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Abstract 

Artificial drainage is required to make wet soils productive for farming. However, drainage may 

have unintended environmental consequences, for example, through increased nutrient loss 

to surface waters or increased flood risk. It can also have implications for greenhouse gas 

emissions. Accurate data on soil drainage properties could help mitigate the impact of these 

consequences. Unfortunately, few countries maintain detailed inventories of artificially-drained 

areas because of the costs involved in compiling such data. This is further confounded by 

often inadequate knowledge of drain location and function at farm level. Increasingly, Earth 

Observation (EO) data is being used map drained areas and detect buried drains. The current 

study is the first harmonised effort to map the location and extent of artificially-drained soils in 

Ireland using a suite of EO data and geocomputational techniques.  

To map artificially-drained areas, support vector machine (SVM) and random forest (RF) 

machine learning image classifications were implemented using Landsat 8 multispectral 

imagery and topographical data. The RF classifier achieved overall accuracy of 91% in a 

binary segmentation of artifically-drained and poorly-drained classes. Compared with an 

existing soil drainage map, the RF model indicated that ~44% of soils in the study area could 

be classed as “drained”. As well as spatial differences, temporal changes in drainage status 

where detected within a 3 hectare field, where drains installed in 2014 had an effect on grass 

production. Using the RF model, the area of this field identified as “drained” increased from a 

low of 25% in 2011 to 68% in 2016. Landsat 8 vegetation indices were also successfully 

applied to monitoring the recovery of pasture following extreme saturation (flooding). In 

conjunction with this, additional EO techniques using unmanned aerial systems (UAS) were 

tested to map overland flow and detect buried drains. A performance assessment of UAS 

structure-from-motion (SfM) photogrammetry and aerial LiDAR was undertaken for modelling 

surface runoff (and associated nutrient loss). Overland flow models were created using the 

SIMWE model in GRASS GIS. Results indicated no statistical difference between models at 1, 

2 & 5 m spatial resolution (p< 0.0001). Grass height was identified as an important source of 

error. Thermal imagery from a UAS was used to identify the locations of artifically drained 

areas. Using morning and afternoon images to map thermal extrema, significant differences in 

the rate of heating were identified between drained and undrained locations. Locations of tiled 

and piped drains were identified with 59 and 64% accuracy within the study area.  

Together these methods could enable better management of field drainage on farms, 

identifying drained areas, as well as the need for maintenance or replacement. They can also 

assess whether treatments have worked as expected or whether the underlying saturation 

problems continues. Through the methods developed and described herein, better 

characterisation of drainage status at field level may be achievable. 
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Chapter 1 Introduction 

Artificial drainage facilitates farming on wet soil, making farms on marginal soils more efficient 

and profitable. However, installing drains is a significant intervention in the hydrology of a 

field, one which can have unintended or unpredictable environmental consequences. Knowing 

where drains are located, and what the current drainage status of a field is, could help 

mitigate some of the negative environmental impacts. This thesis, conducted under the 

Teagasc DrainMap project (project number 6522), assessed potential applications for Earth 

Observation (EO) data in conjunction with state-of-the-art machine learning and 

geocomputational techniques to map the extent and distribution of artificially-drained fields on 

Irish grassland farms. The project focused on multi-scale, multi-sensor EO data, taking 

advantage of recent advances in machine learning digital image classification and the 

availability of unmanned aerial systems (UAS) as platforms for low-altitude remote sensing 

(RS). The opening section of the thesis defines salient terms and concepts relating to both 

soil- and artificial drainage. The rationale for the study is then presented in detail, outlining the 

local and broader context of the research, the need and timeliness of the study and an 

examination of why an EO data was the best-suited approach. 
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1.1 Soil drainage versus field drainage 

1.1.1 Soil drainage 

Soil drainage describes the ability of soil to remove excess water under the force of gravity. 

This natural property effectively determines whether soils are favourable to certain types of 

farming, and whether farming may be detrimental to water- and environmental quality (Shukla, 

2011). Texture and structure are the principal soil properties affecting soil drainage, by 

regulating the volume of available pore space (porosity) and influencing the speed at which 

water can be transported. Extrinsic factors can also play a role, for example, local landscape 

position, water table depth and prevailing climate (Anderson & Burt, 1978; Batey, 2009; Moore 

et al., 1993; Potter, 1991; K. Price, 2011). Land use and management practices can also play 

a role (Batey, 2009; Potter, 1991).  

 

Mineral soils with a high percentage of silt and clay are typically characterised by low porosity 

and compacted structure that reduce their ability to transmit water. Hence, they are termed 

“poorly-drained” or “heavy” soils (“heavy” being an agricultural description for these soils being 

sticky and difficult to work). Poorly-drained soils may also be found in lowland settings with 

shallow groundwater, or where groundwater exudes from surface seepage or springs. 

Conversely, “well-drained” soils generally have a coarser texture (i.e. higher sand content) 

and a greater porosity that permits freer movement of water. These soils are also not 

disadvantaged in terms of landscape position or groundwater breakout.  
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Figure 1-1 A Digital Globe scene of grassland within the Border, Midland and Western region of 

Ireland depicting drained and poorly drained conditions. Poorly drained conditions are exemplified by 

extensive growth of water tolerant species. Evidence for cleaning out surface drains can be seen in the 

bottom right of the image (circular mounds of excavated soil). 
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Poor soil drainage may be recognised through ponding of water at the surface following heavy 

or persistent rainfall. It may also be noticeable from poor crop yields or through the growth of 

water-tolerant vegetation (see Figures 1-1 & 1-2), or where poaching (hoof damage) is 

observed (see Figures 1-6). There may also be instances where there are no visible signs of a 

problem, but where a problem exists. In such instances, EO data can be of use (see Section 

1.6 below). Limited soil drainage and excessive soil moisture (SM) are recognised as 

significant biophysical constraints on agricultural production, often requiring expensive 

countermeasures to make soils workable and profitable. In many parts of Ireland, for example, 

the combination of wet climate (high rainfall and low evapotranspiration) and poor soil 

drainage are a considerable constraint on farm system viability (Schulte et al., 2012). Galvin 

considered a large proportion of Irish soils to be impermeable, with infiltration rates of < 0.1 

mm day-1 (Galvin, 1983). A subsequent study by Diamond and Shanley (2003) highlighted 

spatial and temporal variability in infiltration rates across the country (Diamond & Shanley, 

2003). It was observed how infiltration rates (mm/hr) were lower on moderately-, imperfectly- 

and poorly-drained soils during winter as a consequence of higher volumes of antecedent soil 

moisture. A synopsis of their findings for different soil types is included in Table 1-1 below. 

 

Table 1-1 Measured infiltration rates for Irish soil types during dry (summer) and wet (winter) 

conditions (Diamond & Shanley, 2003). 

Location Drainage 
Texture Infiltration rate (mm/hr) 

Horizon A Horizon B Summer Winter 

Gurteen Well Loam Loam 114 8.7 

Cappoquin Well Loam Loam 160 3.7 

Midleton Well Loam Loam 103 22 

Dundalk Well Loam Stony 96 122 

Clonmel Well Loam Clay loam 30 10.3 

Birr Moderate Sandy loam Sandy loam 53.7 11.3 

Kilcock Imperfect Loam Clay loam 96.3  6 

Castlecomer Poor Clay loam Clay loam 5.3 1.7 



 

5 

 

 

 

Figure 1-2 Two views of typical heavy soils within the study area (County Leitrim) showing extensive 

growth of water tolerant species within the sward.  
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Soil drainage is conventionally mapped using in-situ field observations, for example, of water 

table depth, soil wetness and landscape position. Characteristics such as colour, gleying and 

mottling are also important. Colour is a useful indicator of anaerobic soil conditions from 

periodic or continuous saturation. Gleying is a process of iron reduction in waterlogged, 

anaerobic soils which leads to conversion of iron from its oxidised (ferric) state to a reduced 

(ferrous) state. In the ferrous state it is soluble in water and can be leached to lower soil 

horizons giving gleyed soils a characteristic grey or bluish colour. Mottling is a process where 

secondary colours develop that are not associated with the parent material, but rather from 

soil wetness. Traditional soil surveys are now combined or replaced with digital, remotely-

sensed data such as satellite imagery and digital elevation data. These are typically analysed 

within a geographic information system (GIS) and modelled using predictive machine learning 

or statistical inference (McBratney et al., 2003; Mulder et al., 2011). 

 

Soil drainage is frequently conceptualised as a linear progression between moisture 

extremes, with the number of intervals defined by timing, duration and depth of saturation 

characteristics. The number of intervals is not prescribed. The United States Department of 

Agriculture (USDA), for example, recognises seven classes (excessively-, somewhat 

excessively-, well-, moderately well-, somewhat poorly-, poorly- and very poorly-drained). A 

recent 1:250,000 scale Irish Soil Information System (ISIS) (2014) recognises five drainage 

classes (excessively-, well-, moderately-, imperfectly- and poor) (R. Creamer et al., 2014). 

The indicative soil drainage map produced at soil association level from the ISIS dataset is 

illustrated in Figure 1-3. This map depicts an overview of dominant soil drainage class for the 

dominant soil group within a soil association. While it provides a useful assessment of 
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dominant drainage properties at catchment scale, the scale at which the ISIS map was 

created, and the means by which it was created, makes it ill-suited to mapping drainage 

condition at field- or farm level (Creamer et al., 2016).  

 

 

Figure 1-3 Indicative soil drainage classification based on the Irish Soil Information System. Source: 

(R. Creamer et al., 2016). 
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Under an earlier soil map prepared by Teagasc/ Environmental Protection Agency (EPA) for 

the Forest Inventory and Planning System Irish Forest Soils project (FIPS-IFS), broader soil 

drainage classifications were assigned based on a combination of field observations and an 

interpretation of satellite imagery, digital elevation data (Fealy et al., 2009). This soil 

classification system subdivided soils based on whether they were mineral or organic. Mineral 

soils were further categorised into calcareous/ non-calcareous, well-drained/ poorly-drained 

and shallow/ deep. The "poorly-drained" soil class of the FIPS-IFS map was defined as being 

equivalent to “imperfectly-“, “poorly-“ or “very poorly-drained” classes in conventional soil 

classification terms. The FIPS-IFS map, which has a nominal working scale of 1: 50,000; 

suggested the national figure for poorly-drained soils was ~50% of soils. 

 

The expense of conducting field surveys for soil mapping means data are generally sparse, 

and consequently soil maps tend to have coarse spatial resolution. National datasets, for 

example, may have minimum mapping unit (MMU) of several hectares. Global datasets may 

have MMU of several kilometres. These datasets have a role in regional or global modelling of 

physical processes, but have no use for precision farming where the coarse resolution will 

tend mask subpixel or sub-unit variation in soil type. An example of a very coarse soil map is 

the 10 km - < 50 km resolution Harmonized World Soil Database (2008) which proposed 67% 

of soils globally have a moderate, severe or very severe limitation in respect to “oxygen 

availability to roots” (a proxy indicator of drainage status). Figure 1-4 illustrates these 

constraint areas for Ireland, where areas of moderate to severe constraint can be identified in 

the North-Western part of the island (the Border, Midland and Western region). At these 

coarse scales, it is difficult to account for the very high spatial variation in soil drainage type. It 
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is also not possible to represent locations where poorly drained soils have been artificially 

drained.  

 

Figure 1-4 The Harmonized World Soil Database map indicating the extent of constraint based on 

"oxygen availability to roots" for Ireland. The map highlights areas of "moderate" to "very severe" 

constraint the Border, Midlands and Western Region, is the study area for the research described in 

Chapter 4. 

 

1.1.2 Artificial drainage  

Artificial drainage are used to stabilise fluctuating groundwater levels and expedite the 

transport of excess water from the root zone of plants. This improves soil aeration and 

structure and making the soils more productive for agriculture (Armstrong & Garwood, 2006). 

Drains may also extend the length of the growing season relative to undrained conditions and 
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increase crop yield. Drier soils improve accessibility/ trafficability of fields (for livestock and 

machinery) and can reduce the risk of surface damage (poaching) and soil compaction 

(Smedema et al., 2004).  

 

An artificial drainage system is an integrated system that typically comprises of a subsurface 

network of drains, that collects and siphon off excess water, and a main drainage system 

(usually open ditches) which receive water from subsurface systems (Figure 1-5). Depending 

on the nature of the underlying drainage issue, two broad types of subsurface drainage 

systems (groundwater and shallow) are commonly deployed in Ireland, often in combination 

(Tuohy et al., 2017). Groundwater drainage systems are a network of piped drains that allow 

groundwater to flow into permeable layers where it can infiltrate into the water table. Shallow 

drainage systems are required where infiltration is impeded at all depths, so drainage 

channels (for example, mole drains) are created that increase movement of water within the 

soil profile. After artificial drainage, water transport within a field may be significantly different 

from its natural state. Studies suggest artificial drainage typically changes the hydrological 

characteristics of a soil by at least one drainage class (Van Orshoven et al., 2014). For 

example, an imperfectly-drained soil may become a moderately drained soil but it is unlikely to 

become a well-drained soil. For a period after drainage, an artificially drained soil will no 

longer carry the same risk of saturation. The duration of this improvement depends on the 

type of drainage system installed, the level of post-installation maintenance and whether an 

installed system has addressed the original drainage impediment (Tuohy et al., 2013a, 2013b; 

Tuohy et al., 2015; Tuohy et al., 2016; Tuohy et al., 2017). 
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Figure 1-5 (top) Idealised view of poorly drained soil where restricted drainage reduces the infiltration 

of rainwater and results in ponding at the surface; (bottom) An installed subsurface drainage system 

controls groundwater depth keeping the root zone aerated and increasing rooting depth.  

Source: www.fao.org/docrep/r4082e/r4082e07.htm#chapter%206%20%20%20drainage# (accessed 

12 December 2018). 

http://Source:%20www.fao.org/docrep/r4082e/r4082e07.htm#chapter%206%20%20%20drainage
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1.2 Rationale for the study 

1.2.1 Environmental impacts 

As noted previously, artificial drainage makes farming on wet soil more efficient and more 

profitable, however the installation of drainage can have unintended environmental 

consequences, for example, on water quality (Daly et al., 2002; Ibrahim et al., 2013; Skaggs 

et al., 1994; Withers et al., 2014, Blann et al., 2009) or on greenhouse gas (GHG) emissions 

(Clagnan et al., 2018; Rafique et al., 2011). It has also been linked with increased streamflow 

and flood risk (Armstrong & Garwood, 2006; Potter, 1991; Schilling & Helmers, 2008) and 

greater soil erosion (Gramlich et al., 2018). The direction of impact can be both positive and 

negative. For example, installing drains on low infiltration soils may decrease instances of 

surface pooling and overland flow which is an important pathway for phosphorous (P) loss to 

surface waters  However, this reduction may be compounded by an increased volume of 

nitrate (N) losses in drain flow (Ibrahim et al., 2013). 

 

To mitigate potential impacts, it is beneficial for farmers, agronomists, hydrologists, ecologists, 

catchment managers and policymakers to have accurate and up-to-date information on soil 

drainage, including the location of artificially-drained areas. Maps of current drainage 

conditions at field scale could provide relevant stakeholders with a better understanding of 

inter- and intra-farm variability in, for example, grassland production, soil degradation, surface 

water pollution and GHG emissions (Clagnan et al., 2018; Paul et al., 2018; Schulte et al., 

2012; Shalloo et al., 2004). More accurate accounting of soil drainage could also improve 

predictive modelling of, for example, grass production (Fitzgerald et al., 2008) soil moisture 
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estimates (Schulte et al., 2005; Schulte et al., 2015) or operational decision-making for farm 

operations such as slurry spreading (Kerebel et al., 2013a, 2013b; Kerebel & Holden, 2016).  

 

1.2.2 Lack of relevant data  

As noted previously, where soil drainage classifications are included in existing soil maps they 

are typically at very coarse resolution, are too spatially aggregated and do not account for the 

presence of artificial drainage. They do not, therefore, accurately represent drainage 

conditions at field- or even farm level. A 2005 study reported just eleven of 161 countries (7%) 

investigated had sub-national information on the location of artificially-drained areas (Feick et 

al., 2005). Even more surprisingly, considering the long history of agricultural drainage in 

Western Europe, only four of these countries were EU member states (Estonia, France, 

Germany and Latvia). Most estimates of the extent of artificial drainage are therefore 

speculative at best. Current best estimates suggest ~130-167 million hectares (ha) of rain-fed 

farmland globally (but predominantly in Europe and North America) have some artificial 

drainage treatment in place (Blann et al., 2009; Feick et al., 2005; Schultz et al., 2007; 

Smedema et al., 2000; Smedema et al., 2004). This area is expected to increase with growing 

demand for agricultural produce encouraging the reclamation of marginal lands (Ayars & 

Evans, 2015).  

 

Ireland does not currently collect detailed spatial information on artificial drainage. Neither is 

there an archive of existing drainage systems. Thus, there is no clear record of the extent or 

distribution of artificially-drained soils. Yet, artificial drainage is ubiquitous in some areas of the 

country. Centrally-organised land drainage schemes, particularly during the twentieth century, 
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have been crucial for agricultural production (Duffy, 2007). It was estimated that ~2 million ha 

of farmland (or ~30% of the country) had drainage installed between 1940 and 1980 based on 

the allocation of drainage grants (Bruton & Convery, 1982). This included drainage of 

~1,170,000 ha under the Land Project (1949), ~200,000 ha under the Farm Modernisation 

Scheme (1974-1985), and ~182,500 ha as part of the Western Drainage Scheme (1979-

1986)1. Unfortunately, it is not always evident that drainage works were always subsequently 

undertaken once grants were issued. An audit of arterial drainage schemes in 

Leitrim/Roscommon in the 1980’s and 1990’s reported low instances of land drainage 

followed arterial drainage within these counties, with < 25% of the estimated 12,000 ha of 

benefitting lands showing any physical sign of improvement (Burdon, 1986). Government 

subsidised drainage projects are no longer carried out in Ireland, but drain installation and 

cleaning continues to be undertaken privately. Under European Community (Environmental 

Impact Assessment) (Agriculture) Regulations 2011 (S.I. No. 456/2011), reporting of land 

drainage is only required where area of the proposed works exceeds 15 ha, or where 

drainage may have a significant effect on the environment (DAFM, 2013b). As the average 

field size in Ireland is ~ 2.5 ha (J. Zimmermann, 2018, personal communication, 18 January), 

most drainage projects fall well below the notification threshold and consequently go 

unrecorded. This lack of relevant data on the location of artificial drainage is a considerable 

knowledge-gap affecting agricultural production and environmental protection which the 

DrainMap project has attempted to address. 

 

                                                           
1 Report available at www.esri.ie/pubs/BKMNEXT23.pdf (accessed 12 December 2018). 

https://www.esri.ie/pubs/BKMNEXT23.pdf
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The requirement for accurate drainage data has resulted in a strong research interest 

internationally for developing efficient methods of mapping drainage characteristics. 

Traditional fieldwork methods can be labour-intensive, expensive and ill-suited to large area 

reconnaissance. This is an area where EO or other remote sensing (RS) methods can be 

employed to great effect without engaging in expensive and labour-intensive fieldwork, for 

example, in physically probing or digging to locate broken drainage pipes. Several studies 

have demonstrated the effectiveness of remote sensors, on satellite, aerial or terrestrial 

vehicles for mapping drainage over different scales under different land cover and land uses. 

Much of this work has focussed on North America where the focus is mapping subsurface 

drain tiles (B. S. Naz et al., 2009; Verma et al., 1996). More recently, there have an increasing 

number of studies in Europe, notably Germany, the Czech Republic and Denmark (Beucher et 

al., 2017; Møller et al., 2018; Møller et al., 2017; Tetzlaff, Kuhr, Vereecken, et al., 2009; 

Tetzlaff, Kuhr, & Wendland, 2009; Tlapáková et al., 2017; Tlapáková et al., 2015).  

 

Mapping of surface drainage (open ditches) is relatively straightforward, thanks largely to the 

availability of laser scanning technology, or LiDAR (Light Detection And Ranging). LiDAR is 

an active RS technology which uses light in the form of a pulsed laser to measure distance 

between the sensor and an object. A major advantage of LiDAR is that the light pulses can 

penetrate dense canopy to create detailed topographical models of the underlying surface. 

Previous studies have demonstrated how surface ditches (Cazorzi et al., 2012; Prosdocimi et 

al., 2015; Roelens et al., 2018) and microtopographic pathways can be extracted from LiDAR 

point clouds. The definition of surface microtopography is an important ability for 

understanding overland flow and how and where agricultural nutrients might be transported 
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from agricultural fields (Heathwaite et al., 2005; Sonneveld et al., 2006). In several recent 

papers, precursors to aspects of this study discussed in Chapter 5, LiDAR accurately mapped 

surface pathways for phosphorous (P) loss in mixed agricultural catchments (I. Thomas, 

Jordan, et al., 2016; I. Thomas, Mellander, et al., 2016; I. A. Thomas et al., 2017). Defining 

pathways within fields, breakthroughs between fields and delivery points for runoff into surface 

waters were important outcomes from these studies, allowing targeted remedial measures for 

nutrient loss to be established. Though accurate, the cost of acquiring LiDAR data is a major 

stumbling block to the wider adoption of this method for modelling overland flow and P loss. In 

Chapter 5, a low-cost alternative is proposed for mapping surface drainage in intensively 

managed grassland that uses structure-from-motion (SFM) photogrammetry from an 

unmanned aerial system (UAS).  

 

1.2.3 Timeliness 

The timeliness of developing efficient drain mapping procedures for Ireland was emphasised 

by a recent EPA report on the quality of Irish inland and coastal waters (EPA, 2018). The 

report found an 11% increase in waterbodies with high P concentrations since 2015. Coastal 

waters also had higher nitrogen (N) and P loads compared with previous reports. If 

unaddressed, these trends would put Ireland in breach of their obligations under the European 

Union Water Framework Directive (WFD) (EPA, 2018). The primary goal of the WFD is to 

prevent deterioration of waterbodies and protect, enhance and restore them with the aim of 

achieving at least “good” status. The proposed measures to achieve WFD objectives are set 

out in the River Basin Management Plan for Ireland 2018-2021 published by the Department 

of Housing, Planning and Local Government (DHPLG, 2018). This management plan called 

for a renewed focus on compliance with the Good Agriculture Practice Regulations (Statutory 
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Instrument No. 65 of 2018 [European Union (Good Agricultural Practice for Protected of 

Waters) (Amendment) Regulations 2018]), with a greater emphasis on measures to intercept 

and break nutrient transport pathways and prevent sediment and nutrient losses. It is not clear 

to what degree intensification programs currently underway (Food Harvest 2020 (DAFF, 2011) 

and Food Wise 2025 (DAFM, 2015)) are driving these increasing trends. These programs 

proposed substantial increases in primary production (to increase by 65% to a value of €10 

billion per annum by 2025) to supply a projected 85% increase in agri-food exports in the 

same period. It was always feared that any increase in production would have a negative 

impact on surface water (eutrophication and sedimentation) as well as increased groundwater 

vulnerability (Farrelly et al., 2014). Improving nutrient management in sensitive areas and a 

greater application of technological innovations to mitigate these impacts were the 

recommendations of an independent analysis on likely environmental impacts from 

intensification (Farrelly et al., 2014). The EO techniques explored in subsequent chapters can 

contribute to the implementation of these measures by providing a better understanding of the 

spatial distribution of field drainage conditions (Chapter 4) and providing more affordable 

means of high-resolution surface mapping (Chapter 5) and detecting drains and drained areas 

(Chapter 6). 

 

Another aspect of timeliness is recent technological advances in data and data processing. 

There is a greater availability of moderate resolution EO imagery, from the USGS Landsat 8 

and ESA Sentinel 2 missions, that provide an unprecedented opportunity for satellite mapping 

of drainage. Supplementing moderate resolution satellite data is very high spatial- and 

temporal-resolution datasets from UAS, permitting targeted, on-demand imagery of precision 
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agricultural mapping and monitoring. There are also on-going developments in digital image 

processing that now offer enhanced classification ability, allowing researchers to taking full 

advantage of the massive volumes of imagery now available (Behmann et al., 2015; Rogan et 

al., 2008; Tuia et al., 2011). Machine learning (ML) classification algorithms for land cover 

classification are well-established, for example, Support Vector Machine (SVM) (Cortes & 

Vapnik 1995) and Random Forests (RF) (Breiman, 2001) and can be implemented using free 

or open-source software such as R or Python. Both ML algorithms are recognised for their 

high accuracy in classifying multispectral data with limited training data. Their robustness and 

effectiveness under varying environmental conditions have been demonstrated in extensive 

review studies over the past decade (Ali et al., 2015; Belgiu & Drăguţ, 2016; Gislason et al., 

2006; Huang et al., 2002; Lary et al., 2016; Mountrakis et al., 2011; Pal, 2005; Pal & Mather, 

2005; Rodriguez-Galiano et al., 2012).  

 

This section has established the rationale for the current study. Ireland does not currently 

record the location of drainage works and there is no data on the extent or distribution of 

drained soils. To understand the potential environmental impacts that can arise from artificial 

drainage in the wider context of climate change, agricultural intensification and environmental 

sustainability there is a need to accurately map drainage regimes on Irish farms. 
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1.3 Consequences of poor soil drainage on agricultural production 

In the preceding section, the impact of poor soil drainage on the efficiency and profitability of 

farms was highlighted. This section examines some of the consequences of poor soil 

drainage, with particular reference to grassland production in Ireland or similar climates. The 

European Union definition on whether soil drainage is severely limiting for agricultural 

production is if soils are wet within 80 cm of the surface for > 6 months per year, or within 40 

cm for > 11 months per year. Also, if groundwater is present within 15-40 cm of the surface, or 

if the soil has gley characteristics within 40 cm of the surface. Additionally, soil maybe 

characterised as excessively wet if the number of days with SM at or above field capacity is  

230 days. Field capacity (FC) is the maximum amount of water a soil can retain solely under 

the force of gravity (Van Orshoven et al., 2014). Above FC there is a surplus of water 

(negative soil moisture deficits (SMD)), below FC there is a deficit (positive SMD). In the 

wettest parts of North-West Europe, including western and upland areas of Ireland, >300 days 

per year above FC would not be unusual.  

 

1.3.1 Grass production   

The impact of saturation on growth has been demonstrated in several studies. In a laboratory 

study, McFarlane et al. demonstrated how perennial ryegrass on soils saturated had reduced 

root and leaf biomass after 14-21 days (McFarlane et al., 2004). After 28 days, there was a 

70% reduction in overall biomass with a concomitant reduction of 30–50% in photosynthetic 

activity. A subsequent study reported a decline in leaf extension rate and biomass as soil 

saturation increased (Laidlaw, 2009). Such experimental results are supported by several 

field-based studies where reduced grass yields were recorded on wet, poorly drained soils. 
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For example, Ryan (1974) reported a reduction in grass yield of 2 t ha−1 yr-1 on wet soils 

relative to drained soils (Ryan, 1974). Brereton & Hope-Cawdery (1988) found a 16-36% 

reduction in grass yield on wet soils (Brereton & Hope-Cawdery, 1988). Baker et al. (1988) 

reported a 16% reduction in yield for poorly drained fields compared with drained fields, the 

equivalent to 1-5 t ha-1 yr-1, (Baker et al., 1988).  

 

Some of these studies have suggested the impact on yields from saturation is greatest during 

spring, when grass growth should be reaching its peak phenological stage. For example, the 

Brereton & Hope-Cawdery study noted previously identified a 38-59% reduction in spring/ 

early summer yield on wet soils (Brereton & Hope-Cawdery, 1988). Tyson et al. (1992) 

reported an 11% reduction in spring grass yield on wet soils (Tyson et al., 1992). In a 

comprehensive study of contrasting farm production between wet and dry soil regimes, 

Shalloo et al. (2004) demonstrated the relative inefficiency of farming systems on heavy soils 

under high rainfall when compared with comparable systems in free-draining/low rainfall areas 

(Shalloo et al., 2004). The study indicated lower dry matter (DM) production for wetter farms, 

but also a lower stocking rate (1.89 vs. 2.34 cows ha−1), lower milk production (5781 vs. 6421 

kg per cow), a shorter grazing season (149 vs. 250 days) and lower proportion of grass in the 

diet (40% vs. 70%). The net result was lower overall profitability. Subsequent studies have 

also confirmed reduced performance on heavy soil farms, for example through increased 

housing time during winter or wet weather with a greater reliance on silage (Fitzgerald et al., 

2008; Sharma et al., 2018).  
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1.3.2 Soil degradation 

Wet soils are at high risk from soil compaction from livestock and heavy machinery (Batey, 

2009; Earl, 1997). This can result in slower movement of water through soil, which may further 

compound existing drainage issues in the root zone. The compaction or compression of wet, 

malleable soils can degrade soil structure by reducing porosity. The reduction in pore space 

can reduce aeration which can reduce the ability of plants to take up oxygen, water and 

nutrients. It can also impact soil microbial activity, limiting the ability of micro-organisms and 

earthworms to decompose and cycle organic matter and nutrients efficiently. Roots are less 

able to penetrate compacted soils, restricting plant utilisation of water and nutrients. Poaching 

is also a risk, where the sward cover is removed. An example of the poaching damage 

livestock can do on wet soils is illustrated in Figure 1-6. Compaction is a particular issue 

where there is shallow groundwater. Irish soil compaction studies have indicated that soils are 

only trafficable to heavy machinery when groundwater depth is maintained below 320 mm 

(Brereton & Hope-Cawdery, 1988), or when soil moisture deficit (SMD) is 10 mm (Vero et al., 

2014). Soil microbial activity may also be impacted by the colder soil temperatures and 

anoxic/hypoxic conditions brought about by excessive soil water (Porporato et al., 2003). 

Studies have shown how microbial activity is reduced when there are extremes volumes (high 

and low) of SM (Barros et al., 1995; Richter et al., 2018; Unger et al., 2009).  
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Figure 1-6 Example of saturation issues (poaching) developing on heavily trafficked soil.  

 

1.3.3 Surface water pollution 

Nutrient loss via overland flow is a high risk on poorly-drained soils. Overland flow describes 

the natural movement of water over land, toward a surface water body. It is generated by two 

different physical processes (Davie, 2008):  

 Infiltration excess (or Hortonian) overland flow occurs where rainfall intensity exceeds 

soil infiltration capacity. Water accumulates on the surface soil and moves under gravity 

along hydrological pathways. 

 Saturation excess overland flow occurs where soil saturation exceeds its maximum level 

due to groundwater uplifting, baseflow and lateral subsurface water discharge.  
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In either case, the associated P loss that accompanies overland flow in agricultural 

catchments from diffuse sources (for example, fertiliser application or manure) is a major 

contributor of eutrophication both nationally and internationally (Carpenter et al., 1998; 

Hughes et al., 2005; Sharpley et al., 2015; Toner et al., 2005). The deterioration in water 

quality can result in reduced biodiversity and destroyed ecosystems (Bilotta et al., 2007; 

Sharpley et al., 1994). A recent EPA report has identified an increase in nutrient enrichment of 

Irish surface- and coastal waters since 2014 (EPA, 2018). As will be demonstrated in Chapter 

3, overland flow and flooding are strongly linked to rainfall depth and the level of antecedent 

SM. With increased precipitation likely under predicted climate change scenarios, there is an 

increased risk of greater eutrophication levels increased surface runoff (Sinha et al., 2017). 

Under current climate models for Ireland, an overall increase of ~11% in winter rainfall is 

predicted over the coming decades, largely in the North-West part of Ireland, where rainfall 

increases of ~20% are predicted by 2050 (Sweeney et al., 2008). 

 

1.3.4 Flooding  

When the intensity of rainfall exceeds the infiltration capacity of the soil onto which it falls, or 

when soils become saturated and cannot accept more water, it will begin to pool at the 

surface and pluvial floods may develop. Additionally, groundwater may begin to rise, breaking 

the surface and flooding large areas. The effect of flooding, whatever the source, on farm 

operations and production can be long-lasting. There is an immediate threat to farm 

infrastructure, buildings and yards from water damage, as well as a threat to materials (silage 

or hay) and livestock. The lasting impact, after surface water has receded, is the effect on 

growth and utilisation where soils remain saturated once surface flooding has receded.  
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1.3.5 Greenhouse gas emissions  

The agricultural sector in Ireland is a leading emitter of GHG, in the form of nitrous oxide 

(N2O) and carbon dioxide (CO2). These are gaseous compounds are capable of trapping and 

holding radiation in the atmosphere and are linked to climate change. The type of soil 

drainage that may occur on a farm can have a considerable impact on the volume of 

emissions. For example, intensively managed grasslands are a potential large source of N2O 

from N applications and urine excretion by grazing animals. In areas of high rainfall where 

waterlogged soils are common, there is a high risk of denitrification. This is the conversion of 

nitrate (NO3) into nitric oxide (NO), nitrous oxide (N2O) and finally nitrogen gas (N2) by soil 

bacteria in wet soils. N2O emissions from grazed grasslands are estimated to be ~28% of total 

anthropogenic N2O emissions, which is estimated to account for ~6% of predicted global 

warming (Rafique et al., 2011). Well-drained soils conversely pose little risk of significant 

denitrification loss. Studying grassland in Southern Ireland, Rafique and colleagues (Rafique 

et al., 2011) found N2O emissions increased as soils became wetter with maximum N2O 

emissions occurring at 60–80% water-filled pore space.  

 

The drainage of organic peat soils can remove natural carbon (C) sinks while simultaneously 

releasing captured C back to the atmosphere. Research also suggests, however, that the 

draining poorly-drained mineral soils can increase levels of soil organic carbon (SOC) by 

encouraging deeper rooting in plants and through the formation of stable soil aggregates 

(Kiely et al., 2017; Freibauer et al., 2004; Lal, 2004). Recent research has reported that clay-

rich soils >30 cm deep might therefore become important long-term carbon stores (Torres-

Sallan et al., 2017). Such storage could offset increasing agricultural emissions of C and 
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suitable soils could have greater economic potential for C sequestration than in continued 

primary production (Coyle et al., 2016).  

 

 

Figure 1-7 DigitalGlobe image of Ireland showing specific areas of interest discussed in Chapters 4-6, 

including the Border, Midlands and Western region, test site Farm A (see Chapter 4); Arable B, Co. 

Louth (see Chapter 5) and Rathcoffey, Co. Kildare (see Chapter 6). Source: DigitalGlobe, ArcGIS base 

map. 
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1.4 Introduction to the study area 

This section provides an broad overview of the principal area of interest for this study, the 

Border, Midlands and Western (BMW) region of the Republic of Ireland (Figure 1-7). The 

focus is on establishing the agri-environmental context, including prevailing climate, land use 

and agricultural production. 

 

1.4.1 Climate 

Ireland generally has a temperate, humid climate strongly influenced by prevailing westerly 

winds and a maritime location (Keane & Sheridan, 2001). Rainfall is spatially and seasonally 

variable with the highest volumes falling in western coastal regions as well as uplands areas 

nationally. Annual rainfall can vary from < 800 mm to > 2500 mm. The wettest months are 

October to January, with April typically the driest month. Annual temperatures display strong 

geographic influences, with a distinct NNE to SSW gradient in mean annual temperature (from 

9°C in the NNE to 10.6°C in the SSW). Inter-annual temperature fluctuations are typically 

minor and rarely stray too far from expected values. As a consequence, evapotranspiration is 

relatively stable across the island, approximately 400-450 mm yr-1 (Keane & Sheridan, 2001). 

This disparity between the rates of rainfall and evapotranspiration means that a considerable 

volume of water must be recycled annually by drainage, either as surface runoff or within the 

soil matrix. The spatial variability in temperature and rainfall and their impact on SM influence 

the type of land use and management that is practised on farms. This can have a 

considerable impact on profitability. For example, using ten years of precipitation and grass 

yield data from Solohead Research Farm, Co. Tipperary (2001-2010), Humphreys et al. 

(2012) demonstrated the reduction in net profitability under increasingly wet conditions (Figure 
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1-8). In wetter years (i.e. those with high annual rainfall that resulted in longer periods of wet 

soils), net farm profits were reduced by ~25% (or €400 ha-1 ) relative to drier years 

(Humphreys et al., 2012). 

 

 

Figure 1-8 The impact of high rainfall on farm profitability at Solohead Research Farm, Co. Tipperary 

between 2001 and 2010. Increasingly higher rainfall volume had a negative impact on net profit per ha 

amounting to nearly €400 ha-1 between very wet and dry years. Source: (Humphreys et al., 2012) 

 

1.4.2 Agricultural production  

1.4.2.1 Overview 

Approximately 4.45 million ha or 63% of the total land area of the Republic of Ireland is used 

for agriculture, with ~ 3.38 million ha used for grazing or silage production and a further 0.53 

million ha as rough grazing/ commonage (see Table 1-2). Based on recent figure, a little ust 

over half (52%) of the 137,500 farms in the Republic of Ireland are located in the Border, 



 

28 

 

Midlands and Western (BMW) region, where sheep and beef are the dominant enterprises 

(CSO, 2016). In the same statistics, the average farm size in the BMW region was typically 5 

ha smaller than the national average (~27 ha vs ~32 ha).  

 

Table 1-2 Total area farmed in the Republic of Ireland (by land use and region) (June 2017). Source: 

CSO StatBank database. 

Land use Region Area (x1000 ha) 

Pasture  

State 2177.3 

Border 364.7 

Midland 214.2 

West 436.8 

Dublin plus Mid East 203.6 

Mid-West 309.3 

South-East 314.2 

South-West 334.5 

Hay 

State 211.8 

Border 29.6 

Midland 33.1 

West 37.3 

Dublin plus Mid East 24.6 

Mid-West 40.9 

South-East 25.1 

South-West 21.3 

Grass silage 

State 1206.4 

Border 174.9 

Midland 141 

West 198.9 

Dublin plus Mid East 85.8 

Mid-West 166.2 

South-East 177 

South-West 262.5 

Rough 
grazing  

State 530 

Border 148.5 

Midland 37.5 

West 120.3 

Dublin plus Mid East 31.2 

Mid-West 38.1 

South-East 30.7 

South-West 123.6 
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1.4.2.2 Grass production  

Cheap and abundant, grass accounts for ~90% of livestock feed through grazing or silage. It 

is the foundation of the Irish meat and dairy industries, which had a combined worth of €6.8 

billion in export value in 2017 (DAFM, 2018). Growth is highly seasonal, typically beginning in 

early spring, when soil temperatures are consistently >6°C. Rapid growth follows in spring 

(March/April) with a peak in May. There is a prolonged decline in growth over the remainder of 

the season. This trend is influenced by soil and climate at local levels. High inter- and intra-

farm variability in growth patterns would not be unusual. Latitudinal temperature gradients 

also have a major role in season start and duration (McEniry et al., 2013). Figure 1-9 below 

shows a national grass growth curve for Ireland for the period 2016-2018 (up to November 

2018) based on individual farm data contributing to the PastureBase database. Inter-annual 

variation in mean grass growth is very obvious during late winter to spring in each year. This 

is largely an effect of weather variation between years. For example, in 2016 extensive winter 

rainfall and subsequent floods delayed the start of the growing season over large areas of the 

country until May (the impact of winter floods on grass production is discussed in Chapter 3). 

