
The SndObj Sound Object Library

VICTOR E. P. LAZZARINI

Department of Music, National University of Ireland, Maynooth, Co. Kildare, Ireland
E-mail: Victor.Lazzarini@may.ie

The SndObj Sound Object Library is a C++
object-oriented audio processing framework and toolkit.
This article initially examines some of the currently
available sound processing packages, including sound
compilers, programming libraries and toolkits. It reviews
the processes involved in the use of these systems and
their strengths and weaknesses. Some application
examples are also provided. In this context, the SndObj
library is presented and its components are discussed in
detail. The article shows the library as composed of a set
of classes that encapsulate all processes involved in
synthesis, processing and IO operations. Programming
examples are included to show some uses of the system.
These, together with library binaries, source code and
complete documentation, are included in the
downloadable package, available on the Internet. Possible
future developments and applications are considered. The
library is demonstrated to provide a useful base for
research and development of audio processing software.

1. BACKGROUND: SOUND COMPILERS,
LIBRARIES AND TOOLKITS

Since the development, by Max Mathews, of the
MUSIC-series of sound synthesis programs (Mathews
1960, 1961) in the early 1960s, several programs for
synthesis and processing of audio in a general-purpose
computer were developed. They were mostly based, dir-
ectly or indirectly, on the MUSIC IV model. Programs
such as these are sometimes referred to as Computer
Music Languages, Acoustic Compilers or Sound Com-
pilers. Some of them were developed for specific hard-
ware and are now obsolete, whereas others, which
enjoyed greater success, were developed under high-
level languages, like MUSIC V (Mathews 1969), written
in Fortran. Among these, cmusic (Moore 1990) and
csound (Vercoe and Piche 1997), written in C, are two
important examples of sound compilers. Csound is one
of the most interesting sound processing systems avail-
able today, not only in terms of widespread use and port-
ability, but also because of its continuous expansion and
support by a large development community. Other
MUSIC-derived sound compilers still in use include clm
(Schottstaedt 1992), which runs in a Common Lisp
environment, and cmix (Lansky 1990), which consists of
a command parser and a library of C sound-manipulating
functions. In fact, both clm and cmix can be considered
hybrids of a sound compiler and a programming library,
the former using Common Lisp, and the latter using C
as the implementation language.

Organised Sound 5(1): 35–49 2000 Cambridge University Press. Printed in the United Kingdom.

Programming libraries constitute a lower-level in
computer music practice, when compared to sound com-
pilers. The context where they appear is more general,
and consequently their use is more complex. This can
be easily demonstrated by the differences in coding of a
similar instrument under csound and cmix (or clm),
which will be shown later. It involves not only the
knowledge of the syntax of a particular language, but
also the grasp of concepts not necessarily needed when
using a sound compiler. For instance, with cmix, the
user has to understand variable declaration, memory
allocation, header files, object code linking and other
C-related concepts in order to build a sound processing
or synthesis ‘instrument’. The advantage is that, in this
case, the programmer has more control over the pro-
cesses involved in sound manipulation and can design
applications that will suit better his/her needs. Apart
from the mentioned use of libraries as part of packages
such as clm and cmix, there are several other sound-
manipulation programming libraries which were
developed for various applications. As examples, two of
these can be mentioned: the SndLib, developed at
CCRMA for cross-platform sound input/output, and the
Sfsys, developed by the CDP (Atkins et al. 1987), origin-
ally for their Atari-based sound filing system and then
ported to other platforms (PC and UNIX).

Another related type of programming software library
is the toolkit, normally associated with the object-
oriented paradigm. Toolkit objects are normally used in
programs by direct reference and, sometimes, by com-
position. In general, its use is more straightforward than
the standard procedural- or modular-programming lan-
guage libraries. Examples of toolkits are the NeXT-
based Music and SoundKit (Jaffe and Boynton 1991),
written in ObjectiveC, and the Synthesis Toolkit (Cook
1996), developed by Perry Cook in C++. The SndObj
library (Lazzarini and Accorsi 1998), although not
designed to be used solely as a toolkit, is also an
example.

This section will examine in detail some aspects of
sound compilers and libraries. First, csound is intro-
duced as an example of a sound compiler, followed by
a small programming example. It is then compared with
two library-compiler hybrids, cmix and clm. Examples
of similar code for these systems are also shown. This
is followed by an overview of the object-oriented pro-
gramming paradigm. Completing the section, two sound

https://doi.org/10.1017/S1355771800001060
Downloaded from https://www.cambridge.org/core. Maynooth University, on 21 Aug 2019 at 09:54:54, subject to the Cambridge Core terms of use, available at https://www.cambridge.org/core/terms.

https://doi.org/10.1017/S1355771800001060
https://www.cambridge.org/core
https://www.cambridge.org/core/terms

36 Victor E. P. Lazzarini

manipulation toolkits are discussed, the Sound/MusicKit
and the Synthesis Toolkit.

1.1. Csound, cmix and clm

Csound was originally developed by Barry Vercoe at the
MIT, but it has been updated and expanded by several
contributors, this author included. Cmix is the product
of the work of Paul Lansky and others at Princeton Uni-
versity, and clm originated at Stanford, mainly as a
result of Bill Schottstaedt’s research. These packages are
very different from each other, except for the fact that
they have common predecessors, the MUSIC-family of
programs, and similar applications. The main difference
between these packages is the user-interface. Csound
uses basically two text files of coded information as its
input, one containing an ‘orchestra’ file, with signal-
processing definitions organised in terms of ‘instru-
ments’ and a ‘score’ file, with performance instructions
for the ‘instruments’. These two files are given as argu-
ments to the csound command which compiles the
audio. Cmix uses only one ‘score’ file, the ‘instruments’
are C-coded and pre-compiled as part of the library. The
score file is passed to the cmix command (or directly
to the instrument command if you are using only one
instrument) which calls the C programs responsible for
the sound processing. In fact, the score file is not strictly
required because cmix works by interpreting commands
that are passed to it. These commands are written in
cmix’s parsing language MINC, which is very similar in
structure to C. Clm works in a Common Lisp environ-
ment, which is interpreter based. Calls to clm ‘instru-
ments’ are interpreted similarly to any lisp function.
Prior to its use, a clm instrument must be compiled and
loaded. A ‘score’ file, based on lisp code, can be written
to perform all the necessary calls to generate audio. This
file can be loaded like any other file and the lisp inter-
preter will compile the sound.

