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Abstract: This paper studies a remote state estimation problem in the presence of an
eavesdropper. A sensor transmits local state estimates over a packet dropping link to a remote
estimator, which at the same time can be overheard by an eavesdropper with a certain
probability. The objective is to determine when the sensor should transmit, in order to minimize
the estimation error covariance at the remote estimator, while trying to keep the eavesdropper
error covariance above a certain level. This is done by solving an optimization problem that
minimizes a linear combination of the expected estimation error covariance and the negative of
the expected eavesdropper error covariance. Structural results on the optimal transmission policy
are derived, and shown to exhibit thresholding behaviour in the estimation error covariances. In
the infinite horizon situation, it is shown that with unstable systems one can keep the expected
estimation error covariance bounded while the expected eavesdropper error covariance becomes
unbounded.

1. INTRODUCTION

With the ever increasing amounts of data being transmit-
ted wirelessly, the need to protect systems from malicious
intruders has become increasingly important. In communi-
cations, the notion of information theoretic security dates
back to the work of Claude Shannon in the 1940s. Roughly
speaking, a communication system is regarded as secure in
the information theoretic sense, if the mutual information
between the original message and what is received at the
eavesdropper is either zero or becomes vanishingly small
as the block length of the codewords increases (Wyner
(1975)). The term “physical layer security” has been used
to describe ways to implement information theoretic se-
curity using physical layer characteristics of the wireless
channel such as fading, interference, and noise, see e.g.
Liang et al. (2008); Zhou et al. (2014).

Motivated in part by the ideas of physical layer security,
the consideration of security issues in signal processing sys-
tems has also started to gain the attention of researchers.
In estimation problems with eavesdroppers, studies include
Aysal and Barner (2008); Reboredo et al. (2013); Guo et al.
(2017b,a). The objective is to minimize the average mean
squared error at the legitimate receiver, while trying to
keep the mean squared error at the eavesdropper above
a certain level, by using techniques such as stochastic
bit flipping (Aysal and Barner (2008)), transmit filter
design (Reboredo et al. (2013)), and power control (Guo
et al. (2017b), Guo et al. (2017a)). The above works deal
with estimation of either constants or i.i.d. sources. In
contrast, the current paper considers state estimation of
dynamical systems when there is an eavesdropper. For

unstable systems, it has recently been shown that when
using uncertain wiretap channels, one can keep the esti-
mation error of the legitimate receiver bounded while the
estimation error of the eavesdropper becomes unbounded
for a sufficiently large coding block length (Wiese et al.
(2016)). In this paper we are interested primarily in esti-
mation performance, and as such we do not assume coding,
which can introduce large delays. In a similar setup to the
current work, but transmitting measurements and without
using feedback acknowledgements, Tsiamis et al. (2016)
derived mechanisms for keeping the expected error covari-
ance bounded while driving the expected eavesdropper co-
variance unbounded, provided the reception probability is
greater than the eavesdropping probability. By allowing for
feedback, in this paper we show that the same behaviour
can be achieved for all eavesdropping probabilities strictly
less than one. The current work deals with passive attacks
from eavesdroppers. Estimation and control problems in
the presence of active attacks has also been studied, see
e.g. Fawzi et al. (2014); Teixeira et al. (2015); Mo and
Sinopoli (2015); Li et al. (2017), just to mention a few.

In this paper, we consider a scenario where a sensor makes
noisy measurements of a linear dynamical process. The
sensor transmits local state estimates to the remote es-
timator over a packet dropping link. At the same time,
an eavesdropper can successfully eavesdrop on the sen-
sor transmission with a certain probability. Within this
setup, we consider the problem of deciding at each instant
whether the sensor should transmit, in order to minimize a
linear combination of the expected error covariance at the
remote estimator and the negative of the expected error
covariance at the eavesdropper. The scheduling is done at
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Fig. 1. Remote State Estimation with an Eavesdropper

the remote estimator. We derive structural results on the
optimal transmission policy, which are shown to exhibit
thresholding behaviour in the estimation error covariances.
In addition, in the infinite horizon situation, we show
that with unstable systems one can keep the expected
estimation error covariance bounded while the expected
eavesdropper error covariance becomes unbounded.

2. SYSTEM MODEL

A diagram of the system model is shown in Fig. 1. Consider
a discrete time process

xk+1 = Axk + wk (1)

where xk ∈ Rn and wk is i.i.d. Gaussian with zero mean
and covariance Q > 0. 1 The sensor has measurements

yk = Cxk + vk, (2)

where yk ∈ Rn and vk is Gaussian with zero mean and
covariance R > 0. The noise processes {wk} and {vk} are
assumed to be mutually independent.