In 2018, the dual impact of a wet winter/ spring delaying growth is evident, but also the impact 

of a widespread drought during the summer.  

 

National Farm Survey data reports average grass production over the island is ~9 t dry matter 

(DM) ha-1 yr-1 but could potentially be as high as 16 t DM ha-1 yr-1 through more efficient farm 

management (Hanrahan et al., 2018). Of the grass produced, only 60-65% is utilised, (~7 t 

DM ha-1 yr-1) (Dillon et al., 2017). One reason for the lower volume of grass utilised is where 

access for grazing or silage harvesting is restricted on wet fields (Creighton et al., 2011). 
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Unutilised grass is a wasted resource and the costs incurred purchasing supplementary feed 

is a double-blow to farm profitability (Ramsbottom et al., 2015). There are programs currently 

underway to raise awareness and educate livestock farmers on the economic benefits of 

increasing levels of sward utilisation to 10 t DM ha-1 yr-1 in order to meet current levels of 

needs and to support ambitious industry targets for meat and dairy production over the 

coming decade (Teagasc, 2017).  

 

 

Figure 1-9 National grass growth curves from January 2016 to November 2018. Values are based on 

grass measurements uploaded to PastureBase Ireland from farms across Ireland. The phenological 

development of grass is immediately evident despite considerable inter-annual variation. Source: 

Teagasc/ PastureBase2 

 

                                                           
2 www.teagasc.ie/crops/grassland/pasturebase-ireland/grass-curve. Accessed 12 December 2018 

http://www.teagasc.ie/crops/grassland/pasturebase-ireland/grass-curve
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Farmers must also contend with disruptions from extreme weather events, both in the 

present-day and for predicted climate change scenarios expected over the coming decades. 

The expectation is that Irish winters will become wetter over the coming century (resulting in 

greater soil saturation) while drier summers bring greater occurrences of summer drought 

(Holden & Brereton, 2002).  

 

As was witnessed in 2018, each of these scenarios put considerable strain on grass 

production and extended housing periods can quickly use up fodder supplies. Since the 

beginning of the current project in 2013/14, there have been three severe fodder shortages 

nationally: During winter 2013, a prolonged cold winter lasted into early summer which 

delayed cattle turnout for several weeks in the worst affected areas. Winter silage stores were 

exhausted and fodder had to be imported at an estimated cost of ~€500 million to the State. In 

spring 2016 extensive winter floods again delayed turnout for several weeks in affected areas 

and had a longer impact of grass production (Chapter 3). The total estimated cost of providing 

emergency and replacement fodder during this crisis was ~€756,500 (NDFEM, 2016). A wet 

summer in 2017 required animals to be housed for long periods during the grazing season. 

This had a double impact, of depleting saved fodder stores while preventing silage harvesting. 

Emergency fodder was imported at a cost of €1.5 m. Wet weather during winter and spring 

2018 was compounded by extensive summer droughts in 2018. At the time, the reduced 

grass production was expected to create fodder shortages in winter 2018/2019. A Teagasc 

survey3 in October 2018 reported that ~33% of farmers nationally had a fodder shortage (with 

an average deficit of ~15%, the equivalent of 3 weeks’ worth of feed based on a 145-day 

                                                           
3 https://www.agriland.ie/farming-news/the-results-are-in-on-the-teagasc-2019-fodder-survey/. Accessed 7 
February 2019.  

https://www.agriland.ie/farming-news/the-results-are-in-on-the-teagasc-2019-fodder-survey/
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winter). In February 2019, ~25% of farmers reported insufficient fodder to meet feed 

requirements until the expected end of the winter housing period4. Ultimately, there were 

sufficient fodder supplies to avert a crisis, however prolonged wet or cold weather conditions 

in late spring (March/ April) 2019 could have delayed turnout and precipitated an emergency.  

 

1.5 Introduction to Earth observation  

Remote sensing (RS) is the science of observing and recording phenomena from a distance 

to obtain information about it. Earth observation (EO) is a particular branch of RS that uses 

satellite and aerial (manned or unmanned) platforms to measure reflected or emitted 

electromagnetic (EM) radiation. EM energy, in the form of visible an invisible light, propagates 

as a transverse wave consisting of dual electric and magnetic components. EM waves can be 

described in relation to their wavelength (measured in nm) and frequency (measured in Hz) 

(Equation 1.1). A generalised presentation of the EM spectrum is illustrated in Figure 1-10.  

 

Typically EO is concerned with measuring EM radiation in the visible, infrared (short- and 

longwave) and microwave regions. The transmissivity of the Earth’s atmosphere to EM 

radiation varies by wavelength. Only specific bands can pass through because atmospheric 

gases and water molecules act as selective absorbers. The wavelengths at which EM 

radiation can pass through, wholly or partially, are known as atmospheric windows. The 

important windows occur in the visible and near infrared region (300 – 1000 nm), with 

narrower bands in the infrared region centred at 1300 nm, 1600 nm and 2200 nm. 

Wavelengths in the microwave region (> 5000 µm) can pass unhindered. 

                                                           
4 https://www.independent.ie/business/farming/beef/beef-advice/quarter-of-farmers-still-facing-a-fodder-deficit-
on-their-farms-37780490.html. Accessed 7 February 2019. 

https://www.independent.ie/business/farming/beef/beef-advice/quarter-of-farmers-still-facing-a-fodder-deficit-on-their-farms-37780490.html
https://www.independent.ie/business/farming/beef/beef-advice/quarter-of-farmers-still-facing-a-fodder-deficit-on-their-farms-37780490.html
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c = fλ          (Eqn. 1.1) 

 

 

Figure 1-10 The EM radiation spectrum showing the position of each of the main regions in terms of 

wavelength (nm) and frequency (Hz). 

 

EO satellite sensors must operate within these atmospheric windows, as demonstrated for 

Landsat 7, Landsat 8 and Sentinel 2 in Figure 1-11. Once EO data is recorded, it must then 

be processed to remove the effect of atmospheric scattering of EM waves. This is wavelength 

dependant, with radiation in shorter wavelengths more readily scattered that longer 

wavelengths). Removal of the atmospheric component within reflectance signals ensure only 

surface reflectance is recorded in images. Failure to remove this scattering effect can impact 

subsequent analysis. EO data providers now provide most data already processed to this 

stage (referred to as Level 2A). There are other illumination effects that are present, for 

example, when natural surfaces reflect light anisotropically. The radiance measured a a 

sensor is a function of viewing and illumination geometry (known as a bidirectional reflectance 

distribution function, BRDF) (Jones & Vaughan, 2010).  
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Figure 1-11 A comparison of the spectral band position and bandwidth for Landsat 7 & 8 and Sentinel 2 with respect to atmospheric windows. Source: USGS5 

                                                           
5 Available at https://landsat.gsfc.nasa.gov/sentinel-2a-launches-our-compliments-our-complements/; accessed 12 December 2018 
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1.5.1 Role of EO in Precision Agriculture 

The objective of this research was to determine spatial patterns in overlying grass canopy 

relating to in-field drainage conditions using a suite of EO data. Identifying and targeting 

spatial variation in crop or soil properties is a principle of Precision Agriculture (PA), a farm 

management concept that identifies different management zones. It is characterised by the 

collection and analysis of high resolution, site-specific data to support farming decisions, 

increase agricultural output and reduce costs and waste (Gebbers & Adamchuk, 2010; Mulla, 

2013; Stafford, 2000). PA is considered by the European Union to be an important milestone 

for achieving sustainable food security (Schrijver, 2016). Historically, EO satellite platforms 

have played a key role in PA by providing a wide range of data on soil- and vegetation 

properties. Satellite platforms have several advantages for monitoring agricultural land use 

(Moran et al., 1997), for example: they are capable of sensing differences in surface 

properties using different parts of the EM spectrum; they can measure different surface 

properties (for example, plant health, soil moisture, surface roughness, surface temperature 

etc.) and they allow cheap, synoptic collection of data at different scales. The shortcomings of 

EO platforms for agricultural monitoring are equally well-established (Atzberger, 2013; 

Bontemps et al., 2015). These include, for example, the wavelength-dependent attenuation of 

EM radiation in visible and infrared regions, extensive occlusion by clouds and cloud shadow 

and poor temporal resolution (historically). The requirement for better spatial-, spectral- and 

temporal resolution data for agricultural monitoring was a key purposes behind the 

development of the ESA Sentinel 2 mission (Malenovský et al., 2012). In comparison with 

similar (non-commercial) EO missions such as Landsat 8, the Sentinel 2 mission has 

unprecedented spatial resolution (10m, 20m, 60m), spectral resolution (13 spectral bands 

between 443-2190 nm) and a shorter revisit time (2-3 days at mid latitudes). Commercial 
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missions such as QuickBird or WorldView can provide very high spatial resolution (<1 m) 

data, however, the cost per scene makes mapping over large areas prohibitively expensive.  

 

There is increased availability of hyperspectral imagery for EO mapping. These images 

typically have a narrower bandwidth (~ 10-20 nm) than broadband sensors and may consist of 

hundreds of individual bands. The number of bands can help identify and distinguish 

spectrally similar materials. In the recent past, the Hyperion sensor on-board the EO-1 

satellite provided access to hyperspectral data. Several new hyperspectral sensors are 

expected to launch in the coming decade. For example, EnMAP (Environmental Mapping and 

Analysis Program) is expected to launch in 2020 providing on-demand VNIR data at 30 m 

resolution over 240 spectral bands (420-2450 nm) (Guanter et al., 2015). The Italian PRISMA 

(PRecursore IperSpettrale della Missione Applicativa) was launched during 2019 and will also 

have ~250 bands at 30 m spatial resolution (66 VNIR bands between 400 and 1010 nm; and 

171 SWIR bands between 920 and 2505 nm) (Pignatti, 2013). Although hyperspectral sensors 

have a superior ability to quantify vegetation stresses based on small changes in several 

hundred spectra, the volume of data provided can be a challenge to manage and analyse 

(Transon et al., 2018). They often have poor temporal resolution and typically have a narrow 

swath width and so cover less ground than multispectral sensors. Both EnMAP and PRISMA 

have just 30 km footprints compared to the 185 km and 290 km swath widths of Landsat 8 

and Sentinel 2 respectively.  
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1.5.2 Vegetation indices 

Combining spectral bands, for example, through ratioing or differencing, can enhance surface 

reflectance signals by minimising variation caused by solar irradiance and topographical 

background effects (Jackson & Huete, 1991). Commonly known as vegetation indices (VI), 

these image processing techniques typically combine red and NIR reflectance to monitor 

spatial and temporal variation in vegetation cover and vegetation health. Variant indices using 

different bands have also been developed (see J. Xue & Su, 2017 for a comprehensive 

review). A popular VI is the normalised difference vegetation index (NDVI) (Equation 1.2) 

using red and NIR bands. The NDVI has a normalised, dimensionless output ranging from -1 

to 1, where negative values (approaching -1) correspond to open water, no vegetation (bare 

rock, soil, cement etc.) is around 0, and verdant, healthy vegetation (for example, grass cover 

in Ireland during spring) has high values approaching 1 (Rouse et al., 1974) (Figure 1-12). 

 

𝑁𝐷𝑉𝐼 =
𝑁𝐼𝑅−𝑅𝐸𝐷

𝑁𝐼𝑅+𝑅𝐸𝐷
        (Eqn.1.2) 

where NIR and RED are surface reflectance values measured by an EO satellite or aerial 

sensor. 

 

The normalised difference water index (NDWI) (Equation 1.3), is complementary to the NDVI 

but is computed using NIR and SWIR bands (Gao, 1996), with SWIR reflectance negatively 

related to leaf water content (Tucker, 1979). This VI also has a dimensionless output from -1 

to +1. High NDWI values correspond to high vegetation water content or vegetation fraction 

cover. Low NDWI values correspond to low vegetation water content and low vegetation 
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fraction cover. When stressed, NDWI values for plants tend to decrease as less water is taken 

up from the roots (Figure 1-12). 

 

𝑁𝐷𝑊𝐼 =
𝑁𝐼𝑅−𝑆𝑊𝐼𝑅

𝑁𝐼𝑅+𝑆𝑊𝐼𝑅
        (Eqn. 1.3) 

where NIR and SWIR are surface reflectance values measured by an EO satellite or aerial 

sensor. 

 



 

39 

 

Figure 1-12 A DigitalGlobe image with corresponding Landsat 8 NDVI and NDWI images shown in colour ramps for visualisation purposes. 
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1.5.3 Unmanned aerial systems 

Unmanned aerial systems (UAS), otherwise known as unmanned aerial vehicles (UAV), 

remotely piloted aircraft systems (RPAS), or more commonly drones, are increasingly used as 

low-altitude remote sensing platforms for PA but also mapping surface hydrology and 

environmental monitoring (Colomina & Molina, 2014; Pajares, 2015; Whitehead & Hugenholtz, 

2014; C. Zhang & Kovacs, 2012). These aerial robotic platforms can be deployed and 

targeted on-demand, and have become an important complement to traditional EO platforms, 

capable of filling in spatial and temporal gaps in satellite data. UAS have become increasingly 

stable and reliable in terms of quality and accuracy (Aasen et al., 2015; Gómez-Candón et al., 

2014). Most professional grade platforms are capable of 25-45 minute flights and can carry a 

range of sensors, including RGB cameras, multispectral/hyperspectral sensors, thermal 

infrared cameras, as well as LiDAR and geophysical sensors. UAS are now deployed across 

a broad range of agricultural production systems, with applications in crop stress identification 

(Gago et al., 2015), biomass estimation (von Bueren et al., 2015), yield monitoring (Torres-

Sánchez et al., 2014), fertilisation and irrigation scheduling (Bellvert et al., 2014); pest control 

(Gonzalez-de-Santos et al., 2017) and subsurface drainage identification (Allred et al., 2018). 

In Ireland, UAS are currently being tested for a wide range of applications in grassland 

management, for example, in the identification of N loads from livestock urine in grazed 

pasture fields (Maire et al., 2018). The two UAS platforms used in different aspects of this 

research are illustrated in Figure 1-13 below. 
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Figure 1-13 Two UAS used during the project. A DJI Matrice 600 (rear) and a DJI Phantom 4 Pro 

(foreground). The Matrice 600 is equipped with a Flir Zenmuse XT thermal sensor. The DJI has an 

integrated RGB camera. 

 

The ability to deploy UAS on demand is especially advantageous in regions such as Ireland, 

where extensive cloud cover frequently obscures the surface for satellite platforms. Deploying 

at short notice is well suited to operational monitoring, for example, for mapping different 

stages of crop development. Flight missions may be programmed to follow predefined routes 

autonomously. Platform speed and height can be set to produce accurate orthomosaic 

imagery or to obtain accurate photogrammetric measurements (as demonstrated in Chapter 

5). Currently, regulations limit the maximum altitude of UAS flights to ensure physical 

separation from manned flights in controlled airspace. In most parts of Ireland, this is set at 

120 m with additional restrictions surrounding airports and other prohibited airspace (Small 
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Unmanned Aircraft (Drones) and Rockets Order S.I. 563 of 2015). At this altitude, it is still 

possible to capture centimetre-accurate images using consumer-grade UAS like the DJI 

Phantom series. The rapid adoption of UAS for remote monitoring has resulted in recent 

international efforts to harmonise data collection methods, with a focus on data quality, 

processing techniques and error propagation in UAS products (Singh & Frazier, 2018). This is 

the goal behind the current EU COST6 action named “Harmonious” (CA 16219), which aims to 

bridge the gap between field observations and traditional remote sensing platforms using UAS 

(Salvatore Manfreda et al., 2018).  

 

  

                                                           
6 European Cooperation on Science and Technology. www.costharmonious.eu (accessed 18 December 2018).  

http://www.costharmonious.eu/
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1.6 Earth Observation for mapping soil moisture  

EO is widely used to estimate soil moisture (SM). As SM and soil drainage are inextricably 

linked, there is a great deal of crossover in terms of the data and techniques used. Before 

introducing some examples of EO projects looking explicitly at soil drainage (in Chapter 2), 

the following sections outline the state of the art in optical, thermal infrared and microwave EO 

techniques to map and monitor SM under different environmental conditions. For each 

method, the inherent advantages and disadvantages are presented, and their current or 

potential use in drainage mapping is discussed. An overview of these methods is presented in 

Figure 1-14 below.  

 

 

 

 

 

 

 

 

 

 

Figure 1-14 Chart of the principal methods of estimating soil moisture using EO satellite platforms.  
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1.6.1 Soil moisture mapping in the microwave region 

Microwave (MW) sensors, commonly known by the acronym RADAR (RAdio Direction And 

Ranging) measure within the microwave region of the EM spectrum. For SM mapping, MW 

sensors measure spatial differences in dielectric constant, which quantifies the electric 

properties of surface materials. The considerable disparity between dielectric constants of 

natural surface materials (~3-8 in dry conditions) and water (~80) results in significant 

increases in radar reflectivity from small increases soil moisture content. Three bands in 

particular are important for SM estimation: X-band (2.4-3.75 cm; 8-12 GHz), C-band (3.75-7.5 

cm; 4-8 GHz) and L-band (15-30 cm; 1-2 GHz). RADAR has three important advantages for 

SM mapping (Kerr et al., 2016): it operates independent of solar radiation, it is largely 

unaffected by atmospheric attenuation or cloud cover and it can penetrate vegetation (by how 

much is a function of wavelength, with longer wavelengths penetrating further).  

 

SM can be measured using both passive and active MW sensors. With passive sensors, 

thermal emission, or brightness temperature, of the land surface is measured, where 

brightness temperature is inversely related to SM in the top 5 cm (Schmugge et al., 1980). 

Data from passive RADAR sensors are ill-suited for operational agricultural purposes. Two L-

band sensors currently in orbit providing global estimates on near-surface (0-5 cm) SM on a 

continuous basis are the ESA SMOS (Soil Moisture Ocean Salinity) mission and the NASA 

SMAP (Soil Moisture Active Passive) missions. Studies have reported high accuracy for both 

sensors under optimal conditions (flat topography, low vegetation and no radio frequency 

interference), however with spatial resolution of ~40 km these sensors are best suitable to 

global/continental-scale SM observations (Figure 1-15). Disaggregation of coarse resolution 

SM products using 1 km spatial resolution MODIS data can be useful to improve spatial 
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resolution (Srivastava et al., 2013) but generally SMOS and SMAP are considered unsuitable 

to operational SM monitoring at PA-scale because of the huge scale discrepancy between 

RADAR observation scale (several kilometres) and field- or farm scale.  

 

 

Figure 1-15 Example of the ESA SMOS MIR SMUDP2 Soil Moisture product (26 April 2018). This 

sensor provides daily volumetric SM estimation m3 m-3 (cubic metres of water per cubic metre of soil) 

at very coarse spatial resolution best suited to global SM mapping.  

 

Unlike passive sensors, active MW sensors emit MW pulses and record the intensity of the 

returned signal (backscatter). High SM will increase backscatter under ideal conditions (flat 

topography, no vegetation). The higher spatial resolution of active MW sensors makes them 

better suited to operational SM mapping. However, active MW sensors are equally sensitive 

to surface roughness and vegetation cover so in densely vegetated areas different 

contributors to the backscatter signal must be filtered out to provide an estimate of SM 

0 
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content. These other sources will include volume scattering within overlying canopy, direct 

ground scattering and double-bounce effects between canopy and ground (Wagner & Pathe, 

2005; Walker et al., 2004). Several methods have been developed to account for the effect of 

vegetation and roughness on SM estimates using empirical, physical, and semi-empirical 

models. These often require considerable parameterisation, and are only applicable to the 

specific conditions that are modelled (Barrett et al., 2009).  

 

An early study on SM retrieval suggested active RADAR may be applicable where biomass is 

< 1 t ha-1 (Dobson et al., 1992). Applying this approach to SM estimation on intensively 

managed grasslands, one Irish study ignored the influence of canopy height and assumed 

backscatter (ENVISAT SAR) was linearly related to SM (Barrett et al., 2012). A significant, 

positive relationship between backscatter and in-situ SM was reported (R2: 0.67–0.86). 

Subsequent studies found RADAR SM estimates were less accurate when compared poorly 

with in-situ SM data in very dry and very wet soil conditions (Pratola et al., 2015).  

 

MW data are widely used for soil drainage mapping. The few published instances where C-

band SAR was used for soil drainage classification were generally used in combination with 

multispectral or hyperspectral imagery or other remotely sensed data. For example Liu et al. 

(2008) classified soil drainage at field scale using hyperspectral imagery, soil conductivity and 

airborne C-band SAR imagery (Liu et al., 2008). The maps produced from SAR images were 

comparatively noisy (from RADAR speckle) and as a consequence classification accuracy 

was low (52% compared with 55% for soil conductivity and 68% for hyperspectral data). Niang 

et al. (2012) found evidence for contrasting SAR backscattering coefficients related to 
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different drainage classes. Extreme drainage classes could be readily distinguished but 

separating neighbouring drainage classes was more of a challenge, particularly in increasingly 

wet soil conditions or under increasingly dense vegetation  (Niang et al., 2012). 

 

1.6.2 Soil moisture mapping in the visible & near-infrared region 

Optical methods of estimating SM are based on the reflectance of EM radiation in the visible 

and near-infrared (VNIR) region (400-2100 nm). Optical methods are best applied on bare or 

sparsely vegetated ground where sensors can directly image the surface. However, even 

where there is vegetation present, SM volumes may be inferred from its impact on canopy 

growth.  

 

1.6.2.1 Bare soil  

The darkening of bare soil as the volume of SM content increases is a familiar phenomenon. 

Several laboratory-based studies investigated the decrease in soil reflectance as a function of 

saturation. Lobel and Asner (2002) found a non-linear (exponential) relationship between SM 

and soil reflectance as a soil moved between wet and dry states. Detection of contrasting SM 

was enhanced in NIR and SWIR regions compared with visible (RGB) bands (Lobell & Asner, 

2002). Subsequently, Kaleita et al. (2005) described the relationship between SM and soil 

reflectance by combining hyperspectral VNIR reflectance with gravimetric (oven-dried soil 

samples) measurements of SM (Kaleita et al., 2005). The study suggested it was feasible to 

estimate surface soil moisture in the upper 7 cm from VNIR reflectance, although estimating 

SM regimes rather than precise SM measurement was more likely. The study also reported 
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that the accuracy of SM estimation was a function of soil type, with improved accuracy on 

soils with higher sand content.  

 

For larger scale mapping, Liu et al. (2008) used principal component analysis of stacked 

hyperspectral images, soil electrical conductivity data and C-band RADAR backscatter 

images to distinguish broad drainage classes (well-, imperfectly- and poorly-drained) over 

bare fields. The best classification performance was achieved using hyperspectral imagery, 

where substantial agreement between observed and modelled drainage class was reported 

imagery (68% compared with and 55% for soil conductivity and 52% for RADAR) (Liu et al., 

2008). Using a combination of VNIR data at different spatial resolution (Landsat TM images at 

30 m spatial resolution, IKONOS satellite imagery at 4 m spatial resolution and aerial RGB 

orthomosaics at 60 cm spatial resolution), Peng et al. (2003) mapped bare soil drainage 

classes with an overall classification accuracy of 73% when compared to observed validation 

data (Peng et al., 2003). Merging the high spatial resolution orthomosaics with Landsat TM 

images and a DEM significantly improved predictive ability over existing, conventionally-

produced soil surveys which only achieved 55% accuracy versus validation data. Using 

RapidEye (6.5m) satellite imagery, Blasch et al. (2015) demonstrated the potential of multi-

temporal, multispectral soil reflectance over mono-temporal analysis for generating functional 

soil maps at field scale (Blasch et al., 2015).  
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1.6.3.2 Vegetated soil 

Where vegetation obscures the surface, extreme SM regimes can be inferred detected in 

multispectral or hyperspectral EO images of the overlying vegetation. Plants respond to 

environmental stress in a number of ways that can be identified in EO imagery. Physiological 

responses to stresses may cause a reduction in foliage biomass, photosynthesis and 

respiration (Barrett-Lennard, 2003; Carter, 1991; Drew, 1983) which can be observed in 

changes to the reflectance/absorption characteristics of VNIR spectra (400-850 nm). Typically 

for broadband sensors these changes will occur in a narrow region near 700 nm sensitive to 

chlorophyll production, and in the SWIR region (1400–2500 nm) where contrasting reflectance 

values in vegetation can be attributed to changes in plant water content, leaf water potential 

and stomatal conductance (Carter & Knapp, 2001; Ceccato et al., 2001). Vegetation indices 

are widely utilised for SM mapping (D. Zhang & Zhou, 2016). For example, 250 m resolution 

MODIS NDVI images were used in different studies as a proxy for root zone SM (Santos et 

al., 2014; X. Wang et al., 2007). Several other authors have used Landsat imagery to map soil 

drainage class (Cialella et al., 1997; Lozano-Garcia et al., 1991). Others have combined 

moderate- and high-spatial resolution data to map drain function by mapping spatial 

anomalies in plant vigour related to underlying SM conditions (Cicek et al., 2010; Kross et al., 

2015; Khand et al., 2017; Kobryn et al., 2015). Hyperspectral imagery, which can record 

several hundred continuous, narrow spectral bands are very adept at identifying subtle plant 

responses to stress. In many cases, the response is species specific reflecting different 

genetic, biochemical or structural characteristics of the plants involved. In many cases, 

however, there is a widely observed shift in the position of the red-NIR boundary (the red 

edge, ~680-730 nm) towards shorter wavelengths (Boochs et al., 1990; Carter, 1991, 1993).  
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1.6.3 Soil moisture mapping in the thermal infrared region  

Thermal infrared radiation (TIR) refers to electromagnetic radiation between 3-14 µm. All 

bodies with a temperature above absolute zero (0 °K; -273.16 °C) emit radiation as a function 

of emissivity and temperature as governed by the Stefan-Boltzmann equation (Equation 1.4). 

This equation states the total radiation emitted from a blackbody is proportional to the fourth 

power of the absolute temperature of the blackbody (where a blackbody is a hypothetical 

surface that perfectly absorbs and reemits all energy that is incident upon it (Sabins, 2007)). 

For grey bodies (i.e. all natural surfaces) an object’s emissivity must be accounted for to 

define accurate temperature readings. Emissivity, a dimensionless value between 0 (perfect 

reflector) and 1 (perfect emitter), is the ratio of energy from a surface compared to a 

blackbody at the same wavelength and temperature.  

 

E = εσ T4          (Eqn. 1.4) 

where σ = 5.67 × 10−8 Wm−2 K−4 (Stefan-Boltzmann constant), T is absolute temperature in 

degrees Kelvin (K), and ε is surface emissivity. 

 

The relationship between emissivity, radiant- and actual (kinetic) temperature is defined by 

Equation 1.5 below. Objects and surfaces may have the same kinetic temperature but can 

differ significantly in the radiation they emit and their radiant temperatures because of different 

emissivity. Also, where vegetation forms a dense canopy, the emitted thermal signal may 

have little relationship to underlying soil temperature but instead may reflect stomatal 

temperature regulation by the canopy (H. G. Jones et al., 2009). Like optical sensors, thermal 

sensors have limited penetration depth and are susceptible to occlusion by clouds. It also has 
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coarser spatial resolution, for example, the Landsat 8 thermal bands (which measure thermal 

radiation in two bands between 10.6-11.19 µm and 11.5-12.51 µm) are captured at 100 m 

spatial resolution (but provided as resampled 30 m spatial resolution products).  

 

Trad = ε1/4Tkin         (Eqn. 1.5) 

where Trad and Tkin are radiant temperatures measured by a thermal camera and the kinetic 

temperature of the surface respectively and ε is emissivity. 

 

1.6.3.1 Thermal inertia 

TIR remote sensing is well-established for mapping SM (Idso et al., 1975). A popular TIR 

technique for mapping spatiotemporal patterns in SM involves identifying differences in diurnal 

temperature caused by differences in the thermal inertia (TI) of surface materials. TI is a 

measurement of an object's resistance to ambient temperature change and is strongly 

dependent on SM. TI is higher on wet soils because water absorbs a greater amount of heat 

and temperatures change more slowly than for drier soils. In controlled settings, TI can be 

calculated if several properties are accurately known (Equation 2.7) (Hillel, 1998). 

 

TI= √kpc          (Eqn. 1.6)  

where k is thermal conductivity (the ability of a surface to conduct heat; W m−1 K−1), ρ is 

density (mass per unit volume, kg m−3 × 103), and c is heat capacity (the product of specific 

heat and ρ, J m−3 K−1 × 106).  
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For EO purposes, the thermal conductivity, specific heat capacity and bulk density of specific 

objects or surfaces are rarely known, so an apparent thermal inertia (ATI) is calculated 

instead (J. Price, 1985; Y. Xue & Cracknell, 1995). There are several ATI functions available 

for SM monitoring and a number of these have been reviewed in the context of SM monitoring 

of grassland in New Zealand using MODIS land surface temperature (Sohrabinia et al., 2014). 

All functions displayed similar correlation values in-situ SM measurements but the best 

performance was during drier, summer months. On bare or sparsely vegetated soils, SM 

estimates using ATI can be quite precise (Verstraeten et al., 2006). Matsushima et al. (2012) 

predicted SM on bare or sparsely vegetated surfaces with a precision of 3-4% using an ATI 

method which allowed classification of mapped soils into broad SM regimes (wet, middle and 

dry) (Matsushima et al., 2012). ATI can be calculated using albedo and diurnal temperature 

difference using Equation 1.7. 

 

ATI = (1 - A) / ΔT        (Eqn. 1.7) 

where A is albedo (the ratio of reflected and incident radiation) and ΔT is the difference in 

surface temperature captured by a TIR sensor at daily temperature extrema. 
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1.6.3.2 Temperature/ vegetation index 

When TIR is combined with NDVI, a two-dimensional surface temperature/ vegetation index 

feature space (Ts/VI) is created that can be of use for SM estimation (Carlson et al., 1994; 

Gillies & Carlson, 1995; Moran et al., 1994; Sandholt et al., 2002). The Ts/VI technique 

focuses on the distribution of pixels within the feature space, the location of which can depict 

gradients of soil moisture and vegetation health. A comprehensive review of the application of 

Ts/VI can be found in Petropolous et al. (Petropoulos et al., 2009). The “universal triangular 

method”, as it has become known, has found broad application at different scales, in different 

climatic regions and for different land cover (Holzman et al., 2014; Mallick et al., 2009; 

Sandholt et al., 2002). However, it is reported to be unreliable in regions of complex 

topography and requires a broad range of temperature and soil moisture values to adequately 

define the feature space (Rahimzadeh-Bajgiran et al., 2012).  

 

1.7 Earth Observation for mapping floods  

Flooding can result from, or result in, saturated soil conditions. The ability to map floods is 

also applicable for mapping areas of saturated soil. As flood waters recede, the soil matrix will 

often remain saturated or near saturation for some time after. In agricultural areas this can 

have a negative impact on crop growth. In Chapter 3, an application is described that 

combines SAR flood maps from the Sentinel 1 mission with multi-temporal Landsat 8 NDVI 

imagery to observe the process of recovery for grassland following soil saturation. EO 

provides a cost-effective and efficient means of producing accurate flood maps in near real-

time. The use of both optical and MW sensors for flood mapping is well-established (Joyce et 
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al., 2009; Profeti & Macintosh, 1998; Rango & Salomonson, 1974; Twele et al., 2016). The 

following section outlines different forms of EO data used to map floods.  

 

1.7.1 Optical sensors  

Optical sensors map flood waters using the contrasting reflectance signals of soil/vegetation 

and water, particularly in the NIR, SWIR and green regions of the electromagnetic spectrum 

(thermal infrared may also be used) (Du et al., 2016; Ji et al., 2011; Leblanc et al., 2011; 

Ouma & Tateishi, 2006). Optical imagery is not always suitable for operational flood mapping 

where cloud cover prevents timely mapping. While this can be partly mitigated by using lower 

spatial resolution/ higher temporal resolution imagery (for example, Moderate Resolution 

Imaging Spectroradiometer (MODIS) composite images), which minimises cloud interference 

but comes at the loss of mapping accuracy (Chen et al., 2013). UAS are now increasingly 

used for small areas mapping of floods, below cloud cover, with studies describing their use 

for quantifying buildings at risk or measuring flood depth (Ridolfi & Manciola, 2018). An added 

benefit of optical sensors is their ability to measure plant stress and thus quantify vegetation 

recovery following flood events. Several studies have examined the role of EO data for 

mapping plant recovery following inundation (Džubáková et al., 2015; Pantaleoni et al., 2007) 

or extreme weather/ natural disasters (Fu et al., 2014; Rodgers et al., 2009).  

 

1.7.2 Microwave sensors  

SAR sensors are extremely efficient sensors for operational flood mapping because of their 

ability to map independent of solar illumination and cloud cover. However, SAR images 

require additional processing and often expert interpretation of the signal. RADAR sees water 
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as areas of very low backscatter values, where smooth water surfaces result in the specular 

reflection of microwave pulses in a single direction away from the sensor. Consequently, 

waterbodies (including flooded areas) appear very dark in SAR imagery. Conversely, rough 

land surfaces are diffuse reflectors of SAR signals so a greater portion of energy is reflected 

towards the sensor and, in contrast to waterbodies, it appears bright in SAR imagery. A 

surface is considered “rough” when it has dimensions comparable to the incident wavelength 

(i.e. centimetre variation in the case of C-band sensors) (Campbell, 1996). Different 

polarisation settings can also affect the strength of the returned signal.  

 

Polarisation refers to the geometric plane an MW pulse propagates along, horizontal (H) or 

vertical (V). For sensors with dual polarisation capability, four combinations are possible (HH, 

HV, VH, and VV), and all can potentially be used for flood mapping. The HH (horizontal 

transmit, horizontal receive) combination often displays the highest contrast between water 

and land. Sentinel 1 primarily operates in VV and VH mode over land surfaces (Sentinel 1 

SAR User Guide7). VV (vertical transmit, vertical receive) has previously been viewed as less 

capable than HH for flood mapping (Bourgeau-Chavez et al., 2001; Gstaiger et al., 2012), 

although Manjusree demonstrated an ability of the polarisation to identify partially submerged 

fields (Manjusree et al., 2012). Twele et al. reported high classification accuracy (>94%) using 

VV polarised Sentinel 1 imagery (Twele et al., 2016). Clement et al. achieved similar accuracy 

(97%) mapping winter floods in the UK in 2015-16 (Clement et al., 2017).  

 

                                                           
7 Available at www.sentinel.esa.int/web/sentinel/user-guides/sentinel-1-sar (accessed 12 December 2018) 

https://sentinel.esa.int/web/sentinel/user-guides/sentinel-1-sar
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1.8 Research questions 

This research project investigated a number of application where EO data and 

geocomputational techniques could be used for better understanding of field drainage on Irish 

grassland farms, for example through the identification of artificially-drained areas, or in 

potential pathways for drainage at field level. The key research questions underlying this 

projects were:  

 

1.8.1 Research Question 1 

There is no efficient method of mapping the extent and distribution of artificially drained soils 

on Irish farms. Using advanced machine learning image classification algorithms (support 

vector machine and random forest), is it possible to distinguish artificially-drained fields on 

naturally-poorly drained soils using moderate spatial resolution Landsat 8 imagery? A 

thematic map of artificially drained soils is presented along with an accuracy assessment 

using expert interpretation of high resolution orthomosaic RGB imagery, and a legacy dataset 

of field observations from 2005.  

 

1.8.2 Research Question 2 

It has been demonstrated in the introduction that wet soils have a negative impact on spring 

grass yield. How does this look within visible and NIR EO imagery? Are there contrasting 

reflectance signals for grass growing under poorly-drained or drained conditions? If there is a 

measurable difference, what are the important Landsat 8 bands for characterising this 

difference? The important wavelengths for characterising drained- and poorly-drained 

conditions are derived from random forest estimates of variable importance.  
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1.8.3 Research Question 3 

After establishing whether there is a difference in reflectance properties for drained and 

poorly-drained conditions, is it possible to observe improvements over time relating to 

drainage status? For example, can improvements in grass yields following prolonged 

saturation (flooding), or following the installation of an artificial drainage system be mapped? 

Improved drainage status (following flooding or drain installation) is inferred from temporal 

changes in Landsat 8 NDVI values. At field level, statistical analysis of mean NDVI values 

before and after drainage is used to illustrate improvement in grass production. 

 

1.8.4 Research Question 4 

Previous research questions have focused on satellite EO data at moderate spatial resolution. 

What role do UAS have in high spatial (and temporal) resolution mapping of surface and 

subsurface drainage pathways? Specifically, can UAS-derived photogrammetric surface 

models substitute for LiDAR elevation models when modelling nutrient losses in overland flow 

in a managed grassland environment? Photogrammetric and LiDAR topographical point 

clouds and topographic models are statistically compared. Also, can UAS thermal cameras 

identify heat anomalies at the surface that relate to subsurface drainage systems in a 

managed grassland environment? Thermometer-measured soil temperatures are compared 

with thermal camera measurements of canopy temperatures in relation to a buried drainage 

system.  
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These research questions are addressed in subsequent chapters and discussed collectively in 

Chapter 7. The following chapter identifies several studies internationally where EO data has 

been used explicitly to map drainage status under different environmental and land cover 

conditions. Other forms of remotely sensed data have been used to map drainage, for 

example using topographical models or geophysical data. The following chapter outlines 

these previous projects and discusses which approaches could have a role in mapping 

artifical drainage under Irish conditions.  
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Chapter 2 Literature Review 

2.1. Mapping drainage class  

2.1.1 EO-based methods 

Since the 1990’s, several studies have demonstrated a general relationship between soil 

drainage class and satellite-derived VI under different land cover. These studies have, until 

recently, had limited geographical distribution, largely focused on North America and Canada, 

where the primary focus was mapping tile-drained cropland to understand surface water 

pollution. This situation is changing slowly, with an increasing number of studies now 

emerging from Western Europe.  

 

Using a single AVIRIS NDVI image (20 m resolution) and digital topographical data (elevation, 

slope, aspect and flow accumulation), Cialella et al. (1997) used classification tree analysis to 

classify soil drainage over a 2400 ha boreal forest. The overall accuracy of 81% was achieved 

against field verified observations of drainage classes (“very poor”, “poor”, “moderately well”, 

“well” and “excessive”). High prediction accuracy was found in each drainage class (61%, 

91%, 86%, 77%, 100% respectively). Local topographic position had the most substantial 

influence on drainage class, followed by NDVI (Cialella et al., 1997).  