Csound scores and orchestras are written using a very
straightforward syntax. The orchestra file is normally
divided into two types of statements: header and instru-
ment block. The use of a header is not compulsory. In
case of its absence, default parameters are used. The
instrument block statements are preceded by the code
instr instrument number, and the instrument block is
closed by endin. The general form of an instrument
block statement is csound syntax can be defined as fol-
lows:

output var ugen input args

where output var is any type of output variable (a, k,
or i) and input args is any number of input arguments
to the unit generator ugen. A unit generator is a signal
processing algorithm (such as an oscillator or envelope
generator) which is used as a building block for an

instrument. The output of a csound instrument is defined
by the code:

out asignal

which can be thought of as a ugen without an output
variable. The input argument is a variable of the type a,
which is used to hold audio signals (actually a vector).
A simple sine-wave csound instrument is shown below:

instr 1
asig oscil p4, p5, 1
out asig
endin

The arguments to oscil are amplitude, frequency in Hz
and function table number (which stores a sine-wave
shape). The variables of the type P, p4 and p5, and the
function tables are defined in the score file. This will
have a number of f statements which will define the
function tables used in the synthesis process and a
number of i statements. These define calls to instruments
to generate/process audio. For example,

f1 0 1024 10 1
i1 0 2 16000 440

is a score that will create a sine-wave function table,
defined as number 1, and call instrument 1 to generate a
440 Hz signal, with a peak amp of 16,000, from 0 to 2
seconds. The command

csound -odevaudio sine.orc sine.sco

will play that sound in real time (sine.orc and sine.sco
being the orchestra and score files with the code shown
above).

Cmix uses a different principle. Instruments are
defined as commands called by the cmix environment,
using minc syntax (Garton 1994). A C compiler is neces-
sary, since instruments are coded as C functions and
linked to the main cmix libraries and the Minc user-data
parsing language. They make use of some cmix C func-
tions, such as setnote(), endnote() and ADDOUT(),
which provide basic soundfile and housekeeping func-
tions. Unit generators are also provided, in the form of
C library functions which can be employed in a user-
defined instrument. The instrument designer has to pro-
vide a more detailed processing algorithm, including the
necessary initialisation routines and a processing loop.
The example below shows a simple cmix instrument
which generates a simple audio signal:

double sine(float *p, int n args) {
/* p[0] start,p[1] dur,p[2] amp,p[3]
freq,p[4] function table */
int n, durs, length, outfile;
float fr, sr, amp, ndx, *wavetable,
output[1];

/* initialisation */

https://doi.org/10.1017/S1355771800001060
Downloaded from https://www.cambridge.org/core. Maynooth University, on 21 Aug 2019 at 09:54:54, subject to the Cambridge Core terms of use, available at https://www.cambridge.org/core/terms.

https://doi.org/10.1017/S1355771800001060
https://www.cambridge.org/core
https://www.cambridge.org/core/terms

The SndObj Sound Object Library 37

outfile 1;
ndx 0;
amp p[2];
fr p[3];
durs setnote (p[0], p[1], outfile);
wavetable floc((int)p[4]);
length fsize((int)p[4]);

/* processing loop */
for (n 0; n < durs; n++) {
output[0] oscil (amp, fr* (length/SR),
length, wavetable, &ndx);
ADDOUT (output, outfile);
}
endnote(outfile);
return(1.);
}

The user-defined instrument is always a function with
two arguments (an array of floats, which hold the instru-
ment input parameters and an int number of parameters)
returning a double. The setnote() function sets the initial
position of the file read/write pointer and the duration of
time for reading or writing to the file. It also returns the
number of samples for the specified duration, according
to the sampling rate defined in the soundfile header. One
of the cmix particularities is that the soundfile header
must exist on disk prior to synthesis. The oscil() function
is the basic unit generator used by the instrument, an
oscillator. Its arguments are amplitude, sampling incre-
ment, table length, pointer to table and an index to the
current phase position. ADDOUT() reads an array, the
length of which is determined by the number of output
channels, and writes it to a file. In this case, because the
output is mono, the output array is unity length. After
compiling and linking this code, the following cmix
command-line, using Minc commands, can be used to
invoke it:

cmix output(‘‘out sfile’’)
makegen(1,10,1024,1)
sine(1,1,16000,440,1)

These commands would open an output soundfile
out sfile and write 1 second of sine wave sound to it.
They could also be saved as score file and the standard
input redirected from that file. Minc also features C-like
control-of-flow structures which can be used in a score
file to control the processing done by the different instru-
ments.

As mentioned before, clm works in a Common Lisp
environment. It is in fact an extension to that program-
ming language. Clm instruments are similar to lisp func-
tions, although they are not defined by defun, but by
definstrument. Nevertheless, the call syntax is the
same. An instrument in clm can be created by using unit-
generators (which are themselves proper lisp functions)
and one of the output functions, which adds the instru-
ment output into the current output soundfile. Similarly

to cmix, the instrument designer has to provide all the
initialisation and processing loop code. The following
code shows a sine-wave instrument (generating similar
output to the csound and cmix examples shown above):

(definstrument sine (start dur fr amp)
(let* ((beg (floor (* start

sampling-rate)))
(end (+ beg (floor (* dur

sampling-rate))))
(sinusoidal (make-oscil :

frequency fr)))
(run (loop for i from beg to end do

(outa i (* amp (oscil
sinusoidal)))))))

This instrument, sine, uses an oscillator, created by
make-oscil, called sinusoidal to generate (dur – start)*
sampling-rate samples. These are added to the output file
using outa. The run macro wraps the processing portion
of the instrument, so that the code can be optimised. This
generally involves the use of a C program to perform the
processing, in which case a compiler is needed. It gener-
ally speeds up the process, since lisp code is too slow
for signal processing. The C program is written, com-
piled and run by the system when the instrument is
called. Before it is used the instrument must be either
typed at the lisp listener or compiled and loaded from a
file. The basic clm lisp macro used to open a soundfile
for writing is with-sound, which receives the output of
an instrument (or instruments) and writes it to a file,
generally playing it back straight after the process. For
example, typing

(with-sound () (sine 0 1 440 .1))

at the lisp listener will make the above defined instru-
ment generate a 1-second A-440 sine-wave sound, which
will be written to the default file, generally test.snd or
test.wav. This file will be played back immediately by
the system (if the playback is enabled). As the whole
system is based on the Common Lisp language, any lisp-
style control-of-flow is possible. ‘Score’ files can be cre-
ated using lisp code which can be loaded to generate a
soundfile.

