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Abstract—This paper characterizes the capacity region of
Gaussian MIMO broadcast channels (BCs) with per-antenna
power constraint (PAPC). While the capacity region of MIMO
BCs with a sum power constraint (SPC) was extensively studied,
that under PAPC has received less attention. A reason is that
efficient solutions for this problem are hard to find. The goal
of this paper is to devise an efficient algorithm for determining
the capacity region of Gaussian MIMO BCs subject to PAPC,
which is scalable to the problem size. To this end, we first
transform the weighted sum capacity maximization problem,
which is inherently nonconvex with the input covariance matrices,
into a convex formulation in the dual multiple access channel
by minimax duality. Then we derive a computationally efficient
algorithm combining the concept of alternating optimization
and successive convex approximation. The proposed algorithm
achieves much lower complexity compared to an existing interior-
point method. Moreover, numerical results demonstrate that the
proposed algorithm converges very fast under various scenarios.

Index Terms—MIMO, minimax duality, dirty paper coding,
alternating optimization, successive convex optimization.

I. INTRODUCTION

Since its invention in the mid-90s [1], [2], multiple-input
multiple-output (MIMO) technology has been adopted in all
modern mobile wireless networks. From a system design
perspective, one of the most fundamental problems is to
compute the capacity of the system of interest. For a single
user MIMO (SU-MIMO) channel, pioneer studies proved that
the capacity can be achieved by Gaussian input signaling [1],
[2]. For multiuser MIMO scenarios, the seminal work of [3]
showed that dirty-paper coding (DPC) in fact achieves the
entire capacity region of Gaussian MIMO broadcast channels
(BCs). The particular case of the sum capacity of MIMO BCs
was studied in several pioneer studies including [3]–[7],

The capacity of MIMO systems is investigated along with
a certain type of constraint on the input covariance matrices.
In this regard, we remark that all papers mentioned above
assume a sum power constraint (SPC), and this usually leads
to efficiently computational algorithms. For the sum-capacity
computation, Viswanathan et al. [8] applied a steepest descend
method, while Yu [9] proposed a dual decomposition-based
algorithm. In this line of research, Jindal et al. presented a sum
power iterative water-filling algorithm by exploiting the MAC-
BC duality. The entire capacity region of MIMO BCs with a
SPC was characterized in [10], [11], using conjugate gradient

projection (CGP)- and pre-conditioned gradient projection-
based approaches.

While SPC has been widely considered, it is less appealing
in reality due to the fact that each antenna is usually equipped
with a different power amplifier, which has its own power
budget. Despite its practical and fundamental importance,
the research on efficient methods for computing the capacity
region of Gaussian MIMO BCs has been quite limited. For
SU-MIMO, this problem was solved in [12], [13] by the so-
called mode-dropping algorithm. In [3], it was shown that DPC
still achieves the full capacity region of the MIMO BC under
PAPC. However, finding the DPC region with PAPC is more
numerically difficult than with a SPC. In fact, no closed-form
design has been reported for the computation of the capacity
region of the MIMO BC subject to PAPC. To the best of
our knowledge, the only attempt to characterize the entire
capacity region of the MIMO BC subject to PAPC was made
in [14]. Specifically, the authors in [14] established a modified
duality between the MAC and BC and transformed the input
optimization problem in the BC into a minimax optimization
problem in the dual MAC. Then resulting program is solved
by a standard barrier interior-point routine. Thus, as a common
property for the class of second order optimization methods,
the algorithm proposed in [14] has computational complexity
that does not favor large-scale antenna systems which are
envisioned in next wireless communications generations.