 

Campling et al. (2002) used logistic models to predict drainage probability class in a ~ 59,000 

ha humid tropical region using a combination of soil samples, DEM and Landsat 5 imagery. 

Under mixed land cover, six drainage classes were identified between “excessively drained” 

to “very poorly drained”. The results showed that DEM and VI provided complementary 
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information for developing statistical models to map and predict soil drainage classes. VI were 

among the most critical variables for classification purposes. The greatest success was for 

distinguishing extreme classes, for example, wet versus dry soils (99%), with less success in 

distinguishing neighbouring classes (Campling et al., 2002).  

 

Peng et al. (2003) used a combination of aerial photography, moderate- and high-spatial 

resolution EO satellite imagery (Landsat 7 TM and IKONOS) and a DEM to determine soil 

drainage classes on bare soils. Overall classification accuracy compared to field-verified 

samples was 73% (Peng et al., 2003). This method outperformed a published soil survey 

(1:15,840 scale) which had an accuracy of 55% compared with field-verified samples.  

 

Niang et al. (2012) used discriminant analysis classification (DAC) and decision tree 

classifiers (DTC) to map soil drainage at a watershed scale using a fusion of optical (15 m 

resolution ASTER imagery) and microwave imagery (12.5 m spatial resolution RADARSAT-1 

imagery). Accuracy of the models varied by algorithm choice and land use. Best overall 

accuracy was 40% for DAC and 65% for DTC. Bare or sparsely vegetated soils had the 

highest classification accuracies. Accuracy was reduced on densely vegetated soils. For 

pasture, for highest accuracy achieved was 56% was for the well-drained class (Niang et al., 

2012).  

 

Liu et al. (2008) mapped three drainage classes under bare soil conditions based on in-situ 

soil observations, topographic variables, apparent soil electrical conductivity, aerial 

hyperspectral imagery and airborne C-band SAR imagery. Using stepwise discriminant 
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analysis, they achieved overall accuracy of 68% using hyperspectral data. There was no 

improvement to classification accuracy by integrating either the SAR or DEM data (Liu et al., 

2008).  

 

Kiliç (2009) mapped soil drainage classes in the Amik Plain in Turkey using Landsat 7 ETM 

imagery, topographical data and VI. A maximum likelihood classification found that 51% of 

soils in the plain were well- or moderately well-drained, with 49% somewhat-, poorly- or very 

poorly drained (Kiliç, 2009).  

 

In a German study, Tetzlaff et al. (2009) used black & white aerial imagery to identify buried 

drains under heterogeneous soil-, land cover- and management conditions. Phenological 

stage of overlying vegetation was an essential variable for drain identification. Spring images, 

in particular, were optimal for identifying drains in cereals and grassland (Tetzlaff, Kuhr, 

Vereecken, et al., 2009). 

 

Kidd et al. (2014) modelled drainage class over a 70,000 ha study area in Tasmania using 

DEM- and remotely-sensed data to predict soil drainage class using decision tree spatial 

modelling, regression-tree spatial modelling and random-forest with residual-kriging. The 

regression tree method performed best, aligning well with normal landscape drainage 

patterns, known soil profile classes, and visual field indicators (Kidd et al., 2014). 
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Tlapáková et al. (2017) reported spring imagery was important for recognising artifical 

drainage beneath pasture. They stressed the importance of multitemporal imagery for 

minimising error accruing from land management (for example, treading or overgrazing by 

livestock). They also found a priori knowledge of antecedent SM condition was helpful 

(Tlapáková et al., 2017).  

 

Gokkaya et al. (2017) used DTC and satellite image differencing (Landsat 8 SWIR bands) to 

determine tile drainage area across an agricultural watershed. They estimated 79% of the 

cultivated area was tile-drained, with 94% overall classification accuracy (Gökkaya et al., 

2017).  

 

Møller et al. (2017) employed boosted and bagged DTC to predict drainage class at national 

scale in Denmark. Decision trees were trained from >1000 field observations of soil drainage 

classes, with 31 predictor variables, including topographic variables, soil and geological data, 

land use/ land cover maps and a selection of Landsat 8 VI, including NDVI and NDWI. Both 

methods performed similarly (81% overall accuracy). In this case, the satellite VI were 

amongst the least important predictor variables for both models (Beucher et al., 2017; Møller 

et al., 2017). Subsequently, Møller et al. (2018) used an ensemble of machine learning 

models to map the extent of artificially drained areas in Denmark based on field observations 

and 46 covariate layers, including satellite imagery. The most critical covariates for predicting 

artificially-drained areas were related to soil properties and topography. Artificially-drained 

areas were identified with an accuracy of 76 % (Møller et al., 2018).  
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Postgraduate research in the Midwest USA has investigated the mapping subsurface 

drainage systems on farmland using panchromatic and VNIR imagery (B. S. Naz et al., 2009; 

B.S.  Naz & Bowling, 2008; Roy, 2013; Thompson, 2010). The technique was established in 

an earlier NASA technical memorandum (Goettelman et al., 1983) and subsequently 

developed by Verma and others (B.S.  Naz & Bowling, 2008; Verma et al., 1996). For a fully 

saturated bare field, for example, following rainfall or irrigation, strips of dry soil appear first 

over drainage lines and widen gradually until the entire field surface is dry. Drying patterns are 

influenced by drain spacing, and whether or not drains are functioning properly. Although a 

popular method, it has been criticised for poor predictive ability, especially in the presence of 

crop residues (B. S. Naz et al., 2009). Where the surface is obscured by a crop, anomalous 

drainage patterns may manifest as poor crop growth or high canopy temperatures. The 

technique have been used to map drain lines in order to parameterise hydrological models to 

better understand the hydrology of agricultural catchments (Northcott et al., 2000).  

 

2.1.2 Topographic methods 

Several studies have classified soil drainage using only topographic, soil- or land cover data 

without integrating satellite imagery. Bell et al. (1994) mapped three drainage classes at a 

regional scale using soil observations, geological maps and topographic variables. The study 

achieved an accuracy of 74%, which exceeded the accuracy of a conventional, published soil 

survey (Bell et al., 1994). Kravchenko et al. (2002) distinguished three drainage classes at 

field-scale based on soil observations; terrain attributes and soil electrical conductivity. 

Discriminant analysis and co-kriging provided the most accurate results (90%) (Kravchenko et 

al., 2002). Finally, Zhao et al. (2013) developed an artificial neural network (ANN) model for 
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soil drainage classification using in-situ soil profiles and topographic attributes. They found 

52% of predicted drainage classes were identical to field observations while 94% of model-

predicted drainage classes were within one class (Zhao et al., 2013). 

 

2.1.3 Geophysical methods 

Drain installation involves the excavation and mixing of soil strata. These mixed soils have 

different geophysical properties that then appear anomalous against the natural soil 

background and may be detectable using geophysical methods of RS. Subsurface drainage 

systems have been identified using land-based geophysical techniques, in particular, 

magnetometry and ground penetrating radar (GPR). Magnetometry measures changes in 

ambient magnetic fields caused by contrasts in the magnetism of soil (Gibson & George, 

2004). These changes are a often proportional to iron content, usually in its ferrous form 

(hematite (Fe2O3) or magnetite (Fe3O4)). Variation in soil type and management strategies 

can produce different magnetic signatures. The excavation of soil for a drain has the potential 

to produce a magnetic anomaly, as will the accumulation of iron in and around a drain pipe 

(Rogers et al., 2005). Moreover, if ceramic pipes are present, they will have their own 

magnetic field (a legacy of its firing). Plastic pipes will not have a magnetic field. 

Magnetometers have been used for drainage mapping, but the practice is still far from 

standard (Rogers et al., 2006; Rogers et al., 2005; Ruedisili & Logan, 1978). Rogers et al. 

(2005) used this technique to identify clay tile drains (22 cm diameter) at a depth of 1 m but 

reported that variability in soil magnetic properties could limit detection ability. 
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GPR transmit short pulses of high frequency EM energy (10-2500 MHz) into the ground. As 

waves encounter an interface between different materials (layers or objects) some transmitted 

energy is reflected back to the sensor. The propagation speed of the EM wave depends upon 

dielectric constant of the medium, which as was previously discussed is predominantly 

influenced by the volume of SM present. GPR data require significant processing and expert 

interpretation, but it has demonstrated its ability identify buried drainage channels under 

varying field conditions (Allred, 2013; Allred et al., 2004; Allred & Redman, 2010). These 

papers reported overall efficiency of 81% in locating both clay and plastic drains up to 1 m 

deep on different textured soils, and under different SM regimes.  

 

Both magnetometers and GPR have been successfully mounted on UAS for increased 

mobility over large areas. These pilot schemes have not been widely reported however. There 

are issues with each method for mapping the shallow subsurface. Both sensors would have to 

be flown quite close to the surface, increasing flight time. Flying close to the surface would 

require very accurate terrain models for autonomous flight planning. Also, GPR experiences a 

strong bounce effect as the pulse enters and leaves the ground, the further the antenna is 

from the surface, the higher the noise from this double impact is, thereby obscuring or hiding 

reflected signals from shallow subsurface features. While suitable for deeper investigations, 

UAV GPR is unsuited to agricultural drainage mapping. This is a dynamic area of research, 

however, and further developments are likely in the coming years. 
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2.2 Conclusions 

Ireland does not currently account for its drainage infrastructure. There is no archive of the 

location of “legacy” drain works. Neither is there a requirement to report current drainage 

works below a certain threshold. There is increasing awareness internationally of the need to 

locate artificially drained areas to improve our understanding of potential environmental 

impacts, for example, from nutrient transport to surface- and groundwater, or in tackling GHG 

emissions. EO-based methods are the only practical way to map soil drainage properties 

between catchment and national scale. These have reported high overall accuracy using 

Landsat imagery (~30 m spatial resolution). The review of published literature has highlighted 

the various pros and cons associated witth EO mapping of drainage status.  

 

The techniques used are well-established, largely borrowed from SM mapping and 

monitoring. The review identified a number of methods that could potentially be applied to 

mapping artificial drainage in Ireland. For example, previous projects have used Landsat data 

extensively. Landsat data is free, can be used to map in-field conditions (compared to MODIS, 

for example) and has a decades-old archive from which to source suitable data. It was clear 

from previous projects that mapping at certain times of the season can help identify drainage 

patterns. Previous research acknowledged an improvement in map classification accuracy by 

using springtime images, where contrasting drainage class or buried drainage features can be 

more readily distinguished (Tlapáková et al., 2017). Previous studies had made extensive use 

of topographical data, in some cases separately but frequently in combination with other 

datasets. Topography is closely related to SM within the study area, with increasing soil 

wetness a factor of elevation height and slope aspect. The inclusion of such data could be 
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expected to increase map accuracy. It was also clear how the number of drainage classes 

that are defined using RS or EO drainage classifications often do not match the number of 

classes that could be defined from a traditional soil classification. The number of classes for 

remotely sensed studies were generally lower, and more likely to distinguish extreme classes. 

Intermediate classes were less likely to be distinguished with any certainty. In several studies, 

aggregating intermediate classes had a positive effect on overall accuracy. The reasons for 

this were clear, in-situ surveys take into account a number of different factors that are not 

available to remote sensors (soil profiles and morphological characteristics, for example). A 

reflectance-only approach, while cost-effective, could not hope to classify soil drainage to the 

same degree of accuracy as field-based surveys. Nevertheless, several studies described 

indicated that EO-based surveys were as accurate, or more accurate, than existing published 

soil surveys in some regions.  

 

2.3 Thesis structure 

The results of previous drainage mapping studies have formed the basis for the approach 

adopted in this thesis and outlined in subsequent chapters. In the following chapters, 

methodologies, results and discussions are presented for EO mapping drainage status in a 

predominantly managed grassland environment. The format for the remainder of the thesis is 

outlined below.  

 

Chapter 3 examines the effect of soil saturation on grassland production following prolonged 

saturation following extensive winter flooding in 2015-2016. Flood maps are created using a 6 

month archive of Sentinel 1 C-band SAR images to map the extent of saturated soils across 
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the country. Knowing the location of flooded soils, it is possible to observe the recovery of 

grassland as flood waters recede and soils drain. For the first stime, the long-term impact of 

floods and prolonged soil saturation is illustrated using EO imagery, showing a persistant 

impact on grass growth lasting several months.  

 

Chapter 4 descibes the results of a machine-learning image classification of artificial drainage 

on heavy grassland soils in the BMW region of the Republic of Ireland. This chapter further 

explores some of the findings from Chapter 3, where the visisble and infrared reflectance 

signal for prolonged saturation are used to classify naturally poorly-drained soils into “drained” 

and “undrained” classes. Two machine learning algorithms, Support Vector Machine (SVM) 

and Random Forest (RF) algorithms are tested. Changes in drainage status over time were 

identified at one location where following artificial drainage had been installed.  

 

Chapter 5 is the first of two chapters examining potential applications for UAS in mapping 

drainage pathways on Irish farms. Consumer-grade UAS with built-in RGB cameras are 

currently extremely popular in research and industrial appications for high spatial resolution 

3D surface modelling. This chapter presents a performance assessment of UAS 

photogrammetry for creating digital surface models (DSM) that might substitute for aerial 

LiDAR digital elevation models (DEM). Photogrammetric DSM and LiDAR DEM are compared 

using regression analysis. The spatial resolution at which models are most comparable are 

identified. Potential sources of error are discussed.  
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Chapter 6 continues with potential UAS applications on Irish farms. A UAS-mounted thermal 

infrared (TIR) camera is used to identify subsurface drainage channels or artifically drained 

locations based on surface temperature anomalies. Two field experiments are outlined. An 

initial saturation test on a 5 m x 5 m grassed plot investigated how soil temperature (upper 10 

cm) and TIR canopy temperature readings responded to increasing soil saturation. A 

subsequent field test used a UAS-mounted TIR camera to map an artificial drainage system 

installed on a sports pitch. The accuracy of the method is discussed and future work in this 

area is proposed.  
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Chapter 3 Mapping the extent and duration of soil 

saturation following winter floods and its effect on 

grass growth  

 

3.1 Introduction 

3.1.1 Background  

In winter 2015-2016, a series of devastating storms brought extensive and persistent flooding 

to many areas of the the British Isles (Figure 3-1). In Ireland, the volume of seasonal rainfall 

brought Storms Desmond, Eva and Frank during December 2015 was unprecedented. Half of 

synoptic precipitation stations nationally reported their wettest winter on record, while some 

stations in the South and Midlands experienced >350% their long-term average precipitation 

for the season (Met Éireann, 2016). Nearly 50% of river gauges operated by the Office of 

Public Works (OPW) reported their highest-ever heights (NDFEM, 2016). The heavy rains 

resulted in extensive pluvial flooding beyond traditional floodplains and saw widespread 

devastation and prolonged disruption within rural communities. In the context of this reserach, 

these floods presented an opportunity to observe the impact of prolonged and widespread soil 

saturation on grass production in the following spring (2016). By first mapping flood extent and 

duration, it would then be possible to monitor the recovery from saturation on formerly flooded 

fields.  

 



 

72 

 

Figure 3-1 Flooded farmland in County Galway in January 2016. Source: Irish Times. 7 January 2018. 

 

3.1.2 Objectives  

The objective of this study was to observe the recovery of grass growth on flooded pasture 

using multi-temporal Landsat 8 NDVI imagery. To achieve this, Sentinel 1 SAR images were 

initially required to map flooded areas as well as to identify areas of persistent flooding. 

Recovery was observed in mean Landsat 8 NDVI images from May, June and July 2016. To 

assess the accuracy of the SAR flood map an existing flood map from Copernicus EMS map 

was ussed. Similarity between the produced thematic maps were assessed using an error 

matrix, following the method outlined in Congalton (1991). Reports of flooded farms from 

Teagasc advisors were also available. A comparative flood map was also made using 

Sentinel 2 imagery. There was no data to validate the recovery datam although the findings 

could be corroborated by findings in previous research which suggested significant reduction 
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in spring yield following saturatied conditions (Section 1.3). Additional information and 

discussion on flood depth and flood volume are included in Appendix F. 

 

3.2 Materials and Methods 

3.2.1 Data collection  

3.2.1.1 Sentinel 1  

Floods were mapped using images from Sentinel 1A C-band SAR mission. Thirty-three 

Sentinel 1A Level-1 Ground Range Detected images were downloaded from Copernicus 

Open Access Hub (previously known as Sentinels Scientific Data Hub, or SciHub)8. A 

complete list of scenes used are presented in Appendix A. Images were acquired every 12 

days from 19 November 2015 until 23 February 2016, and twice after that on 30 March and 11 

April. The scenes provided almost nationwide coverage. Two narrow strips of land on the east 

and west coasts lay outside the image swaths and were omitted to reduce processing time. 

Images are available for these areas, however, the tract of land excluded was relatively small 

and predominantly coastal or mountainous in nature (see red areas in Figure 3-2).  

 

  

                                                           
8 https://scihub.copernicus.eu. Accessed 12 December 2018. 

https://scihub.copernicus.eu/
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3.2.1.2 Sentinel 2 

A Sentinel 2A multispectral image from 21 December 2015 (cloud cover <3%) was 

downloaded as a Level 2A surface reflectance product from Copernicus Open Access Hub. 

This was used to create a flood map for a region of interest south of Athlone, Co. Westmeath 

using a normalised difference water index (NDWI) (McFeeters, 1996) (Equation 3.1). This 

index uses green and NIR bands (unlike the NDWI described in Equation 2.3) to delineate 

open water features.  

 

𝑁𝐷𝑊𝐼 =
𝑁𝐼𝑅−𝐺𝑟𝑒𝑒𝑛

𝑁𝐼𝑅+𝐺𝑟𝑒𝑒𝑛
        (Eqn. 3.1) 

where Green and NIR are surface reflectance bands measured by a multispectral camera. 

 

The United Nations Space-based Information for Disaster Management and Emergency 

Response (UN-SPIDER) has also released an NDWI-based methodology for using Sentinel 2 

flood mapping that is suitable to regions with low cloud cover9.  

Data specifications for both Sentinel missions are provided in Table 3-1 below. 

 

  

                                                           
9 http://www.un-spider.org/advisory-support/recommended-practices/flood-mapping-and-damage-assessment-
using-s2-data/ (accessed 2 December 2018). 

http://www.un-spider.org/advisory-support/recommended-practices/flood-mapping-and-damage-assessment-using-s2-data/
http://www.un-spider.org/advisory-support/recommended-practices/flood-mapping-and-damage-assessment-using-s2-data/


 

75 

Table 3-1 Data specifications for the Sentinel satellites used in the study.  

 Sentinel 1A  Sentinel 2A 

Frequency/ wavelength C-band (5.4 GHz) 0.443 – 2.150 µm (VIS – SWIR) 

Orbit  693 km (sun-synchronous) 786 km (sun-synchronous) 

Interval 12 days (6 with full constellation) 10 days (5 with full constellation) 

Acquisition dates 19 Nov. 2015 
1, 13, 25 Dec. 2015 
6, 18, 30 Jan. 2016 
11, 23 Feb. 2016 
30 Mar. 2016 
11 Apr. 2016 

21 Dec. 2015 

Mode Interferometric Wide Swath Multispectral Imager 

Swath width 250 km 290 km 

Product Level-1 Ground Range Detected  Level-2A Surface Reflectance 

Spatial resolution 10 m 10 - 20 m 

Polarisation  VV+VH n/a 

% cloud cover n/a  3% 

 

3.2.1.3 Landsat 8  

Sixteen Landsat 8 scenes were downloaded as Level 1C top-of-atmosphere (TOA) images 

from the United States Geological Service (USGS) Earth Explorer website10. These were 

converted to surface reflectance using the LEDAPS algorithm (Schmidt et al., 2013) and cloud 

and cloud shadow masked using the F-mask algorithm (Zhu et al., 2015). Scenes focused on 

the Midlands and Western region where flooding was widespread, particularly in the Shannon 

catchment. The mosaic was used to monitor grass recovery on flooded areas during 2016. A 

second mosaic was created for 2015 (using 19 mosaicked scenes) to allow comparison with a 

non-flood year. The complete list of Landsat 8 scenes are presented in Appendix D. 

 

  

                                                           
10 https://earthexplorer.usgs.gov. Accessed 12 December 2018. 

https://en.wikipedia.org/wiki/Earth_observation
https://en.wikipedia.org/wiki/Earth_observation
https://en.wikipedia.org/wiki/Sun-synchronous_orbit
https://earthexplorer.usgs.gov/
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3.2.1.4 Additional datasets 

Several other datasets were necessary to complete this study.  

A mask for existing rivers, streams and lakes was created from PRIME 2 data from Ordnance 

Survey Ireland (OSI). Vector data were rasterised in ArcGIS (v.10.2.2) by first densifying the 

polyline vertices (Densify function, Editing toolset), then converting points (Feature Vertices to 

Point function, Feature toolset) and finally rasterised (Point to Raster function, Conversion 

toolset).  

A mask for ~128 turlough areas was created from an existing dataset (Johnston, nd). 

Turloughs are seasonally flooded wetlands found in regions with limestone geology. Due to 

their often extensive nature and a lack of agreement on how to define their extent spatially, 

compiling an accurate mask was a challenge. The existing dataset had sparse spatial data, 

comprising only of a single point reference. At the time of writing (2018), Geological Survey 

Ireland (GSI) were engaged in a nationwide mapping project of turloughs using Sentinel 1 

images (T. McCormack, 2018, personal communication, 21 November).  

Land cover data was taken from 1:100,000 CORINE 2012 Land Cover database (EPA, 2012). 

CORINE is criticised for its poor ability to accurately map the fragmented landscapes common 

to Ireland (Cawkwell et al., 2017), but was the only land cover dataset available (Ordnance 

Survey Ireland (OSI) are currently engaged in a producing a national land cover map; C. 

Bruton, 2018, personal communication, 21 November 2018). Soil and subsoil information was 

provided by the 1:50,000 Teagasc Soils and Subsoils map (Fealy et al., 2009). 
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3.2.2 Sentinel 1A flood mapping procedure 

3.2.2.1 Workflow  

The SAR flood map was created following a recommended practice published by UN-SPIDER 

(UN-SPIDER, 2016). The workflow presented by UN-SPIDER was chosen because it would 

be easily reproducible by researchers. The study did not set out to explore possible 

improvements on this workflow by varying parameterisation.  

 

The workflow was executed with ESA’s Sentinel Application Platform, SNAP (v. 4.0), following 

a step-by-step procedure of calibration, filtering, masking and rectification. Additional 

processing and visualisation was carried out in ArcGIS. SAR images were initially calibrated 

as VV polarised σ° images in decibels (dB). RADAR speckle (inherent random noise caused 

by different scattering surfaces within a pixel) was removed using a Lee-Sigma filter (Lee, 

1983). This smoothing filter assumes noise follows a Gaussian distribution and replaces 

central pixels within a 7 x 7-pixel moving window with the average of all values within the 

window that fall within two standard deviations of the mean. A large pixel window was 

selected to better establish local mean backscatter values. Additonal experimentation with 

filter type was not explored in this study, but different choices of filter and window size would 

have had an impact on the threshold values used to determine flooded areas.  

 

Histogram thresholding to determine low backscatter values allowed a binary segmentation of 

each SAR scene into a "water" class and a complement "non-water" class. Threshold 

backscatter values can be determined manually or algorithmically (Otsu, 1979; Sahoo et al., 

1988), for the current study mean threshold values were defined manually for each of the 33 
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scenes by comnputing a mean backscatter value within a 30 m buffer from centre points in 

lakes present in each scene. The assumption was these areas would be most representative 

of a flat water surface, unroughened by waves or emergent vegetation (this approach 

assumed calm water conditions at the time of capture). The threshold approach is 

straightforward and simple to implement, but a single backscatter value may not represent a 

range of backscatter values that characterise flat water within a scene, for example, where 

water surfaces are slightly roughened by currents, emerging vegetation or wind. Other 

methods have been proposed that use change detection (Brivio et al., 2002; Clement et al., 

2017; Long et al., 2014; Martinis et al., 2011; Y. Wang, 2002), clustering (Horritt, 1999; Mason 

et al., 2012) or a combination of these techniques (Martinis et al., 2009; Matgen et al., 2011). 

Optimised thresholding methods using artificial neural network or support vector machine 

algorithms have been proposed (Insom et al., 2015; Kussul et al., 2008). Further 

experimentation with thresholding techniques was not explored further in this study, but it is 

acknowledged that choice of a thresholding technique will have had an impact on the 

definition of flood and non-flood areas particularly at flood boundaries with land. 

 

The final step was to transform SAR images to a projected coordinate reference system (Irish 

Transverse Mercator). This was done within SNAP using inherent ground control references 

and NASA’s Shuttle RADAR Topography Mission (SRTM) Global 3 arc-second DEM. 

Individual scenes were mosaicked into a single image for each acquisition date using the 

Mosaic to New Raster tool in ArcGIS.  
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3.2.2.1 Noise removal 

Low backscatter values not associated with flooding were a potential source of error. The 

principal sources of this noise were topographic shadow (low backscatter values caused by 

terrain sloping in the opposite direction of SAR pulse), estuaries and beaches (which 

appeared as water or not depending on tidal regime) and flat constructed surfaces (car parks, 

flat roofs, airport runways etc.). Processing-related anomalies, for example, banding along 

swath edges and between merged scenes were also removed.  

 

Low backscatter noise was reduced by using a processed SAR image from a summer month 

(July 2015) to create a mask of normally-occurring low backscatter regions. Additionally, slope 

rasters created from the DEM to mask out gradients > 5º which may cause shadow effects. 

Single pixel flood areas (100 m2, or 0.01 ha) were masked, as were pixels classed as flooded 

only once. This reduced potential misclassification errors arising from initial processing. Flood 

area for each acquisition date was calculated as the summed area of remaining pixels. To 

account for a ~7 m positional inaccuracy (< 1 pixel) in Sentinel 1 registration (Bourbigot et al., 

2016), raster flood boundaries were expanded and trimmed by one pixel width (10 m) in 

ArcGIS (Nibble and Expand functions, Generalisation toolset) to provide an estimate of 

minimum and maximum flood extent.  
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3.3 Results 

3.3.1 Flood extent 

The final flood map is illustrated in Figure 3-2 below11. After processing, the maximum area 

flooded during winter 2015/16 was estimated to be 24,356 ha. This was greater than the 

combined surface area of two of the largest lakes on the River Shannon, Loughs Ree and 

Derg (with a combined area of 22,300 ha). The minimum and maximum extents estimated 

following processing were 16,155 ha and 32,957 ha respectively. Estimates of flood extent for 

each of the eleven acquisition dates are presented in Table 3-2 below. Persistent flooding was 

identified on ~ 3000 ha nationally, where floods at a specific pixel location on 8 or more 

occasions between November 2015 and April 2016. Approximately 70 ha were flooded for the 

entire period of the study (Table 3-3). Individual flooded regions ranged from a minimum of 

0.02 ha to a maximum of 846 ha. The worst affected counties all bordered the River Shannon, 

with over half the flooded area (~12,500 ha) occurring in Cos. Galway, Mayo and 

Roscommon. The peak flood event of the season occurred on 13 December with a flood of 

19,950 ha, the first acquisition date immediately following Storm Desmond. A second peak 

event occurred on 11 February following Storm Imogen reached 19,360 ha.  

 

                                                           
11 The image has been publicly available to download via the ArcGIS Online portal since 2017 (www.esri.com). 

http://www.esri.com/
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Figure 3-2 Extent of flood waters for the Republic of Ireland based on processed Sentinel 1 SAR 

imagery acquired between November 2015 and April 2016. (CRS: Irish Transverse Mercator, ESPG: 

2157). 
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Table 3-2 Estimated extent of flooding nationally on each acquisition date between November 2015 

and April 2016.  

Acquisition date Area (ha) 

19 November 2015 10,380 

1 December 2015  10,780 

13 December 2015 19,950 

25 December 2015  17,720 

6 January 2016 9,920 

18 January 2016 9,575 

30 January 2016 15,880 

11 February 2016  19,360 

23 February 2016 2,620 

30 March 2016 2,500 

11 April 2016 7,630 

 

Table 3-3 Number of times a Sentinel 1A pixel was classified as flooded indicating the extent of 

persistent flooding nationally  

No. times 
classed as 
flooded 

Area 
(ha) 

2 6,840 

3 4,470 

4 3,350 

5 2,750 

6 2,520 

7 2,035 

8 1,340 

9 720 

10 260 

11 70 
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Figure 3-3 Extent of flooding at Shannonbridge, County Offaly. Already extensively flooded before the 

December storms, flood levels remained mostly unchanged until mid-February 2016 with small areas 

remaining flooded until April 2016.  
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Figure 3-4 Persistence of flooding at Shannonbridge, Co. Offaly. Pixels are colour-coded by flood 

duration based on the presence of flooding in Sentinel 1A images. Eleven images were taken every 12 

days. Classes represent the number of times individual pixels were classed as “water”. 
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The persistence of flooding over the study period is illustrated in Figure 3-3 for an region of 

interest around Shannonbridge, Co. Offaly. Located at the confluence of the River Shannon 

with the River Suck and River Brosna, flood levels in the Shannonbridge area remained 

largely unchanged from November 2015 until February 2016. Flood persistence is further 

illustrated in Figure 3-4 on a pixel-by-pixel basis, where pixels are coloured by the number of 

times it was classed as flooded. Given its location, much of the region depicted in Figure 3-4 

was flooded between 6 and 9 times between November 2015 and April 2016. A small number 

of pixels in the scene were among those flooded for the entire duration of the study.  

 

Flood extent showed a strong, positive correlation with total precipitation depth in the 5 days 

preceding the Sentinel 1 acquisition data (R2= 0.51, p= 0.01) (Figure 3-5). This likely reflected 

the rapid expansion of flood waters on saturated soils or where rainfall fell onto existing flood 

areas, or through the development of ponding and runoff on saturated soils. An example of 

this may be seen following intense rain over a 24-hour period on 10-11 April (Met Éireann, 

2016) where up to 58 mm was recorded in parts of the southwest, while stations in Dublin 

reported their wettest day in 50 years. The volume of rainfall resulted in a three-fold increase 

in flood area from 2,500 ha on 30 March to 7,600 ha flood on 11 April. In another example on 

the 13 February map, a period of flood contraction during January 2016 was reversed by 

persistent rain over several days. The result was a ~19,357 ha flood, only marginally smaller 

than the post-Storm Desmond maximum in mid-December.  
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Figure 3-5 Simple linear regression showing the relationship between flood extent and rainfall depth in 

the previous five days measured for each Sentinel 1A acquisition date.  

 

3.3.2 Validation 

The flood map was validated against three independent sources: 

 Farm reports of flood damage from individual farmers within the Shannon Catchment  

 Sentinel 2 flood map over a specific area (Athlone, County Westmeath) 

 Copernicus EMS flood map (EMSR149) over a specific area (Athlone, County 

Westmeath).  
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3.3.2.1 Farm reports  

Reports of flooded farms to Teagasc advisors provided a direct means of validating the map. 

The locations of fifty-seven farms which reported flood damage was overlain on the Sentinel 1 

map. Forty-nine of these farms (86%) intersected the flood boundary. As only flooded 

properties were reported it was not possible to measure Type 1 error (false positives), where 

flooding was predicted but did not occur. The average area flooded on these farms was ~3 

ha, although for one farm the flood area was 176 ha. The majority of farms were on the banks 

of the River Shannon. Flooded farms in the Shannonbridge/Athlone area are illustrated in 

Figure 3-6. 

 

3.3.2.2 Sentinel 2 flood map 

The green shaded area in Figure 3-7 shows the flood extent mapped by Sentinel 2 on 21 

December 2015. The blue shaded area is the flood extent mapped by Sentinel 1 four days 

later (25 December 2015). There was a 58% overlap of flood extent between both maps in 

this region of interest. The Sentinel 1 map showed a smaller area. The 4-day separation 

between data capture may explain some disparity in extent from changes in water levels over 

the period. Waxing and waning of flood waters would be expected at the edges of the floods 

as waters drain naturally between rain events, but other reasons are also possible. Weather 

stations during the Sentinel 1 overpass recorded 17 mm rainfall on the 25th December with 

wind speeds of ~4 ms-1 (gusting 11 ms-1). These conditions could have sufficiently roughened 

water surfaces to increase backscatter above defined threshold values resulting in the smaller 

flood area. There may also have been some roughening of waters from emergent vegetation 

near the flood boundaries. It is acknowledged that initial processing of SAR imagery to 
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remove pixels only flooded once will have reduced the area of the floods in some areas. This 

could explain the 42% difference in the extent of the SAR and NDWI flood maps on this date.  

 

 

Figure 3-6 Location of farms reporting flood damage in the environs of Athlone, County Westmeath. 

Areas classed as flooded more than eight dates are coloured dark blue.  
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Figure 3-7 Comparison of Sentinel 1 and Sentinel 2 flood extents. Base mapping is Sentinel 2 true 

colour composite at 10 m spatial resolution.  

 

3.3.2.3 Copernicus EMS map 

The accuracy of the SAR flood map was assessed against a Copernicus EMS flood map from 

13 December. The Copernicus EMS map was assumed to be the more accurate map as it 

was compiled from multiple sources with different wavelengths and polarisations. Accuracy 

assessment was based on 88 randomly sampled points that intersected the flood extent. In 

error matrices classification errors occurs when a pixel of one class is allocated to another. 

User accuracy reflects the accuracy of the product from the viewpoint of the user. It is a 

measure of how reliable the product is, and the likelihood a class will be present on the 
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ground. Producer accuracy describes how often actual classes are correctly classified. 

Against Copernicus, Sentinel 1 had producer accuracy of 68.5%, failing to identify flooding at 

17 locations where Copernicus EMS had identified flooding. The disparity between the two 

sensors may be related to the temporal disparity in overpass dates, with actual differences in 

flood extent captured. It may also be due to the availability of different SAR sensors with 

differrent polarisations and processing workflows to create the Copernicus EMS map.  

 

Table 3-4 Accuracy assessment of Sentinel 1 flood map versus Copernicus EMS.  

 Sentinel 1 flood map 

C
op

er
ni

cu
s 

E
M

S
 

 No Flood Flood Total User Accuracy. 

No Flood 37 1 38 97.4% 

Flood 17 33 50 66.0% 

Total 54 34 88  

Producer 
Accuracy. 

68.5% 97.1%  Overall Accuracy 
79.5% 

 

 

From Table 3-4, Sentinel 1 showed good overall agreement to Copernicus (79.5%). Producer 

accuracy for flooded areas was also very high (97.1%). Lower user accuracy for flooded areas 

(66%) can perhaps be explained by the poorer ability of Sentinel 1 at resolving surface water 

where there is overlying canopy. Local meteorological conditions on 13 December were mild 

(3 mm rainfall, speed 4 ms-1 gusting 10 ms-1) so an effect on backscatter coefficients from 

prevailing weather conditions are unlikely to be the reason for the difference in classification 

accuracy. Combining Sentinel 1 with Sentinel 2 improved overall classification (91%; Table 3-

5).  
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Table 3-5 Accuracy assessment of combined Sentinel 1 & Sentinel 2 maps versus Copernicus EMS. 

 Combined Sentinel 1 & 2 flood maps  

C
op

er
ni

cu
s 

E
M

S
  No Flood Flood Total User Accuracy 

No Flood 31 7 38 81.6% 

Flood 1 49 50 98.0% 

Total 32 56 88  

Producer 
Accuracy 

96.9% 87.5%  Overall Accuracy 
91.0% 

 

3.3.3 Impacted soils and land use 

The Teagasc/ EPA Soils and Subsoils map was used to determine natural soil type. The 

majority of inundated soils were determined to be low-lying alluvial or lacustrine soils (8100 

ha, or 33% of the total area). This was followed by reclaimed (or cut) organic soils (7000 ha, 

28%) and “poorly-drained” mineral soils (1500 ha, 6%). Approximately 3000 ha (13%) of soils 

flooded were classified as ‘well drained’. Using CORINE 2012 data, approximately 61% of the 

area flooded was deemed to be agricultural land, of which ~50% was pasture, and an 

additional 11% of areas principally dominated by agriculture but with significant natural 

vegetation also. Peats and inland marshes made up 23% of the total. The area of arable land 

and forestry affected was negligible (< 1% in each case). Urban areas (including sports 

facilities and industrial/transport-related land cover) constituted less than 2% of the inundated 

area. The remaining ~13% was made up of several categories of land cover, for example, 

marine and inland waterways, beaches or quarries (Table 3-6). While every effort was made 

to mask out existing water areas at an earlier stage, approximately 6% of the flooded area 

were waterbodies of one nature or another. The cause of this is very likely the disparity in 

spatial resolution between CORINE and the SAR flood map, in particular exact definition of 

shoreline is not exact. This would be true for each of the land cover classes listed in Table 3-

6, where sub-pixel variation is not considered and where boundaries between adjoining 
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landcover classes are simplified. This could be rectified in future mapping projects by using 

higher resolution land cover maps currently being produced by OSI. 

 

Table 3-6 Type of cover and area flooded using CORINE land cover Level 3 descriptions 

CORINE Level 3 description  Code Hectares % 

Continuous urban fabric  111 0.46 <0.1% 

Discontinuous urban fabric 112 43.47 0.2% 

Industrial or commercial units 121 33.1 0.1% 

Road and rail networks  122 1 <0.1% 

Ports 123 2.11 <0.1% 

Airports 124 27.48 0.1% 

Mineral extraction sites 131 101.2 0.4% 

Dump sites 132 37.45 0.2% 

Construction sites 133 0.22 <0.1% 

Green urban areas 141 2.72 <0.1% 

Sport and leisure facilities 142 329.79 1.4% 

Non-irrigated arable land 211 201.39 0.8% 

Fruit trees and berry plantations 222 0.27 <0.1% 

Pasture 231 11,886.42 49.6% 

Complex cultivation patterns 242 47.22 0.2% 

Agriculture with areas of natural vegetation 243 2527.27 10.5% 

Broad-leaved forests 311 92.36 0.4% 

Coniferous forests  312 31.59 0.1% 

Mixed forests  313 82.55 0.3% 

Natural grasslands 321 271.88 1.1% 

Moors and heathland 322 24.13 0.1% 

Transitional woodland scrub 324 611.32 2.6% 

Beaches, dunes and sands 331 248.89 1.0% 

Bare  rock 332 81.23 0.3% 

Sparsely vegetated areas 333 126.21 0.5% 

Inland marshes 411 3327.24 13.9% 

Peat bogs 412 2144.14 8.9% 

Salt marshes 421 156.37 0.7% 

Intertidal flats 423 226.17 0.9% 

Watercourses 511 315.79 1.3% 

Water bodies 512 784.58 3.3% 

Coastal lagoons 521 6.73 <0.1% 

Estuaries 522 85.15 0.4% 

Sea 523 99.78 0.4% 
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3.3.4 Physical damage to farms 

Physical damage to farms as a result of flooding included loss of winter fodder supplies (hay 

and silage), drowned animals and damage to buildings and yards. Intersecting the SAR flood 

map with structural data included in the PRIME 2 dataset, 13 of 24 buildings (54%) identified 

within the flood extent were visually confirmed to be related to agricultural activities using 

high-resolution aerial imagery (ArcGIS base mapping). The remaining structures were 

identified rural domestic properties, river- or lakeside amenities (sheds or boat houses) or 

structures within sports or industrial facilities.  