As has been shown, the design of sound synthesis/
processing instruments using csound is somewhat easier
and faster than with the other two computer music lan-
guages. Its learning curve is also less steep. This simpli-
city is at the expense of flexibility and programming
power. Clm and cmix have indeed a better integration
of implementation, orchestra and score languages, which
is favoured by some authors (Pope 1993). Also, because
they are language/library hybrids, they are more easily
extendable. Their use as development tools for DSP
applications benefits very much from this fact. On the
other hand, both systems need compilers/interpreters for
the development of instruments, whereas csound is a
complete sound compiler driver.

https://doi.org/10.1017/S1355771800001060
Downloaded from https://www.cambridge.org/core. Maynooth University, on 21 Aug 2019 at 09:54:54, subject to the Cambridge Core terms of use, available at https://www.cambridge.org/core/terms.

https://doi.org/10.1017/S1355771800001060
https://www.cambridge.org/core
https://www.cambridge.org/core/terms

38 Victor E. P. Lazzarini

Another issue concerning the use of sound compilers
and libraries is their portability. As mentioned before,
the most successful systems are the ones based on port-
able code. Csound seems to have been ported to most of
the popular platforms: UNIX, MacOS and MS-
Windows. Cmix and clm, although now somewhat out
of the NeXT/Macintosh niche, are not as portable as
csound. The clm source at CCRMA is supposed to be
portable to Windows, under Clisp. This author’s experi-
ence is that a lot of editing of the lisp source code is
necessary for a successful build under Windows (using
freeware gcc compiler and cygwin32). Cmix is not at all
portable to MS-Windows. A truly portable sound pro-
cessing library would be greatly welcome. One of the
goals of the SndObj project is the development of a port-
able core of sound processing objects, thus answering
the need for such tools.

1.2. Object-oriented design

A different solution for the design of sound processing
systems and libraries is found under the object-oriented
programming paradigm. The definition of object-
oriented programming is not very clear cut (Pope 1991),
although the concepts it involves are well defined. The
first one is that of data abstraction, whereby new data
types, called abstract data or user-defined types, or
classes, can be designed to behave similarly to built-in
ones (Stroustrup 1995). Moreover, they can also include
a full set of operations (methods) that can be used to
manipulate that particular data type. An abstract data
type can be considered as a kind of a black box which
can model a real-life object. Some elements that com-
pose the characteristics of an object can be hidden, in
what is called encapsulation, allowing easier and safer
handling of information and processes. Also crucial to
the object-oriented paradigm is another mechanism, that
of inheritance, which allows abstract data types to pass
on their characteristics (and operations) to other types
which extend/refine the definition of that type. The
inheritance concept allows for trees of classes, which
can be very functional and useful for applications, such
as sound processing systems.

The design of a system using the object-oriented para-
digm is very much based on decomposition and com-
position processes, recognition of likeness and behaviour
of objects. Another idea involved in this process is that
of the level of reuse or sharing and maintenance. Soft-
ware based on object-oriented concepts is very much dir-
ected towards the reuse of algorithms and data struc-
tures. Four basic techniques can be defined for
object-oriented design (Pope 1991): compositions,
refinement, factorisation and abstraction. Composition is
basically the reuse of existing classes as instance vari-
ables of new classes, composing a new object out of
other objects it should contain. Refinement is the use of
inheritance to create a new class which has specialised

characteristics but is basically similar to its parent class.
Factorisation is the description of a class in terms of a
hierarchy of aspects, using the inheritance mechanism.
Instead of defining a class complete with all its concrete
attributes, a hierarchy of class can be defined, which will
factorise the characteristics and behaviour of the original
class. Finally, abstraction uses the idea of finding com-
monalities between concrete objects and defining an
abstract class which embodies these common character-
istics. This class will then serve as the base from which
the others are created.

Object-oriented programming packages can be gro-
uped into two main categories, according to their use:
toolkits and frameworks. The former is based on reuse
by direct reference and composition. Users will basically
employ the existing code by declaring instances of
classes and using them to perform the wanted actions.
Two examples of this type of package are discussed
below. Frameworks are used, in general, by refinement
and composition of existing classes. They are based on
class hierarchies created by factorisation and abstraction.
The most common uses of frameworks are in the devel-
opment of graphical user interfaces: V (Wampler 1998)
is a typical example of a GUI framework. Kyma
(Scalletti 1991) is an example of a sound processing
system which incorporates a framework architecture, in
its sound model classes. The SndObj library was
designed with both framework and toolkit uses in mind.

1.3. Sound processing toolkits

The NeXT Music and SoundKits, and the Synthesis
Toolkit are two examples of sound synthesis/processing
toolkits. The first two were implemented in ObjectiveC
for the NeXT computer using a Motorola DSP 56001
chip. They were designed to provide the software library
support for music applications development. It includes
classes for, amongst other things, 56001-based syn-
thesis/processing, audio recording, playback and editing.
The Synthesis Toolkit is a sound synthesis library writ-
ten in C++, having ports across UNIX and MS Windows
platforms. The case for a more portable system is evid-
ent here. The MusicKit (and SoundKit) had to endure
the fate of being associated with a particular hardware
which was not very popular outside some computer
music centres (esp. in the USA). On the other hand, the
Synthesis Toolkit seems to have a more promising
future.