The sensor transmits local state estimates x̂s
k|k to the

remote estimator (Xu and Hespanha (2005)). The local
state estimates and error covariances

x̂s
k|k−1 � E[xk|y0, . . . , yk−1], x̂s

k|k � E[xk|y0, . . . , yk]
P s
k|k−1 � E[(xk − x̂s

k|k−1)(xk − x̂s
k|k−1)

T |y0, . . . , yk−1]

P s
k|k � E[(xk − x̂s

k|k)(xk − x̂s
k|k)

T |y0, . . . , yk]
can be computed at the sensor using the standard Kalman
filtering equations. We will assume that the pair (A,C)
is detectable and the pair (A,Q1/2) is stabilizable. Let
P̄ be the steady state value of P s

k|k as k → ∞, which

exists due to the detectability assumption. To simplify the
presentation, we will assume that the local Kalman filter is
operating in the steady state regime, so that P s

k|k = P̄ , ∀k.
In general, the local Kalman filter will converge to steady
state at an exponential rate.

Let νk ∈ {0, 1} be decision variables such that νk = 1 if
and only if x̂s

k|k is to be transmitted at time k. The decision

variables νk are determined at the remote estimator, which
is assumed to have more computational capabilities than
the sensor, and then fed back to the sensor.

1 For a symmetric matrix X, we say that X > 0 if it is positive
definite, and X ≥ 0 if it is positive semi-definite. Given two
symmetric matrices X and Y , we say that X ≤ Y if Y −X is positive
semi-definite, and X < Y if Y −X is positive definite.

At time instances when νk = 1, the sensor transmits its
local state estimate x̂s

k|k over a packet dropping channel

to the remote estimator. Let γk be random variables such
that γk = 1 if the sensor transmission at time k is
successfully received by the remote estimator, and γk = 0
otherwise. We will assume that {γk} is i.i.d. Bernoulli with

P(γk = 1) = λ ∈ (0, 1).

The sensor transmissions can be overheard by an eaves-
dropper over another packet dropping channel. Let γe,k
be random variables such that γe,k = 1 if the sensor
transmission at time k is overheard by the eavesdropper,
and γe,k = 0 otherwise. We will assume that {γe,k} is i.i.d.
Bernoulli with

P(γe,k = 1) = λe ∈ (0, 1).

The processes {γk} and {γe,k} are assumed to be mutually
independent.

At instances where νk = 1, it is assumed that the remote
estimator knows whether the transmission was successful
or not, i.e., the remote estimator knows the value γk, with
dropped packets discarded. Define

Ik �{ν0, . . . , νk, ν0γ0, . . . , νkγk, ν0γ0x̂s
0|0, . . . , νkγkx̂

s
k|k}

as the information set available to the remote estimator at
time k. Denote the state estimates and error covariances
at the remote estimator by:

x̂k|k−1 � E[xk|Ik−1], x̂k|k � E[xk|Ik],
Pk|k−1 � E[(xk − x̂k|k−1)(xk − x̂k|k−1)

T |Ik−1],

Pk|k � E[(xk − x̂k|k)(xk − x̂k|k)
T |Ik].

(3)

Similarly, the eavesdropper knows if it has eavesdropped
sucessfully. Define

Ie,k �{ν0, . . . , νk, ν0γe,0, . . . , νkγe,k,
ν0γe,0x̂

s
0|0, . . . , νkγe,kx̂

s
k|k}

as the information set available to the eavesdropper at
time k, and the state estimates and error covariances at
the eavesdropper by:

x̂e,k|k−1 � E[xk|Ie,k−1], x̂e,k|k � E[xk|Ie,k],
Pe,k|k−1 � E[(xk − x̂e,k|k−1)(xk − x̂k|e,k−1)

T |Ie,k−1],

Pe,k|k � E[(xk − x̂e,k|k)(xk − x̂e,k|k)
T |Ie,k].

For simplicity of presentation, we will assume that the
initial covariances P0|0 = P̄ and Pe,0|0 = P̄ .

As stated before, the decision variables νk are determined
at the remote estimator and fed back to the sensor. In
Section 3 we consider the case where νk depends on both
Pk−1|k−1 and Pe,k−1|k−1, while in Section 4 we consider the
case where νk depends only on Pk−1|k−1 and our beliefs of
Pe,k−1|k−1 constructed from knowledge of previous νk’s. In
either case, the decisions do not depend on the state xk.
Thus the optimal remote estimator can be shown to have
the form

x̂k|k =

{
Ax̂k−1|k−1 , νkγk = 0

x̂s
k|k , νkγk = 1

Pk|k =

{
f(Pk−1|k−1) , νkγk = 0

P̄ , νkγk = 1

(4)

where
f(X) � AXAT +Q, (5)
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Fig. 1. Remote State Estimation with an Eavesdropper

the remote estimator. We derive structural results on the
optimal transmission policy, which are shown to exhibit
thresholding behaviour in the estimation error covariances.
In addition, in the infinite horizon situation, we show
that with unstable systems one can keep the expected
estimation error covariance bounded while the expected
eavesdropper error covariance becomes unbounded.