 

A lasting impact was the reduction in grass growth cuased by heavy rainfall and saturated 

soils. This is illustrated in Figure 3-8 below, where mean Landsat 8 NDVI imagery from Spring 

2014-2016 were plotted against total spring rainfall for each Met Eireann station in the BMW 

region. Mean NDVI values were extracted from grassland within a 1 km zone surrounding 

each station. Using a polynomial regression model, a signifincat negative trend was observed 

for decreasing NDVI values with higher rainfall (and greater soil saturation). High variance in 

the model may be partially explained by error in landcover classification caused by the coarse 

resolution of the CORINE dataset for masking grass areas, as well as some effect from mixed 

landcover within individual Landsat 8 pixels. The similarity to Figure 1-8 is striking and 

underlines the correlation between NDVI and measured plant biomass.  
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Figure 3-8 The impact of increasing rainfall on grass productivity during spring for heavy soils in the 

Border, Midlands and Western (BMW) region of Ireland.  

 

The prolonged soil saturation following the 2015-2016 floods was reduced grass production in 

spring 2016. This was observed in Landsat 8 NDVI imagery, where values for flooded regions 

in spring 2016 were significantly lower than non-flooded areas. For example, the mean NDVI 

value for flooded pasture in spring 2016 was 0.70 (± 0.18). The corresponding mean value for 

flooded grassland in the same period was 0.78 (± 0.11) for heavy soils or 0.80 (± 0.12) for 

well-drained soils. A non-parametric Kruskal-Wallis rank sum test carried out using the ‘stats’ 

package (v.3.4.1), and ‘dunn.test’ package (v.1.3.4) in R statistical software found a significant 

effect from flooding on NDVI values (chi-sq. = 585.36, p < 0.001, df = 10). The Kruskal-Wallis 

test is a non-parametric test that is used when the normailty assumptions of parametric tests 

such as ANOVA are not met. Pairwise multiple comparisons showed no evidence for different 

NDVI values during the first eight acquisition dates. However, there were significant 

differences after eight events. As illustrated in Figure 3-9, there were only marginal 
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differences in mean NDVI values during May, June and July as a result of flooding during 

November and December with NDVI values stable at 0.8 to 0.82. PIxels flooded at the 

beginning of January (60 days submerged in Figure 3-9) experienced a minor depression in 

NDVI the following May. This difference was not statistically significant however. Pixels still 

flooded after February 11 had significantly lower NDVI in May and June. Soil still saturated by 

early April experienced NDVI in May that were far below expected levels (~0.55 vs ~0.80). 

Values did not recover to expected levels until the following July meaning grass growth was 

up to 8 weeks behind expected levels on the ~ 7,000 ha of grassland still flooded in April 

2016.  

 

Figure 3-9 The recovery of grassland in the BMW region as a factor of flood duration based on 

Landsat 8 NDVI values. There was no net effect from flooding during the traditional winter period. 

However, where floods and soil saturation persisted after the second week in February, there was an 

increasingly longer recovery period. Fields still saturated by the second week in April took several 

weeks to recover fully. 
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3.4 Discussion 

3.4.1 Measuring post-flood recovery 

Beyond the initial physical damage caused by floods to infrastructure and material goods, the 

lasting impact to rural communities is the challenge in recovery of grass production and 

utilisation. These impacts may last for several weeks in some areas. The objective of this 

study was to identify saturated soils and observe the process of recovery once flood waters 

receded. This study identified how NDVI values were lower on saturated pastures the 

following spring compared with areas that were not fooded and not exposed to the same level 

of saturation. However, NDVI values were only significantly different when the period of 

submergence exceeded 96 days. After 108 days, a significant decrease in NDVI was 

recorded compared with the preceding period. This decline in values continued, with NDVI 

values after 120 days significantly lower again than the preceding observation (see Figure 3-9 

above). From these figures, it appeared that flooding during November and December had 

little impact on grassland NDVI the following spring. However, flooding and saturation in late 

winter increased the likelihood of depressed NDVI in spring and early summer.  

 

The economic impact on farmers is significant where fodder stores are exhausted and 

replacement grass cannot be grown or grazed. The erratic weather events over the last four 

years have exposed the risk to the livestock and dairy industries from any delay in the start of 

the grass growing season. Section 1.4.2.2 noted the considerable sums of money required to 

source fodder during previous years. Using EO data, this study has shown how Landsat 8 

NDVI images can identify delayed spring growth on saturated soils. This map could support 

farmers in the worst affected regions claim financial assistance after extreme weather events 
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where production has been delayed. These maps could also identify areas where persistent 

saturation issues, following flooding or under normal circumstances, constrain primary 

production and maybe better suited to other land uses. Flooding of the magnitude of winter 

2015/2016 is unusual, however, there is a long-term, upward trend in the annual number of 

rain days and this increased volume of precipitation will likely result in greater flood risk in the 

future (Kiely et al., 2009). Future climate scenarios for water supply and flooding suggest a 

probable increase in the magnitude and frequency of winter floods in the western half of 

Ireland before the end of this century in response to increased surface runoff on heavy soils 

(Charlton et al., 2006). This study indicated how the timing of flooding/ saturation had an 

important impact on grass growth. As illustrated in Figure 3-9, flooding in the traditional winter 

period had little impact on grass production the following spring. Prolonged saturation lasting 

into late winter however had a greater impact on the beginning of the grass growing season. 

This can be seen in the NDVI values illustrated in Figure 3-9 but also in PastureBase grass 

growth curves for 2016-2018 illustrated in Figure 1.9.  

 

3.4.2 Future directions  

The SARn flood map prepared for this study was the first national flood map prepared for 

Ireland using Sentinel 1 images. In the longer term, detailed flood maps such as this can 

assist direct Irish government capital spending on future flood prevention. Spending on flood 

prevention is expected to increase to €100 million by 2021 as flood events increase in 

frequency and magnitude (NDFEM, 2016). Even a small investment in an EO monitoring 

method could benefit flood relief measures. Sentinel 1 allows rapid, near-real time 

identifcation of flooded areas under all atmospheric conditions, day or night every 6 days. It 

can identify where flood waters persist for several weeks, synoptically mapping locations 
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where rural or isolated buildings and infrastructure may be at risk. EO maps could confirm 

damage to properties supporting and or expediting post-flood insurance claims, and also allow 

insurers to determine the level of risk to rural homes and businesses (Galy & Sanders, 2002). 

While the Copernicus EMS currently offers an emergency service mapping, the benefit of a 

dedicated Sentinel 1 SAR flood map has the ability to monitor flooding across the year, not 

only in an emergency situation. Identifying consistent areas of water ponded on the surface 

following heavy rainfall could be an efficient way of identifying soil drainage problems. There 

are also possiblilities for improved soil moisture mapping using Sentinel 1, from the higher 

spatial resolution and a shorter revisit period using both Sentinel 1 satellites. Sentinel 2 can 

can be an invaluable resource for monitoring vegetation recovery in the future. Its short revisit 

time (2-3 days versus 16 days for Landsat 8), higher spatial resolution (10 m versus 30 m) 

and additional red edge bands can significant improve current means of mapping vegetation 

stress and recovery (Delegido et al., 2011). At local scales (<0.5 km2), UAS can provide 

greater flexibility in monitoring vegetation recovery when optical satellites cannot (Gago et al., 

2015). 
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3.5 Concluding remarks  

In this chapter, a combination of SAR and optical EO imagery was used to map the extent of 

saturated soils and monitor grass recovery after flooding. The long term impact of saturated 

soils on grass growth in the study area was demonstrated using multi temporal Landsat 8 

NDVI imagery. The potential of the ESA Sentinel 2 satellite for flood mapping was also 

highlighed. The Sentinel 2 mission can also play a role in mapping vegetation recovery. Its 

improved spatial, spectral and temporal resolution (relative to Landsat 8) should be better able 

to characterise stress and recovery in future projectcs. In the following chapter, contrasting 

NDVI values for on wet , saturated grassland will be the focus of separate mapping exercise. 

Having observed a significant difference in reflectance values between saturated and non-

saturated soils after flooding, can this be applied to the classification of soils wet and dry soils 

(i.e. poorly-drained vs drained), or to identify changes in soil drainage condition over time.   
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Chapter 4 Machine learning methods for identifying 

artificially drained pasture fields using multispectral 

Earth Observation imagery 

 

4.1 Introduction 

An efficient and accurate method to map artificially-drained soils would be an invaluable asset 

to help farmers, catchment managers and policymakers understand and quantify the 

agronomic benefits and environmental impacts associated with artificially draining heavy soils 

(Armstrong & Garwood, 2006; Fitzgerald et al., 2008; Schulte et al., 2012; Shalloo et al., 

2004; Sharma et al., 2018; Skaggs et al., 1994; Wingler & Hennessy, 2016). Accurate soil 

drainage maps that characterise drainage at field scale, including artificially-drained areas, 

could improve modelling of grass production (Fitzgerald et al., 2008), and models of soil 

hydrology (Schulte et al., 2005; Schulte et al., 2015). Studies suggest it could improve on-farm 

decision-making regarding slurry applications (Kerebel & Holden, 2016), or facilitating 

targeted implementation of best management practices to reduce diffuse nutrient losses 

(Schulte et al., 2006; Skaggs et al., 1994). Accurate soil drainage maps might also help refine 

coarse scale estimates of carbon sequestration rates (Soussana et al., 2007) or other 

greenhouse gas (GHG) emissions from agricultural sources (Clagnan et al., 2018; Oertel et 

al., 2016; Paul et al., 2018).  

 

The conventional treatment for heavy soils to make them agriculturally productive and 

profitable is to install artificial drainage. Detailed data on the distribution of artificially-drained 
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soils is rare however, both in Ireland and internationally. Available soil data are generally 

inadequate for supporting day-to-day operations or PA because they overlook the huge 

spatial variability that occurs within typical mapping units. 

 

As established in Chapters 1 and 2, mapping soil drainage using EO data is well-established. 

Previous studies have demonstrated how satellite imagery can accurately and robustly map 

drainage conditions across diverse environments (Beucher et al., 2017; Campling et al., 2002; 

Cialella et al., 1997; Møller et al., 2018; Møller et al., 2017; Zhao et al., 2013). In Ireland, the 

contrast in grass growth as a factor of local soil drainage conditions is well established (see 

Section 1.3.1). The following chapter describes a novel approach to mapping artificial 

drainage on heavy, grassland soils in the Border, Midlands and Western region or Ireland 

using machine learning algorithms, EO multispectral imagery and DEM data. This is the first 

study of its kind in Ireland to look explicitly for artificially-drained areas using EO observations 

of contrasting growth patterns. Previous ad-hoc attempts to quantify soil drainage have been 

carried out in the past under the remit of An Foras Taluntais, a precursor to Teagasc. These 

records were never fully completed at national level and were never carried out in a 

harmonised way. They also did not try to identify drainage at the field level. The method 

described herein uses an extensive and free archive of multispectral imagery from the USGS 

Landsat 8 program and ESA Sentinel 2 mission. It avails of powerful, machine learning 

algorithms, Support Vector Machine and Random Forest, to process and analyse the imagery. 

These algorithms are widely recognised as more accurate than traditional classification 

algorithms for general land cover mapping (Huang et al., 2002; Mountrakis et al., 2011; Pal, 

2005; Pal & Mather, 2005). Based on published accounts (see Chapter 2 above), these 
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algorithms have not been used previously for soil- or field drainage mapping explicitly, but 

have typically performed better than 90% in overall accuracy for general land cover mapping. 

The main objectives of this chapter were to: 

 Create a map of artificially-drained heavy soils at a regional level in the Republic of 

Ireland based on contrasting canopy reflectance signals. 

 Assess the accuracy of the map against high-resolution imagery and field observations. 

 Investigate whether improved grass growth can be identified following drain installation 

using this method.  

 

4.2 Materials and Methods 

4.2.1 Study area 

The study area for this chapter was heavy grassland soils in the Border, Midlands and 

Western (BMW) region of the Republic of Ireland, an area of ~808,494 ha (Figure 4-1). Soil 

drainage estimates were based on the 1:50,000 Teagasc/ EPA Soils and Subsoil Mapping 

Project (Fealy et al., 2009), which estimated ~ 51% of mineral soils within the study area were 

poorly-drained (these were largely groundwater and surfacewater gleys and alluvial soils). 

High rainfall values result in a shorter growing/grazing season compared to other regions, with 

less grass produced and livestock required to be housed for longer periods during inclement 

weather. Beef and sheep are the principal agricultural industries but profitability is generally 

lower than other regions of Ireland (Patton et al., 2017). The percentage of lands artificially 

drained across the region is unknown. A report by the Economic and Social Research Institute 

(ESRI) in the early 1980s attempted to estimate artificially drained soils based on grant 

allocations for land drainage projects over several preceding decades. This included the 

Western Drainage Scheme, which ostensibly allowed for the drainage of ~182,500 ha in the 



 

104 

region between 1979-1986 (Bruton & Convery, 1982) (Table 4-1). As noted in Section 1.2.2 

above, it was not always apparent that field drainage works followed the allocation of grant 

aid. Privately-funded drainage works continue to be carried out.  

 

 

Figure 4-1 Border, Midlands and Western region of the Republic of Ireland showing the extent of 

heavy grassland soils and the location of Farm A. Soil data based Teagasc/ EPA Soils and Subsoil 

map. Land cover based on CORINE 2012. 
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Table 4-1 Estimates of the percentage of land drained in the BMW region (Bruton and Convery 1982). 

Estimates were based on grant-allocations within the period 1949-86. They do not account for non-

grant aid works and assume all actions were subsequently undertaken.  

County % farmland artificially drained 

Cavan 25-30% 

Donegal 20-25% 

Galway 20-25% 

Laois >30% 

Leitrim 10-15% 

Longford 15-20% 

Louth 15-20% 

Mayo 20-25% 

Monaghan 25-30% 

Offaly >30% 

Roscommon 15-20% 

Sligo 10-15% 

Westmeath >30% 

 

4.2.2 Datasets 

Forty-nine Landsat 8 scenes (path 206–209, rows 21–23) covering the period April/ May 

2014-2016 were downloaded from the USGS EarthExplorer portal (see Appendix D). These 

images captured grass growth during a phenological peak (see Figure 1-9). Scenes were 

downloaded as radiometrically calibrated and terrain corrected Level 1TP images, 

atmospherically corrected to surface reflectance using LEDAPS (Masek et al., 2013) and 

cloud/cloud-shadow masked using F-mask (Zhu et al., 2015). Processed multi-temporal 

scenes were mosaicked into a single, mean surface reflectance image using the Mosaic to 

New Raster function (Data Management toolbox in ArcGIS v.10.2.2). There was no single 

image of the study area as cloud cover obscured different areas of each scene on any given 

acquisition date. It was possible to use coarser spatial resolution imagery, for example 250 m 

resolution MODIS data using composite images taken over several days. This was not ideal 

for the current study as the large pixels would have resulted in higher instances of mixed land 
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cover. The approach adopted combined all available Landsat 8 scenes by month using data 

from each of the three years of the study. NDVI and NDWI images were used as a proxy for 

plant biomass and health (Gao, 1996; Rouse et al., 1974) (see Section 1.5.2 above). The 

mosaic was then masked to “poorly-drained” soils using the Teagasc/ EPA Soils and Subsoil 

map and “dry grassland” using CORINE 2012. Buildings were masked using OSI PRIME 2 

vector data and parcels of forest were masked using the 2012 Forestry Inventory Parcel 

System (DAFM, 2013a). To allow a comparison between Landsat 8 and Sentinel 2 data for 

drainage mapping, a Sentinel 2A from May 2017 was downloaded as a Level 2A surface 

reflectance product from the Copernicus Open Access Hub. This was cloud masked using 

cloud masks supplied with the image data and masked for soil type and land cover as 

previously described.  

 

4.2.3 Training data 

Training data were for “poorly-drained” and “drained” class labels were determined by visual 

inspection of high spatial resolution imagery (Digital Globe/ ArcGIS base mapping). The 

ArcGIS base map is compiled from several years of data, from different sources. This was an 

issue when trying to ensure consistency in training data across the region, for example, 

ensuring conditions identified in high resolution mapping were still representative of the 

conditions recorded in EO images. Areas showing extensive growth of water-tolerant 

vegetation (reeds and rushes) were labelled “poorly-drained”. Training class was defined by 

60, 200 or 500 pixels per class to investigate whether classification accuracy was linked to 

number of training samples. Each training set was independently compiled from random 

sample of points generated across the study area. Drainage status was based on expert 

interpretation of drainage status with a 30 m diameter area (corresponding to the size of a 30 
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m x 30 m Landsat 8 pixel. Only points located within homogenous areas of land cover were 

selected to avoid class mixing. An equal numbers of samples from each class were recorded 

for each training set. Training data was finally extracted for each of the multispectral bands, 

topographical data and spectral indices (see Table 4-2). 

 

Table 4-2 Variables used in each model over different level of training (60, 200, and 500 samples per 

class). 

Model Variables*  

1 Landsat bands 2:7, NDVI, NDWI, Slope, HAND, distance to drainage, TWI  

2 Landsat bands 2:7 

3 Landsat bands 2:7, NDVI 

4 Landsat bands 2:7, NDWI 

5 Landsat bands 2:7, NDVI, NDWI 

6 NDVI, NDWI, Slope, HAND, distance to drainage, TWI 

7 Landsat bands 2:7, Slope, HAND, distance to drainage, TWI 

8 NDVI, Slope, HAND, distance to drainage, TWI 

9 NDWI, Slope, HAND, distance to drainage, TWI 

10 Slope, HAND, distance to drainage, TWI 

*NDVI = normalised difference vegetation index; NDWI = normalised difference water index, 

slope = topographic slope (gradient), HAND = height above nearest drainage, TWI = 

topographic wetness index. See Section 4.2.5 for further explanations of these terms. 

 

In selecting training data, no assumption was made on whether there was artificial drainage 

present. only that based on visual inspection of the high-resolution image, a 30 m diameter 

area surrounding the sample point met, or did not meet, the criteria for poorly drained 

conditions. Using the training set for 500 pixels, a line graph depicting drained and poorly 

drained classes indicated that the “poorly drained” class could be distinguished from “drained” 

class by greater reflectance of red (0.64- 0.67 μm) and shortwave infrared (SWIR) (1.5- 2.3 

μm) wavelengths, with lower reflectance at near-infrared (NIR) wavelengths (0.85- 0.88 μm) 
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(Figure 4-2). Graphs for 60 and 200 training classes (not illustrated) showed the same trends. 

Healthy grass canopy absorbs greater amounts of red light to fuel photosynthesis and 

produce chlorophyll. Healthy grass, with more chlorophyll being produced, will reflect a 

greater amount of NIR energy than unhealthy grass. These wavelengths, therefore, can 

provide important information about grass health and yield in the study area. 

 

Figure 4-2 Contrasting reflectance values (Landsat 8 bands 2-7) for “drained” and “poorly drained” 

class labels. Mean values derived from 500 training samples used to train the classification. Arrows 

indicate 95% confidence intervals at each band.  
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Figure 4-3 below shows further contrast between both class labels for month-on-month 

difference NDVI imagery. This graph was compiled from random samples of pixel data 

extracted from monthly NDVI composites for the years 2014-2016. The graph shows mean 

NDVI values drained and poorly-drained class labels for grassland in the region between 

February and November (2014-2016). Insufficient images were available in January and 

December due to cloud cover. An apparent surge in NDVI values in April/May over the 

preceding months matches the peak phenological stage in grass growth noted in Figure 1-9 

above. “Drained” and “poorly drained” conditions can be distinguished at this stage quite 

clearly, with NDVI values for stronger and earlier growth for drained conditions during spring 

relative to poorly-drained conditions. There was also a clear separation in difference NDVI 

values during July. It is important to restate that this graph shows month-on month differences 

in NDVI values for the two drainage types, indicating change in values between the current- 

and previous month. The depression of poorly drained NDVI values here indicate no change, 

or very little change, in July NDVI compared to June. There is a positive increase for drained 

grassland between the two months, although the magnitude of this increase is not comparable 

to the change between March/April and April/May. The dichotomy illustrates the difference in 

potential grass yield between the two drainage classes.  
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Figure 4-3 Month-on-month changes for mean NDVI values across the study area over three years 

(2014-2016) based on Landsat 8 NDVI images. The magnitude of increase is highest between March 

and May in both drainage classes, but higher for drained soils.  
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4.2.4 Accuracy assessment  

4.2.4.1 Validation  

Two forms of validation were used in the study: visual interpretation of recent high-resolution 

imagery (Digital Globe/ ArcGIS base mapping), and ground-truth data collected for the 

Teagasc/ EPA Soils and Subsoil project in 2005. The use of Digital Globe imagery, through 

Google Earth or GIS base mapping, is a well-established method for validating remote 

sensing land cover classifications (Knorn et al., 2009; Lillesand et al., 2015). Drainage 

condition was inferred from an interpretation of surface conditions in a 30 m radius around 

920 randomly selected points (see Figure 4-4). To reduce potential contamination from 

boundarys (shadow, buildings and mixed land cover), a minimum distance of 30 m between 

assessment points and adjacent boundaries/ structures was enforced. The ground-truth data 

collected in 2005 comprised of 230 GNSS-located field observations of drainage status, 

based on soil type, surface drainage, landscape position and land cover. Reference points 

were filtered by textural classes ("clayey", "loamy", "peaty") and land cover ("improved 

grassland" and "wet grassland") to meet the criteria for the current drainage classification 

within the study area.  

 

In each case, an error matrix was used to assess accuracy. This is the standard tool for 

quantifying overall accuracy in land cover classification, as well as errors of commission- and 

omission (Congalton, 1991). Kappa statistics, which compares observed accuracy with an 

expected accuracy due to random chance, are also reported. Relative accuracy between 

models was calculated based on a procedure to calculate Z statistics and p-values as outlined 

by Rossiter (Rossiter, 2014).  
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Figure 4-4 Location and distribution of validation points used in the study. Includes visual assessment 

points based on interpretation of high-resolution satellite imagery (red) and field observations of 

drainage status based on the Teagasc/ EPA Soils and Subsoil Map recorded in 2005. 

 

Error matrices are the most common way of expressing the accuracy of remote sensing land 

cover classifications. There may be distinct patterns to the spatial distribution of classification 

errors in thematic maps. Error matrices are criticised for not providing an indication of the 



 

113 

spatial distribution of errors, or spatial variation in classification uncertainty. Foody (2002) 

outlines various approaches to provide such information, for example, geostatistical modelling 

approaches or visualising classification uncertainty. Comber et al. (2012) suggested a 

geographically-weighted approach to report land cover accuracy in a more informative way. 

 

4.2.4.2 Farm A 

Additional validation was available from a livestock farm within the study area (Farm A in 

Figure 4-1). A groundwater drainage system was installed here in 2014 as part of the Heavy 

Soils Programme (HSP). This programme was established to improve the profitability of 

grassland farms on heavy soils through the adoption of key technologies including appropriate 

drainage solutions (Teagasc, 2018). The 3 ha field had no previous drainage in place and 

rushes were present within the sward before drainage. This location presented an opportunity 

to determine whether temporal changes in canopy reflectance could be identified that 

corresponded to improvements in field drainage regime. No satellite data was available in 

2014 as a result of extensive cloud cover over the region at the time of acquisition. Surface 

reflectance Images from Landsat 5 Thematic Mapper (2010) and Landsat 7 Enhanced 

Thematic Mapper (2013) were required for years where Landsat 8 imagery was unavailable.  

 

4.2.5 Terrain data  

A hydrologically-corrected, 20 m DEM (vertical accuracy +/- 2.5m) was used to model terrain 

attributes that influence water movement on or below the surface. These include distance to 

drainage (Euclidean distance and along slope), slope aspect (Zevenbergen & Thorne, 1987) 

and height above nearest drainage (Rennó et al., 2008). Height above nearest drainage and 
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distances to drainage were derived in combination with PRIME 2 vector stream data, which 

included both surface drainage and open ditches. A topographic wetness index (TWI) was 

also modelled. TWI, a function of local slope and specific contributing area (Seibert & 

McGlynn, 2007), is used to quantify topographical controls on hydrological processes (Beven 

& Kirkby, 1979). Topographic data were created in ArcGIS and SAGA GIS (v.4.1.0).  

 

4.2.6 Algorithm selection and parameterisation  

The drainage classification was scripted in R statistical software using “e1071” (v.1.6-8) and 

“randomForest” (v.4.6-12) packages for SVM and RF respectively (see Appendix E). Model 

inputs were training data and the ten mosaic combinations presented in Table 4-2 above. 

Both algorithms allowed for internal fine-tuning to further parameterise the classifiers. The 

output in each case was a binary segmentation of the mosaic images into “drained” or “poorly-

drained” classes. 

 

4.2.6.1 Support Vector Machine  

The SVM algorithm was initially conceived for two-class segmentation problems, although it 

can be adopted for multi-class problems where a series of binary separations are computed 

(Cortes & Vapnik 1995). Unlike conventional parametric methods, for example, maximum 

likelihood or K-means classifiers, that cluster pixels based on common centroids (Gibson, 

2000), SVM identifies decision boundaries between linearly separable classes by defining the 

broadest possible margin between classes (known as the optimal hyperplane). For linearly 

inseparable data, a kernel function γ initially transforms the data, while a penalisation term C 

defines a tolerance threshold for overlapping classes (Cortes & Vapnik 1995). A radial basis 
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function (RBF) kernel was used in this study as it provided marginally higher accuracy during 

initial tests (see Table 4-3). The strong performance of RBF has been reported elsewhere 

compared with other kernel types (Huang et al., 2002). Values for γ and C were fine-tuned for 

each model.  

 

Table 4-3 Error matrices for SVM models created using different kernel types. Based on 920 reference 

points (60 training samples per class). OA= overall accuracy (%), K= kappa statistic, PA= producer 

accuracy (%), UA= User accuracy (%). Highest OA underlined in bold. 

n= 929 

SVM 

OA K 

DRAINED UNDRAINED 

PA UA PA UA 

K
er

ne
l 

RBF 83.75 0.65 67.39 89.29 94.62 81.36 

Linear  82.56 0.62 65.85 87.10 93.57 80.62 

Polynomial 83.64 0.64 67.12 89.25 94.62 81.23 

Sigmoid 83.64 0.64 67.12 89.25 94.62 81.23 

 

4.2.6.2 Random Forest 

The RF alorithm is an ensemble clasification method that determines class labels based on 

the pooled results of multiple randomly-created decision tree classifiers. The algorithm uses 

bootstrapped training data to develop each tree independantly, while each node split is based 

on a randomly selected set of predictor variables (Breiman, 2001). A majority vote usually 

determines the final classification label. Random subsetting reduces the overall importance of 

any one individual tree or set of variables. It also reduces the correlation between individual 

trees. The RF algorithm can also provide a measure of variable importance by measuring the 

decrease in accuracy as different variables are omitted. This mean decrease accuracy (MDA) 
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is a direct measure of the impact of each variable on overall accuracy. It measures differences 

in out-of-the-bag (OOB) error resulting from differences between an original data set and data 

with randomly permutated variables. Permutation should have little effect on model accuracy if 

the variable is unimportant, but removing important variables should significantly decrease 

accuracy. A second mechanism, mean decrease gini (MDG) measured node purity at each 

split, or the likelihood of obtaining identical (pure) or different (impure) outputs. Gini 

importance indicates how often a particular feature was selected for a split, and how large its 

overall value was in discriminating classes (Breiman, 2001). 

 

4.3 Results 

4.3.1 Model performance 

Accuracy assessments based on error matrices are presented in Tables 4.4 and 4.5 for each 

model at each training level. The result of the best performing model is illustrated in Figure 4.5 

below.  

 

4.3.1.1 Image-based validation  

Using high-resolution image validation, the best overall performing model was an RF 

algorithm (using 60 training samples) for Model 5 (Landsat bands, NDVI and NDWI). Overall 

accuracy was 91.4% (95% CI [89.6%, 93.2%]) (Figure 4-5). At 200 training samples, the best 

performing model was an RF algorithm applied to Model 1 (Landsat bands, both VI and DEM 

variables), with an overall accuracy of 91.1% (95% CI [89.2%, 92.9%]). At 500 training 

samples, the best performing model was again an RF algorithm applied to Model 3 (Landsat 

bands, NDVI), which had an overall accuracy of 89.0% (95% CI [87.0%, 91.0%]). The reason 
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for the reduction in accuracy with higher training samples was not clearly understood. The 

likely reason was an unidentified fault in the training data, for example, where conditions 

observed in high resolution base mapping did not reflect the conditions on the ground at the 

time of acquisition. The most likely candidate for this was landcover change that confused the 

algorithms. While RF was best across all categories, SVM also performed strongly, with 

overall accuracies of 86.9% [84.7%, 89.1%], 89.6% [87.7%, 91.6%] and 87.3% [85.1%, 

89.4%] at each respective training level. A two-tailed binomial Z-score comparison found a 

significant difference in accuracy between RF and SVM outputs (z= 3.08, p= 0.002) at the 

lowest training level but not at higher levels of training (z= 1.03, p= 0.3; z= 1.15, p= 0.2 

respectively).  

 

4.3.1.2 Field-based validation  

Conversely, using field observed validation, the best overall performing models were derived 

from the SVM algorithm. At 60 Model 3 (Landsat bands and NDVI), with an overall accuracy 

of 68.7% (95% CI [62.7%, 74.7%]). At 200 Model 3 had an overall accuracy of 67.4% (95% CI 

[61.6%, 73.4%]). At 500 training samples, Model 1 (all variables) was the best with an overall 

accuracy of 66.96% (95% CI [61.0%, 73.0%]). A two-tailed binomial Z-score comparison 

found no significant difference between algorithms at each level of training (z= 0.20, p= 0.84; 

z= 0.50, p=0.61 and z= 0.09, p= 0.93 respectively). Although marginal reductions in overall 

accuracy were noted as the level of training increased using both sets of validation data, the 

difference between results at each level were not statistically significant.  
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Figure 4-5 Extent and distribution of artificially drained soils in the study area. County labels indicate 

the total areas of heavy soils per county based on the Teagasc/ EPA Soils and Subsoil Map. The 

accompanying bar charts indicate the proportion of artificially-drained/ poorly drained soils according to 

the best performing model. 

 

  



 

119 

Table 4-4: Error matrices for each model (SVM and RF) at each level of training (60, 200 and 500 

training samples) based on high resolution images. OA= overall accuracy (%), K= kappa statistic, PA= 

producer accuracy (%), UA= User accuracy (%). Highest OA underlined in bold. 

60 training 
samples 

SVM RF 

OA K 
DRAINED UNDRAINED 

OA K 
DRAINED UNDRAINED 

PA UA PA UA PA UA PA UA 

M
od

el
 

1 83.37 0.64 95.3 80.55 65.49 90.26 90.76 0.78 94.1 92.8 82.97 85.77 

2 85.65 0.68 95.62 83.61 69.34 90.64 88.04 0.72 94 88.82 75.91 86.14 

3 86.96 0.71 95.87 85.3 71.68 91.01 91.3 0.79 94.14 93.57 84.5 85.77 

4 86.1 0.69 95.81 84.07 70.03 91.01 89.13 0.75 94.38 90.05 78.11 86.89 

5 86.63 0.7 96.01 84.69 70.93 91.39 91.41 0.79 94.15 93.72 84.81 85.77 

6 80.54 0.59 95.75 75.96 60.95 91.76 88.91 0.74 93.11 91.12 79.36 83.52 

7 75.65 0.5 95.54 68.91 54.79 92.13 88.15 0.73 94.74 88.21 75.32 88.01 

8 78.59 0.54 94.19 74.43 58.66 88.76 88.15 0.72 93.56 89.43 76.69 85.02 

9 75.65 0.5 94.97 69.37 54.85 91.01 82.72 0.61 92.88 81.93 65.7 84.64 

10 52.11 0.12 79.34 44.1 34.47 71.91 50.98 0.06 74.88 46..55 32.1 61.8 

200 
training 
samples 

SVM RF 

OA K 
DRAINED UNDRAINED 

OA K 
DRAINED UNDRAINED 

PA UA PA UA PA UA PA UA 

M
od

el
 

1 85.54 0.67 95.14 83.92 69.48 89.51 91.2 0.79 93.87 93.72 84.7 85.02 

2 88.91 0.72 91.93 92.5 81.37 80.15 90.54 0.77 93.4 93.26 83.58 83.9 

3 89.67 0.75 92.79 92.65 82.09 82.4 90.98 0.78 93.85 93.42 84.07 85.02 

4 88.26 0.72 92.12 91.21 79.12 80.9 89.78 0.75 93.47 92.04 81.23 84.27 

5 89.13 0.74 93.68 90.81 79.09 85.02 91.09 0.78 93.86 93.57 84.39 85.02 

6 82.83 0.62 93.19 81.78 65.71 85.39 88.37 0.73 91.17 89..13 76.43 86.52 

7 85.76 0.67 93.79 85.6 70.93 86.14 88.37 0.73 94.17 89.13 76.49 86.52 

8 82.5 0.61 92.41 82.08 65.59 83.52 88.26 0.72 94.45 88.67 75.9 87.27 

9 79.35 0.55 92.01 77.64 60.43 83.52 85.43 0.67 93.18 85.76 70.85 84.64 

10 53.48 0.06 73.68 53.6 31.91 53.18 57.93 0.08 74.18 62.48 33.78 46.82 

500 
training 
samples 

SVM RF 

OA K 
DRAINED UNDRAINED 

OA K 
DRAINED UNDRAINED 

PA UA PA UA PA UA PA UA 

M
od

el
 

1 83.37 0.64 95.29 80.55 65.49 90.26 88.15 0.73 94.74 88.21 75.32 88.01 

2 86.3 0.69 94.53 85.6 71.43 88.01 88.04 0.72 92.76 90.2 77.54 82.77 

3 87.07 0.71 95.25 86.06 72.42 89.51 89.02 0.74 94.52 89.74 77.67 87.27 

4 87.28 0.71 95.27 86.37 72.87 89.51 86.2 0.68 93.26 86.83 72.44 84.64 

5 87.17 0.71 95.57 85.91 72.31 90.26 88.7 0.74 94.78 88.91 76.55 88.01 

6 85 0.67 95.1 83.15 68.48 89.51 87.72 0.72 94.55 87.75 74.52 87.64 

7 83.48 0.64 95.14 80.86 65.75 89.89 87.28 0.7 92.81 88.91 75.51 83.15 

8 84.35 0.65 93.5 83.77 68.36 85.77 87.5 0.71 94.24 87.75 74.36 86.89 

9 81.09 0.58 92.84 79.48 62.88 85.02 82.39 0.61 93.61 80.7 64.71 86.52 

10 49.24 0.03 72.91 45.33 30.54 58.8 50.87 0.05 73.54 48.09 31.24 57.68 
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Table 4-5 Error matrices for each model (SVM and RF) at each level of training (60, 200 and 500 

training samples) based on the Teagasc/EPA field observations. OA= overall accuracy (%), K= kappa 

statistic, PA= producer accuracy (%), UA= User accuracy (%). Highest OA underlined in bold. 

60 
training 
samples 

SVM RF 

OA K 
DRAINED UNDRAINED 

OA K 
DRAINED UNDRAINED 

PA UA PA UA PA UA PA UA 

M
od

el
 

1 66.96 0.27 44.32 59.09 80.99 70.12 66.09 0.25 43.33 59.09 80.71 68.90 

2 64.78 0.15 39.13 40.91 75.78 74.39 67.83 0.27 45.24 57.58 80.82 71.95 

3 68.70 0.28 46.25 56.06 80.67 73.78 65.22 0.23 42.05 56.06 79.58 68.90 

4 65.22 0.17 40.00 42.42 76.25 74.39 66.09 0.23 42.86 54.55 79.45 70.73 

5 65.22 0.17 40.00 42.42 76.25 74.39 66.52 0.27 43.96 60.61 81.29 68.90 

6 61.74 0.07 33.33 33.33 73.17 73.17 61.30 0.17 38.14 56.06 78.02 63.41 

7 65.22 0.13 38.33 34.85 74.71 77.44 65.22 0.21 41.67 53.03 78.77 70.12 

8 62.61 0.08 34.38 33.33 73.49 74.39 63.91 0.20 40.45 54.55 78.72 67.68 

9 63.48 0.10 35.94 34.85 74.10 75.00 63.91 0.20 40.45 54.55 78.72 67.68 

10 46.09 0.00 21.00 31.82 51.83 65.38 46.52 0.00 28.89 59.09 71.58 41.46 

200 
training 
samples 

SVM RF 

OA K 
DRAINED UNDRAINED 

OA K 
DRAINED UNDRAINED 

PA UA PA UA PA UA PA UA 

M
od

el
 

1 65.37 0.17 39.43 32.90 76.73 74.18 65.27 0.26 42.10 55.84 64.11 59.35 

2 63.30 0.15 37.30 26.98 74.06 73.36 63.32 0.25 40.85 55.33 62.54 59.28 

3 67.37 0.19 41.49 39.84 79.31 74.98 67.15 0.26 43.32 56.43 65.63 59.41 

4 61.28 0.12 35.22 22.44 71.46 72.56 61.42 0.22 39.62 54.95 61.00 59.21 

5 64.07 0.15 38.09 29.03 75.06 73.67 65.99 0.26 42.57 56.05 64.69 59.37 

6 66.14 0.18 40.22 35.43 77.72 74.49 64.05 0.25 41.31 55.51 63.13 59.30 

7 61.70 0.13 35.65 23.29 72.00 72.72 61.82 0.23 39.87 55.02 61.32 59.22 

8 63.30 0.15 37.30 26.98 74.06 73.36 63.32 0.25 40.85 55.33 62.54 59.28 

9 64.09 0.15 38.11 29.09 75.08 73.67 64.06 0.25 41.32 55.51 63.14 59.30 

10 42.24 0.00 15.61 39.81 46.92 65.00 43.53 0.01 28.05 56.42 46.52 58.57 

500 
training 
samples 

SVM RF 

OA K 
DRAINED UNDRAINED 

OA K 
DRAINED UNDRAINED 

PA UA PA UA PA UA PA UA 

M
od

el
 

1 66.96 0.27 44.32 59.09 80.99 70.12 65.22 0.21 41.67 53.03 78.77 70.12 

2 60.43 0.14 36.56 51.52 76.64 64.02 63.04 0.18 39.33 53.03 78.01 67.07 

3 63.48 0.18 39.53 51.52 77.78 68.29 64.78 0.19 40.74 50.00 77.85 70.73 

4 62.17 0.15 37.65 48.48 76.55 67.68 61.74 0.19 39.00 59.09 79.23 62.80 

5 63.48 0.18 39.53 51.52 77.78 68.29 67.35 0.18 40.00 48.48 77.33 70.73 

6 60.87 0.09 34.62 40.91 74.34 68.90 66.09 0.23 42.86 54.55 79.45 70.73 

7 61.74 0.09 34.72 37.88 74.05 71.34 61.74 0.16 38.04 53.03 77.54 65.24 

8 61.74 0.12 36.25 43.94 75.33 68.90 63.91 0.19 40.23 53.03 78.32 68.29 

9 60.43 0.09 34.18 40.91 74.17 68.29 63.91 0.17 39.51 48.48 77.18 70.12 

10 40.43 0.00 19.47 32.35 60.68 43.83 42.17 0.00 23.62 45.45 65.05 40.85 
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4.3.2 Temporal changes in modelled drainage status 

At Farm A, increases in mean and maximum NDVI values were observed in spring NDVI 

images following drainage works in 2014 compared with NDVI images from pre-drainage 

years (see Table 4-6; Figure 4-6). The change in NDVI values was concomitant with an 

increase in the area of the field classed as "drained" by the RF model. For example, in 2010, 

the proportion of the 3-ha field classed as drained was 0.72 ha (25% of the area). This 

increased to 1.8 ha (58%) in 2015 and 2.1 ha in 2016 (68%). No other treatments which may 

have had an effect on NDVI occurred in the same period. 