In this paper, we determine the capacity region of MIMO
BCs under PAPC. In particular, the problem of interest is also
known as weighted sum rate maximization (WSRMax) for
MIMO BCs. As mentioned earlier, the capacity region can
be achieved by DPC, but the resulting WSRMax problem
is nonconvex. As a standard step, we apply the minimax
duality presented in [14] to transform the WSRMax prob-
lem into a minimax program. However, unlike [14] which
solves the resulting minimax problem by a barrier interior-
point method, we take advantage of the problem specifics
to propose an efficient algorithm that blends the concept of
alternating optimization (AO) and successive convex approx-
imation (SCA). Especially, in each iteration of the proposed
algorithm, closed-form expressions based on conjugate gra-
dient projection (CGP) method are derived. As a result, the
complexity of the proposed algorithm is much lower than that
of the barrier method in [14], and scales linearly with the
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number of users in the system, making it particularly suitable
for large-scale networks. Numerical experiments are carried
out to demonstrate that the proposed algorithm can converge
rapidly, especially for networks of high signal-to-noise ratio,
and the number of iterations required for convergence is quite
insensitive to the number of users.

The remainder of the paper is organized as follows. The
system model is described in Section II followed by the
proposed algorithm in Section III. Section IV provides the
complexity analysis of the proposed algorithm while Section V
presents the numerical results. Finally, we conclude the paper
in Section VI.

Notation: Standard notations are used in this paper. Bold
lower and upper case letters represent vectors and matrices,
respectively. I defines an identity matrix, of which the size
can be easily inferred from the context; CM×N denotes the
space of M×N complex matrices; H† and HT are Hermitian
and normal transpose of H, respectively; Hi,j is the (i, j)th
entry of H; |H| is the determinant of H; rank(H) stands
for the rank of H; diag(x) denotes the diagonal matrix with
diagonal elements being x.

II. SYSTEM MODEL

Consider a K-user MIMO BC where the base station and
each user have N and Mk antennas, respectively. The channel
matrix for user k is denoted by Hk. Let s be the composite
signal that combines the data for all users in the downlink.
Then, the received signal at user k is expressed as

yk = Hks+ zk (1)

where zk is the Gaussian noise with distribution CN (0, IM ).
When DPC is applied to achieve the capacity region, for a
given user k, the interference caused by users j < k is
completely canceled without affecting the optimality. As a
result, the WSRMax under PAPC is formulated as

maximize
{Sk≽0}

∑K
k=1 wk log |

|I+Hk

∑k
i=1 SiH

†
k|

|I+Hk

∑k−1
i=1 SiH

†
k|

subject to
∑K

k=1[Sk]i,i ≤ Pi, ∀i
(2)

where Sk is the input covariance matrix for the kth user, Pi is
the power constraint on antenna i, and wk is the weighting
factor assigned to user k. Without loss of optimality, we
assume that 0 < w1 ≤ w2 ≤ ... ≤ wK and

∑K
k=1 wk = 1

in the following. Since (2) is a nonconvex problem, solving
it directly is not a good option. However, we can exploit the
MAC-BC duality to transform (2) into minimax program in
the dual MAC which can be solved efficiently by the novel
AO as presented in the next section.

III. PROPOSED SOLUTION

Applying the modified MAC-BC duality introduced in [15],
we can equivalently rewrite (2) as the following minimax

optimization problem

min
Q≽0

max
{S̄k≽0}

∑K
k=1 ∆k log |Q+

∑K
i=k H

†
i S̄iHi|

−wK log |Q|
subject to

∑K
k=1 tr(S̄k) = P,

tr(QP) = P,Q : diagonal

(3)

where ∆k = wk − wk−1 ≥ 0, P ,
∑N

i=1 Pi; {S̄k} and
Q are input covariance and noise covariance matrices in the
dual MAC, respectively. As shown in [15], the objective in
(3) is convex with Q ≽ 0 and concave with {S̄k ≽ 0}. Thus,
there exists a saddle point for (3), which also solves (2). The
minimax formulation in (3) also suggests a way to find {S̄k}
and Q by AO. However, a pure AO algorithm is not guaranteed
to converge. In fact, a counterexample was already given in
[16]. In what follows, we propose an iterative algorithm based
on combining AO and SCA, of which convergence can be
proved.