2. SYSTEM MODEL

A diagram of the system model is shown in Fig. 1. Consider
a discrete time process

xk+1 = Axk + wk (1)

where xk ∈ Rn and wk is i.i.d. Gaussian with zero mean
and covariance Q > 0. 1 The sensor has measurements

yk = Cxk + vk, (2)

where yk ∈ Rn and vk is Gaussian with zero mean and
covariance R > 0. The noise processes {wk} and {vk} are
assumed to be mutually independent.

The sensor transmits local state estimates x̂s
k|k to the

remote estimator (Xu and Hespanha (2005)). The local
state estimates and error covariances

x̂s
k|k−1 � E[xk|y0, . . . , yk−1], x̂s

k|k � E[xk|y0, . . . , yk]
P s
k|k−1 � E[(xk − x̂s

k|k−1)(xk − x̂s
k|k−1)

T |y0, . . . , yk−1]

P s
k|k � E[(xk − x̂s

k|k)(xk − x̂s
k|k)

T |y0, . . . , yk]
can be computed at the sensor using the standard Kalman
filtering equations. We will assume that the pair (A,C)
is detectable and the pair (A,Q1/2) is stabilizable. Let
P̄ be the steady state value of P s

k|k as k → ∞, which

exists due to the detectability assumption. To simplify the
presentation, we will assume that the local Kalman filter is
operating in the steady state regime, so that P s

k|k = P̄ , ∀k.
In general, the local Kalman filter will converge to steady
state at an exponential rate.

Let νk ∈ {0, 1} be decision variables such that νk = 1 if
and only if x̂s

k|k is to be transmitted at time k. The decision

variables νk are determined at the remote estimator, which
is assumed to have more computational capabilities than
the sensor, and then fed back to the sensor.

1 For a symmetric matrix X, we say that X > 0 if it is positive
definite, and X ≥ 0 if it is positive semi-definite. Given two
symmetric matrices X and Y , we say that X ≤ Y if Y −X is positive
semi-definite, and X < Y if Y −X is positive definite.

At time instances when νk = 1, the sensor transmits its
local state estimate x̂s

k|k over a packet dropping channel

to the remote estimator. Let γk be random variables such
that γk = 1 if the sensor transmission at time k is
successfully received by the remote estimator, and γk = 0
otherwise. We will assume that {γk} is i.i.d. Bernoulli with

P(γk = 1) = λ ∈ (0, 1).

The sensor transmissions can be overheard by an eaves-
dropper over another packet dropping channel. Let γe,k
be random variables such that γe,k = 1 if the sensor
transmission at time k is overheard by the eavesdropper,
and γe,k = 0 otherwise. We will assume that {γe,k} is i.i.d.
Bernoulli with

P(γe,k = 1) = λe ∈ (0, 1).

The processes {γk} and {γe,k} are assumed to be mutually
independent.

At instances where νk = 1, it is assumed that the remote
estimator knows whether the transmission was successful
or not, i.e., the remote estimator knows the value γk, with
dropped packets discarded. Define

Ik �{ν0, . . . , νk, ν0γ0, . . . , νkγk, ν0γ0x̂s
0|0, . . . , νkγkx̂

s
k|k}

as the information set available to the remote estimator at
time k. Denote the state estimates and error covariances
at the remote estimator by:

x̂k|k−1 � E[xk|Ik−1], x̂k|k � E[xk|Ik],
Pk|k−1 � E[(xk − x̂k|k−1)(xk − x̂k|k−1)

T |Ik−1],

Pk|k � E[(xk − x̂k|k)(xk − x̂k|k)
T |Ik].

(3)

Similarly, the eavesdropper knows if it has eavesdropped
sucessfully. Define

Ie,k �{ν0, . . . , νk, ν0γe,0, . . . , νkγe,k,
ν0γe,0x̂

s
0|0, . . . , νkγe,kx̂

s
k|k}

as the information set available to the eavesdropper at
time k, and the state estimates and error covariances at
the eavesdropper by:

x̂e,k|k−1 � E[xk|Ie,k−1], x̂e,k|k � E[xk|Ie,k],
Pe,k|k−1 � E[(xk − x̂e,k|k−1)(xk − x̂k|e,k−1)

T |Ie,k−1],

Pe,k|k � E[(xk − x̂e,k|k)(xk − x̂e,k|k)
T |Ie,k].

For simplicity of presentation, we will assume that the
initial covariances P0|0 = P̄ and Pe,0|0 = P̄ .