 

 

Figure 4-6 Visual representation of the general increases in minimum, mean and maximum NDVI 

values at Farm A following the installation of field drainage. The graph shows selected summary 

statistics for years before 2014 and after 2014. 
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Table 4-6 Descriptive statistics for observed NDVI values in April/May before and after installation of a 

groundwater drainage system at Farm A 

Farm A 

Year Min Max Mean St.dev. 

2010 0.65 0.82 0.73 0.04 

2013 0.71 0.87 0.80 0.04 

2014 
Imagery unavailable.  

Drainage installed July/August  

2015 0.68 0.91 0.85 0.06 

2016 0.76 0.94 0.86 0.05 

 

4.3.3 Comparison with Sentinel 2 

The best performing model for Landsat 8 (RF Model 5) was subsequently applied to the 

Sentinel 2A images to determine whether the improved spatial- and spectral resolution had 

any impact on classification accuracy. The Sentinel 2 imagery was not acquired 

contemporaneously to the Landsat 8 data and did not cover the same footprint. This initial 

assessment recorded good overall accuracy (71.8%; 95% CI [65.5%, 74.7%]). This was less 

accurate than the model using Landsat 8 data. Reasons for this are discussed in Section 4 

below.  
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4.4 Discussion 

4.4.1 Extent and distribution 

The study area (heavy grassland soils) was initially estimated to be ~808,494 ha based on the 

intersection of coarse-scale soil and land cover maps. This study assumed the soil drainage 

designations of the Teagasc/EPA map were broadly accurate and that wherever drained 

conditions were identified for heavy soils, it was as a result of artificial drainage. Similarly, 

poorly-drained areas were assumed to represent areas where there was no artificial drainage 

in place, or where existing drainage may have been defunct or no longer functioned correctly.  

 

The study suggested the area of poorly drained soils in the region were considerably 

overestimated by the Teagasc/EPA soil map (see Table 4-7). The best performing model 

suggested ~345,000 ha of soils previously classed as “poorly-drained” showed no indication 

of a persistent saturation problem. This means that as much as 44% of heavy soils in the 

study area were potentially misclassed. Without more extensive validation work, it was not 

possible to say with greater certainty whether the “drained” conditions identified by the 

classification were the result of artificial-drainage and not, for example, discrete areas of 

naturally, well-drained soils within larger poorly drained soil units. In Figure 4-5, it was clear 

that there was considerable county-by-county variation in modelled estimates of artifically 

drained lands. In most case, the modelled estimates exceeded those proposed by Bruton and 

Convery, but do exhibit some consistency in that the counties with the highest (Laois, Offaly 

and Westmeath), and lowest (Sligo and Leitrim) proportions of drained land correspond to 

those identified in the earlier assessment by Bruton and Convery. 
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Table 4-7 County-by-county improvements in the area of drained lands from Teagasc/ EPA Soils and 

Subsoil Map.  

  
Poorly drained 
Teagasc/EPA 

(ha) 

DrainMap % heavy 
soils that are 

drained 
according to 
the current 

study 

Drained 
(ha) 

Poorly 
drained 

(ha) 

Cavan 119,848 51,813 67,965 43% 

Donegal 109,475 39,206 72,066 36% 

Galway 86,806 38,459 48,300 44% 

Laois 56,463 33,445 21,679 59% 

Leitrim 69,439 16,552 51,678 24% 

Longford 26,042 12,700 12,162 49% 

Louth 14,675 6,455 7,987 44% 

Mayo 97,098 33,228 65,230 34% 

Monaghan 61,278 31,022 30,363 51% 

Offaly 35,371 23,117 12,527 65% 

Roscommon 82,873 46,134 38,265 56% 

Sligo 29,233 9,611 18,137 33% 

Westmeath 19,893 11,388 9,005 57% 

BMW Region  808,494 353,130 455,364 44% 

 

4.4.2 Model performance 

Both algorithms performed strongly, with RF having the highest accuracy using image-based 

validation data and SVM performing better with field-based validation data. Neither dataset 

used in the validation was without potential sources of uncertainty or bias. While the use of 

high-resolution imagery to validate thematic maps is widely practised, interpretation of such 

data can be highly subjective, as it depends on the experience of the observer to correctly 

distinguish land cover classes (Foody, 2002). For example, the legacy field observations used 

for this study where potentially no longer representative of current field conditions, as they 

were from a reference dataset collected in 2005. 
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Using the field observations, best overall accuracy was reduced from 91.4% to 68.7%. Lower 

accuracy from these validation points was expected. The records were created several years 

earlier and, in some cases, might not accurately reflect current conditions on site, for example 

where there was a subsequent installation of drains or where existing drains became blocked 

etc. Also, as point descriptions of field drainage, they were not necessarily an appropriate 

scale for validation of this EO-based project. The drainage assessment at the particular point 

of record may not be representative of the wider surroundings. This discrepancy between the 

observation scales, for example between point- and pixel-based estimates of surface 

phenomena, can result in different estimates of surface properties (Goodchild, 2001). Thus, 

observed drainage status for a given location may not reflect the drainage properties of the 

surrounding 900 m2 (the footprint of a Landsat 8 pixel). Any future expansion of this study 

should prioritise the collection of current, appropriate ground-truth to validate these model 

outputs.  

 

Using MDA, the most valuable Landsat 8 band for separating drainage classes was NIR. 

NDVI and NDWI were also important (Figure 4-7). NDVI was alsio important in previous 

drainage mapping projects (Cialella et al., 1997; Levine et al., 1994), while NDWI was the 

highest-ranking spectral dataset in a recent Danish drainage mapping study (Møller et al., 

2018). NIR was integral to both these indices, however individually, both Landsat SWIR bands 

ranked low in overall importance suggesting NIR was the key band. Terrain attributes had 

only a minor impact on overall model accuracy, but elevation, aspect and distance to drainage 

were consistently among the highest-ranking terrain attributes where included. Both elevation 

and aspect have a direct influence on precipitation volume and insolation, and both are known 
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to negatively impact vegetation growth through their impact on soil temperature, soil moisture 

content and the number of degree days (Keane & Sheridan, 2001). Elevation was identified as 

an important predictor of soil drainage class in previous studies (Campling et al., 2002; 

Cialella et al., 1997).  

 

 

Figure 4-7 Variable importance for Landsat 8 bands and topographical data (based on the 

mean decrease accuracy tool supplied by the RF algorithm). 

 

Binary segmentation of grassland into “drained” and “poorly-drained” classes was chosen for 

this study as the review of previous projects had indicated that enforcement of conventional 

soil drainage classes onto EO-based estimations of soil drainage was inappropriate and 

resulted in lower overall accuracy (Levine et al., 1994; Niang et al., 2012). Zhao et al. 

demonstrated how reducing the number of classes by aggregating neighbouring drainage 

classes increased overall accuracy from 52% to 94% (Zhao et al., 2013). More accurate 
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definition of intermediate drainage classes might be possible with improved spectral 

resolution. The MDA assessment of the critical Sentinel 2 bands (Figure 4-8) found red-edge 

bands (~0.68-0.74 μm), which are closely correlated with canopy chlorophyll content 

(Delegido et al., 2011; Pinar & Curran, 1996), were more important than the NIR band as 

indicators of vegetation health/stress. Future hyperspectral missions such as the EnMAP 

mission (Guanter et al., 2015) may also play a role in future development of this project. 

EnMAP will capture 230 spectral bands  between 0.42 - 2.45 μm at 30 m spatial resolution 

that will be capable of identifying small differences in chlorophyll concentrations due to 

underlying stresses. Hyperspectral imagery has been used previously for identifying saturated 

conditions beneath the surface (Emengini et al., 2013) and has been used to good effect for 

drainage classification (Liu et al., 2008).  

 

The lower classification accuracy of the Sentinel 2 classification can be explained by the 

insufficient archive of images available at the time of the study to identify persistent drainage 

problems required for this study. As a single image rather than a multi-temporal mosaic, the 

Sentinel 2 reflectance values were more likely influenced by meteorological conditions 

immediately prior to the acquisition. The weeks preceding image capture in May 2017 were 

drier and warmer than long-term averages. This would have had a positive impact on soil 

condition and vegetation growth on heavy soils in the region. This is likely the explanation for 

an increase in errors of commission in the accuracy assessment where poorly-drained pixels 

were misclassified as drained.  
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Figure 4-8 Variable importance for Sentinel 2A bands (based on the mean decrease in classification 

accuracy determined by the Random Forest algorithm) 

 

4.4.3 Temporal improvements 

An important result was the identification of temporal changes in spring NDVI values at Farm 

A in the years following drainage works. The gains in 2016 were notable considering the 

severe winter storms in 2015-2016 and prolonged soil saturation that persisted into spring 

2016. The increase in mean, minimum and maximum NDVI was consistent with improved soil 

environment following drainage resulting in better grass growth. Kobryn et al. identified a 

similar pattern with temporal improvement in NDVI values after drainage installation that were 

consistent with measured changes in groundwater levels (Kobryn et al., 2015). These results 

suggest this EO method could serve as a quick and straightforward assessment of drain 

function, identifying long-term changes in drainage status on farms and as a way of assessing 

the suitability or functionality of installed drainage works.  
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There are some caveats to this however. It was not possible to assess NDVI data for 

surrounding fields to see how they compared to the newly drainage status in Farm A. This 

was due largely to cloud cover obscuring the surrounding area in one or more years. Use of 

coarser spatial resolution data (MODIS, for example) to complete the temporal sequence was 

not an option as the larger pixel size would negate any in-field assessment of drainage 

improvement. Secondly, different Landsat missions were necessary to complete the temporal 

series. These satellites have marginally different sensor configurations and band widths, were 

taken on different dates, from different orbits and viewing angles etc. There is the possiblility 

that some of the observed increase in NDVI was a product of different sensor specification. 

Furthermore, these were single date acquisitions. The point has already been raised in 

Section 4.3.3 that single date images (rather than mosaics) are susceptible to antecedent 

meteorological conditions, potentially lowering NDVI values. Again, with the relatively small 

size (3 ha) of the target field, it was fortunate to get a useable image for each of the years 

(albeit from different sensors). It was not feasible to produce a mosaic of images with mean 

NDVI values at the required spatial resolution.  

 

4.4.4 Misclassification error  

The contributing images to the mosaic had uneven spatial distribution as a result of cloud 

cover. A consequence of this was areas of the mosaic had less data available to calculate 

mean values per pixel. The number of contributing images to the mosaic ranged from one to 

eighteen images. Where there were higher number of contributing images, lower 

misclassification errors were reported (Figure 4-9). A longer temporal series of images, using 

both Landsat 8 and Sentinel 2 imagery would allow the study area to be imaged 
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approximately every three days (Li & Roy, 2017). This would require only minor corrections to 

compensate for small but consistent differences in reflectance values due to different sensor 

configurations between the two platforms (Flood, 2017), and the short revisit period could 

significantly mitigate the loss of data due to cloud occlusion.  

 

Figure 4-9 Misclassification errors for the best-performing model as a factor of number of contributing 

images. As the number of contributing images increases the misclassification rate is reduced. 
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.4.5 Applications and future developments 

Precise spatial data on the distribution of artifically drained soils has many applications for 

agricultural and environmental management. As demonstrated for Farm A, a remote sensing 

technique to assess field drainage at field-scale could enable better management of farm 

drainage networks, identifying where drainage infrastructure may require maintenance or 

replacement or quantifying whether specific drainage treatments have corrected the 

underlying saturation problem. As discussed previously, one important benefit of a field 

drainage map could be a better understanding of pathways for diffuse nutrient loss from fields. 

A clearer demarcation of drainage status on heavy soils could enhance the identification of 

hydrologically sensitive areas (HSA), discrete regions of farms prone to generating surface 

runoff and a high risk for diffuse nutrient loss to surface water. Thomas et al. demonstrated 

how a better understanding of hydrological connectivity between  HSA and surface drainage 

networks could help target mitigation measures to reduce such losses from intensively 

manged farmland (I. Thomas, Jordan, et al., 2016; I. Thomas, Mellander, et al., 2016). 

Improved mapping of the discrete locations where saturation may occur, or where infiltration 

may be impeded, or where these issues have been improved, could help achieve the 

objectives of the EU Water Framework Directive, to achieve ‘good’ ecological status in rivers, 

lakes, estuaries and coastal waters by 2027. Additional EO and RS methods of monitoring or 

mapping potential pathways for nutrient losses are presented in subsequent chapters. A 

further potential application is in the administration of farm payments. Functioning field 

drainage is a diagnostic sign of intensive agricultural activity, therefore any method that can 

identify artifically drained fields on naturally marginal soils would be a valuable asset in the 

validation of area-based payments as required under the EU Common Agricultural Policy 

(CAP). This is particularly important in light of proposed changes to the CAP, announced in 
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2018, where farmers will be allowed to validate payments using EO or UAS data (EC, 2018). 

Distinguishing productive grassland from degraded or marginal areas also has a role in more 

accurate quantification of carbon sequestration potential of Irish farmland (Cawkwell et al., 

2017).  

 

4.5 Conclusions 

Accurate mapping of field drainage is essential to inform specific farm management decisions. 

It is also critical at a national level to fully understand the broader environmental impacts of 

agriculture, for example, nutrient enrichment of surface water, GHG emission and carbon 

sequestration. Existing soil drainage maps are too coarse, or too generalised, to represent 

accurately the actual soil conditions at a specific location. In this chapter, a new machine 

learning approach to mapping artifically-drained heavy, grassland soils was assessed using 

multitemporal, multispectral imagery in combination with topographical data. The method 

proposed here found the “drained” and “poorly-drained” estimates of soil drainage using the 

Teagasc/EPA map were incorrect, with an over-estimation of poorly-drained conditions across 

the region. If correct, this finding could have considerable implications for understanding the 

potential environmental impacts associated with soil drainage. Future expansion of this study 

would benefit from the higher spatial, spectral and temporal resolution imagery provided by 

the Sentinel 2 mission. Additional validation data, based on recent field-observation would 

give a better assessment of model accuracy. The method also detected temporal changes in 

drainage status within a specific field following drainage works. The ability of a NDVI time-

series to monitor temporal improvements or deterioration in drainage status could be a useful 

tool for monitoring drainage regime and drainage function at a regional level. 
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Chapter 5 Performance assessment of UAS 

photogrammetry and aerial LiDAR for modelling 

overland flow in intensively managed grassland 

 

5.1 Introduction 

Surface runoff from agricultural fields is a leading source of phosphorus (P) in surface water 

(Schoumans et al., 2014). When P becomes dissolved in water (dissolved reactive 

phosphorous; DRP) and transported via overland flow to surface waters it can have a 

detrimental impact on aquatic habitats. In previous chapters, the propensity for runoff to 

develop on poorly drained soils has been outlined. In the Republic of Ireland, total mean 

emissions of P to surface water is estimated to be >2700 t yr−1 predominantly from heavy 

grassland soils (Mockler et al., 2017). The precise delineation of source areas and pathways 

for nutrient loss via overland flow, known as hydrologically sensitive areas (HSA), can permit 

targeted implementation of best management practices regarding P loss. This may include for 

example, the implementation of buffer strips or riparian zones or the use of variable 

application rates for fertilisers. This is a benefit to farmers, as more precisely targeted 

measures are less costly and disruptive than a broad-scale implementation of remedial 

measures (Haygarth et al., 2009).  
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Previous research has shown how high spatial resolution DEM can improve the spatial 

definition of HSA in agricultural catchments (Agnew et al., 2006; Walter et al., 2000). In most 

cases, the source of the high-resolution DEM was laser scanning (LiDAR), which is able to 

accurately resolve fine-scale topographic variation even under dense canopy (Bailly et al., 

2008; Brubaker et al., 2013). Thomas et al. recently demonstrated the effectiveness of LiDAR 

for defining HSA in complex agricultural landscapes, where accurate delineation of 

microtopographic features (gullies, ditches, depressions etc.) had an important influence on 

understanding nutrient pathways at plot level (I. Thomas, Jordan, et al., 2016; I. Thomas, 

Mellander, et al., 2016; I. A. Thomas et al., 2017). These papers demonstrated how aerial 

LiDAR effectively mapped pathways for nutrient loss, delivery points (where pathways 

intersected surface drains or streams) and breakthroughs (where pathways crossed field- or 

road boundaries). The identification of delivery points allows mitigation measures to be 

considered at critical locations of nutrient transfer, which could significantly improve cost-

effectiveness (Doody et al., 2012). The high cost of acquiring aerial LiDAR data has largely 

curtailed its wider adoption within precision agriculture (Xiaoye, 2008). Typically, only areas 

>500 ha are mapped with manned aerial sensors, with mapping costs in Ireland currently 

(2018) around €8 ha-1. LiDAR surveys over smaller areas (fields or farms) are typically carried 

out using a fixed terrestrial scanner that is moved between locations until a full scan of an 

area is complete. A 25 acre field could, depending on topography and cover, take up 2 days 

with costs in the region of ~€1000 day-1. Consequenty the costs incolved in surveying small 

areas may also be prohibitive.  
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Photogrammetry is a well-established alternative method of topographic modelling which 

creates 3D geometry from overlapping stereoscopic images (Linders, 2016). Structure-from-

motion (SfM) photogrammetry is a relatively new form of photogrammetry that differs from 

traditional photogrammetric approaches by automatically determining camera position and 

orientation without the requirement for predefined ground control at known positions (Westoby 

et al., 2012). Taking advantage of software developments for scene reconstruction (Snavely 

et al., 2008), automatic feature detection (Lowe, 1999; J. Wu et al., 2013) and dense image 

matching algorithms (Remondino et al., 2014), SfM photogrammetry has become an 

affordable alternative to LiDAR and traditional photogrammetry for the creation of dense point 

clouds for topographic modelling. In addition to advances in image processing software, 

unmanned aerial systems (UAS) or -vehicles (UAV) have become popular platforms for 

capturing overlapping image sets suitable for SfM photogrammetric modelling. Consequently, 

UAS photogrammetry is now widely used for mapping landforms and microtopography 

(Nouwakpo et al., 2016; Westoby et al., 2012), and is increasingly used for hydrological and 

environmental modelling and precision agriculture (Grenzdörffer et al., 2008; Salvatore 

Manfreda et al., 2018). An additional benefit of using SfM is that where multispectral imagery 

is used, additional data for precision agriculture purposes can be collected, for example, 

creating VI to quantify biomass and canopy health.  

 

A fundamental difference between the two techniques is that LiDAR can reconstruct two forms 

of topographical model, digital elevation models (DEM) and digital surface models (DSM). A 

DEM is a model of the bare surface with no intermediate objects present, for example, 

buildings or vegetation canopy. A DSM is a model of the uppermost surface only, which may 
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include structures and canopy. Photogrammetry can only produce a DSM, so the 

characteristics of overlying vegetation have a significant impact on the accuracy of modelled 

surface elevations. A recent study, focusing specifically on topographical accuracy of a UAS-

derived DSM, found DSM can accurately model terrain attributes in grassland environments, 

and that DSM models of grassed surfaces were suitable for modelling hillslope processes and 

identifying microtopographic features (Florinsky et al., 2017). This suggested UAS 

photogrammetry could accurately model runoff processes at field scale on intensively 

managed grassland. 

  

Users of SfM photogrammetry must be aware of important sources error that can be 

introduced to models from inappropriate flight altitude and pattern, poor scene contrast or 

image quality, insufficient overlap, unsuitable sensor type or viewing angle (Carravick et al., 

2016; S. Manfreda et al., 2018). However, where potential error sources are managed 

correctly, users can produce centimetre accurate topographical models comparable to LiDAR 

(Fonstad et al., 2013; Harwin & Lucieer, 2012; Nouwakpo et al., 2016). Measured ground 

control points (GCP) evenly distributed over a study area are crucial for mitigating positional 

errors that are introduced by the reconstruction process and are recommended for creating 

accurate models (Küng et al., 2011). Advances in low cost (< €5000) post process kinematic 

(PPK) UAS systems have reduced the need for independent GCP to some degree. PPK 

corrects UAS location after images have been captured reducing the time required on-site for 

placing and recording suitable ground control and providing models with ~3 cm positional 

accuracy.  
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Currently, the cost of a suitable UAS capable of conducting photogrammetric surveys is 

<€1000. Suitable processing software is available, but licence costs can be prohibitive. Cloud-

based commercial licences can be as low as ~€200 per month, however. Open-source 

software options are also available (for example visualSFM, MICMAC or Open Drone Map) 

but may not be intuitive to non-professional users. Inspite of these costs, photogrammetric 

models for delineation of HSA is still a significantly cheaper option for farmers than either 

aerial or terretsrial LiDAR. The question posed in this chapter is how photogrammetric models 

compare with LiDAR models for estimating nutrient losses in overland flow.  

 

This project aimed to compare surface models created by aerial LiDAR and structure-from-

motion (SfM) photogrammetry for modelling surface runoff from intensively managed 

grassland. The objectives of the study were to:  

 Establish the accuracy of photogrammetric DSM and LiDAR DEM against GNSS-

measured elevations.  

 Compare derivative products (slope and topographic wetness) and overland flow/ P-

loss estimates generated by each method. 

 Investigate the relationship between vertical error in modelled photogrammetric 

elevation and sward height and topographic gradients.  

 Identify the grid resolution at which SfM and LiDAR models of overland flow and P-

loss are most similar for this study area.  
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5.2 Materials & Methods  

5.2.1 Study Area 

The study was conducted within a mixed agricultural catchment in the Republic of Ireland 

(53°49’33’’ N, 6°26’28’’ W; Figure 5-1). It was located within the extent of a previous Teagasc 

research project, the Agricultural Catchments Programme (ACP), which was established in 

2008 to provide a comprehensive evaluation of the effectiveness of the Nitrates Directive NAP 

and Good Agricultural Practices measures in Ireland at the farm and catchment scales. LiDAR 

data had been previously collected over the catchment for research on modelling HSA (I. 

Thomas, Jordan, et al., 2016; I. Thomas, Mellander, et al., 2016; I. A. Thomas et al., 2017). In 

previous studies, this catchment was designated “Arable B” and this nomenclature is retained 

here. 

 

The specific area of interest was a nine-hectare pasture field subdivided into seven paddocks 

under grazing rotation. Topographically, the site was characterised by a steady elevational 

gradient from the NE to SW (60-77 m above sea level). A prominent scarp ~3 m high along 

the northern boundary began at the western edge and extended eastwards for approximately 

300 m Using the Irish Soil Information System, soils in the study area were classified as 

moderately-drained clay loam Luvisols (Clongeel series), with an estimated soil depth of 1.38 

m (Creamer et al., 2014). The underlying geology was calcareous greywacke & banded 

mudstone (Salterstown Formation) (GSI Geological Map Series 100k scale). 
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Figure 5-1 Location of study area (inset). (top) Imagery acquired during the manned flight (Sept. 2015). 

(bottom) Imagery acquired during UAS survey (May 2017) (CRS: Irish Transverse Mercator; EPSG 

2157).  



 

140 

There were differences in sward height between paddocks due to the practice of rotational 

grazing. Mean grass canopy height across all paddocks was 0.16 m (+/- 0.09 m). At the time 

of the UAS flight, the easternmost paddocks had been recently grazed and had less cover 

than the westernmost paddocks. In other areas, small areas of the canopy had been removed 

due to poaching (grass cover removed) around water- or feeding troughs. Elsewhere, canopy 

height was observed to be higher due to the presence of weeds clusters within the sward. 

Sward height was measured using two steel tapes. One was held vertically perpendicular to 

the ground surface, while the other was run along it until it rested on the sward. The location 

of each measurement was recorded using a Trimble R8 5800 GNSS RTK unit (+/- 0.02 m 

positional accuracy).  

 

5.2.2 Data Collection 

Three separate periods of data collection contributed to this study:  

An airborne (helicopter) LiDAR survey was conducted over the catchment in December 2011 

as part of the Agricultural Catchments Programme. LiDAR data was collected at an altitude of 

275 m above ground level. Point density was ~40 points/m2. Mean vertical accuracy for the 

survey was reported to be 0.03 m (+/- 0.014 m) based on ground control points (GCP) 

established across the entire catchment.  

Aerial imagery was acquired from a manned flight in September 2015. A Cessna C-172 

carried a suite of sensors which included RGB images from a Nikon D800E 36 MP SLR 

(Cahalane et al., 2017).  
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Low-altitude imagery was acquired in May 2017 using a 12 MP, gimbal-mounted RGB camera 

on a DJI Phantom 3 Advanced quadcopter. The UAS missions were flown semi-autonomously 

using Pix4D Capture mission control software.  

 

Flight specifications for each flight are presented in Table 5-1. GCP and independent 

checkpoints were located within the footprints of each flight and recorded using a Trimble R8 

5800 GNSS RTK unit (+/- 0.02 m positional accuracy).  

 

Table 5-1 Specifications for the manned and unmanned flights 

 Aerial UAS 

Altitude (m) ~500 70 

Survey area (ha) 261 9 

Along-track overlap 60% 90% 

GSD (cm/pixel) 6 3 

Camera angle 90° 80° 

Footprint (m) 300 x 200 120 x 90 

Sensor width (mm) 35.9 6.17 

Focal length (mm) 50 3.61 

No. images 108 659 

Flight time (mins) ~11 ~30 
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5.2.3 Point cloud creation  

Photogrammetric software has made the processing chain from 2D images to 3D geometric 

model relatively straightforward with minimal requirement for user intervention. Agisoft and 

Pix4D are popular, commercial desktop- or cloud-based packages that provide end-to-end 

processing chains for point cloud, mesh and orthomosaic production (AgiSoft, 2016; Pix4D, 

2017). These follow similar processes of feature extraction and matching, bundle block 

adjustment and point cloud densification. However, detailed information on the algorithms 

used are commercially sensitive and not publicly available. Open-source software options are 

available but are often not appealing to non-professional or non-research users. One example 

is VisualSFM is a free, GUI-based software which uses a suite of open-source algorithms for 

feature detection, feature matching and sparse cloud reconstruction. It also integrates an 

external patch-based multi-view stereo algorithm for dense point matching (Furukawa & 

Ponce, 2010; C. Wu). As these software utilise different algorithms within their workflow, the 

point clouds produced by each method are different. The point cloud generated by Pix4D had 

the lowest positional RMSE against GCP and independent checkpoints and was used 

exclusively in subsequent analysis (see Table 5-2). A mimimum of 3 GCP are typically the 

required to geolocate (scale, orient, position) a project. Eight ground control points were used 

to georeference this project. Checkpoints are not used in geolocating the project, but are used 

to assess the absolute accuracy of the model. Seven check points were used in this project. 

The same GCP and checkpoints were used for each of the three software. The same GCP 

and checkpoints were used for each of the three software. 
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Table 5-2 Quality assessment of the photogrammetric point clouds versus GCP and independent 

checkpoints.  

 UAS Aerial 

 Pix4D Agisoft VisualSFM Pix4D 

Mean points per image 41,593 40,000 11,329 69,237 

Mean matched points per image 14,872 4,000 -- 32,159 

Total no. points (x 106) 66.46 56.93 22.54 51.11 

Mean no. points (per m2) 485  285  221  21  

RMSE / ground control (m) 0.02 0.035 0.42 0.05 

RMSE / checkpoints (m) 0.03 0.05 -- 0.16 

 

5.2.4 Gridded raster data  

To compare LiDAR and photogrammetric topographic models, gridded raster data were 

created for terrain attributes that influence the magnitude and direction of movement of 

surface water. Raster data were generated at four spatial resolutions (0.5 m, 1 m, 2 m and 5 

m) from raw point clouds using the LAS to DEM tool (ArcGIS 10.5, Conversion toolbox). 

Terrain attributes were created using open source GIS software (Geographic Resources 

Analysis Support System (GRASS, v. 7.4) and System for Automated Geoscientific Analyses 

(SAGA, v.6.2.0.). Elevation data were initially hydrologically corrected to ensure fully 

connected flow paths using SAGA GIS (L. Wang & Liu, 2006).  

 

Variables included: 

Slope. Slope characterises the magnitude and direction of surface runoff. A choice of several 

algorithms was available.Comparative studies indicated different algorithms perform 

identically in most cases (Hodgson, 1998). The 9-parameter 2nd order polynomial algorithm 

used in this study is a popular choice in slope modelling (Zevenbergen & Thorne, 1987).  
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Topographic wetness index (TWI). TWI is also widely used to measure general landscape 

wetness or as an indicator of the propensity of an area to generate overland flow (Beven & 

Kirkby, 1979). It is defined by Equation 5.1. Specific upslope area indicates the volume of 

water flowing towards a particular position of landscape location while local slope angle is 

assumed to reflect subsurface lateral transmissivity (Grabs et al., 2009; Sørensen & Seibert, 

2007). TWI can be derived in several ways based on the how flow movement is modelled. 

Two TWI were produced using single- and multiple flow-routing algorithms, D8 (O'Callaghan 

& Mark, 1984) and MD∞ (Seibert & McGlynn, 2007), to explore whether more complex flow 

routing algorithms used to define upslope contributing area produced different results.  

 

TWI = ln(a/tan β)        (Eqn. 5.1) 

where a is the specific upslope area (i.e. the upslope area per unit contour length) and tan β is 

the local surface slope.  

 

An additional method of delineating potential pathways for P loss was an implementation of 

the Simulated Water Erosion model (SIMWE) developed for the Water Erosion Prediction 

Project (WEPP). Implemented through a GRASS GIS module (r.sim.water), this tool was 

designed to replicate high resolution (≥ 1 m) surface flow in small catchments with variable 

topography, soil type and land cover (Mitas & Mitasova, 1998; Mitasova et al., 2004). The 

inputs are an elevation model (DEM or DSM), first-order partial derivatives of elevation (dX 

and dY), rainfall and soil infiltration rates and surface roughness (Manning’s n coefficient). 

Simulations here assumed a very heavy storm event (20 mm/h) on a low infiltration soil (5 

mm/h) to ensure sufficient flow paths were initiated. The Manning’s coefficient for surface 
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roughness (n= 0.15) was based on published estimates of flow through short grass/pasture 

(Engman, 1986). Within SIMWE, flow is modelled as a kinematic wave with a diffusion term to 

enable flow to overcome minor depressions or obstacles when encountered (Hofierka & 

Knutová, 2015). The algorithm has recently been applied to urban overland flow mapping 

using UAS-derived elevation models (Jeziorska et al., 2016). Overland flow estimates 

generated by SIMWE were subsequently used to model potential P loss by applying a DRP 

concentration of 0.03 mg/l to modelled overland flow rates (m3/s) to give estimated losses of P 

(kg yr-1). 

 

5.2.5 Statistical analysis 

Statistical analysis was undertaken with R statistical software (v. 3.4.4). Where bootstrapping 

occurred for correlation coefficients and R2 values, the study used 10,000 replications of 138 

data points using bias-corrected 95% confidence intervals. Simple linear regression 

determined how much variability in LiDAR-derived products could be explained by 

photogrammetric methods and identified the grid size at which the methods were most similar. 

Welch two-sample t-tests were used to test the hypothesis that both models had equal 

means. The Welch t-test was favoured because it is robust against non-normal distributions 

when the sample size is ≥ 15 per group and doesn't assume equal variance. 
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5.3 Results 

5.3.1 Modelled elevations versus GNSS-measured points 

When compared against GNSS-measured spot heights within the study area, both 

photogrammetric and LiDAR methods displayed strong, positive correlation with surveyed 

elevations (R2 ≥0.99, p< 0.001) (Table 5-3). These statistics are an effective way of 

determining global values over the map. It is acknowleged that descriptive statistics such as 

these cannot adequately capture the heterogeneity in the distribution of spatial error across 

the study area. Readers are referred to Section 5.3.5 for further discussion on the spatial 

distribution of error at this site as a function of sward height. Extracted spot heights from each 

of the model types indicated that both LiDAR and photogrammetry consistently overestimated 

measured elevations. Absolute mean and median vertical error (i.e. abs(measured height – 

modelled height)) for both models was in the range 0.12-0.15 m. Maximum vertical error was 

greatest for SfM DSM. The lowest RMSE (0.15 m) was achieved by LiDAR (50 cm, 1 m and 2 

m resolution). RMSE for SfM-derived models was constant across resolutions (~0.17 m), and 

was highest for model created from the manned flight (0.21-0.24 m). Difference raster (DEM 

minus DSM) at each resolution illustrated the spatial distribution of vertical error between the 

two methods. Mean error was typically between 0 and +/- 0.2 m. In Figure 5-2, red/blue areas 

indicate where the DSM elevations were lower/higher than the LiDAR DEM. The cause of this 

distinct spatial pattern could be related to observed changes in sward height between 

paddocks. The area was under rotational grazing, where the westernmost paddocks had not 

been grazed for several days. These had greater sward cover than the eastern paddocks 

which had been recently grazed. At each resolution (50 cm, 1 m, 2 m and 5 m) mean error 

(+/- std. dev.) between the corresponding elevation rasters was 0.002 m (+/- 0.1 m), 0.003 m 

(+/- 0.1 m), 0.03 m (+/- 0.1m) and 0.06 m (+/- 0.11 m) respectively.  
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Figure 5-2 Difference of models at varying resolutions for photogrammetry vs LiDAR 

elevations. Areas in red indicate locations where photogrammetry heights were lower than 

LiDAR. Blue indicates areas where photogrammetry heights were greater than LiDAR. These 

height differences correspond to different sward height across the paddocks. 
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Table 5-3 Summary statistics for vertical error, slope, TWI and surface discharge created by LiDAR and photogrammetry (UAS and aerial) 

 

 

 UAS Aerial LiDAR  
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RMSE 0.18 0.18 0.17 0.17 0.21 0.21 0.21 0.24 0.15 0.15 0.15 0.18 

Mean -0.14 -0.14 -0.12 -0.12 -0.14 -0.14 -0.12 -0.14 -0.14 -0.14 -0.14 -0.15 

Median -0.14 -0.13 -0.12 -0.11 -0.13 -0.13 -0.12 -0.12 -0.14 -0.14 -0.14 -0.16 

St. dev. 0.12 0.11 0.12 0.11 0.16 0.16 0.16 0.19 0.05 0.05 0.05 0.09 

Minimum -0.41 -0.39 -0.44 -0.41 -0.15 -0.17 -0.25 -0.3 -0.25 -0.25 0.005 -0.41 

Maximum 0.17 0.13 0.20 0.17 0.48 0.48 0.49 0.57 -0.03 -0.03 0.005 0.11 

S
lo

pe
 °

 

Mean 4.8 3.1 3.2 3.1 4.2 3.3 3.3 3.2 3.9 3.3 3.1 3.1 

Median 4.4 2.9 3 2.9 3.7 2.8 3.3 3.2 3.4 3.2 3.1 3 

St. dev. 2.6 1.5 1.4 1.3 2.5 1.7 1.4 1.2 1.9 1.4 1.3 1.2 

Minimum 0.53 0.2 0.28 0.36 0.55 1.1 0.61 0.39 0.13 0.4 0.41 0.49 

Maximum 14.6 9.3 8.4 8.5 13.2 9.1 8.5 8.5 10.1 10.3 9.7 8.1 

T
W

I 

Mean 2.7 4.1 5.1 6.3 3.5 4.9 6.1 6.7 3 4.1 5.3 6.2 

Median 2.2 3.3 4.3 6 3.1 4.7 6.2 6.7 2.6 3.5 4.9 6 

St. dev. 1.3 1.7 1.8 1.5 1.6 1.4 1.5 1.2 1.4 1.7 1.8 1.3 

Minimum 0.82 2 2.8 4 1.2 2.2 2.9 4.2 1.2 2.2 2.9 4.2 

Maximum 7.3 8.3 10.2 11.6 7.7 8.7 10.2 11.4 9.8 10.7 11.7 9.1 

O
ve

rla
nd

 fl
ow

 

(l/
s)

 

Mean 

n/a 

0.4 0. 8 2 

n/a 

0.3 0.8 2 

n/a 

0.4 0.8 2 

Median 0.3 0. 7 2 0.2 0.5 2 0.3 0.7 2 

St. dev. 0.4 0.6 1 0.4 0.9 2 0.3 0.6 1 

Minimum 0.01 0.02 0.06 0 0 0. 03 0.02 0.02 0.09 

Maximum 3 3 6 2 4 8 2 4 6 
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5.3.2 Comparison of slope and Topographic Wetness Index values  

The boxplots in Figure 5-3 illustrate the distributions of attribute values for each 

model/resolution. In each case, there was a low range of values due to relatively homogenous 

terrain within the study area. Median slope values and their interquartile ranges displayed 

exhibited greater correspondence as spatial resolution became coarser. TWI distributions 

displayed greater variability. Scale-related trends were observed whereby slope values 

decreased, and TWI values increased as spatial resolution increased. 