Let ({S̄n
k},Qn) denote the obtained values of ({S̄k},Q)

after n iterations of the proposed iterative algorithm. Then,
in the next iteration, S̄n+1 is the solution to the following
problem

maximize
{S̄k≽0}

∑K
k=1 ∆k log |Qn +

∑K
i=k H

†
i S̄iHi|

subject to
∑K

k=1 tr(S̄k) = P.
(4)

The above maneuver is nothing but a standard routine of
optimizing {S̄k} when Q is held fixed. Problem (4) can be
solved by off-the-shelf interior-point convex solvers but the
complexity is not affordable for large-scale systems. In our
numerical experiments, all of known (free and commercial)
solvers fail to solve (4) on a relatively powerful desktop PC for
N ≥ 100, regardless of the number of users. That is, interior-
point methods are not an efficient approach to solving (4) for
massive MIMO techniques which are likely to be adopted in
5G systems. To overcome this shortcoming, we now present
an efficient method to solve (4) based on the CGP framework.
To proceed, let S = {S̄k|S̄k ≻ 0,

∑K
k=1 tr(S̄k) = P} be the

feasible set of (4). The main operation of a CGP method is
to project a given {S̃k} onto S. Our motivation is that the
projection of {S̃k} onto S can be reduced to a projection
of a resulting vector onto a canonical simplex, which can be
computed efficiently.

The projection of {S̃k} onto the feasible set S is formulated
as

minimize
{Ṡk≽0}

∑K
k=1 ||Ṡk − S̃k||2F

subject to
∑K

k=1 tr(Ṡk) = P.
(5)

Let UkD̃kU
†
k = S̃k be the EVD of S̃k, where Uk is unitary

and D̃k is diagonal. Then we can write Ṡk = UkḊkU
†
k for

some Ḋk ≽ 0. Since Uk is unitary, it holds that tr(Ṡk) =
tr(Ḋk) and that ||Ṡk − S̃k||F = ||Ḋk − D̃k||F . That is to say,
(5) is equivalent to

minimize
{Ḋk≽0}

∑K
k=1 ||Ḋk − D̃k||2F

subject to
∑K

k=1 tr(Ḋk) = P.
(6)



It is easy to see that Ḋk must be diagonal to minimize the
objective of (6). Next let d̄k = diag(Ḋk), d̃k = diag(D̃k),
d̄ = [d̄T

1 , d̄
T
2 , . . . , d̄

T
K ]T , and d̃ = [d̃T

1 , d̃
T
2 , . . . , d̃

T
K ]T . Then

(6) can be reduced to

minimize
d̄≥0

1
2 ||d̄− d̃||22

subject to 1M̃ d̄ = P
(7)

where M̃ =
∑K

1 Mk. It is now clear that (7) is the projection
onto a canonical simplex and efficient algorithms (similar to
water-filling algorithms) can be found in [17]. The complete
description of the proposed CGP method for solving (4) is
provided in Algorithm 1. We note that similar approaches were
also presented in [10], [11].

Algorithm 1: The proposed CGP algorithm for solving
(4).
Input: P , ϵ > 0

1 Initialization: τ = 1 + ϵ, m = 0, {S̄0
k} ∈ S.

2 while (τ > ϵ) do
3 Calculate the conjugate gradient G̃m

k .
4 Choose an appropriate positive scalar sm and create

S̃m = S̄m
k + smG̃m

k .
5 Project S̃m

k onto S to obtain Ṡm
k .

6 Choose appropriate step size αm and set
S̄m+1
k = S̄m

k + αm(Ṡm
k − S̄m

k ).
7 τ = | tr(∇f(S̄m

k )†(S̄m+1
k − S̄m

k ))|.
8 m := m+ 1.
9 end

Output: S̄k as the optimal solution to (4).

Another main step of a CGP method is the computation of
the conjugated gradient of the objective, as required in line 3
of Algorithm 1. The conjugate gradient, denoted as G̃m

k , can
be calculated as follows. First, we compute the gradient of the
objective in (4) as

∇f(S̄k) = −Hk

k∑
j=1

∆j

(
Q+

K∑
i=j

H†
i S̄iHi

)−1

H†
k. (8)

Then the conjugate gradient direction is given by

G̃m
k = −∇f(S̄m

k ) + βmG̃m−1
k (9)

where the parameter βm is the Fletcher choice of deflection
[18]

βm =

{
0 m = 0

−||∇f(S̄m
k )||2

tr((G̃m−1
k )†∇f(S̄m−1

k ))
m ≥ 1

(10)

For the step size in line 6 of Algorithm 1, we perform an
Armijo line search [19] to determine appropriate value.