As stated before, the decision variables νk are determined
at the remote estimator and fed back to the sensor. In
Section 3 we consider the case where νk depends on both
Pk−1|k−1 and Pe,k−1|k−1, while in Section 4 we consider the
case where νk depends only on Pk−1|k−1 and our beliefs of
Pe,k−1|k−1 constructed from knowledge of previous νk’s. In
either case, the decisions do not depend on the state xk.
Thus the optimal remote estimator can be shown to have
the form

x̂k|k =

{
Ax̂k−1|k−1 , νkγk = 0

x̂s
k|k , νkγk = 1

Pk|k =

{
f(Pk−1|k−1) , νkγk = 0

P̄ , νkγk = 1

(4)

where
f(X) � AXAT +Q, (5)

Proceedings of the 20th IFAC World Congress
Toulouse, France, July 9-14, 2017

7611

while at the eavesdropper the estimator has the form

x̂e,k|k =

{
Ax̂e,k−1|k−1 , νkγe,k = 0

x̂s
k|k , νkγe,k = 1

Pe,k|k =

{
f(Pe,k−1|k−1) , νkγe,k = 0

P̄ , νkγe,k = 1

Define the countable set of matrices:

S � {P̄ , f(P̄ ), f2(P̄ ), . . . }, (6)

where fn(.) is the n-fold composition of f(.), with the
convention that f0(X) = X. The set S consists of all
possible values of Pk|k at the remote estimator, as well
as all possible values of Pe,k|k at the eavesdropper. There
is a total ordering on the elements of S given by (see e.g.
Shi and Zhang (2012))

P̄ ≤ f(P̄ ) ≤ f2(P̄ ) ≤ ...

3. EAVESDROPPER ERROR COVARIANCE KNOWN
AT REMOTE ESTIMATOR

In this section we consider the case where the transmis-
sion decisions νk can depend on the error covariances of
both the remote estimator Pk−1|k−1 and the eavesdropper
Pe,k−1|k−1. While knowledge of Pe,k−1|k−1 at the remote
estimator may be difficult to achieve in practice, this case
nevertheless serves as a useful benchmark on the achiev-
able performance.

3.1 Optimal Transmission Scheduling

Our approach to security in this paper is to minimize
the expected error covariance at the remote estimator
while trying to keep the expected error covariance at
the eavesdropper above a certain level. 2 To accomplish
this, we consider the following finite horizon (of horizon
K) problem which minimizes a linear combination of the
expected estimator error covariance and the negative of
the expected eavesdropper error covariance:

min
{νk}

K∑
k=1

E[βtrPk|k − (1− β)trPe,k|k]

= min
{νk}

K∑
k=1

E
[
E[βtrPk|k − (1− β)trPe,k|k

|P0,0, Pe,0|0, Ik−1, Ie,k−1, νk]
]

= min
{νk}

K∑
k=1

E
[
E[βtrPk|k − (1− β)trPe,k|k

|Pk−1,k−1, Pe,k−1,k−1, νk]
]

= min
{νk}

K∑
k=1

E
[
β(νkλtrP̄ + (1− νkλ)trf(Pk−1|k−1))

− (1− β)(νkλetrP̄ + (1− νkλe)trf(Pe,k−1|k−1))
]
,

(7)

for some β ∈ (0, 1). The second equality in (7) holds since
Pk−1|k−1 (similarly for Pe,k−1|k−1) is a deterministic func-
tion of P0|0 and Ik−1, and Pk|k is a function of Pk−1|k−1,

2 Similar notions have been used in Aysal and Barner (2008);
Reboredo et al. (2013); Guo et al. (2017b,a), which studied the
estimation of constant parameters or i.i.d sources in the presence
of an eavesdropper.

νk, and γk. The third equality in (7) comes from com-
puting the conditional expectations E[Pk|k|Pk−1|k−1, νk]
and E[Pe,k|k|Pe.k−1|k−1, νk]. The design parameter β in
problem (7) controls the tradeoff between estimation per-
formance at the remote estimator and the eavesdropper.
Problem (7) can be solved numerically using dynamic
programming. Define the functions Jk(·, ·) : S × S → R
recursively as:

JK+1(P, Pe) = 0

Jk(P, Pe) = min
ν∈{0,1}

{
β(νλtrP̄ + (1− νλ)trf(P ))

− (1− β)(νλetrP̄ + (1− νλe)trf(Pe))

+ νλλeJk+1(P̄ , P̄ ) + νλ(1− λe)Jk+1(P̄ , f(Pe))

+ ν(1− λ)λeJk+1(f(P ), P̄ )

+
(
ν(1− λ)(1− λe) + 1− ν

)
Jk+1(f(P ), f(Pe))

}

(8)

for k = K, . . . , 1. Then problem (7) is solved by computing
Jk(Pk−1|k−1, Pe,k−1|k−1) for k = K,K − 1, . . . , 1.

Remark 1. Note that problem (7) can be solved ex-
actly since, for any horizon K, the possible values of
(Pk|k, Pe,k|k) will lie in the finite set {P̄ , f(P̄ ), . . . , fK(P̄ )}×
{P̄ , f(P̄ ), . . . , fK(P̄ )}, which has cardinality (K + 1)2.

