile genetic elements (insertion sequences and
transposases), tetracycline and erythromycin resistance genes
associated with the anaerobes present in the human gut mi-
crobiome, and the cfxA beta-lactamase gene. The genes de-
tected in the lowest relative abundances comprised efflux
genes (tetC, ceoA, and tetB), a tetracycline resistance gene
regulator (fetR), vanC, mobile genetic elements (IncN and
pNI105), beta-lactamase (blatgy;), aminoglycoside (aacA/
aphd), and chloramphenicol (catAl) resistance genes.

Bacterial community analysis using 16S rRNA
gene amplicon sequencing

Microbial composition. The phyla, which constituted the
taxa at >1% within the 89303 OTU sequence reads, that
passed the quality control filtering comprised Firmicutes
(66%), Bacteroidetes (28%), Proteobacteria (2.5%), un-
classified (1.5%), and Actinobacteria (1.2%). The dominant
phyla are consistent with previous findings.'® Within these
phyla, the taxa were spread across 32 classes, with 6 of those
representing >1% relative abundances: Clostridia (65%),
Bacteroidia (20%), Flavobacteria (7.3%), unclassified (2%),
Actinobacteria (1.2%), and Bacilli (1%). The classes were
subdivided into 68 orders with Clostridiales (64%), Bacteroi-
dales (20%), Flavobactriales (7.3%), and unclassified (2.3%),
representing those at >1%. The families within the micro-
biome (n=143) at >1% were represented by Lachnospiraceae
(32%), Ruminococcaceae (25%), Bacteroidaceae (11%), Fla-
vobacteriaceae (7.3%), unclassified (4.6%), Clostridiaceae
(3.8%), Paraprevotellaceae (3.7%), Odoribacteraceae (2.7%),
Porphyromonadaceae (2.2%), and Eubacteriaceae (1.6%). A
total of 263 different genera were represented in the fecal
microbiome and those with >1% relative abundance com-
prised 19 different genera (including unclassified), which re-
presented 90% of the total microbiome composition (Table 2).
Dominant genera also agree with those previously detected in
the greatest abundances in fecal samples of a healthy human.'”
Although correlations between bacterial phylogenies and an-
tibiotic resistomes have been reported by Pehrsson et al., this
was using diverse habitats.'®

Discussion

In a mixed bacterial population, such as human feces,
bacteria are present that contain ARGs either on their
chromosomes or on mobile elements. These bacteria are
maintained within the fecal population due to their roles,
regardless of the ARG or selective antibiotic pressures. With
advances in next generation sequencing (NGS) came studies
measuring the influences of antibiotics on complex bacterial
populations and their total antibiotic resistomes, such as the
human gut microbiome.'™® However, to identify the changes
occurring within a population of bacteria, we must first
identify the ARGs present in the natural fecal bacterial
population, independent of selective pressure. With reduced
cost and increased capacity, NGS has become a potential
tool for the identification of ARGs and pathogens directly
from patients. In order for such technology to function, one
must understand the difference between carriage and se-
lection of bacterial species and ARGs. This study aimed to
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TABLE 1. RELATIVE ABUNDANCES OF ANTIBIOTIC RESISTANCE GENES DETECTED USING THE QUANTITATIVE PCR CHip