The SoundKit, developed by Lee Boynton, was
designed for recording, playback, editing and graphic
display of digital audio. It is based on the Sound class,
an object which is wrapped around the sound data struc-
ture and provides the methods for performing the above-
mentioned actions. The sound data structure can contain
sampled audio or DSP code images and data streams,
depending whether it has been used for manipulating
audio or controlling DSP-based synthesis. In addition to

https://doi.org/10.1017/S1355771800001060
Downloaded from https://www.cambridge.org/core. Maynooth University, on 21 Aug 2019 at 09:54:54, subject to the Cambridge Core terms of use, available at https://www.cambridge.org/core/terms.

https://doi.org/10.1017/S1355771800001060
https://www.cambridge.org/core
https://www.cambridge.org/core/terms

The SndObj Sound Object Library 39

the Sound class, a SoundView class was designed to
provide a mechanism for sound graphic display. The
MusicKit, developed by David Jaffe, provides the other
tools for music application development, including per-
formance, music representation and synthesis. Relevant
to this discussion is the synthesis part of the MusicKit.
Its model is based on three main classes: SynthElement,
SynthPatch and SynthInstrument. SynthElement is an
abstract class which has two subclasses: UnitGenerator
and SynthData. The former is the base class for all signal
processing functions and the latter is used to provide
patchcords between UnitGenerator objects. These objects
include oscillators, envelopes and other standard signal
processing algorithms. The SynthPatch-derived classes
are collections of SynthElement objects which define a
certain processing configuration. SynthInstrument classes
manage the use of SynthPatch classes. The Music and
SoundKits model seems very sound, its major weakness
being the dependence on a specific hardware/OS.

The Synthesis Toolkit, v.1.0, is a port of algorithms
and instrument models developed by its author, Perry
Cook, on many different platforms and languages,
including the mentioned NeXT MusicKit. The motiva-
tions for creating this toolkit, according to the author,
are based on a desire for portability and extensibility,
taking into account the evolution in efficiency and power
of modern CPUs. The entire Synthesis Toolkit is derived
from a base class called Object. This class controls the
basic behaviour of the system, including the type of IO
used (file format, realtime, etc.). Floating-point numbers,
either double- or float-precision, are used to represent
audio samples. The processing is implemented, on the
audio sample based unit generator classes, by a funda-
mental tick() method. This function causes the unit gen-
erator to compute one audio sample, returning it as its
output. The sound-generating objects, such as oscillators
and envelope generator, which act only as sources of
audio, implement a tick() that does not take any argu-
ments. Other objects, such as sound output classes, only
receive samples, returning void. Other processing
objects take audio samples as arguments to tick() and
return their output. A LastOut() method, implemented
by objects that are sources of audio, can be used to feed
multiple sample consuming objects. An example of a
simple sound processing algorithm, given by the author
in Cook (1996), is transcribed below:

ExampleClass() {
envelope new Envelope;
waveIn new RawWvIn (‘‘infile.raw’’);
filter new OnePole;
output new RawWvOut (‘‘outfile.snd’’);
}

MY FLOAT ExampleClass::tick(void) {
Output->tick(envelope->tick() *
filter->tick(waveIn->tick()));
}

This algorithm reads an input file, applies a filter and an
envelope to it and writes it out to another file. Only the
class constructor and the tick() function are shown. This
toolkit hosts a great number of synthesis and processing
objects, roughly 60 C++ classes, which makes it a very
impressive library. The portability and extensibility are
also valuable aspects of this system. These features were
also included in the design of the SndObj library, along
with some other desirable characteristics. The next sec-
tions of this paper will introduce and discuss the library
in closer detail.

2. THE SOUND OBJECT LIBRARY VERSION 1.0

The initial motivation for the development of this library
evolved during work on the software Audio Workshop
(Lazzarini 1998). It was observed that the creation of a
set of objects for audio signal processing could be very
useful in the design of new applications. It could help
provide higher-level tools for audio programming and
software with a more intuitive user interface. This set of
objects would be designed as a toolkit, to be employed
directly to build a DSP program (or in a visual patching
application, to create an instrument patch), and as a
framework, to which developers could add their own
specialised code. Programs to carry out specific tasks
could be easily developed by connecting the available
objects and providing standard control-of-flow. Using
derivation and inheritance, new objects could be created
from the existing ones, thus leaving the development
possibilities open. The framework would thus be a
useful tool for research in signal processing, acoustics
and psychoacoustics.

The project was based on three basic principle, as
explained in the preliminary account of this research
work (Lazzarini and Accorsi 1998): (i) encapsulation,
(ii) universal patch-ability, and (iii) portability. All the
processes involved with production, manipulation and
storage of audio data should be encapsulated by the
classes. Patching of objects should be unrestricted, as
if they were modules in an analog synthesizer, or unit
generators in systems such as the sound compilers exam-
ined earlier on in this article. As a final premise, the
main processing and input/output code should be port-
able. This would also allow for machine-dependent
specialisation when necessary. The project was
developed under C++, which seemed a very good
choice, mainly for its C-compatibility and good support
for object-oriented programming.

The SndObj library was initially developed by this
author, assisted by Fernando Accorsi, at the Núcleo
de Música Contemporânea and the Department of
Computer Science, Universidade Estadual de Londrina,
in Brazil. The first versions of the library were built
under AIX onan IBM Risc2000 machine (using the
g++ compiler), as well as on a Pentium PC under

https://doi.org/10.1017/S1355771800001060
Downloaded from https://www.cambridge.org/core. Maynooth University, on 21 Aug 2019 at 09:54:54, subject to the Cambridge Core terms of use, available at https://www.cambridge.org/core/terms.

https://doi.org/10.1017/S1355771800001060
https://www.cambridge.org/core
https://www.cambridge.org/core/terms

40 Victor E. P. Lazzarini

Figure 1. The SndObj library class trees.

Windows95 (using both MS Visual C++ and Cygwin
g++). The development work continued at the National
University of Ireland, Maynooth. Versions for Solaris
(Sparc) and IRIX (MIPSPro) were developed, as well
as updated MS Windows versions and, more recently,
a Linux one. SndObj library version 1.0 binaries are
available for these three platforms and it is expected
that the source code can be built on any other UNIX
platform.