3.2 Structural Properties of Optimal Transmission Schedule

In this subsection we will prove some structural properties
on the optimal solution to problem (7). In particular, we
will show that 1) for a fixed Pe,k−1|k−1, the optimal policy
is to only transmit if Pk−1|k−1 exceeds a threshold (which
in general depends on k on Pe,k−1|k−1), and 2) for a fixed
Pk−1|k−1, the optimal policy is to transmit if and only
if Pe,k−1|k−1 is below a threshold (which depends on k
and Pk−1|k−1). Knowing that the optimal policies are of
threshold-type provides insight into the form of the opti-
mal solution, and can also provide computational savings
when solving problem (7) numerically, see Krishnamurthy
(2016).

Theorem 1. (i) For fixed Pe,k−1|k−1, the optimal solution
to problem (7) is a threshold policy on Pk−1|k−1 of the
form

ν∗k(Pk−1|k−1, Pe,k−1|k−1) =

{
0 , if Pk−1|k−1 ≤ P ∗

k

1 , otherwise

where the threshold P ∗
k ∈ S depends on k and Pe,k−1|k−1.

(ii) For fixed Pk−1|k−1, the optimal solution to problem
(7) is a threshold policy on Pe,k−1|k−1 of the form

ν∗k(Pk−1|k−1, Pe,k−1|k−1) =

{
0 , if Pe,k−1|k−1 ≥ P ∗

e,k

1 , otherwise

where the threshold P ∗
e,k ∈ S depends on k and Pk−1|k−1.

Proof Due to paper length restrictions, the proof is omit-
ted, but may be found in Leong et al. (2017b). �

Remark 2. The actual values of the thresholds P ∗
k and P ∗

e,k

in general needs to be found numerically.

3.3 Infinite Horizon

We now consider the infinite horizon situation. Let us first
give a condition on when E[Pk|k] will be bounded. If A
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is stable, this is always the case. In the case where A
is unstable, consider the policy with νk = 1, ∀k, which
transmits at every time instant, and is similar to the
situation where local state estimates are transmitted over
packet dropping links (Schenato (2008); Xu and Hespanha
(2005)). From the results of Xu and Hespanha (2005) and
Schenato (2008) we have that E[Pk|k] is bounded if and
only if

λ > 1− 1

|σmax(A)|2
, (9)

where |σmax(A)| is the largest magnitude of the eigenvalues
of A (i.e. the spectral radius of A). Thus condition (9)
will ensure the existence of policies which keep E[Pk|k]
bounded.

We will now show that for unstable systems, in the in-
finite horizon situation, there exists transmission policies
which can make the expected eavesdropper error covari-
ance unbounded while keeping the expected estimator
error covariance bounded. This can be achieved for all
probabilities of successful eavesdropping λe strictly less
than one.

Theorem 2. Suppose that A is unstable, and that λ >
1 − 1

|σmax(A)|2 . Then for any λe < 1, there exist

transmission policies in the infinite horizon situation

such that lim supK→∞
1
K

∑K
k=1 trE[Pk|k] is bounded and

lim infK→∞
1
K

∑K
k=1 trE[Pe,k|k] is unbounded.

Proof The proof is by construction of a policy with the
required properties. Consider the threshold policy which
transmits at time k if and only if Pk−1|k−1 ≥ f t(P̄ ) for

some t ∈ N. Since λ > 1 − 1
|σmax(A)|2 , one can show using

results from Section IV-C of Leong et al. (2017a) that

limK→∞
1
K

∑K
k=1 trE[Pk|k] < ∞ for any t ∈ N.

Now choose a horizon K > t. Consider the event ω where
each transmission is successfully received at the remote es-
timator, and unsuccessfully received by the eavesdropper.
Using an argument similar to Shi et al. (2005), we will show
that the contribution of this event ω will already cause the
expected eavesdropper covariance to become unbounded.
Under this event, and using the threshold policy above, the
number of transmissions that occur over the horizon K is
�K/(t + 1)�, and the eavesdropper error covariances are
given by Pe,k|k = fk(P̄ ), k = 1, . . . ,K. The probability of

this event occurring is (λ(1− λe))
�K/(t+1)�. Let ωc denote

the complement of ω. Then we have

1

K

K∑
k=1

trE[Pe,k|k]

=
1

K

K∑
k=1

trE[Pe,k|k|ω]×P(ω) +
1

K

K∑
k=1

trE[Pe,k|k|ωc]×P(ωc)

>
1

K

K∑
k=1

trE[Pe,k|k|ω]P(ω)

=
1

K

K∑
k=1

tr
(
AkP̄ (Ak)T +

k−1∑
m=0

AmQ(Am)T
)

× (λ(1− λe))
�K/(t+1)�

>
1

K
tr(AK P̄ (AK)T )(λ(1− λe))

K/(t+1)

→ ∞ as K → ∞,

where the last line holds if |σmax(A)|(λ(1− λe))
1/2(t+1) >

1, or equivalently if

λe < 1− 1

λ|σmax(A)|2(t+1)
. (10)

Since |σmax(A)| > 1, the condition (10) will be sat-
isfied for any λe < 1 when t is sufficiently large. As
1
K

∑K
k=1 trE[Pk|k] remains bounded for every t ∈ N, the

result follows. �

In summary, the threshold policy which transmits at time
k if and only if Pk−1|k−1 ≥ f t(P̄ ), with t large enough
that condition (10) is satisfied, will have the required
properties.