 

 

Figure 5-3 Distribution of slope and TWI values derived from LiDAR DEM and SfM DSM 
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Figure 5-4 Linear regression of LiDAR-derived slope versus SfM-derived slope (a) UAS (top) and (b) 

aerial (bottom). 
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Figure 5-5 Linear regression of LiDAR-derived TWI versus SfM-derived TWI (a) UAS (top) and (b) 

aerial (bottom). 
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For slope, weak correlation between methods was observed at 50 cm resolution (0.20, 95% 

CI [0.05, 0.34]). However correlation coefficients increased linearly at 1 m (0.57, 95% CI [0.41, 

0.72]), 2 m (0.81, 95% CI [0.72, 0.87]) and 5 m (0.83, 95% CI [0.69, 0.91]). All regressions 

were significant (p< 0.05) with a steady reduction in RMSE as ground sampling distance 

increased (3°, 1.4°, 0.83° and 0.46° respectively). Slopes derived from the manned flight 

performed similarly (R2= 0.01 at 50 cm (95% CI [0, 0.08])), increasing linearly at 1 m (0.29, 

95% CI [0.12, 0.50]), 2 m (0.53, 95% CI [0.34, 0.70]) and 5 m (0.82, 95% CI [0.70, 0.89]) 

(Figure 5-4). 

 

TWI created from the DEM and DSM demonstrated weak correlation at all resolutions. It was 

assumed that irregular sward height resulted in top of canopy slopes that were uncorrelated 

with the terrain slope of the underlying surface. Slope rasters had far greater correlation, 

which increased as resolution became coarser. The issue must therefore be in other data 

contributing to the TWI, the upslope contributing area, which measures the number of pixels 

draining into a given pixel. It was also unusual that correlation did not improve at coarser 

resolutions. Linear regression between the DSM TWI and DEM TWI had very high variability 

with R2 at or near zero in each case (Figure 5-5). At 50 cm resolution, no clear trend was 

observed (p=0.88), but significant trends were observed at 1 m, 2m and 5 m despite low R2 

values (p= 0.03, 0.01 and 0.05 respectively). This was also found for TWI derived from the 

manned flight (R2 ~0; p >0.05). A series of low pass filters were applied to the TWI images 

reduced local variation between surrounding cells, improving the R2 values between DEM and 

DSM, particularly at 2m and 5m where filtered R2 = 0.60 and R2 = 0.70 respectively.  
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Figure 5-6 Modelled P-loss (kg yr-1) using overland flow rates (m3/s) estimated by SIMWE models 

developed from LiDAR DEM and UAV DSM at 1 m, 2 m and 5 m resolution. P concentrations of 0.03 

mg/l were assumed.  
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5.3.3 Overland flow  

5.3.3.1 Definition of pathways  

Using SIMWE, both LiDAR and SfM models delineated pathways for overland flow (see 

Figure 5-6). The required raster were inputted into the model (see Section 5.2.4 for 

implementation). At 1 m resolution, LiDAR identified three main pathways running N-S 

through the site, running into an E-W running ditch along the northern boundary. Other 

pathways running SW-NE were identifiable in the NE of the study area. If LiDAR is assumed 

to represent ground conditions, the equivalent SfM DSM at this resolution over-predicted the 

number of potential pathways running into the E-W ditch along the northern boundary. At 2 m, 

each method highlighted coterminous problem areas, even where individual flow paths within 

these areas diverged somewhat. SfM DSM still over-predicted the number of potential 

pathways. At 5 m pathways defined by the models were largely indistinguishable, with 

comparable areal extent and flow rates (m3/s) recorded.  

 

5.3.3.2 Estimated flow and P loss  

Modelled discharge rates (litres per second) via overland flow using each method are 

presented in Table 5-4. Bootstrapped Pearson’s correlation coefficients between DSM and 

DEM overland flow volumes exhibited moderate correlation at 1 m (0.49, 95% CI [0.24, 0.63]), 

increasing at 2 m (0.79, 95% CI [0.69, 0.85]) and 5 m (0.96, 95% CI [0.95, 0.98]). Regression 

analysis was significant at each grid resolution (p< 0.001). R2 values also increased from 1 m 

(0.24, 95% CI [0.05, 0.40]), 2 m (0.62, 95% CI [0.47, 0.72]) to 5 m (0.93, 95% CI [0.90, 0.96]). 

Applying a low-pass filter to the 1 m model improved R2 values to 0.43 (95% CI [0.22, 0.67]), 

0.72 (95% CI [0.59, 0.84]) and 0.88 (95% CI [0.77, 0.94]) using 3 x 3, 5 x 5 and 7 x 7 
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neighbourhoods. Discharge estimates based on the aerial survey were also significant (p= 

0.01, p< 0.001 and p< 0.001) but displayed greater variability (1 m: R2= 0.05, 95% CI [0.002, 

0.11]; 2 m: R2= 0.25, 95% CI [0.14, 0.44]; 5 m: R2= 0.33, 95% CI [0.18, 0.46]).  

 

Table 5-4 Summary statistics for water discharged (l s-1) per model/ resolution 

 1 m 2 m 5 m 

 DSM DEM DSM DEM DSM DEM 

Min 0.01 0.02 0.02 0.02 0.06 0.09 

Mean 0.36 0.37 0.77 0.75 1.91 1.92 

Median 0.27 0.27 0.66 0.66 1.73 1.80 

SD 0.34 0.30 0.55 0.52 1.21 1.19 

Max 2.74 1.96 2.82 3.40 5.53 5.36 

 

 

Figure 5-7 Distribution of modelled surface discharge (l/s) and estimated P loss (kg/yr-1) per model/ 

resolution 
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Figure 5-8 Regression of P loss (kg yr-1) by model/ resolution (UAS (top) and aerial (bottom)). 

 

By applying a DRP concentration (0.03 mg/l) to the flow rates (m3/s) outlined above, it was 

possible to estimate P loss (kg yr-1) for each method/resolution (Figure 5-7). Regression 

analysis was significant at each resolution for LiDAR versus UAS DSM (p< 0.001) with R2 

values increasing as grid size increased (R2=0.26 (95% CI [0.07, 0.42]), 0.62 (95% CI [0.47, 

0.72]) and 0.93 (95% CI [0.90, 0.96]).respectively) (Figure 5-8).  
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5.3.3.3 Identifying breakthroughs  

A disadvantage of the SfM method the inability to measure beneath the canopy, which an 

issue for identifying breakthrough points along hedgerows. Depending on local hedge 

condition, breakthrough points may be wholly-occluded by overhanging canopy. There be 

occasions where field-to-field or field-to-road transfers can be resolved. During the manned 

flight, which had a wider footprint than the UAS survey, several breakthrough points at 2 m 

resolution that corresponded to breakthroughs the LiDAR DEM (Figure 5-9). SfM was not 

consistent; howeverA further challenge is inability to identify surface drainage beneath 

vegetation. If the locations known, they could be accounted for during model processing by 

modifying the DEM (Callow et al., 2007). If the objective is to characterise hydrology within a 

single field, then such corrections may not be necessary. Single-field surveys are more suited 

to small UAS operating on a single battery as most non-expert users are likely have. This 

would also allow for greater control over ground conditions at the time of the survey, for 

example, post-grazing or post-harvest surveys will ensure low grass cover. 
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Figure 5-9 Identification of breakthrough points through boundaries on 2 m resolution topographical 

models.  

 

5.3.4 Statistical tests 

Welch’s t-tests for unequal variances were conducted on slope, TWI and P loss/overland flow 

raster values to determine whether there were statistical differences between models. For 

each test, the null hypothesis was that mean attribute values were equal. The alternative 

hypothesis was that they were not equal (α= 0.05). At 50 cm resolution for slope and TWI, the 

null hypothesis was rejected (p< 0.001 and p= 0.01 respectively), and it was concluded 

models derived from each technique were statistically different. At 1 m and above, the null 
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hypothesis could not be rejected with no evidence the models were different. For overland 

flow and P-loss estimates at all resolutions, the null hypothesis could not be rejected with no 

indication the models were different (p > 0.05 at 1 m, 2 m and 5 m resolution (Table 5-5). This 

indicated that when using the SIMWE model to calculate overland flow and associated P loss 

on managed grassland, there was no statistical difference to the final outputs whether a 

LiDAR DEM or a photogrammetric DSM were used to create the contributing topographical 

layers.  

 

Table 5-5 Welch’s t-tests for differences between model type/ resolution for slope, TWI and P loss via 

overland flow 

Slope 
t-test 

t (df) p 

50 cm 3.50 (276) <0.001 

1 m -0.92 (292) 0.36 

2 m 0.91 (290) 0.36 

5 m 0.39 (292) 0.70 

TWI 
t-test 

t (df) p 

50 cm -2.52 (292) 0.01 

1 m 0.23 (296) 0.82 

2 m -1.43 (295) 0.15 

5 m 0.49 (291) 0.62 

Overland 
flow/ 

P-loss 

t-test 

t (df) p 

1 m 0.68 (254) 0.49 

2 m 0.41 (259) 0.68 

5 m -0.03 (260) 0.98 
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5.3.5 Quantification of vertical error  

Error in DEM/DSM can be considered the disparity in elevation values modelled by a 

DEM/DSM and a reference for the ‘real’ surface. Errors may derive from a variety of sources, 

for example, sampling, measurement and interpolation (Fisher & Tate, 2006). Three common 

sources of uncertainty were assessed for this study:  

 Canopy height.  

 Distance to a GCP. 

 Slope.  

 

Sward height demonstrated moderate to strong, positive correlation with measured vertical 

error at 50 cm resolution (0.62, 95% CI [0.52, 0.71]). Linear regression suggested grass 

height explained 38% of variability in measured error (RMSE= 0.08m; R2= 0.38, p< 0.001). As 

the resolution coarsened, the relationship between canopy height and vertical error became 

progressively weaker (1 m: RMSE= 0.09 m; R2= 0.24, p< 0.001; 2 m: RMSE= 0.11 m; R2=0.1, 

p< 0.001) until no significant relationship was observed at 5 m resolution (RMSE= 0.13 m; R2 

= 0, p= 0.31) (Figure 5-10). The results indicated that at 5 m spatial resolution there was no 

relationship between measured error and grass height (at least where canopy was <= 0.4 m).  
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Figure 5-10 Linear regression of vertical error (m) versus measured sward height (m) at 132 randomly 

selected locations. A moderate positive correlation was observed between sward height and error at 

50 cm resolution but decreased as the grid size became larger. There was no relationship between 

vertical error and sward height at 5 m.  

 

Establishing GCP is a prerequisite for georeferencing photogrammetric models. GCP should 

be evenly distributed across a subject site without large spacing and taking into consideration 

elevation changes. To assess whether the location of the GCP had any effect on measured 

error, a Euclidean distance surface was created within the site at each resolution, and error 

measured as a function of distance to the nearest GCP. The results are illustrated in Figure 5-

11 below. At each resolution in the SfM DSM, there was no effect from distance of a GCP. 

This was expected. The surveyed area was just 9 ha and had no significant change elevation 
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within the site. In all cases there was no significant effect from distance to GCP on DSM error 

(p>0.05; RMSE=~59 m).  

 

Figure 5-11 Linear regression of vertical error (m) versus distance to GCP at 132 randomly selected 

locations. There was no relationship at any of the modelled resolutions.  

 

The final potential effect on model accuracy was slope. Changes in elevation over an area 

may influence the interpolation procedures, and a positive correlation between error and slope 

has been noted in previous. The results are illustrated in Figure 5-12 below. At each 

resolution in the SfM DSM, there was no effect from lope. Slope was calculated from the 

LiDAR DEM.(p>0.05; RMSE=5.3 ° at 50 cm, to 3.3° at 1 m, 3.4° at 2 m and 3.2° at 5 m). This 

was expected given the low range of slopes within the site (between 0 and 10 degrees).  
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Figure 5-12 Linear regression of vertical error (m) versus slope at 132 randomly selected 

locations. There was no relationship between error and slope at any of the modelled 

resolutions. 

 

5.4 Discussion 

Previous work by Thomas et al. in the vicinity of the study area had demonstrated how aerial 

LiDAR could identify HSA and define microtopographic features that acted as conduits or 

barriers for the diffuse P loss (I. Thomas, Jordan, et al., 2016; I. Thomas, Mellander, et al., 

2016; I. A. Thomas et al., 2017). The ability for UAS DSM to deliver accurate overland flow 

models in densely vegetated areas has been called into question (Jeziorska et al., 2016). In 

this chapter, therefore, the accuracy of UAS DSM were compared with LiDAR DEM to see 



 

164 

how they modelled overland flow (and associated P loss) within intensively managed 

grasslands.  

 

The accuracy assessment of the original LiDAR data suggested a vertical RMSE of 0.03 m (± 

0.014 m) over the catchment. Within the study area, it was found to be 0.15 m (± 0.05 m). 

This was only marginally less than the RMSE for the best performing UAS photogrammetric 

point clouds (at 0.18 m ± 0.11 m). Commercial photogrammetric software (Agisoft and Pix4D) 

produced SfM point clouds with the lowest RMSE versus independently measured ground 

control. Higher rmse in point cloud created from the manned flight imagery was possibly due 

to differences in survey altitude (Rock et al., 2011). However, there was a reduction in image 

overlap across the study area when the flight had to fly low to avoid cloud at ~500 m. 

Reduction of overlap and the concomitant loss of reduundancy across multiple images is 

known to reduce accuracy for SfM point clouds (Küng et al., 2011).  

 

Global measures of accuracy such as RMSE used in the regression analysis of this study, are 

relatively quick to calculate, easy to report and interpret and is recognised internationally. 

However, they imply that error is uniform across the DEM. As noted in earlier chapters, a 

single metric may not accurately account for spatial variability or high autocorrelation within a 

map or elevation model. As acknowledged by Darnell et al. (2008), the lack of a robust and 

easily implemented replacement for analysing uncertainty in maps and models remains to be 

an issue for spatial analysts. However the consequences of error can be severe as they 

propagate into derived products. Three common sources of error were analysed in the 

chapter. Of these, only grass height had an observed effect under the study conditions, amd 
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only below 5 m grid resolution. There were several other potential sources of error that were 

not analysed (for exampe include camera internal parameters, or other settings (for example, 

image overlap). The objective of this chapter was to demonstrate the usability of UAS 

photogrammetry for afrm-based topographic modelling. For end-user on the farm, changing 

Internal ccamera parameters would not be a pressing concern. They could, however, make 

allowences to mitigate errors accruing from canopy height and GCP placement, for example. 

Of the three potential sources investigated in this study, grass height had the greatest impact 

on error. This can be seen in the difference DEM (Figure 5-2), where the spatial patterns of 

height difference corresponded to observed differences in grass heights between paddocks. 

These anomalies were consistent across each of the grid resolutions. An intersting result from 

the current study was that at 5 m resolution, there was no longer an effect from sub-pixel 

grass height. Further studies would be needed to see if this result was broadly applicable 

across all intensively managed grassland farms.  

 

VisualSFM had considerably higher RMSE (0.42m), which was due to doming deformation of 

the point-cloud. Doming can occur in photogrammetric point clouds where image acquisition is 

along parallel viewing directions or where insufficient GCP has been established (James & 

Robson, 2014; Ouédraogo et al., 2014). As neither of these applied to the current study, the 

doming was likely the result of inaccurate calibration of image radial distortion (Rosnell & 

Honkavaara, 2012). The effect was partially corrected using MATLAB's Image Processing 

Toolbox (v. 9.0) but could not be eliminated, even where additional GCP were used for 

rectification. Further issues with the VisualSFM cloud included a highly irregular distribution of 

densified points where large patches were left unfilled. This is a reported issue with the patch-
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based MVS algorithm used by VisualSFM, where densification often fails to complete in areas 

of poor surface texture (Carravick et al., 2016).  

 

SfM produced models of overland flow and P loss that was statistically identical to aerial 

LiDAR models. The closest association was at 5 m resolution (R2 = 0.93). Models at 2 m 

resolution were statistically similar but had higher variability (R2 = 0.62). SfM over-estimated 

some pathways at 1 m and 2 m resolution, but at 5 m-resolution the extent of defined 

pathways and delivery points using each model were spatially coterminous. Below 1 m 

resolution, both LiDAR and SfM models produced unrealistic flow paths in the TWI and 

SIMWE models. This effect was previously observed (Gyasi‐Agyei et al., 2006), where the 

authors concluded that the spatial resolution of a model must be higher than the ratio of mean 

elevation change per pixel to vertical resolution to successfully extract hydrological pathways 

from surface models. Although the results of t-tests suggested no significant difference 

between TWI with resolutions greater than 50 cm resolution, very weak correlations and 

highly variable relationships were observed between methods. The increased uncertainty in 

the TWI models is more likely to come from flow routing calculations, as slope showed strong 

predictive ability, particularly as resolution increased. Applying low-pass filters to TWI reduced 

variability in each raster and improved correlations between models. However, filtering is a 

blunt instrument that removes systematic errors but also changes correct observations 

(O'Callaghan & Mark, 1984). Excessive filtering blurred boundaries and spread extended 

potential source areas over a wider area which was unsuitable to defining spatially discrete 

HSA zones for cost-effective management solutions. Earlier work within the catchment (I. A. 

Thomas et al., 2017) concluded high spatial resolution raster grids (< 1 m) confounded flow 
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accumulation and flow direction algorithms, and that 1 m and 2 m raster grids were optimal for 

identifying HSA within agricultural catchments. At this resolution, microtopography, delivery 

points and breakthroughs, could be adequately resolved, while still being spatially 

representative of broader topographical gradients for modelling hillslope processes 

(Heathwaite et al., 2005). 

 

A 5 m resolution SfM DSM could be considered a “high-resolution” product in comparison to 

the coarser topographical models commonly used in hydrological modelling. Optimal DEM 

resolutions are site- and subject-specific.For example, coarse resolution models may be 

appropriate in locations where microtopography is not dominant (Cavazzi et al., 2013; Murphy 

et al., 2009). Comparison of LiDAR and SfM found each method identified the same delivery 

point locations at 5 m resolution; however the spatial extent of the delivery points were quite 

broad. Nevertheless, the similar performance between LiDAR and SfM suggested SfM DSM 

could substitute for LiDAR DEM in intensively managed grasslands without significant 

difference in estimates of overland flow/ P loss. Additional studies would be necessary to 

determine whether other landcover targets performed similarly. Targeted remedial measures 

can reduce the cost of implementing broad remedial measures to lower the volume of P 

entering surface water. Thomas et al. reported that where aerial LiDAR was used to define 

HSA, the implementation costs of riparian buffer strips was reduced by 66% and 90% over 1 

and 5 years, respectively, due to an average decrease in the length of riparian buffer strips of 

97% (I. Thomas, Jordan, et al., 2016). The potential saving using UAS SfM could be higher, 

given the lower costs involved in acquiring and processing photogrammetric models. A 

specific cost-benefit analysis was not undertaken on this occasion.  
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5.5 Conclusions 

This study concludes that UAS-derived DSM can substitute for aerial LiDAR data when 

estimating overland flow and P loss on intensively managed grasslands at 5 m resolution. For 

maximum accuracy, models should be acquired when grass cover is low (post-grazing/ 

mowing). An accurate method of defining pathways and delivery points for nutrient loss from 

farmland can represent a considerable cost saving to farmers where targeted mitigation 

measures can be put in place. The use of UAS photogrammetry in topographical modelling as 

a substitute for LiDAR is increasingly common. Although UAS DSM come with reduced 

positional accuracy, they represent an enormous cost-saving over aerial (or terrestrial) LiDAR. 

Using UAS allows users to produce topographical models on-demand, so any changes in field 

topography can be captured immediately and their effect on overland water flow quantified. 

The next generation of UAS with PPK ability is improving the positional accuracy of outputs 

without a requirement for GCP. This is making the collection of accurate models less time-

consuming. Using UAS has additional benefits, for example, whsubsurface prospect (see 

Chapter 6) or mapping stressed vegetation in relation ot underlying drainage conditions 

(Chapter 4). 

 

This study was carried out within a “typical”, intensively manged pasture field. The field was 

spilt into approximately equal sized paddocks and was under a rotational grazing system. 

There was noting in the topography of the field that suggested the technique developed here 

would not be reproducible in similar fields, once sward height was low. The results of this 

study reveal that photgrammetric DSM can substitute for LiDAR DEM. Modelled elevations 

are in close agreement at all resolution. Derived slope data has its closest agreement at 2-5 
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m. Topographic wetness models were considerably different and required significant filtering 

to make them similar. The loss in spatial accuracy required to achive this would not be 

acceptable on a precision agriculture farm. Further research would be required to see if this is 

observation is repeated in other study areas. When overalnd flow (and associated P loss) 

were modelled using SIMWE, the results indicated that estimates of P loss at field/paddock 

scale were identical for LiDAR DEM and from UAS DSM. This finding has important 

consequences for accurately and affordably predicting surface pathways and delivery points 

in intensively managed grassland in the context of reducing agricultural pollution of surface 

water. 
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Chapter 6 A thermal inertia approach for mapping 

artificial drainage systems using a UAS thermal 

infrared sensor  

 

6.1 Introduction  

Accurate information on the location and layout of drainage systems is invaluable for reducing 

the risk of environmental pollution in agricultural catchments. At present in Ireland, there is no 

national information system for subsurface drainage, no requirement for documenting new 

drain installations and no efficient means of detecting existing drains systems. This is not 

unique to Ireland, an international study in 2005 found just 11 of 161 countries (7%) had sub-

national data for artificially-drained areas (Feick et al., 2005). Moreover, farmers may not be 

fully aware of the complete drain infrastructure beneath their fields, for example, where 

systems were installed decades previously, or where locational records were lost or never 

kept.  

 

The traditional method of prospecting for drainage channels is to probe the ground looking for 

a drain pipe. This is effective and inexpensive, but very time-consuming. The use of 

mechanical excavators to locate pipes brings a risk of additional damage to soil structure or to 

the surface. For these reasons, several non-invasive techniques have been developed which 

allow for rapid investigation over broad areas with no physical impact. These have been 

previously described in Section 2.4 above, but the salient points are restated here. 
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 Geophysical techniques including magnetometry and GPR have been tested (Allred 

et al., 2004; Rogers et al., 2005) and are quite successful under test conditions.  

 Satellite remote sensing is well-established for delineating drainage class for both 

bare and vegetated soils (Cialella et al., 1997; Gökkaya et al., 2017; Møller et al., 

2018). Individual drainage lines have been successfully mapped using visible and 

NIR aerial photography. For these methods, drain lines are most easily identified on 

bare soils, where differential drying patterns on the soil surface several days following 

precipitation/irrigation indicate drain lines (Verma et al., 1996). The method has been 

criticised for poor predictive ability, especially in the presence of crops or crop residue 

(B. S. Naz et al., 2009), although canopy reflectance can also be used to delineate 

drain-related soil moisture patterns.  

 

Thermal infrared (TIR) cameras have been used for decades to detect heat anomalies at the 

surface relating to subsurface moisture patterns. Abdel-Hady and colleagues used airborne 

TIR sensors to identify contrasting heat signatures associated with buried pipes and natural 

drainage channels (Abdel-Hady et al., 1970). Vlcek and King identified artificial and natural 

drainage patterns below immature forest canopy using TIR imagery (Vlcek & King, 1983). 

Until quite recently, however, the expense of acquiring high spatial- and temporal resolution 

TIR imagery curtailed its use  outside of research. However, the improved miniaturisation of 

sensors and their integration onto UAS has seen increased use of TIR for precision 

agriculture and ecosystem monitoring (C. Zhang & Kovacs, 2012). In recent research, Allred 

and colleagues accurately mapped 60% of a known subsurface drainage system using a UAS 

TIR system. Their study was carried out using a thermal orthomosaic acquired during a single 
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flight. Buried drains were detectable even where the surface was occluded by crop residue 

and partial canopy (Allred et al., 2018).  

 

Identifying differential rates of cooling/warming between diurnal temperature extrema is a well-

established method of thermal remote sensing (Section 1.6.3). Thermal inertia (TI) (Equation 

6.1) describes the speed at which an object approaches the temperature of its surroundings. 

For It is not possible to calculate TI using remotely-sensed data as it is not possible to 

accurately calculate values for bulk density, thermal conductivity and specific heat capacity for 

all objects within an image footprint. Instead, apparent thermal inertia (ATI), the difference in 

temperature between temperature extremes, is used as a proxy for TI. The effect of ATI is 

usually stronger on bare ground because the added impact of evapotranspiration from 

vegetation can reduce the amplitude of heat fluxes from soil (Price, 1985). Sohrabinia et al. 

provide a recent assessment of the different ATI methods for soil moisture mapping in 

managed grassland (Sohrabinia et al., 2014).  

TI = √kρc         (Eqn. 6.1) 

where TI (J⋅m2⋅K−1⋅sec−1/2) is thermal inertia, k (W⋅m−1⋅K−1) is thermal conductivity, ρ (kg⋅m−3) 

is bulk density, and c (J⋅kg−1⋅K−1) is soil heat capacity. 

 

This chapter describes an ATI method to identify drainage systems in managed grassland 

using UAS TIR images captured during morning and afternoon flights. It is based on the 

assumption that subsurface drains have contrasting thermal properties to the surrounding soil 

matrix that can create measurable temperature anomalies at the surface. Under this 

assumption, wetter (i.e. poorly-drained) soils emit less heat compared to dry (or drained) soils 
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due to the greater volume (and higher specific heat capacity) of soil water. Specific heat 

capacity is the amount of heat that must be added to raise the temperature by 1°C. For a 

given soil, its heat capacity is the summed total of all its phases. Soil minerals typically have 

similar heat capacity values (~2.0 × 106 J m−3 K), but water is nearly twice as high (~4.2 × 106 

J m−3 K). It is influenced primarily by soil moisture content.  

 

Consequently, the radiant temperature of wet soils changes more slowly (i.e. they display 

higher ATI). In contrast, dry soils heat up more quickly (i.e. they display lower ATI). In this 

study, ATI is defined as the difference between morning and afternoon daytime radiant 

temperatures as estimated by a UAS TIR sensor (allowing for emissivity) (Equation 6.2). 

 

ATI= εTIRam – εTIRpm        (Eqn. 6.2) 

Where TIRam and TIRpm are surface temperature observations captured by the TIR camera in 

the morning and afternoon respectively and ε is as estimation of surface emissivity.  

 

The objectives of this chapter were to identify whether the presence of artificial subsurface 

drainage created differences in surface temperatures that could be detected using UAS TIR. 

Specifically, it was tested whether surface temperatures over grass-covered soils provided an 

estimate of ATI that was proportional to thermal fluxes of the underlying soil (Soliman et al., 

2013). This method was tested under controlled field conditions where a subsurface drainage 

system had been installed. 
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6.2 Methods & Materials 

6.2.1 Study site  

The study area was a sports facility at Rathcoffey, Co. Kildare, Republic of Ireland 

(53°20’0’’N, 6°41’20’’W; Figure 6-1). The site was previously agricultural land that had 

recently been landscaped for use as playing pitches. Rush-infestation and surface water 

observed in nearby fields at the time of the study (April 2018) indicated considerable soil 

drainage problems in the wider surroundings. Poor drainage on site resulted from its low-lying 

landscape position and low permeability of underlying subsoils12. A subsurface drainage 

system, consisting of interconnected plastic pipes at ~10 m intervals, was installed in October 

2017 to reduce waterlogging at the site which restricted access to the fields during winter 

months or following heavy rainfall at any time during the year. Intersecting these channels 

was a dense network of coarse sand-filled mole channels at ~1 m spacing. Ditches 

associated with the earlier field boundaries had been piped and backfilled and integrated into 

the recently installed drainage system. The pitches were not in use at the time of the survey. 

Grass height was maintained by mowing and was uniform at the time of the study (~4.5 cm). 

 

. 

                                                           
12. Underlying subsoils were poorly drained calcareous groundwater gleys of the Mylerstown soil series. Irish Soil 
Information System Soil Association 650a (R. J. Jones et al., 2014). 
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Figure 6-1 Site location showing the extent of the subsurface drainage system and the soil temperature transect (overlain on the orthomosaic). 
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Figure 6-2 Local meteorological conditions (air temperature and precipitation) preceding the UAS TIR 

survey (April 20th, 2018) 

 

Mean precipitation and temperature readings were acquired from local meteorological stations 

within 10 km of the study area. In the ten days preceding the flight, 11.5 mm of rainfall was 

recorded by local precipitation stations (Figure 6-2), with 6.5 mm recorded four days before 

the survey. Wind speeds on the day were steady at 9 knots (or 4.5 ms-1) from the southwest. 

Maximum daily temperatures over the same period rose steadily from a low of 10°C to a high 

of 18°C. Conditions on the day were dry and warm with a minimum of 5°C (6 am) and a 

maximum of 18°C (2 pm). Relative humidity (RH) at 6 am on the day was 94%, decreasing to 

~60% by noon, and ~50% by 2 pm. Local climatic conditions will change from survey to 

survey and this will have an effect on ground conditions. Sunlight/shadow, relative humidity 

and wind speed can all effect soil/ canopy temperatures.In previous studies (e.g. Naz and 
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Bowling, 2008) rain had fallen in the recent past, so soil was in the process of drying out. This 

allowed temperature gradients to be observed.  

 

6.2.2 Methodology 

For the UAS survey, 8-bit radiometric images (R-JPEG; 640 x 512 pixels) were captured by a 

DJI FLIR Zenmuse XT 9 mm thermal camera (7.5 - 13.5 μm) mounted on a DJI Matrice 600 

UAS. The camera specification indicated the sensor can detect temperature differences of 

~0.05° C (DJI, 2018). Thermal images were obtained at 120 m altitude at 9 am, 1030 am, 12 

pm and 2 pm. At this altitude, the image footprint was approximately 167 m x 134 m, with a 

ground sampling distance of ~0.25 m. Further acquisitions were planned on the day at 

different altitudes, but a battery failure on the UAS required the survey to be concluded 

prematurely. The low dynamic range of pixel values in each TIR image was substantially 

increased by using polished aluminium bowls (~30 cm diameter) as ground targets. Prior to 

each flight, a number of bowls were filled with boiling water to increase the range of 

temperature values (hot targets). When left empty the very low emissivity of the polished 

aluminium surface (ε = ~0.04) functioned as cold targets (see Figure 6-3). Emissivity (ε), a 

dimensionless value between 0 (perfect reflector) and 1 (ideal emitter), is the ratio of energy 

from a surface compared to a blackbody at the same wavelength and temperature. A 

blackbody is a hypothetical surface that perfectly absorbs and reemits all energy that is 

incident upon it. The relationship between emissivity, radiant- and actual (kinetic) temperature 

is defined by Equation 6.3. The emissivity of the grass surface was assumed to be constant (ε 

= ~0.98) across the area for the duration of the study. 
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Trad = ε1/4Tkin         (Eqn. 6.3) 

where Trad and Tkin are radiant temperatures measured by a thermal camera and the kinetic 

temperatur of the surface respectively, and ε is emissivity. 

 

 

Figure 6-3 Hot (red) and cold (blue) ground targets (polished aluminium bowls) used during the UAS 

survey to assist in rectification and increase dynamic range within the scene. The heat and shadow 

created by the operators is also noted. 

 

Before the UAS survey was conducted, a diurnal experiment assessed whether soil 

temperature and TIR pixel intensity were different for dry and saturated conditions. The test 

was carried out on a 5 m x 5 m grassed area on consecutive days in May 2017. Grass was 

cut on the day before the survey and maintained at a uniform height of ~4.5 cm over the two 
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days of the experiment. On Day 1, there had been no rain and no irrigation of the plots in the 

preceding 10 days. Before Day 2, the 5 m x 5 m area was vigorously irrigated until water 

began to pool on the soil surface. This was allowed to infiltrate/ evaporate before study 

continued and no surface ponding remained during the experiment on the second day.  

 

TIR images were captured at nadir using a FLIR Tau 640 from a fixed, stationary platform ~10 

m above ground level. This was not the same sensor used in the UAS experiment, but had 

been used previously for both aerial and ground-based TIR surface mapping (Cahalane et al., 

2017). Soil- and ambient air temperatures were logged every hour between 4 am and 2 pm. 

Soil temperatures were mean soil temperatures measured in the upper 10 cm using a Digitron 

2046T thermometer. 

 

For the UAS survey, intensity values (radiant heat) were recorded as 8-bit digital numbers 

(DN) between 0 and 255 with the internal radiometric data extracted using the FLIR Tools 

software (www.flir.com/products/flir-tools). Radiometric dData were exported from FLIR Tools 

as .csv files and converted to raster (.tiff) using the “rgdal” package in R statistical software 

(v.3.3.1). Radiant temperatures were converted to kinetic temperatures using Equation 6.1. 

Due to the limited extent of the study area, a single image covered the entire area without a 

need to generate an thermal mosaic. Individual images were georeferenced and cor-

registered using a 3rd order polynomial transformation in ArcGIS (v. 10.5). A 3 cm resolution 

true colour orthomosaic was used as the reference image. The orthomosaic was created 

before the TIR flight from UAS RGB imagery (Phantom 4 Pro) and generated using Pix4D 

photogrammetric software (www.pix4d.com). Before each flight, mean soil temperature in the 

http://www.flir.com/products/flir-tools
http://www.pix4d.com/
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upper 10 cm was recorded every 3-5 m along a ~140 m transect using a Digitron 2046T 

thermometer. The transect crossed both drained and un-drained areas of the site (see Figure 

6-1). It took ~15 minutes to walk the transect. The survey started immediately after the soil 

temperatures were record. Any increase in soil temperature from the time the first temperature 

was recorded to the time the UAS was airborne was assumeed to be minimal. To determine 

the overall accuracy of the method for identifying buried drain lines, the length of the observed 

drains were measured within ArcGIS and compared against the observed drain lengths. 

 

6.3 Results  

6.3.1 Initial saturation test  

Measured soil- and air temperatures displayed a strong, positive correlation for saturated 

(ρ=0.85, p= 0.0002) and dry soil conditions (ρ=0.83, p=0.0005). Dry soils were typically >1°C 

warmer throughout the day but displayed greater variability than saturated soils as indicated 

by lower R2 values (0.70 vs 0.87) for saturated conditions, and lower RMSE (see Figure 6-4 

top). Air temperatures on each day were similar, but differences in cloud cover will have 

affected the amount of solar radiation reaching the surface. Statistical tests (paired t-tests) 

compared mean soil temperatures for each soil moisture state. A significant difference was 

recorded for dry (mean= 14.2°C ±1.4°C) and saturated (mean= 12.8°C ±1.3°C) conditions 

(t(12) =-4.5, p= 0.0007).  

 

Pixel intensity values were higher for surface temperatures under dry conditions (Figure 6-4 

bottom). Peaks in intensity values on each day largely corresponded to periods of clear skies, 

when the test area received direct insolation. Paired t-tests indicated a significant difference 
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between pixel intensity values for dry (mean= 155 ±19 DN) and saturated (mean= 117 ±13 

DN) conditions (t(12)=24.8, p < 0.0001). The result suggested underlying saturation had a 

negative effect on surface TIR pixel intensity relative to dry conditions under grass canopy.  

 

 

Figure 6-4 (top) Relationship between ambient air and soil temperatures under dry and saturated 

conditions; (bottom) Contrasting pixel intensity for identical grass plots under dry and saturated 

conditions.  
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Figure 6-5 (top) Soil temperature readings (upper 10 cm) during the UAS flight; (bottom) Temperature 

differences between drained and undrained portions of the site with reference to the morning (9 am) 

temperature profile (+1.5 hour, +3 hour and +5 hour intervals).  
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6.3.2 Soil temperature observations 

On the day of the UAS flight, soil temperatures were observed to increase slowly as ambient 

temperatures rose. At 9 am, soil temperatures were still quite cold (9.7–10.8°C) but increased 

steadily by approximately 1.3-1.4°C at each subsequent interval (10.30 am: 11.1–12.6°C; 12 

pm: 12.6–13.6°C; 2 pm: 13.7–15.3°C) (Figure 6-5 top). Differences in temperature were 

plotted for different interval periods to track changes in ATI over the day. Three intervals were 

possible: 1.5 hrs (T9am minus T1030am), 3 hrs (T9am minus T12pm) and 5 hrs (T9am minus T2pm). A 

consistent pattern emerged where drained areas were approximately 0.5–1°C warmer than 

undrained portions.  

 

Undrained areas had lower temperature increases suggesting a higher ATI than drained soils 

(Figure 6-5 bottom). T-tests found a significant difference in temperature differences between 

drained (mean= 2.89°C ± 0.43°C) and undrained (mean= 2.50°C ± 0.36°C) areas (t(26)= 2.44, 

p= 0.02), suggesting the presence of artificial drainage had an effect on the rate of 

temperature change for drained soils. 
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Figure 6-6 Individual TIR images at each time interval with a 5-hr temperature difference image 

showing differential rates of heating between drained and undrained portions of the site. Individual 

drain lines are visible, as well as portions of an earlier drainage system. 
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6.3.3 UAS survey: TIR observations 

Surface temperatures were recorded by radiometric images at 9 am, 1030 am, 12 pm and 2 

pm (Figure 6-6). At the beginning of the survey (9 am), mean temperatures across the study 

area was estimated to be 10.3°C ± 0.27°C. Mean temperatures increased in each 

subsequent image (1030 am: 11.6°C ± 0.32°C; 12 pm: 13.1°C ± 0.30°C; 2 pm: 14.5°C ± 

0.40°C). Canopy temperatures were initially colder than measured soil temperatures (5.5-

7.5°C vs. 9-11°C) but increased rapidly as ambient temperatures increased. Initially, a 

moderate, negative correlation was observed between soil- and surface temperatures (ρ= -

0.65), but this was reduced in subsequent intervals very weak correlations were observed (ρ= 

-0.06, -0.15 and 0.01 at 1030 am, 12 pm and 2 pm respectively). Welch two-sample t-tests 

revealed a significant difference in mean surface ATI between drained (mean= 10.35°C ± 

0.74°C) and undrained (mean= 9.68°C ± 0.37°C) areas of the field after 5 hours (t(24)= 3.19, 

p= 0.004). This difference in mean ATI between known areas of contrasting drainage 

properties suggested artificially-drained areas are detectable using UAS-TIR based on 

differential rates of temperature increase at the surface.  

 

Surface temperatures recorded by the TIR sensor were higher in drained areas relative to 

undrained areas by approximately 1-1.5°C (Figure 6-7 top). A 5-hour difference image 

produced using Equation 6.2 (T9am minus T2pm) indicated temperature anomalies 

corresponding to drained and undrained locations. Drained areas displayed higher 

temperatures (i.e. lower ATI) relative to undrained areas (Figure 6-7 bottom). 
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Figure 6-7 (top) Surface temperature readings measured by the TIR camera; (bottom) Difference in 

surface temperatures between drained and undrained portions of the site (5-hr difference 9 am – 2 

pm)  
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Increasing Pearson correlation coefficients were recorded between soil- and surface ATI as 

the period between morning and afternoon acquisitions increased.It was highest after five 

hours (1.5-hr: ρ= 0.07; 3-hr: ρ= 0.32; 5-hr: ρ= 0.52). Further acquisitions were planned over 

the day. However, an equipment failure forced the termination of the study. Simple linear 

regression indicated a moderate, positive relationship between thermometer-measured soil 

ATI and the ATI estimated by the TIR sensor (Figure 6-8). As surface temperatures were 

consistently warmer than soil temperatures, the range of thermal inertia was higher for the 

surface. The relationship beween soil- and surface ATI became stronger the greater the time 

period between measurements. With a diffference of 1.5 hours, for example, the rmse 

between soil and surface ATI was 8°C (R2=0, p=0.38). By increasing time between 

measurements, the rmse value decreased while R2 values increased. Variance remained 

high, the highest R2 value at 5 hours difference was 0.24, however the relationship between 

soil- and surface ATI at 5 hours was significant (p=0.001) suggesting soil – and surface ATI 

were propotional across this site.  
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Figure 6-8 Relationship between soil- and canopy ATI at 1.5-hr, 3-hr and 5-hr difference. 