2.1. The class hierarchy

The proposed hierarchy for the library is based on three
abstract base classes: SndObj, Table and SndIO. These
form the base for three types of objects that integrate the
set, respectively: sound processing, mathematical func-
tion-table and sound input/output objects. The SndObj
library version 1.0 comprises more than fifty classes (cf.
Appendix A) organised in three main class trees. A dia-
gram showing the inheritance relationships between the
classes in the library is shown in figure 1. The classes
derived from SndObj are involved in the production and
manipulation of sound samples. Some of them make use
of the Table classes, when some sort of function table is
needed. The SndIO tree is dedicated to all the actions
involving sound input or output: disk, ADC/DAC, stand-
ard IO, etc. These classes use a SndObj as their input.
A SndObj-derived SndIn class was designed to receive
an input from a SndIO-derived object. This would
enable audio from input sources to be inserted in the
processing chain.

2.2. The SndObj-derived classes

A SndObj object, as modelled for this library, has one
output, a sampling rate, an on/off switch and an error
code, as shown in figure 2. The output is defined as a
pointer to a float location, *m output. SndObj-
derived classes also have a DoProcess() method that car-
ries out all the processing duties and other methods to
access its member variables. The derived classes have
an undefined number of inputs (objects and/or offset
values). As mentioned before, some of them also rely on
maths function-table objects to do their processing.
Sound processing objects are designed to be easily inter-
connected. This is done by passing the address of a
SndObj-derived class instance to the object receiving its
output, for example:

object2.SetInput(&object1);

Most of the objects can receive one or more SndObj
inputs. As an example, oscillators can receive any sound
object as their frequency and amplitude inputs. Filters
receive SndObjs as their audio input, as well as their
frequency and bandwidth inputs. Mixers can receive any
number of input objects and mix them together. This
ability to easily make patches of processing boxes gives
the flexibility necessary for users to create a great
number of applications.

SndObj-derived classes in general have two con-
structors, a default constructor which builds a bare
object and another one that initialises the object para-
meters to its input arguments. They also allocate a

https://doi.org/10.1017/S1355771800001060
Downloaded from https://www.cambridge.org/core. Maynooth University, on 21 Aug 2019 at 09:54:54, subject to the Cambridge Core terms of use, available at https://www.cambridge.org/core/terms.

https://doi.org/10.1017/S1355771800001060
https://www.cambridge.org/core
https://www.cambridge.org/core/terms

The SndObj Sound Object Library 41

Figure 2. The SndObj model.

memory space for the output sample and switch the
object on by calling the Enable() method. Methods for
setting or updating class members are also available for
each parameter (as in the above example for setting the
input of an object). The DoProcess() method is a virtual
function declared in SndObj and implemented differ-
ently on each of its derived classes. This function would
be equivalent to the tick() method of the Synthesis Tool-
kit, discussed earlier in this article. It calculates one
sample every time it is called and places this sample at
the output of the object. If another object is patched to
it, its DoProcess() method will look at that output and
use it to compute its own output sample. The way patch-
ing works in the SndObj library is completely different
from the quoted example of the Synthesis Toolkit. The
DoProcess() method never accepts any arguments (its
input sample, or samples, is/are taken directly from
another object). It returns unity, when successful, and
null, if some problem has occurred. As the DoProcess()
calculates one sample every time it is called, it should
be placed in a processing loop, after calls to other
DoProcess() belonging to input objects, as shown below:

for(int n 0; n < end*sampling rate;
n++)
{ // processing loop
(. . .)
object1.DoProcess(); // object1 is
patched to
object2.DoProcess(); // the input of
object2
(. . .)
}

Other virtual classes declared in SndObj are
ErrorMessage(), which returns an error string according
to an internal error code, SetSr(), which sets or updates
the sampling rate, and a virtual destructor. This enables
the destruction mechanism of derived classes to work
properly. The SetSr() method is declared virtual because
in some cases there is the need to perform object-specific
operations after an alteration to the sampling rate.

2.3. Tables

The table classes were developed to supply certain
SndObj-derived objects with tabulated mathematical

functions. Tables are modelled as wrappers around a
floating-point vector. Their basic attribute is a table
length, which determines the size of the array. A basic
MakeTable() method is implemented in the Table-
derived classes. This method is called by their con-
structors. A GetTable() method provides the basic
access to the table itself, returning a pointer to its first
location. GetLen() returns the length of the table. A
common use for tables is to provide one cycle of a cer-
tain waveshape to be continuously sampled by an oscil-
lator. The HarmTable is an example of such an object
that creates any of the following four harmonic wave-
forms: sine, saw, square or pulse (buzz). It can be used
by an oscillator object by passing its location to the con-
structor or to a SetTable() method:

HarmTable sawtable (1024, 25, SAW); //
saw wave with 25 harmonics
oscillator.SetTable(&sawtable); //
oscillator is an Oscilt or Oscili

//
object

Similar to this is the UsrHarmTable, which allows the
user to define the relative amplitude of the individual
harmonics. SndTable stores sampled sound, input from a
SndIO-derived object. Another common type of function
table is to store a shape to be used as an amplitude or
frequency envelope. The TrisegTable class creates a
three-segment line, with the option of logarithmic or
linear lines, that can be used by an oscillator to control
a parameter of some other sound object. Also, a gen-
eralised Hamming window function table is supplied, as
the HammingTable object, as well as a polynomial
drawing function, PlnTable. Table objects are very
useful and can be employed in a variety of ways. New
table-derived objects are constantly added to the library
implementation.

2.4. Input and Output

The SndIO classes are designed to deal with all the input
and output services needed by the sound objects. Central
to their operation are the Read() and Write() methods.
They are used to perform the IO functions, regardless of
whether the target is a soundfile, ADC/DAC, computer
screen or some other device. The derived classes can fit

https://doi.org/10.1017/S1355771800001060
Downloaded from https://www.cambridge.org/core. Maynooth University, on 21 Aug 2019 at 09:54:54, subject to the Cambridge Core terms of use, available at https://www.cambridge.org/core/terms.

https://doi.org/10.1017/S1355771800001060
https://www.cambridge.org/core
https://www.cambridge.org/core/terms

42 Victor E. P. Lazzarini

into any main category of input/output: soundfile (which
has derived classes for different formats), DAC/ADC,
screen output, MIDI. Some SndIO-derived objects are
expected to be platform dependent – the ones that rely
on platform-specific features such as realtime IO and
graphics.