Remark 3. In a similar setup but transmitting measure-
ments and without using feedback acknowledgements,
mechanisms were derived in Tsiamis et al. (2016) for mak-
ing the expected eavesdropper error covariance unbounded
while keeping the expected estimation error covariance
bounded, under the more restrictive condition that λe < λ.
In a different context with coding over uncertain wiretap
channels, it was shown in Wiese et al. (2016) that for
unstable systems one can keep the estimation error at the
legitimate receiver bounded while the eavesdropper esti-
mation error becomes unbounded for a sufficiently large
coding block length.

4. EAVESDROPPER ERROR COVARIANCE
UNKNOWN AT REMOTE ESTIMATOR

In order to construct Pe,k|k at the remote estimator, the
process {γe,k} for the eavesdropper’s channel needs to be
known, which in practice may be difficult to achieve. In
this section, we consider the situation where the remote
estimator knows only the probability of successful eaves-
dropping λe and not the actual realizations γe,k. Thus the
transmit decisions νk can only depend on Pk−1|k−1, and
on our beliefs of Pe,k−1|k−1 constructed from knowledge
of previous νk’s. We will first derive the recursion for the
conditional distribution of error covariances at the remote
estimator (i.e. the “belief states”), and then consider the
optimal transmission scheduling problem.

4.1 Conditional Distribution of Error Covariances at
Eavesdropper

Define

πe,k =




π
(0)
e,k

π
(1)
e,k
...

π
(K)
e,k



�




P
(
Pe,k|k = P̄ |ν0, . . . , νk

)
P
(
Pe,k|k = f(P̄ )|ν0, . . . , νk

)
...

P
(
Pe,k|k = fK(P̄ )|ν0, . . . , νk

)




We note that π
(K)
e,k � P

(
Pe,k|k = fK(P̄ )|ν0, . . . , νk

)
= 0 for

k < K. Denote the set of all possible πe,k’s by Πe ⊆ RK+1.

The vector πe,k represents our beliefs on Pe,k|k given
the transmission decisions ν0, . . . , νk. We want to de-
rive a recursive relationship between πe,k+1 and πe,k

given the next transmission decision νk+1. When νk+1 =
0, then Pe,k+1|k+1 = f(Pe,k|k), and thus πe,k+1 =
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is stable, this is always the case. In the case where A
is unstable, consider the policy with νk = 1, ∀k, which
transmits at every time instant, and is similar to the
situation where local state estimates are transmitted over
packet dropping links (Schenato (2008); Xu and Hespanha
(2005)). From the results of Xu and Hespanha (2005) and
Schenato (2008) we have that E[Pk|k] is bounded if and
only if

λ > 1− 1

|σmax(A)|2
, (9)

where |σmax(A)| is the largest magnitude of the eigenvalues
of A (i.e. the spectral radius of A). Thus condition (9)
will ensure the existence of policies which keep E[Pk|k]
bounded.

We will now show that for unstable systems, in the in-
finite horizon situation, there exists transmission policies
which can make the expected eavesdropper error covari-
ance unbounded while keeping the expected estimator
error covariance bounded. This can be achieved for all
probabilities of successful eavesdropping λe strictly less
than one.

Theorem 2. Suppose that A is unstable, and that λ >
1 − 1

|σmax(A)|2 . Then for any λe < 1, there exist

transmission policies in the infinite horizon situation

such that lim supK→∞
1
K

∑K
k=1 trE[Pk|k] is bounded and

lim infK→∞
1
K

∑K
k=1 trE[Pe,k|k] is unbounded.

Proof The proof is by construction of a policy with the
required properties. Consider the threshold policy which
transmits at time k if and only if Pk−1|k−1 ≥ f t(P̄ ) for

some t ∈ N. Since λ > 1 − 1
|σmax(A)|2 , one can show using

results from Section IV-C of Leong et al. (2017a) that

limK→∞
1
K

∑K
k=1 trE[Pk|k] < ∞ for any t ∈ N.