For the importance case of the sum capacity of the MIMO
BC, we note that more efficient approaches to solving (4) do
exist. In fact, in this case (4) becomes

maximize
{S̄k≽0}

log |Qn +
∑K

i=1 H
†
i S̄iHi|

subject to
∑K

k=1 tr(S̄k) = P.
(11)

We remark that (11) is equivalent to the problem of finding
the sum-capacity of a MAC with a SPC for which the sum
power iterative water-filling proposed in [20] or the dual de-
composition method in [9] have been shown to be particularly
computationally efficient.

We now turn our attention to the problem of finding Qn+1.
If a pure AO method is followed, we arrive at the optimization
problem below:

minimize
Q≽0

∑K
k=1 ∆k log |Q+

∑K
i=k H

†
i S̄iHi|

−wK log |Q|
subject to tr(QP) = P

(12)

However, as mentioned in [14] and also observed in [16], the
convergence of such a naive AO method is not guaranteed.
The novelty of our proposed AO algorithm is that, instead
of optimizing the original objective in (12) which can lead
to fluctuations, we opt to minimize an upper bound of the
objective in (12). This is in light of the SCA principle, and will
lead to a monotonic convergence as shown in the Appendix.
To this end, by invoking the concavity of logdet function, we
have the following inequality

log |Q+
∑K

i=k H
†
i S̄

n+1
i Hi| ≤ log |Φn

k |+tr
(
Φ−n

k

(
Q−Qn

))
(13)

where Φn
k = Q +

∑K
i=k H

†
i S̄

n+1
i Hi,Φ

−n
k , (Φn

k )
−1. Thus,

using the above upper bound, Qn+1 is found to be the optimal
solution to the following problem

minimize
Q≽0

∑K
k=1

∆k

wK
tr
(
Φ−n

k Q
)
− log |Q|

subject to tr(QP) = P.
(14)

Since Q in (14) is diagonal, i.e., Q = diag(q), we can rewrite
(14) as

minimize
q>0

∑N
i=1

∑K
k=1 ϕ

n
kiqi − log qi

subject to
∑N

i=1 Piqi = P,
(15)

where ϕn
ki =

[
∆k

wK
Φ−n

k

]
i,i

, i.e., ϕn
ki is the ith diagonal element

of ∆k

wK
Φ−n

k . By setting the derivative of Lagrangian function
of (15) to zero, we obtain

qi =
1∑K

k=1 ϕ
n
ki + γPi

(16)

where γ ≥ 0 is the solution of the equation
N∑
i=1

Pi∑K
k=1 ϕ

n
ki + γPi

= P. (17)

Denote g(γ) =
∑N

i=1
Pi∑K

k=1 ϕn
ki+γPi

− P . It’s easy to see that

g(γ) is decreasing with γ. When γ = 0, since
∑K

k=1 ϕ
n
ki ≤

q−1
i we have

N∑
i=1

Pi∑K
k=1 ϕ

n
ki

≥
N∑
i=1

Piqi = P. (18)

Therefore, (17) always has a unique solution, which can found
efficiently, e.g., by the bisection or Newton method. The pro-
posed algorithm based on AO is summarized in Algorithm 2.



The main point of Algorithm 2 is to eliminate the possible
ping-pong effect of the obtained objective by the use of the
inequality in (13). The convergence proof of Algorithm 2 is
provided in the Appendix.

Algorithm 2: Proposed algorithm for the computation of
the capacity region of a MIMO BC based on AO.
Input: Q := Q0 diagonal matrix of positive elements,

ϵ > 0
1 Initialization: Set n := 0 and τ = 1 + ϵ.
2 while (τ > ϵ) do
3 Solve (4) and denote the optimal solution by {S̄n+1

k }
4 For each k, compute

Φ−n
k = (Qn +

∑K
i=k H

†
i S̄

n+1
i Hi)

−1.
5 Solve (14) to find Qn+1.
6 Set τ = |fDPC(Qn+1, S̄n+1)− fDPC(Qn, S̄n)|, where

fDPC(·) denotes the objective in (3).
7 n := n+ 1.
8 end

Output: Use the obtained {S̄n
k}Kk=1 and the BC-MAC

transformation in [5] to find the optimal
solution to (2).