 

6.3.4 UAS survey: Subsurface drainage 

Three types of drainage channel were known to be present within the study area at the time of 

the UAS flight:  

 Existing drains associated with former field boundaries.  

 PVC tile drains installed as part of the new drainage system. 

 Sand-filled mole channels installed as part of the new drainage system.  
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Figure 6-9 Detected drains using UAV TIR method.  

 

The two associated with earlier agricultural boundaries became increasingly evident in TIR 

images after 1030 am. In the TIR images they appeared as cooler, darker linear anomalies at 

the centre and east of the area (see Figure 6-6). These former ditches had an overall length of 

236 m within the study area The ATI image detected there length for approximately 152 m (or 

64%) (Figure 6-9). The reason why ~84 m of these drains were undetected by the TIR sensor 

is unclear. It was not possible to investigate the area further. Perhaps drains were not located 

where they had been reported. This is not unusual, previous studies have been consistent in 

the identification of drains with 60-65% accuracy. The absence of an efficient method of drain 
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mapping was one of the primary reasons for the study (Section 1.2). Each of seven NS-

running tile drains at the northern end of the study area was identifiable in the 5-hr difference 

image. Each of these drains was approximately 60 m long (420 m in total) (see layout on 

Figure 6-1). The UAS TIR method identified 250 m (~59%) of these drains. The reason for 

undetected drains in this area would appear to be related to the density of the mole drainage 

system in this area (visible as dark red linear anomalies in Figure 6-6), as well as the 

existence of an earlier, unknown herringbone-layout drainage system was also delineated. 

The existence of this system was not known at the time of the survey. Only partial traces of 

this system was identified in the difference image, but traces of this system were also visible 

in the original 12 pm and 2 pm images. 

 

6.4 Discussion  

6.4.1 Mapping artificial drainage 

The results of the saturation test and UAS survey indicated that, under the specific conditions 

of the experiments, artificially-drained areas could be distinguished beneath a dense grass 

canopy. Using UAS TIR imagery, surface ATI was found to be approximately proportional to 

the ATI of the underlying soil. This was demonstrated in the similar temperature responses to 

drained and undrained conditions using soil temperature and the TIR camera, and by the 

moderate correlation between soil and surface ATI after 5 hours. A temperature difference of 

~0.5–1.5°C recorded by the TIR camera between drained and undrained areas was 

consistent with the findings of the initial saturation experiment, even though there was 

generally poor correlation between soil- and surface temperatures over the investigation. An 

earlier study into soil temperature differences concerning mole‐pipe subsurface drainage 
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found a 0.2°C difference between drained and undrained plots (Scotter & Horne, 1985). 

Despite differences in groundwater levels and soil moisture content, the authors reported the 

measured difference in temperature was within the range observed by replicate thermometers 

during the study. Consequently, they proposed that the mole drainage had no observable 

effect on soil temperature.  

 

The present study suggests that differences can be observed in both thermometer and TIR 

measurements. Low agreement between point-based soil temperature measurements and 

coarser resolution raster data was expected and had been previously reported (Soliman et al., 

2013). A more accurate understanding of the relationship between soil- and surface 

temperatures would likely require temperature measurements at a shallower depth than those 

collected in this study. Soil temperatures become cooler, have narrower diurnal range and 

experience increasing lag behind surface temperatures with increasing depth (Hillel, 1998). 

The reason for the moderate negative relationship between soil- and surface temperatures at 

9 am was not immediately clear (see Figure 6-7). It likely represented a cumulative effect of 

different environmental parameters, including a possible lag effect of cool night-time 

temperatures or perhaps contrasting rates of photosynthesis and transpiration (Woledge & 

Parsons, 1986). Other effects cannot be ruled out., particularly the high relative humidity on 

the morning of the survey which .may have influenced the surface temperature measurements 

to some degree. 
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TIR images identified portions of individual tile drains, but the densely grouped mole drains 

were more difficult to distinguish individually. A possible reason for this was the different 

thermal properties of sand-mole channels compared with air-filled collector pipes (0.026 

W/mK at 20°C, versus ~0.2 to 3 W/mK for wet/dry sand respectively) (Farouki, 1981). The 

thermal conductivity of the sand-filled channels is dependant on temperature and moisture 

gradients, which will impact on the amount of radiant heat measured by the sensor. The UAS 

ATI method delineated approximately 59% of tile drains and 64% of the now piped (or 

partially-piped) drain associated with the earlier field boundary system. These findings are 

consistent with the results of Allred who used a single TIR image to identify ~60% of the 

overall length of tile drains on a bare field (Allred et al., 2018). The Allred approach identified 

spatial anomalies in moisture content in a method that that conceptually was quite close to the 

NIR approach of used by Verma, Naz etc. (B. S. Naz et al., 2009; Verma et al., 1996). 

Previous studies have occurred on bare soils. The ATI method tested here was carried out in 

under densely vegetated conditions. Spatial- and temporal- anomalies in surface temperature 

were recorded. The ATI approach mitigates the potential that a single thermal image may not 

have sufficient thermal contrast to identify drain lines at a given time.  

 

The existing (infilled) boundary ditches were identified as cooler anomalies, in contrast to the 

warmer, newer subsurface drainage system. In the case of the east-west ditch crossing the 

centre of the study area, this received water from the new subsurface drainage system and 

therefore was likely to have a higher volume of waterpresent, resulting in lower surface 

temperatures from the effect of evaporative cooling. The 5-hour temperature difference image 

identified regions of high ATI which did not correspond to known drainage features. These 
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could reflect further unknown drains, or perhaps variability in soil texture or structure that 

could impact thermal properties 

 

6.4.2 Future improvements  

This study used a single longwave thermal infrared sensor to identify spatial anomalies in 

surface temperature. Future work in this area could focus on the integration of TIR data with 

optical imagery (RGB or multispectral). Some commercial companies currently provide dual 

sensors, for example, the FLIR Duo Pro, or MicaSense Altum that would allow complementary 

and simultaneous mapping of surface emittance and reflectance properties. The fusion of 

thermal and VNIR data could enhance identification of subsurface drains in grassland, where 

there may also be contrasting reflectance associated with sward over or adjacent to drain 

tiles. For example, VNIR reflectance from EO satellites has identified mproved vegetation 

growth in response to drainage installations (Kobryn et al., 2015). Similarly, shortwave 

infrared bands (SWIR, 1.4 to 3 μm) sensitive to moisture content could have an important role 

in identifying vegetation stresses (Gao, 1996; Yao et al., 2018). The spectral characteristics of 

“drained” and “undrained” sward (albeit at a coarser spatial resolution) are discussed and 

illustrated in Chapter 3. 

 

A constraint on automated drain detction will always be the problems caused by heterogeneity 

in soil physical properties (texture and structure) over small distances. Sudden changes in soil 

texture and structure will be a source of potential uncertainty in mapping using UAS TIR. 

Better knowledge of the the spatial extent of these soil properties at field scale is necessary. 

TIR remote sensing can play a role here. Soil texture maps have been developed using 
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remotely sensed TIR time series measurements (ASTER) (Muller, 2016), where temporal 

thermal patterns were extracted from a time series principal components analysis and input 

into a multiple linear regression model to estimate soil texture fractions. The development of 

TIR drainage mapping as a commercial service would need to al;oow for or account for 

natural cahnges in soil moisture as a result of soil type.  

 

An improvement to this method would be automate the process. Previous studies, such as 

Naz & Bowling (2008) used a stepwise approach that first identified potentially drained areas 

using a decision tree classification, followed by directional edge enhancement filtering, density 

slice classification, Hough transformation, and automatic vectorization. The Hough 

transformation provided the best results in producing a map without discontinuity between 

lines. Connolly and Holden (2017) mapped peatland drains using object-based image analysis 

(OBIA) on a very high spatial resolution Geoeye-1 imagery. OBIA may be less accurate on a 

single channel thermal image than RGB or multispectral imagery. Combined thermal and 

optical data could give better results. There are iterative GIS procedures that could be 

scripted to automate detection, for example skeletonisation or raster thinning13. Automating 

the process would need to address gap filling in detected lines. None of the RS methods 

currently available for drain mapping can extract drain network perfectly. Compensating for 

these gaps was not the focus of this study, but would make an interesting avenue of future 

work. Gap filling using fuzzy inference has been used in previous road extraction projects that 

could be suited to the problem of drain gap filling (Hashemi et al., 2011). This approach used 

correlation between extracted segments to deteermine whether there is sufficient agreement. 

                                                           
13 Hasthorpe, J. & Mount, N. 2007. The generation of river channel skeletons from binary images using raster 
thinning algorithms. Paper submitted to GISRUK 2007. Available online at 
https://www.geos.ed.ac.uk/~gisteac/proceedingsonline/GISRUK2007/PDF/P7.pdf  

https://www.geos.ed.ac.uk/~gisteac/proceedingsonline/GISRUK2007/PDF/P7.pdf
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Mahktan et al. (2012) used a Radon transformation for gap filling whereby linear features are 

thinned and endpoints are detected. Endpoints are the connected using a spline interpolation. 

This method had a good performance on straight vectors, but failed at intersections. 

  

6.4.3 Extending the ATI method to agricultural mapping  

Grass height as a potential source of error was minimised by ensuring the grass cover was 

mown and maintained at ~4.5 cm to replicate post-grazing sward height for intensively 

managed grassland. These results suggest the ATI method proposed here could be 

undertaken for livestock farms immediately following grazing or cutting. The impact of 

increased sward height was not explicitly measured in this study, but increasing canopy height 

could be expected to have a dampening effect on heat flux from the soil surface thereby 

masking surface ATI. Topography over the study area was flat, with slope and aspect unlikely 

to have influenced incoming solar radiation to any significant degree. Neither was the playing 

surface obscured by shadow from adjacent hedges or buildings. Irregular topography and 

microtopography and field boundaries might have a greater impact on insolation in agricultural 

settings. Nonetheless, the results presented herein suggest the UAS ATI approach has 

considerable promise in mapping artificial drainage systems and for identifying artificially-

drained areas on intensively managed grassland. UAS are constrained by regulations setting 

maximum flying altitude, and also by battery power, which limits the area they can expect to 

map in a day. For wider catchment mapping, there are potential applications for manned 

flights using a combination of TIR sensors integrated with multi- or hyperspectral sensors, as 

currently exists in the form of Sensorpod (Cahalane et al., 2017). 
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6.4.4 Potential applications 

The development of an effective method for mapping subsurface drains could permit mapping 

of drainage infrastructure and bring considerable environmental benefits. Currently, in Ireland 

there is no effective means of locating buried drains over broad areas. Knowledge of drain 

location can improve understanding of hydrological processes at field level, and the impact 

this can have generally on surface runoff, streamflow, sedimentation and soil erosion at 

broader scales (Armstrong & Garwood, 2006; Gramlich et al., 2018). Mapping subsurface 

drainage can improve modelling of greenhouse gases (GHG), for example, by providing a 

greater understanding of the spatial extent of potentail areas of denitrification (on wet soils)or 

carbon losses (on drained organic soils) (Clagnan et al., 2018; Paul et al., 2018). Identifying 

drained lands and mapping drain locations is an important step in facilitating the rewetting or 

restoration of wetlands to recreate carbon sinks to offset carbon dioxide emissions. Rewetting 

of peatlands is considered an important climate change mitigation tool to reduce emissions 

and create suitable conditions for carbon sequestration. Paul et al. (2018) estimated that 

rewetting histic soils and restoring natural water table conditions could result in annual 

savings of 3.2 million tons CO2 equivilant. This would obviously have knock-on impacts on 

farm operations and income in some instances, while presenting opportunities in terms of 

biodiversity and landscape conservation. A clearer understanding of drain location and drain 

spacing can help mitigate the excessive loss of nitrates in drain flow, a leading contributor to 

water quality reduction and loss of aquatic habitat and biodiversity (Blann et al., 2009; 

Kladivko et al., 2004; Skaggs et al., 1994). Identifying buried drain locations as a means of 

mitigating nitrate losses before they reach waterbodies would be a considerable move 

towards implementing the objectives of the European Union Water Framework Directive 

(2000/60/EC), which sets out to achieve "good quantitative status" and "good chemical status" 
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of surface water quality by 2027 at the latest. A 2018 report from the Environmental Protection 

Agency (EPA) warned of deteriorating water quality in Ireland's rivers as a result of nitrogen 

and phosphorus, with a 3% net decrease in water quality between 2015 and 2017 (EPA, 

2018).  

 

6.5 Conclusions 

There is widespread interest in developing reliable and effective methods of mapping 

artificially-drained areas and subsurface drainage systems. The proliferation of UAS and 

affordable optical sensors within precision agriculture has provided new opportunities for 

novel approaches to identify subsurface drains. The ability to effectively and cheaply detect 

the locations of subsurface drainage would be a major step towards mitigating nitrate losses 

from farmland and improve water quality status. This study assessed whether UAS-derived 

TIR imagery could locate artificially drained areas or individual drainage lines using a thermal 

inertia method with images taken during the morning and afternoon. Significant differences in 

surface- and soil temperatures were observed between drained and undrained locations of 

the site. The results of the experiments indicated that UAS TIR images could provide an 

estimate of surface TI that is proportional to the TI of the underlying soil. The study 

demonstrated that, under the conditions of the survey, TI could distinguish artificially drained 

areas from undrained areas within a field using a UAS TIR. The identification of individual 

pipes was achievable, although it was not always possible to detect the entire length of a 

drain. This is not uncommon. Other optical/ thermal methods have fallen short here too. The 

drains associated with previously boundaries were detectable. The thermal signals of the 
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mole drains were less clearly defined, however, this may have been due to the overall effect 

on thermal properties in the broader soil profile created by the dense network of mole drains. 

 

These results presented here show potential for UAS-based thermal remote sensing for 

identifying drainage systems on grassland. Future research would need to evaluate the effect 

of prevailing weather conditions, variable soil/ topography and canopy height. As UAS play an 

increasing role in precision agriculture, this method has the potential to be an affordable and 

efficient means of identifying subsurface drainage for intensively managed grasslands. It also 

has potential applications in other disciplines, for example, pipeline leak monitoring or 

archaeological prospection.  
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Chapter 7 Conclusions 

The impact of poor soil drainage and excess soil saturation on agricultural production was 

outlined in Chapter 1. It was shown how many Irish farms, through a combination of heavy 

soils and high rainfall, experience reduced profit and pose a greater risk for environmental 

damage than comparable farms in drier areas. Underlying this work is the poor understanding 

of soil drainage regimes at farm level in Ireland. At the coarse scale of soil maps such as the 

Irish Soil Information System (1:250,000) local variations are over simplified or overlooked 

and cannot accurately describe farm or field soil properties. Additionally, these maps do not 

account for subsurface drainage. Once drained, artifically-drained soils no longer respond to 

saturation in the same way. These changes must be accounted for when developing 

agronomic or environmental models that rely on accurate characterisation of soil drainage. 

The reaserch outlined in the preceding chapters has identified several novels ways in which 

EO data can be used to map drainage at farm level using satelitte- and UAS-based sensors 

and a variety of state-of-the-art methods, including machine learning image classification, 

thermal remote sensing and structure from motion photogrammtery.  

 

7.1 Research questions 

This section discusses the key research findings from Chapters 3-6 with respect to the 

principal research questions proposed in Chapter 1 (Section 1.8).  
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7.1.1 Research Question 1 

There is no efficient method of mapping the extent and distribution of artificially drained soils 

on Irish farms. Using advanced machine learning image classification algorithms (support 

vector machine and random forest), is it possible to distinguish artificially-drained fields on 

naturally-poorly drained soils using moderate spatial resolution Landsat 8 imagery?  

The results from Chapters 3 and 4 strongly support the conclusion that moderate resolution 

EO imagery from the Landsat 8 mission can accurately detect artificially-drained fields on 

heavy grassland soils. Freely available data from the Landsat 8 mission has the neccesary 

radiometric-, spectral- and spatial resolution to classify drainage properties on intensively 

managed grassland at field-level. Landsat 8 NDVI images in Chapter 3 demonstrated their 

ability to monitor the medium-term recovery from saturated soils following flooding. Such 

information could benefit farming communities in persistently flooded areas by mapping the 

persistent impact of wet soils on grass production. The maps and graphs in Chapter 3 could 

provide an on-going assessment of the rate of recovery on farmland worst affected by 

extreme weather, identifying locations or individual farms where support efforts or relief funds 

could be best directed to. In Chapter 4, VI, individual spectral bands and topographic data 

were combined to map areas of persistent saturation across a large area. These were not 

explicitly in flooded areas, but rather on heavy soils which were more likely to have impeded 

drainage and were susceptible to extended periods of saturation. The BMW area was chosen 

as it had a high percentage of poorly drained soils, and experienced high annual volumes of 

rainfall. The combination of poor soil drainage and heavy rain is a recognised constraint on 

farm productivity in the region. Drainage works are known to have been carried out here over 

several decades, but it was not known where the drained soils were. The novel approach 

outlined in Chapter 4 classified soil drainage conditions by mapping contrasting reflectance 
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over known heavy soils. The different signals for drained and poorly drained classes related to 

contrasting plant health. The study assumed that the underlying soil map was correct in its 

classification of soil type and natural drainage class. According to Chpater 4, 44% of heavy 

soils in the region had been artificially drained. It also found a broad agreement between 

previous assessments of drained areas based on grant allocations during the twentieth 

century and percentage of soils classed as artifically drained by the current study.  

 

The improved spatial, spectral and temporal resolution of Sentinel 2  is better suited to 

classification by reducing the impact of mixed pixels at field boundaries. Very high spatial 

resolution is available with commercial EO satellites but the cost of using such data is 

prohibitive over large study areas. The Landsat and Senitinel missions provide their data free 

of charge. The accuracy assessment of the drainage classification model in Chapter 4 

demonstrated how model accuracy was influenced by the number of satellite scenes available 

for analysis. The number of available scenes depended on the percentage of cloud cover 

within a scene at the time of acquisition. Unfortunately, cloud and cloud shadow are 

insurmountable constraints on the use of optical satellite data in Ireland. As discussed in 

Chapter 4, the Landsat 8 scenes making up the mosaic ranged in number from 1 to 18 

images over a three year period of the study. Higher misclassification rates occurred where 

the number of contributing images was low.  

 

The current Sentinel 2 mission, with its improved spatial, spectral and temporal resolution is a 

marked improvement on the Landsat 8 mission. Sufficient data was not available when this 

project began to justify using Sentinel 2 data. Had the project started now, it would certainly 
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have been used. One can only speculate as to how the resulting maps would have been 

improved, but better definition of drained areas within fields woul dcertainly be possible, while 

the addition of red edge bands not available to Landsat may have had an effect on the 

classification algorithms. The improved temporal resolution of Sentinel 2, with a return period 

of 2-3 days over Ireland should, theoretically, produce a greater volume of cloud free images. 

Ten-day, monthly and seasonal composites of Sentinel 2 data have already been created for 

some areas of mainland Europe (Griffiths et al., 2019). However, as Figure 7-1 illustrates, 

even with high temporal resolution optical data cloud cover will still be a signifincat challenge. 

When sufficient Sentinel 2 data is available to create high-resolution temporal composites, 

there will be an opportunity to enhance identification of field drainage condition on Irish farms. 

There is also the possibility of combining data from the two platforms, or the possibility of data 

fusion with coarser resolution sensors, for example using MODIS (250 m) or Sentinel 3 (300 

m) images. The reduction in spatial resolution may be offset by the increased spectral 

resolution, but may not suit the small field sizes and fragmented nature of the Irish landscape 

in most of the study area. The integration of data from planned hypersectral missions, for 

example EnMAP or PRISMA, could also facilitate a more robust characterisation of vegetation 

stress relating to drainage condition. .
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Figure 7-1 Cloud cover over the Midlands for Sentinel 2A and Sentinel 2B (tile 29 UNV) for 8 dates between 11-29 April 2018 (Source: Remote Pixel web viewer).  
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The need for accurate ground-truth was acknowledged in Chapter 4 where there was a clear 

disparity in map accuracy based on whether image- and field-based methods of validation 

were used. Field based accuracy assessments were the less accurate of the two methods 

The disparity underlines the requirement for up-to-date, accurate validation data when 

mapping such a highly spatially variable property as field drainage. The available field-based 

validation data was collected over a decade before the current project, with no guarantee the 

observations reflected current drainage conditions. Changes in land cover were likely 

responsible for this. But it should also be acknowledged that programmes such as the Heavy 

Frams Programme have been on-going in these areas for several years, providing a 

knowledge base for farmers on methods to improve farm production on heavy soils. Some of 

the improvements in drainage status since 2005 may be as a result of initiatives such as this. 

The collection of ground-truth reference data over large areas is time-consuming and 

expensive but is an essential element of land cover mapping. Collection of validation data is 

an area where proximal sensors could be employed to great effect. These are sensors placed 

into or above that ground that measure, directly or indirectly, soil properties, for example, soil 

moisture and soil temperature. Proximal sensors are currently available to Irish farmers 

currently, but there is no data on how extensive there use is. One commercial company 

(Grasstec, in partnership with Remote Signals) produce soil temperature monitors that record 

soil- (10 cm depth) and ground (canopy) temperature every 3 hours and make the data 

available through a mobie phone app. As established in Chapter 6, diurnal soil temperature 

data can be used to distinguish drained and undrained soils. Use of single sensor data as 

ground-truth would be complicated due to the spatial disparity in scale between point- and 

aggregated gridded-data. These scale issue could be partially mitigated by using distributed 

sensors linked wirelessly to provide more spatially representative field data (Bogena et al., 
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2010). The fragmented nature of Irish farms could likely be an issue for establishing 

networked sensors for synoptic monitoring purposes.  

 

There were some restrictions on the classification approach taken in Chapter 4 that should be 

noted. The model was trained on two classes, drained and undrained which best suited the 

support vector machine algorithm that was used for the classification. The high accuracy 

attained by the model likely reflects this binary division. In reality, there is a spectrum of 

drainage states between these two extremes. In the field, these differences are determined by 

observations of the whole soil profile, taking into account features associated with saturation 

(for example, gleying and mottling). However, identifying intermediate classes solely using 

multispectral imagery is more difficult to achieve, where saturation is determined by 

vegetation stresses. In this regard, it is less clear cut at what stage This was identified as an 

issue during the literature review, where higher success rates were achived when fewer 

classes were considered. The greater spectral resolution of narrow band hyperspectral 

sensors could improve the classification of intermediate classes, where differences in 

vegetative stress may be more readily observable. Hwoever, the identification of intermediate 

classes would require more detailed field observations of drainage status. Secondly, the 

model assumed the soil and land cover data that were used to mask the EO data were 

accurate. Given the ~25 ha minimum mapping units for each of these datasets, discrepancies 

between predicted and actual conditions at field and point-scale are expected due to the high 

heterogeneous nature of land cover and soil type across small distances. In some cases, the 

drained conditions recognised by the model in Chapter 4 could in fact be pockets of naturally 

well-drained soil, for example. Similarly, the model cannot account for differences between 
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farms that may effect the phenological stages of grass growth, for example local weather, or 

different management strategies, for example grazing intensity and nutrient input.  

 

7.1.2 Research Question 2  

Are there contrasting signals for grass growing under poorly-drained and drained conditions? 

Furthermore, if there is a measurable difference, what are the important Landsat 8 

wavelengths for characterising this difference?  

 

The spectral characteristics for “drained” and “poorly-drained”classes specific to Landsat 8 

were defined in Chapter 4 (see Figure 4-2). Spectral characteristics were slightly different for 

Sentinel 2 (Figure 4-7) and would be different for all any other sensor, as a result of different 

sensor specification, oribital path and height, viewing angle etc. For Landsat 8 imagery, pixels 

that were assigned the class label “poorly drained” were distinguished from the “drained” class 

by greater reflectance of red (0.64- 0.67 μm) and shortwave infrared (SWIR) (1.5- 2.3 μm) 

wavelengths, and by lower reflectance in near-infrared (NIR) wavelengths (0.85- 0.88 μm). 

This would be the typical spectral response for stressed vegetation, where less red light is 

absorbed for photosynthesis and less NIR light is being reflected due to lower chlorophyll 

production. The remaining visible bands were not as efficient at identyfing poor drainage. This 

was not surprising, poor drainage may be difficult to see unless a significant saturation issue 

has developed. EO data has long been used to observe subtle changes in plant health before 

they are visible to the naked eye.  

The variable importance measured through the the Random Forest algorithm found the 

Landsat 8 NIR band and VI based on it (in this case NDVI and NDWI) had the greatest 
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predictive value of all variables used (spectral and topographical). For Sentinel 2, red edge 

and NIR bands were critical. Red edge bands are located in region of the EM spectrum where 

reflectance values of green vegetation rapidly increase between red and NIR regions. These 

are not available on Landsat 8, but have been shown to be important for mapping chlorophyll 

content vegetation biomass. The shortwave infrared bands (SWIR2) was the more important 

of the two SWIR bands, with its sensitivity to soil and vegetation moisture content.. Thermal 

infrared bands (not used in this study due to a malfunction with the Landsat 8 TIR band during 

the period of study) measure land surface temperature from emitted thermal radiation. The 

Sentinel 2 mission does not have a thermal band, which is an advantage for Landsat 8 over 

the Sentinel 2 satellites. The Landsat thermal bands are at a coarser spatial resolution (120 m 

resampled to 60 m), however, resulting in a greater likelihood of mixed pixels.  

 

As illustrated in Figure 4-3, the timing of image acquisition to correspond with the peak 

phenological stage for grass growth  was important. This was also noted by Tetzlaff et al. 

(2009) and Tlapáková et al. (2017) in the review of similar projects in Chapter 2 (Section 

2.1.1). Drainage class in the BMW area could be best distinguished using springtime images 

(April and May). The drained class, spring images had a higher monthly rate of change for 

NDVI values relative to the undrained class. Classes coulud also be distinguished in late 

summer where the opposite effect was observed. In this period, a moisture deficit on well 

drained soils created drought conditions which depressed NDVI. Conversely, the undrained 

class had higher NDVI as it had access to a greater volume of soil moisture. This was recenty 

illustrated in a map produced by Teagasc’s Spatial Analysis Unit, where 10-day composite 

MODIS NDVI imagery mapped seasonal grass growth in 2018 compared with a 10 year 
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average (2002-2012) (Figure 7-2). Due to a sustained heat wave in summer with low 

precipitation rate, the soils in the southern and eastern region experienced a drought and 

were less productive. These areas produced an estimated 5-10% less grass than normal. The 

poorly drained soils in the BMW regionwere less impacted, or in some areas produced more 

biomass than usual. This was because the heavy soils in this region were less constrained by 

the moisture deficit experienced elsewhere, while they benefitted from higher temperatures 

and greater sunlight. 

 

 

Figure 7-2 Fodder production in 2018 (percentage difference from 10-year average based on 10-day 

composite MODIS NDVI images) (Stuart Green, Teagasc).  
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7.1.3 Research Question 3  

Using Landsat 8 NDVI images, is it possible to observe improvements in drainage status over 

time? For example, can improvements in grass yields be mapped following prolonged 

saturation (flooding), or following the installation of an artificial drainage system?  

 

In Chapter 3 and Chapter 4 it was demonstrated how multispectral imagery, and particularly 

vegetation indices such as the NDVI, can monitor spatial patterns in canopy reflectance that 

relate to contrasting levels of soil saturation. For example, in Chapter 3 Landsat 8 NDVI 

imagery was used as a proxy for biomass and potential yield to observe the improvement in 

grassland production following prolonged saturation. Reduced growth and an inability to utilise 

the grass that is grown  is a massive economic ocnstraint in rural communities following 

floods. This was neatly illustrated in Chapter 3 (Figure 3-9), where mean Landsat 8 NDVI 

values were expressed as a factor of flood duration. When floods and associated soil 

saturation persisted into early spring (when grass was actively growing), the recovery period 

back to expected levels took increasingly longer. It was illustrated how NDVI values for pixels 

still saturated in mid-April had lower than normal values than non-flooded areas and did not 

fully recover to expected levels of production for at least two months. The economic impact of 

this reduced production is considerable, particularly where fodder supplies have been 

consumed or destroyed and where there is no additional capacity to grow or harvest grass 

locally for several weeks. Monitoring vegetation condition against some benchmark (local 

average NDVI, for example) makes it possible to record grassland recovery and generate 

maps of the temporal and spatial distribution of saturated soils. It may not be possible to 

achieve this using moderate resolution EO data, but would be possible using coarser 
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resolution data, for example MODIS or Sentinel 3. There would be an associated lack of 

spatial accuracy however, as due to mixed pixels. UAS-based systems would be to monitor 

recovery over smaller areas is also an option.  

 

It was subsequently demonstrated in Chapter 4 how the installation of a groundwater drainage 

system at Farm A in the BMW region resulted in increases to minimum, mean and maximum 

NDVI values over a periof of several years. These increases were consistent with an 

improved (drier, aerated) soil environment. This observation corresponds to several previously 

reported studies outlined in Section 1.3.1, where a link was made between grassland 

productivity and depth to watertable (for example, Brereton & Hope-Cawdery, 1988). At Farm 

A, a wet, poorly drained field experienced year-on-year increases in NDVI values (once again 

used as a proxy for biomass and yield) following the installation of a groundwater drainage 

system in 2014. The increases in spring 2016 were remarkable considering the extent of 

saturated soils in western counties following several successive, winter storms between 

November 2015 and April 2016 (as discussed in Chapter 3).  

 

The time-series of NDVI, although incomplete and derived from different Landsat sensors, 

suggested an improvement in growth following drainage. With continued observations, it could 

be possible to identify the deterioration in growth (a reduction in NDVI) associated with 

declining drain function, for example, where maintenance (cleaning) or replacement (of mole 

drains, for example) is necessary. As this method used only NDVI to identify improvement, 

NDVI mosaics created from UAS imagery could substitute for satellite imagery. This would 

mitigate the the loss of data that occurs where extensive there is cloud cover. The use of UAS 
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would allow for more systematic monitoring of drain function. The very high spatial resolution 

provided by UAS might also identify growth anomalies related to contrasting drainage 

properties, which could potentially be used to identify subsurface drainage lines.  

 

7.1.4 Research Question 4 

What role do UAS have in high spatial (and temporal) resolution mapping of surface and 

subsurface drainage pathways? Specifically, can UAS-derived photogrammetric surface 

models substitute for LiDAR elevation models when modelling nutrient losses in overland flow 

in a managed grassland environment? Photogrammetric and LiDAR topographical point 

clouds and topographic models are statistically compared. Also, can UAS thermal cameras 

identify heat anomalies at the surface that relate to subsurface drainage systems in a 

managed grassland environment?  

 

UAS were used to great effect in this research for high spatial and temporal resolution 

mapping. UAS are an important complement to satellite data, capable of acquiring data on 

demand when satellites cannot and at a spatial resolution that is unmatched by any 

operational EO satellite currently in orbit. The versatility of UAS, in conjunction with 

photogrammetric software, for accurately modelling field topography was demonstrated in 

Chapter 5. A ~9 ha field was surveyed in ~30 minutes using a widely available out-of-the-box 

drone system. Processed in ease-to-use (commercial) software, high resolution surface 

models and RGB orthomosaics can be produced in a matter of hours. The DSM produced in 

Chapter 5 were not statistically different to DEM created using 40 ppm LiDAR data, especially 

at 2 m and 5 m spatial resolution. Slope and overland flow rasters created using LiDAR and 
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photogrammetry were not statistically significant For the study area, grass height was a 

source of error but its effect was no longer at 5 m spatial resolution. This finding represents a 

huge cost saving for individuals who require high resolution topographic data of intensively 

managed grassland but who are unable to afford the very high cost of laser scanning. The use 

of thermal remote sensing for mapping subsurface drainage was demonstrated against a 

known drainage system. The identification of ~60% of the system is consistent with recent 

studies in the USA using NIR and TIR.  

 

7.2 Benefits of EO for drainage mapping  

While there have been several studies identifying the contrasting economic fortunes of farms 

under contrasting drainage regimes, the impact of wet soils on farm management and 

environmental quality (refer to Section 1.3), there has never been a concerted attempt to map 

soil drainage properties on Irish farms in any consistent or harmonised way. There were 

practical reasons for this:  

 

Soil is a complex, 3-phase medium which is spatially and temporally heterogeneous. Mapping 

soil properties using conventional survey methods is expensive and labour-intensive.  

Conventional survey methods do not accurately reflect broader conditions at field scale and 

can have little relevance beyond the immediate sample location.  

Improved drainage is a temporary adjustment. Drains require regular maintenance or 

replacement to keep them operating at expected capacity. Mole drains for example, may need 

replacement every other year in some locations to remain operational. 
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EO/RS offers several advantages over conventional mapping for improved characterisation of 

soil drainage properties:  

 It offers unparalled geographical coverage. 

 It allows for repeated measurements, in particular since UAS permit data capture on-

demand.  

 It provides a greater context to drainage conditions by capturing a wider view of an area 

than traditional point-based sampling.  

 It can be conveniently combined with other raster data, for example, topographical data, 

and quickly imported and processed by GIS or image processing software.  

 

7.2.1 Cost benefit 

The greatest advantage of using EO data is the low cost of acquiring the data relative to 

conventional surveys. There is an unprecedented volume of moderate resolution EO data now 

freely available through different USGS/NASA and ESA missions. The Landsat mission has a 

legacy archive stretching back over 40 years. The current Landsat 7 and Landsat 8 platforms 

will continue to provide multispectral data at 30 m spatial resolution (and thermal infrared data 

at 120 m) for a nmber of years, with another mission, Landsat 9, planned for launch in 2020. 

The Sentinel 2 mission is in operation since 2014 and fully operational since 2017. Two 

further satellites, Sentinel 2C and Sentinel 2D, are expected to launch from 2021 onwards.  

 

The time and effort required to process and analyse RS data is also being reduced. 

Increasingly, EO data is being made available to end users as analysis-ready, surface 

reflectance products (Level 2A) with associated pixel quality assurance (QA) layers for cloud 

masking. The easy availability of imagery, processed in a consistent way is a huge benefit to 
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land cover mapping or projects using multi-temporal data. Computation and production time 

can be reduced by using surface reflectance products as long as due care and attention is 

given to the quality assurance. An important step that is often necessary is reprojection of 

data into regional or national coordinate reference systems optimised for localised use (Serbin 

& Green, 2018).  

 

7.2.2 Data processing 

Coupled with the free availability of high quality image data is an increasing number of free or 

open-source software to analyse the data. Free GIS software, for example, QGIS, ORFEO, 

GRASS and SAGA are all capable of image processing, classification and visualisation. QGIS 

in particular is an extremely successfult substitute to commercial software such as ArcGIS or 

ERDAS. The Sentinel toolbox (SNAP), used extensively in processing SAR data in Chapter 3, 

can also be used to process optical images from a range of sensors. Increasingly, scripting 

languages, for example, Python or R, are providing access to advanced machine learning and 

data analytics. Machine learning has been used to great effect in previous land cover mapping 

in Ireland (Barrett et al., 2014; Cawkwell et al., 2017). The accuracy achieved using SVM and 

RF in Chapter 4 are very promising. Highest overall accuracy for high spatial resolution 

image-based validation was 91.4%. Using field observations, the highest overall accuracy was 

68.7% (see Table 4-3 & Table 4-4). RF preformed better using image-based validation data, 

while SVM performed better with field-based validation data. The differences in accuracy 

between each algorithm were not statistically significant however.  
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7.2.3 Timeliness 

The research presented above is timely. There is a growing need for up-to-date soil data, 

including a better awareness of the spatial distribution of artifically-drained fields. The 

installation of drainage on farms can have unintended or unpredictable consequences that 

may cause environmental damage, for example, nutrient loss to waterbodies, increased 

streamflow and flooding, increased soil erosion and loss of habitat and biodiversity (Section 

1.3). A recent EPA report indicated how Irish surface- and coastal waters are experiencing 

increased eutrophication (EPA, 2018) with a modest reduction in water quality since 2015. 

Knowing locations of increased likelihood for nutrient loss, either as overland flow or in drain 

flow, would allow targetted remediation measures to be put in place that allow improved 

mitigation of potential impacts. Another reason for accurate landcover data is the need to 

quantify greenhouse gas (GHG) emissions and determine carbon budgets from  changing 

levels of management intensity. There is also an increasing awareness of the need to improve 

grass growth and utilisation following several fodder shortages in recent years. Land drainage 

is widely seen in the agri-food industry as a vital component in achieving the ambitious 

production intensification goals of Food Harvest 2020 and Food Wise 2025. Prior to this 

research, there were no data indicating current drainage status on Irish farmland, for example 

where might benefit from improved drainage, in order to increase production and utilisation, 

and to reduce the risk of poaching-and structural damage. A clearer understanding of the 

potential impacts on agricultural production is critical in light of increasing climate uncertainty 

and the possible effect extreme or unpredictable weather might have over the coming 

decades. The expectation nationally is for wetter winters resulting in greater soil saturation 

with drier summers resulting in increased drought (Holden & Brereton, 2002). A long-term, 

upward trend in the annual number of rain days and the volume of precipitation will likely 
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result in higher soil saturation/ flooding in the future, especially in the western half of the 

country (Charlton et al., 2006; Kiely et al., 2009).  

 

7.3 Future work  

A key aspect of this study was the use of very high spatial and temporal resolution UAS data 

to detect surface and sub-surface drainage properties at field level. Drone capability will 

continue to develop in the coming years and their potential applications for precision 

agriculture will continue to expand. Potential follow on studys for expanding the research 

described above would be to develop the two field-based studies to examine their efficiency at 

scaling up research to farm- to catchment scale. There are important benefits to such an 

exercise. The ability to map at high resolution drainage pathways at the surface or in 

subsurface at field level can have considerable impacts for catchment water quality 

management. Accurate accounting of drainage pathways has implications for understanding 

sources of water quality degradation within a watershed. Representing complex spatial 

patterns over large areas is difficult and hydrological models are frequently hampered by poor 

reproducibility of experiments at plot and catchment level (Zehe & Blöschl 2004). It would 

therefore be desirable that the novel EO approaches discussed in preceding chapters are 

supported by additional validated experiments at wider levels to address whether catchment 

scale photogrammetry and detection of drained areas using thermal or multispectral data can 

accurately parameterise hydrological models and estimates of runoff and nutrient enrichment. 