Now choose a horizon K > t. Consider the event ω where
each transmission is successfully received at the remote es-
timator, and unsuccessfully received by the eavesdropper.
Using an argument similar to Shi et al. (2005), we will show
that the contribution of this event ω will already cause the
expected eavesdropper covariance to become unbounded.
Under this event, and using the threshold policy above, the
number of transmissions that occur over the horizon K is
�K/(t + 1)�, and the eavesdropper error covariances are
given by Pe,k|k = fk(P̄ ), k = 1, . . . ,K. The probability of

this event occurring is (λ(1− λe))
�K/(t+1)�. Let ωc denote

the complement of ω. Then we have

1

K

K∑
k=1

trE[Pe,k|k]

=
1

K

K∑
k=1

trE[Pe,k|k|ω]×P(ω) +
1

K

K∑
k=1

trE[Pe,k|k|ωc]×P(ωc)

>
1

K

K∑
k=1

trE[Pe,k|k|ω]P(ω)

=
1

K

K∑
k=1

tr
(
AkP̄ (Ak)T +

k−1∑
m=0

AmQ(Am)T
)

× (λ(1− λe))
�K/(t+1)�

>
1

K
tr(AK P̄ (AK)T )(λ(1− λe))

K/(t+1)

→ ∞ as K → ∞,

where the last line holds if |σmax(A)|(λ(1− λe))
1/2(t+1) >

1, or equivalently if

λe < 1− 1

λ|σmax(A)|2(t+1)
. (10)

Since |σmax(A)| > 1, the condition (10) will be sat-
isfied for any λe < 1 when t is sufficiently large. As
1
K

∑K
k=1 trE[Pk|k] remains bounded for every t ∈ N, the

result follows. �

In summary, the threshold policy which transmits at time
k if and only if Pk−1|k−1 ≥ f t(P̄ ), with t large enough
that condition (10) is satisfied, will have the required
properties.

Remark 3. In a similar setup but transmitting measure-
ments and without using feedback acknowledgements,
mechanisms were derived in Tsiamis et al. (2016) for mak-
ing the expected eavesdropper error covariance unbounded
while keeping the expected estimation error covariance
bounded, under the more restrictive condition that λe < λ.
In a different context with coding over uncertain wiretap
channels, it was shown in Wiese et al. (2016) that for
unstable systems one can keep the estimation error at the
legitimate receiver bounded while the eavesdropper esti-
mation error becomes unbounded for a sufficiently large
coding block length.

4. EAVESDROPPER ERROR COVARIANCE
UNKNOWN AT REMOTE ESTIMATOR

In order to construct Pe,k|k at the remote estimator, the
process {γe,k} for the eavesdropper’s channel needs to be
known, which in practice may be difficult to achieve. In
this section, we consider the situation where the remote
estimator knows only the probability of successful eaves-
dropping λe and not the actual realizations γe,k. Thus the
transmit decisions νk can only depend on Pk−1|k−1, and
on our beliefs of Pe,k−1|k−1 constructed from knowledge
of previous νk’s. We will first derive the recursion for the
conditional distribution of error covariances at the remote
estimator (i.e. the “belief states”), and then consider the
optimal transmission scheduling problem.

4.1 Conditional Distribution of Error Covariances at
Eavesdropper

Define

πe,k =




π
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π
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
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)
...

P
(
Pe,k|k = fK(P̄ )|ν0, . . . , νk

)




We note that π
(K)
e,k � P

(
Pe,k|k = fK(P̄ )|ν0, . . . , νk

)
= 0 for

k < K. Denote the set of all possible πe,k’s by Πe ⊆ RK+1.

The vector πe,k represents our beliefs on Pe,k|k given
the transmission decisions ν0, . . . , νk. We want to de-
rive a recursive relationship between πe,k+1 and πe,k

given the next transmission decision νk+1. When νk+1 =
0, then Pe,k+1|k+1 = f(Pe,k|k), and thus πe,k+1 =
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[
0 π

(0)
e,k . . . π

(K−1)
e,k

]T
. When νk+1 = 1, then Pe,k+1|k+1 =

P̄ with probability λe and Pe,k+1|k+1 = f(Pe,k|k) with
probability 1− λe, and thus

πe,k+1 =
[
λe (1− λe)π

(0)
e,k . . . (1− λe)π

(K−1)
e,k

]T
.

Hence, defining

Φ(πe, ν)

�

{ [
0 π(0)

e . . . π(K−1)
e

]T
, ν = 0[

λe (1− λe)π
(0)
e . . . (1− λe)π

(K−1)
e

]T
, ν = 1

we obtain the recursive relationship

πe,k+1 = Φ(πe,k, νk+1).

4.2 Optimal Transmission Scheduling

We again wish to minimize a linear combination of the
expected error covariance at the remote estimator and the
negative of the expected error covariance at the eavesdrop-
per. Since Pe,k−1|k−1 is not available, the optimization
problem will now be formulated as a partially observed
problem with νk dependent on (Pk−1|k−1, πe,k−1). We then
have the following problem (c.f. (7)):

min
{νk}

K∑
k=1

E
[
β(νkλtrP̄ + (1− νkλ)trf(Pk−1|k−1))

− (1− β)
(
νkλetrP̄ + (1− νkλe)

K∑
i=0

trf i+1(P̄ )π
(i)
e,k−1

)]
.

(11)

4.3 Structural Properties

The following result can be proved using similar techniques
as in the proof of Theorem 1.