IV. COMPLEXITY ANALYSIS

In this section, we analyze the complexity estimation of
the proposed algorithm in terms of the number of flops.
The results of flop counting for typical matrix operations
such as EVD, matrix inversion are taken from [21] and
[22]. Moreover,we treat every complex operation as 6 real
flops as considered in [22], [23]. In the complexity analysis
presented below, we only consider the main operations of high
complexity in the overall complexity.

A. Complexity of Algorithm 2

Algorithm 2 has two key procedures, one for finding {S̄k}
and one for finding Q. Of all steps in Algorithm 1, the
computation of the conjugate gradient direction given in (8)
has the largest computation cost. Similarly, the complexity for
finding Q is mostly due to the computation of Φ−n

k defined in
(13). Therefore, the per-iteration complexity of Algorithm 2 is
O(KN3). That is, the complexity of the proposed algorithm
increases linearly with the number of users.

B. Complexity of the Barrier Interior-Point Method in [14]

The method presented in [14] is based on solving the
KKT condition for (3). To find the gradient w.r.t each input
covariance matrix for the logdet function, the complexity is
6N3. Then, to find a Newton direction, this algorithm still
needs to solve a linear system of M(M + 1)/2 unknowns,
which requires 6(KM(M+1)

2 + 3N)3 flops.1 In total, the per-
iteration complexity is O(K2N3 +K3M6).

The complexity comparison is summarized in Table I. We
remark that the complexity of Algorithm 2 increases linearly

1Here we assume Mk = M for all k to simplify the notation.

TABLE I
PER-ITERATION COMPLEXITY COMPARISON

Algorithms Per-iteration complexity

Algorithm 2 O(KN3)
Barrier interior-point method [14] O(K2N3 +K3M6)

with the number of users K, which was also achieved in [20]
for the sum-capacity with SPC. Thus, Algorithm 2 scales much
better than the barrier interior-point method in [14] with the
number of users.

V. NUMERICAL RESULTS

This section provides numerical results to verify the pro-
posed algorithm. If not otherwise mentioned, the number of
transmit antennas at the BS is set to N = 5 and the number
of receive antennas at each user is set to Mk = 2 for all k..
The total power P is varied from a low value to a high one to
investigate the convergence rate of the proposed algorithm.The
power constraint for each transmit antenna is set equally. The
initial value Q0 in the proposed algorithm is set to the identity
matrix. An error tolerance of ϵ = 10−6 is selected as the
stopping criterion for the proposed algorithm.

In the first simulation, we plot the convergence of the
proposed algorithm for different value of the total transmit
power for a set of randomly generated channel realizations. As
can be seen, Fig. 1 shows that the convergence of the proposed
algorithm is strictly monotonic as proved in the Appendix.
An interesting observation is that the number of iterations
decreases when the total power increases.

As mentioned in the complexity analysis, the proposed algo-
rithm has a desirable property, i.e., the per-iteration complexity
increases linearly with the number of users K. This is an
attractive property in the system of a large number of users
which is usually the case for a massive MIMO setup. However,
it is difficult, if not impossible, to analyze the convergence rate
of the proposed algorithm with K by analytical expressions.
Instead, we study the convergence property of the proposed
algorithm with K by numerical experiments. For the purpose,
we plot in Fig. 2 the average number of iterations required
by the proposed algorithm to converge. As can be seen, the
number of iterations for the proposed algorithm to converge is
relatively insensitive to K . It is worth noting that for similar
setups, the interior-point method in [14] requires at least 60
iterations to converge, while the proposed algorithm only takes
4 iterations even in the case of 50 users. This promising
characteristic of the proposed algorithm makes it suitable for
studying the capacity region of massive MIMO systems where
the number of transmit antennas and/or the number of users
can be very large. This point will be further elaborated in the
next numerical experiment.