Output SndIO-derived classes can receive one SndObj
input per channel. This patching can be done by the class
constructor, or by a SetOutput() method. It is done in a
similar way to any other patching operation throughout
the library, by passing the address of an object:

output.SetOutput(&sound); // sound is a
SndObj object

// and output
a SndIO object

Conversely, a SndIn object can receive a SndIO-derived
input:

SndIn sound(&input, 1); // input is a
SndIO object

// from which
sound is reading channel 1

The Read() and Write() methods are built in such way to
work transparently in a processing loop with the SndObj
DoProcess() methods. Although they do not always read
and write one sample at a time, they are designed to
behave as if they did. The SndIO buffer can be set, in
the class constructor, to any size desired. Depending on
certain hardware conditions, they can alter the perform-
ance of the read/write operation. A processing loop read-
ing from one input and writing to another is shown
below:

for(int n 0; n < end*sampling rate;
n++)
{
input.Read();
sound.DoProcess(); // SndIn object
(. . .)

// any processing
output.Write();
}

At the present version the SndIO hierarchy has four
main subclasses: SndFIO, soundfile IO; SndStdIO,
which sends and receives samples from the standard IO;
SndSgiRT, to perform realtime audio IO on Silicon
Graphics; SndWinRT, realtime audio IO on Windows;
and SndOssRT, Open Sound System realtime audio IO.

3. PROGRAMMING EXAMPLES

A number of sample applications, in the form of console
programs, were developed to demonstrate some uses of
the library. These programs can also be used as tutorials
and therefore are included in the documentation
(Lazzarini 1999). This article will first examine three

programming examples which employ SndObj library
classes. They should demonstrate the encapsulation, rel-
ative user-friendliness and modular aspects of the
system. As a final example, this article will explore the
steps involved in the development of new SndObj-
derived classes.

3.1. A simple program

The first example shows a very simple sine-wave syn-
thesis routine using the SndObj-derived class Oscilt.
The Table-derived HarmTable and the SndIO-derived
SndWaveO classes are also employed, providing a tabu-
lated sine function and file output services, respectively.
The comments (starting with a ‘//’) explain the con-
structs used in the program.

#include <stdlib.h>
#include ‘‘AudioDefs.h’’ // SndObj
headers and definitions

int main (int argc, char* argv[]) {

float dur (float)atof(argv[2]); // dur:
second command-line argument
float amp (float)atof(argv[3]); // amp:
third command-line arg
float fr (float)atof(argv[4]); // fr:
fourth command-line arg
HarmTable table(1024, 1, SINE); // sine-
wave table
Oscilt oscil(&table, fr, amp); //
oscillator
SndWaveO output(argv[1], 1, 16); //
1-channel 16-bit precision

// RIFF-
Wave file output

//
filename: first command-line arg
output.SetOutput(1, &oscil); // assign
the oscillator to the file

// output
channel 1

for(int n 0; n < dur*oscil.GetSr();
n++) // processing loop
{
oscil.DoProcess();
output.Write();
}
return 1;
}

This code can be compiled and linked, generating a pro-
gram called sine. The command-line

sine test.wav 1 16000 440

would generate a RIFF-Wave soundfile named
‘‘test.wav’’ containing 1 second of 440 Hz sinusoidal
sound.

https://doi.org/10.1017/S1355771800001060
Downloaded from https://www.cambridge.org/core. Maynooth University, on 21 Aug 2019 at 09:54:54, subject to the Cambridge Core terms of use, available at https://www.cambridge.org/core/terms.

https://doi.org/10.1017/S1355771800001060
https://www.cambridge.org/core
https://www.cambridge.org/core/terms

The SndObj Sound Object Library 43

Figure 3. Risset signal flowchart.

3.2. Risset

The next example, a program called risset, is a slightly
more complex synthesis application, based on the
ingenious Risset design (Lorrain 1980), where nine
oscillators are combined to generate a cascading har-
monics drone. This is done by the minute differences in
frequency of the oscillators, which creates a sequence of
phase cancellations/sums. This example uses a square
wave as the basic oscillator shape. The signal flowchart
of this program is shown in figure 3. The program code
is shown below (excluding the usage() function):

#include <iostream.h>
#include <stdlib.h>
#include ‘‘AudioDefs.h’’
void usage();

int
main(int argc, char* argv[]){
if(argc ! 6){
usage(); // usage message
return 0;

}

// command line arguments
float fr
(float)atof(argv[3]);// frequency
float amp
(float)atof(argv[4]);// amplitude
float duration
(float)atof(argv[2]);// duration.

// Envelope breakpoints & function table
object float TSPoints[7] {.0f, .05f,
1.f, .85f, .8f, .1f, .5f};

TrisegTable envtable(512, TSPoints,
LINEAR);

// Wavetable object
HarmTable table1(1024, atoi(argv[5]),
SQUARE);

// truncating oscillator object
(envelope)
Oscilt envoscil(&envtable, 1/duration,
32767);

// 9 interpolating oscillator objects
Oscili oscil1(&table1, fr, 0.f, 0, &
envoscil);
Oscili oscil2(&table1, fr-(fr*.03f/
110), 0.f, 0, &envoscil);
Oscili oscil3(&table1, fr-(fr*.06f/
110), 0.f, 0, &envoscil);
Oscili oscil4(&table1, fr-(fr*.09f/
110), 0.f, 0, &envoscil);
Oscili oscil5(&table1, fr-(fr*.12f/
110), 0.f, 0, &envoscil);
Oscili oscil6(&table1, fr+(fr*.03f/
110), 0.f, 0, &envoscil);
Oscili oscil7(&table1, fr+(fr*.06f/
110), 0.f, 0, &envoscil);
Oscili oscil8(&table1, fr+(fr*.09f/
110), 0.f, 0, &envoscil);
Oscili oscil9(&table1, fr+(fr*.12f/
110), 0.f, 0, &envoscil);

// Mixer
Mixer mix;
mix.AddObj(&oscil1);

https://doi.org/10.1017/S1355771800001060
Downloaded from https://www.cambridge.org/core. Maynooth University, on 21 Aug 2019 at 09:54:54, subject to the Cambridge Core terms of use, available at https://www.cambridge.org/core/terms.

https://doi.org/10.1017/S1355771800001060
https://www.cambridge.org/core
https://www.cambridge.org/core/terms