Aurousseau et al. (2009) modelled drainage flow over a catchment and were able to indicate 

which areas in the catchment contibuted most runoff and had the greatest impact on water 
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pollution. Mapping drainage over a catchment can also allow better estimation of drainage 

capacity and discharge (Yang et al., 2000).  

 

There are problems with upscaling the use of UAS photogrammetry to farm or catchment 

level. This was already addressed to some degree already in Chapter 5. The pressing issue is 

to adequately map breakthroughs and delivery points beneath hedges and obscuring canopy. 

Passive sensors cannot penetrate vegetation and will never be able to map hidden drains. 

Integrating drainage information to DEM or DSM, for example from vector mapping, requires 

additional processing and a greater scrutiny of surface drain topology. Taking on larger 

surveys at a field-by-field will have additional concerns where procedures and methods 

between areas may effect results. In reality, the key to the widespread adoption of high 

resolution topographic modelling is to make existing high resolution datasets freely available 

to the public. High-resolution topographic data is essential to quantify flood depths and 

volumes accurately. The national mapping agency (OSI) has recently engaged airborne laser 

scanning of 185,000 ha nationally at high point density14 which will be of benefit to future 

mapping projects. Many European countries have taken steps to high-resolution elevation 

data freely available (for example, Denmark15, Spain16 and the Netherlands17). The UK 

provides free LiDAR-derived raster datasets at 0.25 m to 2 m spatial resolution with a vertical 

accuracy of ~5 cm18. A recently launched initiative in Ireland (Open Topographic Data Viewer) 

                                                           
14 www.osi.ie/products/bluesky-aerial-imagery-lidar/bluesky-ireland. Accessed 12 December 2018. 
15 https://download.kortforsyningen.dk/content/dhmpunktsky. Accessed 12 December 2018. 
16 http://centrodedescargas.cnig.es/CentroDescargas/buscadorCatalogo.do?codFamilia=LIDAR. Accessed 12 
December 2018 
17 http://www.ahn.nl/common-nlm/open-data.html. Accessed 12 December 2018. 
18 https://data.gov.uk/dataset/lidar-composite-dsm-1m1. Accessed 12 December 2018. 

http://www.osi.ie/products/bluesky-aerial-imagery-lidar/bluesky-ireland
https://download.kortforsyningen.dk/content/dhmpunktsky
http://centrodedescargas.cnig.es/CentroDescargas/buscadorCatalogo.do?codFamilia=LIDAR
http://www.ahn.nl/common-nlm/open-data.html
https://data.gov.uk/dataset/lidar-composite-dsm-1m1
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has put some publically-held high resolution data freely available at 1 m19. The current archive 

is very limited however and is nowhere near national coverage. At smaller scales, high-

resolution elevation data can be captured using UAS imagery to build photogrammetric DSM. 

UAS DSM can produce high-resolution elevation data comparable to LiDAR under certain 

circumstances (see Chapter 4 below). UAV DSM have been successfully applied to high-

resolution flood modelling and prediction (Coveney & Roberts, 2017; Şerban et al., 2016).  

One need only look at the upsurge of remote sensing applications that followed the release of 

Landsat data in 2008 to see the potential to different sectors that free topographical data may 

provide. following sections look at potential future research directions based the on the 

research described in this thesis 

 

7.3.1 Climate change 

Land–use change is an important driving force affecting ecosystem processes and services, 

and can have wide-ranging and longterm environmental consequences. Further development 

of this research can support and inform climate change mitigations by improving national 

greenhouse gas (GHG) inventories where management intensity on grassland increases or 

decreases. As pasture-based agricultural practices intensify, more detailed and precise 

inventories of Irish grassland is necessary to achieve sustainable grassland management. 

Reducing GHG emission on Irish grasslands is a pressing challenge for the agri-food sector to 

meet. Under proposed EU legislative changes (due to come into effect in 2021), member 

states will be required to account for GHG emissions and removal from managed cropland 

and grassland. Improved drainage management, including rewetting of drained soils, is a 

                                                           
19 www.gsi.ie/en-ie/events-and-news/news/Pages/Open-Topographic-Data-Viewer0424-6054.aspx. Accessed 12 
December 2018. 

http://www.gsi.ie/en-ie/events-and-news/news/Pages/Open-Topographic-Data-Viewer0424-6054.aspx
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cost-effective method for increasing carbon sequestration on managed grassland. Therefore 

expansion of the drainage classification to cover all soils (organic and mineral) nationally and 

its integration with existing soil maps, should be a priority for future research. The results 

presented herein demonstrate how EO data can provide a performance assessment of 

drainage condition, something that is not currently provided for within existing maps. Providing 

on-going assessments of current drainage performance should be a key part of future 

development of the project.  

 

7.3.2 Soil moisture deficits  

Additional modelling of soil drainage to identify an intermediate stage between “drained” and 

“undrained” states would be useful. From an EO perspective, this might require greater 

spectral resolution, for example, by incorporating data from upcoming hyperspectral missions, 

or making greater use of proximal data on soil moisture and soil temperatures. The fusion of 

remote and proximal data and techniques can enhance the capability to measure soil 

properties. Proximal sensors have benefitted from advances in distributed wireless sensor 

networks, increasing the spatial coverage of these probes. They are gaining popularity in 

agricultural applications for irrigation scheduling and acquiring local agrometeorological data. 

There are also exciting new techniques for field-scale soil moisture measurements that are 

very accurate compared to in-situ soil moisture measurements. Cosmic ray neutrons probes 

and GNSS L-band reflectometry both show promise for SM measurements over intermediate 

scales between point based sampling and satellite ground sampling distances (~300m2). 

From a training and validation perspective, additional fieldwork would be necessary to 

accurately match spectral characteristics and soil moisture content with actual soil drainage 
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classes. Linking modelled drainage classes to soil moisture deficit (SMD) calculations 

currently provided by Met Eireann would provide field-level assessments of SMD. The 

integration of an EO-based drainage classification would be an improvment on existing model 

and a potentially powerful tool in precision grassland management, with greater predictive 

ability for the development of saturation or drought conditions or a better understanding of the 

risks of sol compaction or plulvial floodiing risk.  

 

7.3.3 Precision agriculture  

EO and RS technologies as a practical tool for PA is still very much in a developmental stage 

in Ireland. As demonstrated in this thesis, UAS have huge potential on Irish farms, for high 

resolution mapping and monitoring of farm performance. UAS have untapped potential in Irish 

farming, for example in weed or pest detection, monitoring nutrient deficiency, and for 

biomass and yield prediction. Some of these ares are being actively researched at the 

moment but further investment is needed to transfer research knowledge into a practical 

workflow for farms. Additional UAS-based techniques will continue to be developed that 

maximise the complementay ability of thermal and hyper/multispectral sensors to identify crop 

or environmental stresses at unprecedented spectral, spatial, and temporal resolution. The 

flexibility and affordability of UAS will likely see there use on Irish farms increase in the 

coming years, whether by farmers themselves or through dedicated service providers. There 

are several regulatory issues for thew ider use of UAS, and technical issues regarding data 

acquisition and processing that must be fully addressed before this can happen. The 

increasing availability of image processing, image mosaicing and image classification 

software will assist in overcoming many of the technical obstacles to using EO and RS data. 
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Farmers need to be informed and educated on the potential uses of UAS and EO data, and 

the potenatial cost-savings and advantages of investing in EO and UAS technology.  
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Appendices  

A. Sentinel 1A & Sentinel 2A scenes used in Chapter 3 

Full file designation Date 

S1A_IW_GRDH_1SDV_20151119T064639_20151119T064704_008670_00C535_4781 

19 Nov. 2015 S1A_IW_GRDH_1SDV_20151119T064704_20151119T064729_008670_00C535_D193 

S1A_IW_GRDH_1SDV_20151119T064729_20151119T064754_008670_00C535_4397 

S1A_IW_GRDH_1SDV_20151201T064632_20151201T064657_008845_00CA1D_C9A1 

1 Dec. 2015 S1A_IW_GRDH_1SDV_20151201T064657_20151201T064722_008845_00CA1D_B4FB 

S1A_IW_GRDH_1SDV_20151201T064722_20151201T064747_008845_00CA1D_2934 

S1A_IW_GRDH_1SDV_20151213T064639_20151213T064704_009020_00CEF7_C872 

13 Dec. 2015 S1A_IW_GRDH_1SDV_20151213T064704_20151213T064729_009020_00CEF7_3065 

S1A_IW_GRDH_1SDV_20151213T064729_20151213T064754_009020_00CEF7_C97C 

S1A_IW_GRDH_1SDV_20151225T064631_20151225T064656_009195_00D3F4_299D 

25 Dec. 2015 S1A_IW_GRDH_1SDV_20151225T064656_20151225T064721_009195_00D3F4_BC69 

S1A_IW_GRDH_1SDV_20151225T064721_20151225T064746_009195_00D3F4_E3FD 

S1A_IW_GRDH_1SDV_20160106T064638_20160106T064703_009370_00D8EE_36FF 

6 Jan. 2016 S1A_IW_GRDH_1SDV_20160106T064703_20160106T064728_009370_00D8EE_F4FD 

S1A_IW_GRDH_1SDV_20160106T064728_20160106T064753_009370_00D8EE_5209 

S1A_IW_GRDH_1SDV_20160118T064630_20160118T064655_009545_00DDEB_63EB 

18 Jan. 2016 S1A_IW_GRDH_1SDV_20160118T064655_20160118T064720_009545_00DDEB_872C 

S1A_IW_GRDH_1SDV_20160118T064720_20160118T064745_009545_00DDEB_2AF5 

S1A_IW_GRDH_1SDV_20160130T064637_20160130T064702_009720_00E313_D247 

30 Jan. 2016 S1A_IW_GRDH_1SDV_20160130T064702_20160130T064727_009720_00E313_5D6E 

S1A_IW_GRDH_1SDV_20160130T064727_20160130T064752_009720_00E313_6CC6 

S1A_IW_GRDH_1SDV_20160211T064629_20160211T064654_009895_00E821_6FDE 

11 Feb. 2016 S1A_IW_GRDH_1SDV_20160211T064654_20160211T064719_009895_00E821_8A3E 

S1A_IW_GRDH_1SDV_20160211T064719_20160211T064744_009895_00E821_B085 

S1A_IW_GRDH_1SDV_20160223T064637_20160223T064702_010070_00ED44_CA51 

23 Feb. 2016 S1A_IW_GRDH_1SDV_20160223T064702_20160223T064727_010070_00ED44_E1D1 

S1A_IW_GRDH_1SDV_20160223T064727_20160223T064752_010070_00ED44_55CF 

S1A_IW_GRDH_1SDV_20160330T064630_20160330T064655_010595_00FC31_4425 

30 Mar. 2016 S1A_IW_GRDH_1SDV_20160330T064655_20160330T064720_010595_00FC31_D8F4 

S1A_IW_GRDH_1SDV_20160330T064720_20160330T064745_010595_00FC31_EFAF 

S1A_IW_GRDH_1SDV_20160411T064703_20160411T064728_010770_010166_E4DE 

4 April 2016 S1A_IW_GRDH_1SDV_20160411T064728_20160411T064753_010770_010166_25A9 

S1A_IW_GRDH_1SDV_20160411T064638_20160411T064703_010770_010166_EC27 

S1A_IW_GRDH_1SDV_20160704T064717_20160704T064742_011995_01282B_FE64 

7 July 2016 S1A_IW_GRDH_1SDV_20160728T064718_20160728T064743_012345_013398_9509 

S1A_IW_GRDH_1SDV_20160728T064653_20160728T064718_012345_013398_A999  

S2A_OPER_PRD_MSIL1C_PDMC_20151222T161456_R023_V20151221T115730_20151

221T115730 
22 Dec. 2015 
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B. OPW hydrograph stations used in Chapter 3 

Station River Latitude °  Longitude ° 

Athlone Shannon 53.42153 -7.94076 

Ballinamore Shiven 53.48979 -8.366 

Banagher Shannon 53.19379 -7.99365 

Bellagill Suck 53.36169 -8.23855 

Derrycahill Suck 53.43176 -8.26276 

Johnstons Bridge Rinn 53.82777 -7.86275 

New Bridge (Little Brosna) Little Brosna 53.13191 -7.97574 

Pollagh Brosna 53.28135 -7.71586 

Rookwood Suck 53.56372 -8.29266 

Shannonbridge Shannon 53.27987 -8.04958 
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C. Met Éireann precipitation stations used in Chapter 3 

 

Co. Station No. 
Irish National Grid 

E N 

Donegal Greencastle 542 264600 440800 

Monaghan 
Monaghan 
(Castleshane) 639 272200 332500 

Donegal 
Carndonagh 
(Rocksmount) Ii 645 248400 445900 

Mayo Murrisk 1033 92700 282500 

Donegal Letterkenny (Dromore) 1043 220600 411000 

Roscommon Loughglinn 1128 163400 286000 

Westmeath Coole (Coolnagun) 1130 238400 270100 

Donegal Termon (Goldrum) 1143 212300 423800 

Galway Costelloe Fishery 1225 97500 226700 

Mayo Mulrany (Doughbeg) 1233 80900 294300 

Louth Omeath 1338 314200 316600 

Mayo Westport (Carrabawn) 1433 99400 283600 

Donegal 
Illies (Pollan Dam 
Waterworks) 1443 241400 434000 

Offaly Meelick (Victoria Lock) 1519 194600 212900 

Donegal 
Kilmacrennan 
(Massreagh) 1543 214000 420300 

Donegal Bloody Foreland 1544 185700 432700 

Leitrim Keshcarrigan G.S. 1637 203800 307700 

Donegal Crolly (Filter Works) 1641 184000 417900 

Donegal Ballybofey Navenny 1642 214600 394000 

Galway Roundstone 1725 72500 242300 

Co. Station No. Irish National Grid 

Leitrim Drumshanbo 1729 196000 312500 

Mayo 
Newport (Ardagh 
Lodge) 1733 94400 294800 

Donegal Fintown (Kingarrow) 1742 196500 405600 

Galway Portumna O.P.W. 1819 187200 204600 

Mayo Bangor Erris (Main St.) 1834 86300 323200 

Louth 
Ardee (St. Brigid's 
Hosp.) 1838 295700 290400 

Donegal 
Falcarragh (Lough 
Altan) 1844 193600 425800 

Galway Inishmore 1925 87200 210100 

Mayo Killadoon 1926 75300 271300 

Westmeath Athlone O.P.W. 1929 203900 241300 

Mayo 
Dooagh (Water 
Treatment Plant) 1934 58200 304600 

Leitrim Dromahair (Market St.) 1936 180600 331500 

Donegal Derryhenny Doochary 1941 183700 403800 

Galway Carheeny Beg 2018 144400 194300 

Galway Inishbofin 2026 55300 265500 

Donegal Kincasslagh 2041 175500 420600 

Donegal Killygordon (Ballyarrell) 2042 222300 393700 

Galway Camus 2225 96200 237200 

Galway Clifden 2226 65700 249600 

Galway Carndolla 2227 133500 239500 

Westmeath Coole-Coolure 2230 241500 269400 

Leitrim 
Manorhamilton 
(Amorset) 2236 188200 339800 
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Co. Station No. Irish National Grid 

Donegal 
Ballyshannon 
(Cathleen's Fall) 2237 188400 361300 

Donegal Kilclooney More 2241 171700 395900 

Donegal 
Quigley's Point (Three 
Trees) 2242 250300 429300 

Mayo Eskeragh 2335 104300 319000 

Donegal Kilcar (Cronasillagh) 2340 164900 377200 

Donegal Dungloe 2341 176400 410800 

Mayo Delphi Lodge Ii 2426 84400 266000 

Mayo Keenagh Beg 2435 103000 311000 

Donegal 
Ardnawark 
Barnesmore 2440 201500 384200 

Donegal Gweedore Weir 2441 185300 422400 

Galway 
Kylemore Abbey 
Gardens 2626 73125 259219 

Galway 
Ballinasloe 
(Derrymullen) 2628 183400 232200 

Mayo Derryhillagh 2635 108800 310200 

Louth Ardee (Boharnamoe) 2638 294100 290200 

Galway 
Loughrea (Rathruddy 
West) 2721 160100 218100 

Galway Leenane-Glanagimla 2726 89500 263000 

Westmeath Ballivor (Hill of Down) 2731 264400 254100 

Mayo Dooncarton 2734 79300 337600 

Sligo Ardtarmon 2736 159600 343400 

Galway 
Ballinasloe (Pollboy 
Lock) 2828 187700 229200 

Roscommon Athleague 2928 181800 257500 

Sligo Sligo Airport 2936 161300 336700 

Co. Station No. Irish National Grid 

Westmeath Tyrrellspass 3022 240100 235500 

Galway Milltown 3027 141000 262800 

Sligo Kinsellagh 3036 173200 339400 

Galway 
Glenamaddy 
(Gortnagier) 3127 162900 261600 

Sligo 
Cloonacool (Lough 
Easkey) 3135 144600 320700 

Leitrim 
Rossinver Organic 
Centre 3140 192200 349400 

Laois 
Clonaslee Waterworks 
Ii 3222 231700 210300 

Donegal 
Ballyshannon 
(Cherrymount) 3237 190100 360400 

Mayo Straide 3335 126100 297900 

Leitrim Lough Glencar 3336 177100 343000 

Louth Clogher Head (Port) 3338 313300 289500 

Offaly Derrygreenagh 3431 249300 238200 

Sligo Easkey (Bunowna) 3436 138200 337900 

Louth 
Riverstown (Glenmore 
Upper) 3438 315500 311000 

Louth 
Togher (Barmeath 
Castle) 3538 309700 287600 

Monaghan 
Newbliss 
(Drumshannon) 3637 257300 323900 

Mayo Ballina (Shanaghy) 3735 125600 318300 

Leitrim 
Aughnasheelan 
(Miskawn) 3937 208500 315100 

Cavan Bailieboro (Duneena) 4031 264600 299900 

Roscommon Lecarrow 4129 196900 254900 

Cavan Bailieboro (Leiter) 4131 264900 298500 
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Co. Station No. Irish National Grid 

Mayo Laherdane (Cum) 4135 113200 310400 

Monaghan Newbliss (Crappagh) 4237 258600 321500 

Westmeath Rathwire 4331 257000 251300 

Galway Headford O.P.W. 4527 127000 247200 

Mayo Belderrig 4535 97900 341300 

Westmeath Athlone (Glynnwood) 4629 210300 239500 

Mayo Lisglennon Waterworks 4635 120200 327200 

Cavan 
Ballyconnell 
Mullaghduff 4637 228200 317700 

Offaly Corbetstown 4831 255500 240000 

Mayo Ballina (Attymass) 4835 129200 312100 

Mayo 
Tourmakeady (Water 
Treatment Wor 4927 109200 271200 

Cavan Belturbet (Naughan) 5037 236700 320700 

Mayo Derrypark 5227 101100 261600 

Roscommon Boyle (Marian Rd.) 5229 180000 302300 

Sligo Curry 5435 149400 306400 

Monaghan Shantonagh (Tooa) 5437 275300 312300 

Monaghan Clones (Dunseark) 5537 251900 322200 

Mayo Belcarra (Carrajames) 5627 119000 282200 

Cavan Tullyco (Artonagh) 5637 254200 306300 

Westmeath 
Collinstown (Lough 
Bawn) 5731 254900 270800 

Sligo Enniscrone Golf Club 5735 127500 329200 

Donegal Pettigo (Belault) 5737 207000 366200 

Cavan Killeshandra (Bawn) 5837 230000 306900 

Co. Station No. Irish National Grid 

Leitrim 
Ballinamore (Creevy 
No.2) 5937 210600 311200 

Roscommon Frenchpark Callow 6129 169600 295500 

Leitrim Carrigallen-Calloughs 6237 222400 304100 

Offaly Edenderry (Ballinla) 6314 258300 231600 

Cavan Arvagh-Cormore 6337 230200 295800 

Monaghan Castleblaney_Coose 6437 280400 313100 

Roscommon Ballymore 6729 178500 299400 

Roscommon Lanesboro (Cloonadra) 6929 198600 269700 
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D. Landsat 8 scenes used in 

Chapter 3 & Chapter 4  

Path/Row/Year Scene Date 

2090232014 017 17/01/2014 

2070232014 019 19/01/2014 

2080222014 026 26/01/2014 

2080232014 026 26/01/2014 

2090222014 033 02/02/2014 

2090232014 033 02/02/2014 

2070222014 035 04/02/2014 

2070232014 035 04/02/2014 

2080222014 042 11/02/2014 

2080232014 042 11/02/2014 

2090222014 049 18/02/2014 

2090232014 049 18/02/2014 

2080222014 058 27/02/2014 

2080232014 058 27/02/2014 

2080222014 074 15/03/2014 

2080232014 074 15/03/2014 

2090222014 081 22/03/2014 

2090232014 081 22/03/2014 

2080222014 090 31/03/2014 

2080232014 090 31/03/2014 

2090232014 097 07/04/2014 

2080232014 106 16/04/2014 

2090222014 113 23/04/2014 

2070222014 115 25/04/2014 

2070232014 115 25/04/2014 

2090222014 129 09/05/2014 

2070232014 131 11/05/2014 

2080222014 138 18/05/2014 

2080232014 138 18/05/2014 

2090222014 145 25/05/2014 

2090232014 145 25/05/2014 

2070222014 147 27/05/2014 

2070232014 147 27/05/2014 

2080222014 154 03/06/2014 

2080232014 154 03/06/2014 

Path/Row/Year Scene Date 

2090222014 161 10/06/2014 

2090232014 161 10/06/2014 

2070232014 163 12/06/2014 

2080232014 170 19/06/2014 

2070232014 179 28/06/2014 

2080222014 186 05/07/2014 

2080232014 186 05/07/2014 

2070232014 211 30/07/2014 

2080222014 218 06/08/2014 

2080232014 218 06/08/2014 

2070232014 227 15/08/2014 

2080222014 234 22/08/2014 

2080232014 234 22/08/2014 

2090222014 241 29/08/2014 

2070222014 243 31/08/2014 

2070232014 243 31/08/2014 

2080222014 250 07/09/2014 

2080232014 250 07/09/2014 

2090222014 257 14/09/2014 

2090232014 257 14/09/2014 

2070222014 259 16/09/2014 

2070232014 259 16/09/2014 

2070222014 275 02/10/2014 

2070232014 275 02/10/2014 

2080222014 282 09/10/2014 

2080232014 282 09/10/2014 

2090222014 289 16/10/2014 

2090232014 289 16/10/2014 

2070222014 291 18/10/2014 

2080222014 298 25/10/2014 

2070222014 307 03/11/2014 

2070232014 307 03/11/2014 

2090222014 321 17/11/2014 

2090232014 321 17/11/2014 

2070222014 323 19/11/2014 

2080232014 330 26/11/2014 

2090232015 020 20/01/2015 

2070222015 022 22/01/2015 
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Path/Row/Year Scene Date 

2070232015 022 22/01/2015 

2080232015 029 29/01/2015 

2090222015 036 05/02/2015 

2090232015 036 05/02/2015 

2070222015 038 07/02/2015 

2080222015 045 14/02/2015 

2080232015 045 14/02/2015 

2090222015 052 21/02/2015 

2090232015 052 21/02/2015 

2070222015 054 23/02/2015 

2070232015 054 23/02/2015 

2090222015 068 09/03/2015 

2090232015 068 09/03/2015 

2070222015 070 11/03/2015 

2070232015 070 11/03/2015 

2080222015 077 18/03/2015 

2080232015 077 18/03/2015 

2070232015 086 27/03/2015 

2080232015 093 03/04/2015 

2090222015 100 10/04/2015 

2090232015 100 10/04/2015 

2070222015 102 12/04/2015 

2080222015 109 19/04/2015 

2080232015 109 19/04/2015 

2090222015 116 26/04/2015 

2090232015 116 26/04/2015 

2070222015 118 28/04/2015 

2070232015 118 28/04/2015 

2080232015 125 05/05/2015 

2090222015 132 12/05/2015 

2090232015 132 12/05/2015 

2070222015 134 14/05/2015 

2090222015 148 28/05/2015 

2090232015 148 28/05/2015 

2080222015 157 06/06/2015 

2080232015 157 06/06/2015 

2090222015 164 13/06/2015 

2070222015 166 15/06/2015 

Path/Row/Year Scene Date 

2070232015 166 15/06/2015 

2080222015 189 08/07/2015 

2090222015 196 15/07/2015 

2090232015 196 15/07/2015 

2070222015 198 17/07/2015 

2070232015 198 17/07/2015 

2080222015 205 24/07/2015 

2080222015 221 09/08/2015 

2090222015 228 16/08/2015 

2090232015 228 16/08/2015 

2070222015 230 18/08/2015 

2070232015 230 18/08/2015 

2090222015 244 01/09/2015 

2080222015 253 10/09/2015 

2090222015 260 17/09/2015 

2090232015 260 17/09/2015 

2090222015 276 03/10/2015 

2080222015 285 12/10/2015 

2080232015 285 12/10/2015 

2090222015 292 19/10/2015 

2090232015 292 19/10/2015 

2080222015 301 28/10/2015 

2080232015 301 28/10/2015 

2090222015 308 04/11/2015 

2090232015 308 04/11/2015 

2070222015 310 06/11/2015 

2080222015 317 13/11/2015 

2080232015 317 13/11/2015 

2090222015 324 20/11/2015 

2090232015 324 20/11/2015 

2070222015 326 22/11/2015 

2070232015 326 22/11/2015 

2080232016 016 16/01/2016 

2090222016 023 23/01/2016 

2090232016 023 23/01/2016 

2070222016 025 25/01/2016 

2070232016 025 25/01/2016 

2080222016 032 01/02/2016 
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Path/Row/Year Scene Date 

2080232016 032 01/02/2016 

2090222016 039 08/02/2016 

2090232016 039 08/02/2016 

2070222016 041 10/02/2016 

2070232016 041 10/02/2016 

2080222016 048 17/02/2016 

2080232016 048 17/02/2016 

2080222016 064 04/03/2016 

2080232016 064 04/03/2016 

2070222016 073 13/03/2016 

2080222016 080 20/03/2016 

2090222016 087 27/03/2016 

2090232016 087 27/03/2016 

2070222016 089 29/03/2016 

2070232016 089 29/03/2016 

2080222016 096 05/04/2016 

2080232016 096 05/04/2016 

2090232016 103 12/04/2016 

2070232016 121 14/04/2016 

2080222016 112 21/04/2016 

2080232016 112 21/04/2016 

2090222016 119 28/04/2016 

2090232016 119 28/04/2016 

2070222016 121 30/04/2016 

2070232016 137 30/04/2016 

2090222016 135 14/05/2016 

2090232016 135 14/05/2016 

2070222016 137 16/05/2016 

2080222016 144 23/05/2016 

2080232016 144 23/05/2016 

2090222016 151 30/05/2016 

2090232016 151 30/05/2016 

2070222016 153 01/06/2016 

2070232016 153 01/06/2016 

2080222016 160 08/06/2016 

2080232016 160 08/06/2016 

2090222016 167 15/06/2016 

2080222016 176 24/06/2016 

Path/Row/Year Scene Date 

2080232016 176 24/06/2016 

2070232016 185 03/07/2016 

2090222016 199 17/07/2016 

2070222016 201 19/07/2016 

2070232016 201 19/07/2016 

2090222016 215 02/08/2016 

2070222016 217 04/08/2016 

2070232016 217 04/08/2016 

2070232016 233 20/08/2016 

2070222016 249 27/08/2016 

2070232016 249 27/08/2016 

2090222016 247 03/09/2016 

2090232016 247 03/09/2016 

2080222016 256 12/09/2016 

2080232016 256 12/09/2016 

2090222016 263 19/09/2016 

2090222016 279 05/10/2016 

2090232016 279 05/10/2016 

2070222016 281 07/10/2016 

2070232016 281 07/10/2016 

2080222016 288 14/10/2016 

2080232016 288 14/10/2016 

2070222016 297 23/10/2016 

2070232016 297 23/10/2016 

2080222016 304 30/10/2016 

2080232016 304 30/10/2016 

2090222016 311 01/11/2016 

2090232016 311 06/11/2016 

2080222016 320 15/11/2016 

2080232016 320 15/11/2016 
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E. Drainage classification script (R) 

################################################################### 
# 
# Support Vector Machine and Random Forest classification script 
# Rob O’Hara  
# 
################################################################### 
 
# Package install and permissions 
 
require (raster) 
require (gtools) 
require (e1071) 
require (randomForest) 
 
# Image processing  
 
setwd("InsertYourPathHere") 
 
img_1<- brick("InsertYourFileHere.tif") 
names(img_1)<-c("Insert”,”Your”, “File”, “Names”, “Here") # Rename as required 
img_1.df<-na.omit(data.frame(getValues(img_1))) 
 
img_2<- brick("InsertYourTrainingDataHere.tif ") # well drained TD 
names(img_2)<-names(img_1) 
img_3<- brick("InsertYourTrainingDataHere.tif ") # poorly drained TD 
names(img_3)<-names(img_1) 
 
drained.df<- na.omit(data.frame(getValues(img_2))) # generate new TD.df 
undrained.df<- na.omit(data.frame(getValues(img_3))) # generate new TD.df 
drained.df$drained <- "1" 
undrained.df$drained <- "2" 
 
TrainData.df <- smartbind(drained.df,undrained.df) 
TrainData.df$drained <- as.factor(TrainData.df$drained) 
 
# Support Vector Machine  
 
setwd("InsertYourOutputPathHere") 
sink("InsertYourOutputFileNameHere.txt") # Start writing to an output file 
 
set.seed(42) 
CalData <- sample(nrow(TrainData.df), round((nrow(TrainData.df) - 1) / 2, 0)) 
ValData <- c(1:nrow(TrainData.df))[!(c(1:nrow(TrainData.df)) %in% CalData)] 
CalData.df <- na.omit(TrainData.df[CalData,]) 
ValData.df <- na.omit(TrainData.df[ValData,]) 
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obj <- tune.svm(drained~., data = CalData.df, gamma = 2 ^( InsertNumericHere: 
InsertNumericHere), cost = 2 ^( InsertNumericHere: InsertNumericHere))  
 
# set limits and increments to tuning parameter (numeric; e.g. 2^(-2:5)) 
 
summary(obj) 
plot(obj) 
bestgamma<- as.numeric(obj$best.parameters[1]) 
bestcost<- as.numeric(obj$best.parameters[2]) 
 
svm.fit <- svm(drained~., data=CalData.df, gamma = bestgamma, cost = bestcost, type='C-
classification', kernel='radial',scale=T)  
svm.pred <- predict(svm.fit, ValData.df[,1:InsertNumberOfBandsHere], decision.values = 
TRUE) # enter number of bands as numeric  
attr(svm.pred, "decision.values") [1: InsertNumberOfBandsHere]  
# print decision.values for each band 
svm.tab <- table(pred = svm.pred, true = ValData.df[,InsertNumberOfColumnHere])  
# the columun with the classify data (0, 1 etc) 
 
print(svm.tab) 
 
img.fit <- best.svm(drained~., data=TrainData.df, gamma = bestgamma, cost = bestcost) 
img.pred <- predict(img.fit, img_1.df) # predict the model on dataframe  
 
img.class <- ifelse(img.pred == "1", 1, 2) # drained = 1, undrained = 2  
 
classified_img<-brick(img_1[[1]]) 
values(classified_img)<- img.class 
 
plot(classified_img) 
 
writeRaster(classified_img, filename = InsertNameOfFileHere.tif", format="GTiff", datatype= 
"INT2U", overwrite=T) 
 
# Random Forest  
 
x<-TrainData.df[ ,c(1: InsertNumberOfBandsHere)] # enter number of bands as numeric  
 
names(x)<-names(img_1) 
 
y<-TrainData.df$drained 
mtry<-tuneRF(x, y, mtryStart=as.integer(sqrt(length(y))), ntreeTry= InsertNumericHere, 
stepFactor= InsertNumericHere, improve=0.05, trace=F, plot=T, doBest=F)  
# set tune parameters (numeric) 
best.m <- mtry[mtry[, 2] == min(mtry[, 2]), 1] 
 
print(paste0("bestm =", best.m)) 
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modelRF <- randomForest(x=x, y=y, mtry = best.m, ntree = InsertNumericHere, replace=T, 
importance = TRUE) # try with different ntree values (default= 501) 
colnames(modelRF$confusion) <- c("drained", "undrained", "class.error") 
rownames(modelRF$confusion) <- c("drained", "undrained") 
 
modelRF 
varImpPlot(modelRF) 
predLC <- predict(img_1, model=modelRF, na.rm=TRUE) # not img.df, make sure all bands 
have same name 
 
writeRaster(predLC, filename InsertNameOfFileHere.tif, datatype= "INT2U", format="GTiff", 
overwrite=TRUE) 
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F. Flood depth & volume  

After creating the SAR flood map in Chapter 3, there was an opportunity to investigate the 

potential depth and volume of the flood over the region. This section presents the 

methodology and results of this investigation. To assess the accuracy of modelled flood 

heights, hydrographic data from river gauge stations in the River Shannon catchment were 

downloaded from the Office of Public Works (OPW) website20 (see Appendix B). River heights 

at the time of each SAR image were extracted from a time series of hydrograph data using R 

statistical software. To determine the impact of rainfall on flood extent, hourly rainfall data was 

downloaded for over 300 Met Éireann precipitation stations (Appendix C) and reordered, 

subset and aggregated into mean daily values using R statistical software. 

 

In the absence of high-resolution elevation data over the region, a 20 m DEM with a vertical 

accuracy of ± 2.5 m was used to estimate flood depth and volume. The original DEM was 

resampled to 10 m to match the spatial resolution of Sentinel 1 using a bilinear interpolation 

tool in ArcGIS v.10.2.2. To quantify the impact of a 2.5 m vertical RMSE on depth and volume 

estimates, a Monte Carlo simulation was carried out on the resampled DEM. 2500 randomly-

perturbed DEM were created using the ‘spup’ package (v.0.1-1) in R statistical software 

(v.3.2.3). Monte Carlo simulations are widely used to quantify error propagation within DEM 

(Heuvelink et al., 1989; Leon et al., 2014; Wechsler & Kroll, 2006; Zandbergen, 2011). They 

have also been used previously for flood- and surface hydrological modelling (Bodoque et al., 

2016; Domeneghetti et al., 2013; S. Wu et al., 2008).  

 

                                                           
20 http://waterlevel.ie/hydro-data/search.html?rbd=SHANNON%20RBD. Accessed 12 December 2018.   

http://waterlevel.ie/hydro-data/search.html?rbd=SHANNON%20RBD


 

275 

Flood depth was estimated by calculating the difference between maximum flood height and 

maximum elevation for flooded pixels. Flood zones were defined using the Region Group 

function (Generalisation toolset in ArcGIS), which grouped connected pixels under a single 

region identifier. Elevation heights were then extracted from the DEM using a Zonal Statistics 

function (Zonal toolset toolbox in ArcGIS). This calculated descriptive statistics on DEM 

elevations based on individual flood regions identified by the flood map. The highest recorded 

elevation value in each zone was assumed to to represent the maximum flood height. Using 

the Raster Calculator tool (Map Algebra toolset in ArcGIS), the difference between DEM 

elevation and maximum flood height allowed a pixel-wise estimation of flood depth (m) for 

each region. Depth was converted into volume (m3) by multiplying by pixel area (100 m2).  

 

Estimated flood depths are illustrated in Figure A for a target area between Athlone, Co. 

Westmeath and Shannonbridge, Co. Offaly. Expectedly, areas closest to river channels are 

deeper, with decreasing depth with Euclidean distance from the channel edge. Using a Monte 

Carlo perturbed DEM, it was possible to illustrate the standard deviation for each pixel to 

indicate the potential error range present in calculations. The area depicted in Figure A is 

limited in extent and topographically homogeneous, yet the range of depth variability is 

between 1.4 m and 5.1 m. Histograms for two randomly selected points within this area of 

interest further exemplify the error distribution for estimated depths (Figure B). Volume was 

estimated at 528,863,333 m3 [95% C.I. (482,078,000 m3 and 575,648,500 m3)]. In 

comparison, Lough Ree, the second largest lake on the River Shannon, has an estimated 

volume of ~650,000,000 m3. There was no way of validating estimated flood depth and 

volume. 
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Figure A Estimated flood depth for an area at Shannonbridge, Co. Offaly. Mean and standard deviation images were compiled from 2500 Monte Carlo 

perturbations of a 20m DEM (vertical accuracy of ± 2.5 m)
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Figure B Histograms of depth estimates at the two locations marked in Figure A based on 2500 Monte 

Carlo simulations  

 

Maximum river levels were recorded at ten sites in the Shannon catchment where flooding 

was recorded within 500 m of the station. Using regression, a significant relationship between 

modelled and estimated flood heights was demonstrated (p= 0.007; R2= 0.56 ) (Figure C). At 

two locations, flood maxima were estimated to within 25 cm of measured river maxima. The 

greatest error was at Athlone where flood levels were overestimated by 9.70 m. A Grubbs 

outlier test conducted using the ‘outliers’ package in R (v.0.41) identified Athlone as a 

probable outlier (G= 2.09, U= 0.45, p= 0.075). Removing this station improved the regression 

model (R2 = 0.8; p<0.001). The reasons why Athlone should be such an outlier is unclear. As 

flood levels within 500m of a river station were used for the regression. It is possible some 

flooding occurred on higher ground in the athlone area that casued mean values to be 

skewed.  
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Figure C Relationship between estimated and measured river heights at 10 locations in the Shannon 

River Basin District. 

 

The ArcGIS workflow that determined flood depth and volume was relatively quick to implement and 

could be achieved using open-source GIS software if necessary. The process could be automated 

within an ArcGIS model if required. The analysis suffered from a reliance on moderate spatial 

resolution DEM. Had a high-resolution DEM with low error been available, considerably more accurate 

estimations of depth and volume could be calculated. The coarse spatial resolution and high vertical 

error of the original DEM was undoubtedly at fault the unrealistic flood depth determinations in some 

areas. Nonetheless, the study highlighted to promise the Sentinel 1 mission holds for rapidly making 

these determinations in the future once suitable DEM and validation data is available. The use of the 

OPW river gauge system was a very good asset, but it was susceptible to uncertainty where flooding 

occurred in locations away from the river side. Floods occur when river waters break out from the river 
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channel and move under gravity into low lying ground. Any validation of flood waters away from river 

channels must rely on an independent measure of depth. If flooding of the scale of 2015-2016 

continues, it would be appropriate to establish a method of measuring heights in flooded fields 

elsewhere in river catchments. 
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