Taking the advantage that the proposed algorithm has low
complexity, in the last numerical experiment we characterize
the capacity region of a massive MIMO system with PAPC. In
particular, we also consider achievable rate region of the well-
known ZF scheme [24], [25]. The purpose is to understand
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the performance of ZF (which is thought to be sub-optimal) in
comparison with the capacity achieving coding scheme under
some realistic channel models. To this end we consider a
simple urban scenario using WINNER II B1 channel model
[26], where a base station, equipped with N = 128 antennas,
is located at the center of the cell and single-antenna receivers
are distributed randomly. The total power at the BS is P = 46
dBm and each antenna is subject to equal power constraint,
i.e., Pi = P/N for i = 1, 2, . . . , 128. As can be seen clearly
in Fig. 3, there is a remarkable gap between the achievable
rate region of ZF and the capacity region, especially when
the number of users increases. This basically implies that ZF
is still far from optimal for a practical number of transmit
antennas. Our observation opens research opportunities in the
future to strike the balance between optimal performance by
DPC and low-complexity by ZF.

VI. CONCLUSIONS

In this paper, we have considered the problem of computing
the capacity region of Gaussian MIMO BCs subject to PAPC.
Towards this end, the problem of WSRMax with PAPC has
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Fig. 3. Comparison of capacity region of a massive MIMO setup with N =
128 and Mk = 1 for all k. For the case K = 8 users, the capacity region is
projected on the first two users.

been solved by a low-complexity algorithm. We have first con-
verted the noncovex problem of MIMO BC into an equivalent
minimax problem in the corresponding dual MAC. Then a
novel AO algoithm has been proposed to solve the resulting
mimimax program in combination with the successive convex
optimization principle. In particular, all the computation in
the proposed algorithm is based on closed-form expressions.
In addition, the simulation results have demonstrated a fast
and stable convergence of the proposed algorithm, even for
large-scale settings.
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APPENDIX

We show that Algorithm 2 yields a decreasing objective
fDPC(Qn, {S̄n

k}). To simplify the proof, we consider equal
weight factors for all users. To this end it is easy to see that

fDPC(Qn, {S̄n
k}) ≥ fDPC(Qn, {S̄n+1

k }). (19)

The above inequality holds true because S̄n is the optimal
solution to the problem max

S̄
fDPC(Qn, S̄). Next, since Qn+1

solves (14) it holds that

K∑
k=1

log |Φn
k |+ tr

(
Φ−n

k

(
Qn+1 −Qn

))
− log |Qn+1|

≤
K∑

k=1

log |Φn
k |+ tr

(
Φ−n

k

(
Q−Qn

))
− log |Q| (20)

for all Q ∈ Q , {Q|Q : diagonal,Q ≽ 0, tr(QP) = P},
and Φn

k is defined below (13). For the special case Q := Qn,
the above inequality is reduced to

K∑
k=1

log |Φn
k |+ tr

(
Φ−n

k

(
Qn+1 −Qn

))
− log |Qn+1|

≤
K∑

k=1

log |Φn
k | − log |Qn|︸ ︷︷ ︸

f(Qn,{S̄n+1
k })

. (21)

In (13) if Q is replaced by Qn+1, then it follows that

K∑
k=1

log |Q+

K∑
i=k

H†
i S̄

n+1
i Hi|

≤
K∑

k=1

log |Φn
k |+ tr

(
Φ−n

k

(
Qn+1 −Qn

))
(22)

Combining (20), (21), and (22) results in

fDPC(Qn, {S̄n
k}) ≥

K∑
k=1

log |Qn+1 +

K∑
i=k

H†
i S̄

n+1
i Hi| − log |Qn+1|

= fDPC(Qn+1, {S̄n+1
k }). (23)

It is easy to see that {fDPC(Qn, {S̄n
k})} is bounded above,

and thus {fDPC(Qn, {S̄n
k})} is convergent. We also note

that (13) is strict if Q ̸= Qn. Consequently, the sequence
{fDPC(Qn, {S̄n

k})} is strictly decreasing unless it is conver-
gent. Therefore, the continuity of fDPC(·) and the compactness
of S and Q imply lim

n→∞
fDPC(Qn, {S̄n

k}) = fDPC(Q∗, {S̄∗
k}).
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