44 Victor E. P. Lazzarini

mix.AddObj(&oscil2);
mix.AddObj(&oscil3);
mix.AddObj(&oscil4);
mix.AddObj(&oscil5);
mix.AddObj(&oscil6);
mix.AddObj(&oscil7);
mix.AddObj(&oscil8);
mix.AddObj(&oscil9);

// Gain attenuation
Gain gain((amp-15.f), &mix);

// output to an AIFF-format soundfile
SndAiffO output(argv[1], 1, 16);
Output.SetOutput(1, &gain);

// synthesis loop
unsigned long dur (unsigned long)
(duration*envoscil.GetSr());
for(unsigned long n 0; n < dur; n++){

envoscil.DoProcess(); // envelope

oscil1.DoProcess(); // oscillators

oscil2.DoProcess();

oscil3.DoProcess();

oscil4.DoProcess();

oscil5.DoProcess();

oscil6.DoProcess();

oscil7.DoProcess();

oscil8.DoProcess();

oscil9.DoProcess();
mix.DoProcess(); // mix
gain.DoProcess(); // gain attenuation
output.Write(); // file output

}
return 1;

}

The program accepts a command-line of the following
form:

risset filename.aiff dur(secs) amp(dB)
freq(Hz) no of harmonics

It uses a truncating oscillator as an envelope and inter-
polating oscillators as audio generators. A Mixer object
sums the outputs of the oscillators and a Gain object
attenuates and controls the overall amplitude of the
output. An instance of the SndAiffO class writes to an
AIFF-format soundfile.

3.3. A string resonator box

The last example is based on the StringFlt class. This
implements the model of a sympathetically vibrating
string. This program uses a number of these objects to
simulate a box containing a number of strings tuned to
different fundamental frequencies. It leaves the number
of strings and their tuning for the user to decide. It can
be used interactively or its parameters can be defined in
a text datafile supplied as an argument to the program.
The version shown below demonstrates the realtime
input and output, as implemented on Silicon Graphics
machines, under IRIX 6.5. A signal flowchart for this
application is also shown in figure 4.

#include <iostream.h>
#include <fstream.h>
#include <stdlib.h>
#include <SndObj/AudioDefs.h>
#include <SndObj/SndSgiRTO.h>
#include <SndObj/SndSgiRTI.h>
void usage ();

int main (int argc, char *argv[]){

int nstrs;
float fdbgain;
float gain;
float dur;
float sr;
float* fr;
SndSgiRTI *input;
SndSgiRTO *output;
if(argc 1) { // prompt for
parameters
cout << ‘‘Enter duration: ’’;
cin >> dur;
cout >> ‘‘Enter sampling rate: ’’;
cin >> sr;
cout << ‘‘Enter number of strings: ’’;
cin >> nstrs;
cout << ‘‘Enter feedback gain (0 < fbd <
1): ’’;
cin >> fdbgain;
cout << ‘‘Enter gain attenuation(dB): ’’;
cin >> gain;
fr new float[nstrs];
for(int i 0; i<nstrs; i++){
cout << ‘‘String’’ << (i+1) <<

‘‘frequency: ’’;
cin >> fr[i];
}
}

else if(argc 3) { // get the
parameters from file
ifstream datafile(argv[3]);
datafile >> dur;
datafile >> sr;

https://doi.org/10.1017/S1355771800001060
Downloaded from https://www.cambridge.org/core. Maynooth University, on 21 Aug 2019 at 09:54:54, subject to the Cambridge Core terms of use, available at https://www.cambridge.org/core/terms.

https://doi.org/10.1017/S1355771800001060
https://www.cambridge.org/core
https://www.cambridge.org/core/terms

The SndObj Sound Object Library 45

Figure 4. Streson signal flowchart.

datafile >> nstrs;
datafile >> fdbgain;
datafile >> gain;
fr new float[nstrs];
for(int i 0;i<nstrs; i++)
datafile >> fr[i];

}

else { // display usage message
usage ();
return 0;
}

// realtime IO objects
SndSgiRTI input(1, 512, 1024, SHORTSAM,
sr);
SndSgiRTO output(1, 512, 1024,
SHORTSAM);

// Sound input, attenuation, string
filters
SndIn sound(input, 1);
StringFlt* strings new
StringFlt[nstrs];
Mixer mix;
// String Filters parameters set-up
for(int i 0;i<nstrs; i++) {
strings[i].SetFreq(fr[i]);
strings[i].SetFdbgain(fdbgain);
strings[i].SetInput(&sound);
mix.AddObj(&strings[i]);

}

// Gain attentuation
Gain atten(gain, &mix);
Output->SetOutput(1, &atten);

// processing loop
unsigned long n, end (unsigned
long)dur*sr;
for(n 0; n < end; n++) {
input->Read(); // input from ADC
sound.DoProcess(); // sound input
for(int i 0; i <

nstrs; i++)

strings[i].DoProcess();// string filters
mix.DoProcess(); // mixer
atten.DoProcess(); // attenuation
output->Write(); // output to DAC

}

delete input; // delete IO objects to
delete output; // clean-up the hardware
buffers

return 1;
}

The command line for this program has the form:

streson [datafile]

The program can be activated just by typing its name at
the UNIX shell or by supplying a datafile as argument.
This is a text (ASCII) file containing the following para-
meters, each on a new line:

duration
sampling rate
number of strings
feedback gain
attenuation(dB)
string 1 frequency
string 2 frequency
(. . .)
string N frequency

The output of the program is the input passed through a
resonating box which simulates the vibration of a
number of strings.