Theorem 3. For fixed πe,k−1, the optimal ν∗k to problem
(11) is a threshold policy on Pk−1|k−1 of the form

ν∗k(Pk−1|k−1, πe,k−1) =

{
0 , Pk−1|k−1 ≤ P ∗

k

1 , otherwise

where the threshold P ∗
k ∈ S depends on k and πe,k−1.

4.4 Infinite Horizon

In the infinite horizon situation, we note that Theorem 2
will still hold, as the threshold policy constructed in the
proof does not require knowledge of the eavesdropper error
covariances.

5. NUMERICAL STUDIES

We consider an example with parameters

A =

[
1.2 0.2
0.3 0.8

]
, C = [ 1 1 ] , Q = I, R = 1.

The steady state error covariance P̄ is easily computed as

P̄ =

[
1.3411 −0.8244

−0.8244 1.0919

]
.

The packet reception probability is chosen to be λ = 0.6,
and the eavesdropping probability λe = 0.6.

n
0 1 2 3 4 5 6 7 8 9

n
e

0

1

2

3

4

5

6

7

8

9
ν

k
* =1

Fig. 2. ν∗k for different values of Pk−1|k−1 = fn(P̄ ) and

Pe,k−1|k−1 = fne(P̄ ), at time k = 4.

n
0 1 2 3 4 5 6 7 8 9

n
e
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1
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7

8

9
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k
* =1

Fig. 3. ν∗k for different values of Pk−1|k−1 = fn(P̄ ) and

Pe,k−1|k−1 = fne(P̄ ), at time k = 6.

5.1 Finite Horizon

We will here solve the finite horizon problems (7) and
(11) with K = 10. For problem (7), using the design
parameter β = 0.7, Fig. 2 plots ν∗k for different values
of Pk−1|k−1 = fn(P̄ ) and Pe,k−1|k−1 = fne(P̄ ), at the
time step k = 4. Fig. 3 plots ν∗k at the time step k = 6.
We observe a threshold behaviour in both Pk−1|k−1 and
Pe,k−1|k−1, with the thresholds also dependent on the time
k, in agreement with Theorem 1.

Next, we consider the performance as β is varied, both
when the eavesdropper error covariance is known and un-
known. Fig. 4 plots the trace of the expected error covari-
ance at the estimator trE[Pk|k] vs. the trace of the expected
error covariance at the eavesdropper trE[Pe,k|k] for various
different values of β, with trE[Pk|k] and trE[Pe,k|k] each ob-
tained by averaging over 100000 Monte Carlo runs. We see
that by varying β we obtain a tradeoff between trE[Pk|k]
and trE[Pe,k|k], with the performance being better when
the eavesdropper error covariance is known.

5.2 Infinite Horizon

We next present results for the infinite horizon situation.
Table 1 tabulates some values of trE[Pk|k] and trE[Pe,k|k],
obtained by taking the time average of a Monte Carlo run
of length 1000000, using the threshold policy in the proof
of Theorem 2 which transmits at time k if and only if
Pk−1|k−1 ≥ f t(P̄ ). In the case λ = 0.6, λe = 0.6, condition
(10) for unboundedness of the expected eavesdropper
covariance is satisfied when t ≥ 2, and in the case λ = 0.6,
λe = 0.8 (where the eavesdropping probability is higher
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Fig. 4. Expected error covariance at estimator vs expected
error covariance at eavesdropper. Finite horizon.

Table 1. Expected error covariance at estima-
tor vs expected error covariance at eavesdrop-

per. Infinite horizon.

λ = 0.6, λe = 0.6 λ = 0.6, λe = 0.8

t trE[Pk|k] trE[Pe,k|k] trE[Pk|k] trE[Pe,k|k]

1 5.59 19.49 5.32 4.66

2 7.53 523.06 7.60 14.05

3 10.76 2.82× 105 10.67 136.06

4 15.36 1.21× 108 15.59 2.14× 103

5 23.57 1.19× 1010 23.34 1.72× 105

6 35.07 3.68× 1013 35.04 6.83× 106

than the packet reception probability), condition (10) is
satisfied for t ≥ 3. We see that in both cases, by using
a sufficiently large t, one can make the expected error
covariance of the eavesdropper very large, while keeping
the expected error covariance at the estimator bounded.

6. CONCLUSION

In this paper we have studied the scheduling of sensor
transmissions for remote state estimation, where each
transmission can be overheard by an eavesdropper with
a certain probability. The scheduling is done by solving
an optimization problem that minimizes a combination of
the expected error covariance at the remote estimator and
the negative of the expected error covariance at the eaves-
dropper. We have derived structural results on the op-
timal transmission scheduling which show a thresholding
behaviour in the optimal policies. In the infinite horizon
situation, we have also shown that with unstable systems
one can keep the expected estimation error covariance
bounded while the expected eavesdropper error covariance
becomes unbounded.
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