Standard Relative Example of
deviation abundances fecal bacteria Family
Antibiotic Average of Ct ranked high harboring gene present
Primer name Role class Ct value  values to low on chromosome in sample
16S rRNA 16S rRNA 12.53 0.110
15613 MGE Insertion 15.90 0.109  0.096722812
sequence
tetQ Protection Tetracycline 16.71 0.155  0.055168937 Bacteroides fragilis Bacteroidaceae
tetW Protection Tetracycline 16.81 0.146  0.051474439 Bifidobacterium Bifidobacteriaceae
longum
tetO Protection Tetracycline 16.92 0.149  0.0476956 Clostridium Clostridiaceae
colicanis
Tp614 MGE Transposase 17.17 0.222  0.040107059
cfxA Deactivate Beta lactam 17.75 0.127  0.02683017
ermB Protection MLSB 18.41 0.143  0.016980232 Clostridium Clostridiaceae
perfringens
ermF Protection MLSB 18.89 0.211  0.012174447 Eubacterium spp. Eubacteriaceae
tetx Deactivate Tetracycline 20.32 0.087  0.004518313 Flavobacterium Flavobacteriaceae
spp.
mefA Efflux MLSB 20.48 0.174  0.004044004
tet(32) Protection Tetracycline 20.54 0.155 0.003879268 Unknown
ISEfm1-Entero MGE Insertion 22.00 0.102  0.001410087
sequence
tnpA MGE Transposase 22.19 0.157  0.00123609
sullll-marko Protection  Sulfonamide 2291 0.025  0.000750427
matA/mel Efflux MLSB 23.23 0.066  0.000601145
aphA3 Deactivate Aminoglycoside 23.40 0.179  0.000534323
tetM Protection Tetracycline 23.43 0.064  0.000523327 Streptococcus Streptococcaceae
mutans
sat4 Efflux MDR 23.47 0.095  0.000509016
aph(2’)-1d Deactivate Aminoglycoside 23.94 0.033  0.000367492
ermT Protection MLSB 24.60 0.073  0.000232578 Streptococcus Streptococcaceae
pyogenes
msrC Efflux MLSB 24.67 0.237  0.000221562
ampC Deactivate Beta lactam 2471 0.44 0.000215504 Pseudomonas spp.  Pseudomonadaceae
mdtF Efflux MDR 24.81 0.376  0.000202471
tetL Efflux Tetracycline 24.84 0.384  0.000196934
yidY/mdtL Efflux Amphenicol 24.90 0.251  0.000188912
bacA Deactivate other 25.03 0.127  0.000172633 Escherichia coli Enterobacteriaceae
aadE Deactivate Aminoglycoside 25.46 0.449  0.000128139 Streptococcus Streptococcaceae
anginosus
acrF Efflux MDR 25.52 0.242  0.000122919
yceL/mdtH Efflux MDR 25.55 0.320  0.00012039
acrR Regulator MDR 25.57 0.283  0.000118732
yeeE/mdtG Efflux MDR 25.61 0.362  0.000115486
acrB Efflux MDR 25.72 0.502  0.000107008
aphAl Deactivate Aminoglycoside 25.75 0.312  0.000104805
mdtE/yhiU Efflux MDR 25.83 0.336  9.91519E-05
tetPB Protection Tetracycline 25.92 0.129  9.31555E-05 C. perfringens Clostridiaceae
acrA Efflux MDR 26.02 0.442  8.69171E-05
cphA Deactivate Beta lactam 26.06 0.178  8.45404E-05
tetPA Efflux Tetracycline 26.14 0412  7.99801E-05
bexA Efflux MDR 26.27 0.207  7.30883E-05
tolC Efflux MDR 26.82 0.158  4.99208E-05
tetB Efflux Tetracycline 26.82 0.179  4.99208E-05
catAl Deactivate Amphenicol 26.87 0.201  4.82203E-05
pNI105map-F  MGE plasmid 27.19 0.136  3.86278E-05
replication
ceoA Efflux Amphenicol 27.19 0.195  3.86278E-05
tetR Regulator  Tetracycline 27.22 0.069  3.78329E-05
blargy Deactivate Beta lactam 27.25 0.521 3.70543E-05
aacA/aphD Deactivate Aminoglycoside 27.32 0.206  3.52993E-05
IncN_rep-1_f MGE Plasmid 27.33 0.422 3.50555E-05
incompatibility
vanC Protection Vancomycin 27.34 0.386  3.48133E-05
tetC Efflux Tetracycline 27.42 0.323  3.29354E-05

Three technical replicates were averaged to measure the Ct values for each primer set.

MDR, multidrug resistance; MGE, mobile genetic element.
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TABLE 2. MICROBIOME PROFILES OF THE HUMAN
FecaL SAMPLE (>1%) AT GENERA LEVEL

Genus % Relative abundance
Faecalibacterium 20.46739751
Bacteroides 11.02874483
Blautia 8.159860251
Roseburia 8.006449951
Unclassified 7.093826635
Dorea 4.151036359
Ruminococcus 3.951714948
Flavobacterium 3.84085641
Paraprevotella 3.721039607
Pseudobutyrivibrio 3.398542042
Polaribacter 3.33135505
Coprococcus 2.032406526
Oscillospira 1.923787555
Parabacteroides 1.675195682
Acetobacterium 1.577774543
Clostridium 1.537462347
Butyricimonas 1.436681858
Odoribacter 1.294469391
Lachnospira 1.11642386

integrate NGS and antibiotic resistance qPCR chip tech-
nology to describe the fecal population of bacteria and the
relative abundance of their resistome in a healthy human
under no antibiotic selective pressure.

The published data on the human gut microbiome alter-
ations due to antibiotics are highly variable. To date, there
have been no definite conclusions on the bacterial genera
that proliferate or decrease after specific antibiotic admin-
istration. There is no consensus on whether any microbiome
changes occur at all or whether intersubject variability was
greater than the effects of the antibiotics administered. The
first studies of the human gut microbiome tried to identify
and describe the core set of bacterial taxa responsible for
health and disease. However, such studies among healthy
individuals revealed wide variation in the taxonomic com-
position of the microbiome, which prevented the discovery
or identification of a core microbiome. '

The majority of the ARGs detected may have been as-
sociated with the presence of specific bacterial taxa. There
was a high proportion of mobile genetic elements detected,
which suggests high genetic mobility within the fecal mi-
crobiome and the detection of several ARGs, which are not
associated with intrinsic resistance of common gut micro-
biome bacteria. The conclusion from this study is that al-
though many ARGs can be detected and their abundances
measured using DNA-based tools, we must put these genes
in the context of the bacterial composition of the sample, in
this case feces from a healthy human, to identify the genes,
which pose a risk to the treatment of pathogenic infections.
This study highlights the need to put DNA analysis in
context and has listed several ARGs that may be present on
the chromosome of the natural fecal microbiome. The
conclusions may not be further extrapolated due to the small
sample size.
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