3.4. Deriving a class from SndObj

In order to develop other classes and extend the library,
there are a few simple steps that the user should follow:

(1) Define your SndObj-derived class in a header file
(‘MyNewClass.h’). Include in the class declaration

https://doi.org/10.1017/S1355771800001060
Downloaded from https://www.cambridge.org/core. Maynooth University, on 21 Aug 2019 at 09:54:54, subject to the Cambridge Core terms of use, available at https://www.cambridge.org/core/terms.

https://doi.org/10.1017/S1355771800001060
https://www.cambridge.org/core
https://www.cambridge.org/core/terms

46 Victor E. P. Lazzarini

one DoProcess() and one ErrorMessage() method:

#ifndef MYNEWCLASS H
#define MYNEWCLASS H
#include ‘‘SndObj.h’’

Class MyNewClass : public SndObj{

protected:

// . . .declare here your member vari-
ables
// and protected methods . . .if you
are
// creating a processing class, define
the
// input as SndObj* input;

public:

// . . .declare at least two con-
structors:
// the default one and another which
initialises
// all parameters to the supplied
arguments.
// declare Set. . .() methods for every
parameter.

virtual �MyNewClass();
virtual short DoProcess();
virtual char* ErrorMessage();

}

(2) Provide the implementation code for all con-
structors, destructor and methods you defined. Put
them in another file (‘MyNewClass.cpp’). The con-
structors should also initialise member variables
inherited from SndObj. The sampling rate, m sr
is normally taken from the input object (using
GetSr()). Memory space for the output location
*m output should be properly allocated.

(3) The DoProcess() and ErrorMessage() methods
should be implemented as follows:

short MyNewClass :: DoProcess() {
if(m enable) { // the object is
switched on

// . . .define all your processing code
to work on a single-sample
// basis. In order to obtain the input
signal use
// input->Output(). This returns the
input object’s output sample
// as a float. Assign the result of your
processing to *m output,
// the location of this object’s
output sample.

}

else *m output 0.f; // the object is
switched off
return 1;
}

char* MyNewClass :: ErrorMessage(){

char* message;
switch(m error) {

case 0:
message ‘‘No error.’’;
break;

// . . . define here the error messages
for the error
// codes you defined in your methods

}
return message;
}

(4) Add the following line to the end of the
AudioDefs.h file:

#include MyNewClass.h

(5) Compile your class and append it to the library
binary. You can do that by adding your class to
the supplied Makefile and calling make. First add
‘MyNewClass.o’ to the end of the EXOBJS list.
Then add the following line at the end of the file:

$(oDir)/MyNewClass.o:
MyNewClass.cpp MyNewClass.h SndObj.h
$(CC) -c $(CFLAGS) -o $@
MyNewClass.cpp

Now the user can employ a newly created MyNewClass
as a processing object together with the other library
classes.

4. MUSIC AND RESEARCH APPLICATIONS

The Sound Object Library is being developed with three
possible main applications in mind: DSP/audio synthesis
research, composition and general music use. The library
itself is directly useful for the first two. The software
applications created with the library can be employed by
anyone with some knowledge of computers in music.
For the researcher, the library offers many advantages:
easy access to sound IO, a set of pre-built signal gener-
ators and modifiers and a stable framework. Composers
can use the library as they would use a sound compiler,
with the added versatility of an object-oriented design.
Finally, since the development curve is very short,
applications can be very easily created for general use.
Simple examples of these are the previously discussed
sample applications and some other GUI-based sound
processing programs developed using the library.

The library is designed very much as a workbench for

https://doi.org/10.1017/S1355771800001060
Downloaded from https://www.cambridge.org/core. Maynooth University, on 21 Aug 2019 at 09:54:54, subject to the Cambridge Core terms of use, available at https://www.cambridge.org/core/terms.

https://doi.org/10.1017/S1355771800001060
https://www.cambridge.org/core
https://www.cambridge.org/core/terms

The SndObj Sound Object Library 47

research and composition. While it clearly does not have
the variety of generators/modifiers as some sound com-
pilers have, it has a great potential for evolution. By
virtue of its object-oriented design, many aspects of a
development cycle can be rationalised and improved.
For that reason, this library can be used as a useful tool
by computer music research groups. In comparison to
certain hardware-dependent systems, the library has the
advantage of being fully portable across many platforms
(and its core elements are portable to any platform with
a C++ compiler). This is also very useful since the use
of mixed MS-Windows and UNIX environments is
widespread in the research community.

The integration of composition and development
facilities was the main motivation behind the library pro-
ject. As mentioned before, the need for this kind of tool
came originally from the software development process,
but its final application is not limited to it. The use of
the library as an aid to electroacoustic music composi-
tion has been explored, mainly by this author, in prepar-
ing elements for several pieces. Also, the implementa-
tion of realtime capabilities makes it possible to use the
computer in interactive situations. This can lead to new
ways of conceiving the computer as a possible option
for electroacoustic instrumentation. For composers with
some computer programming skills, the possibility of
designing and fine-tuning the sound synthesis/processing
routines in relation to compositional needs presents
interesting opportunities.

Work on a new piece for live instrument (saxophone)
and computer, which illustrates some applications of the
library, is under way. For this piece, a special computer
instrument is being created. This is a GUI program,
which performs realtime processing and synthesis of
sound, designed to interact with the live instrument. The
library is being used (in conjunction with a commercial
GUI framework) to generate this application. When fin-
ished, this piece will only depend an audio-equipped PC-
compatible computer and the live instrument. All the
sound processing will be controlled by the SndObj-built
program. Also, a cross-platform version of the control-
ling program can be easily built (using a portable GUI
framework). Considering the present generation of
microcomputers, such a piece should not represent great
practical difficulties for performance.

5. FUTURE PROSPECTS

The SndObj library is available for download at the
Maynooth Music Technology Laboratory Web site at
http://www.may.ie/academic/music/musictec. A number
of SndObj-based GUI applications are also available at
the same location. The library is currently being used as
a research and composition tool in the Department of
Music at NUI, Maynooth. This research includes the

development of new classes and applications for the lib-
rary. A complete HTML reference manual was created
by this author to help users creating their own sound
processing applications. This documentation includes
the code listings of 14 sample programs designed for
synthesis, processing and utility applications (cf.
Appendix B). The realtime capabilities of the Silicon
Graphics and Windows versions are going to be used
as a complement to outboard processing and synthesis
equipment in our electronic and recording studio at May-
nooth. Windows MME and Open Sound System real-
time IO classes were recently added to the library. This
extends the library realtime capabilities to Windows,
Linux and UNIX platforms with OSS-compatible audio
hardware. Solaris realtime classes are not being consid-
ered because of the poor audio support found on Sun
hardware.

Several options were considered to give the library a
graphical user interface. Preliminary studies were carried
out using the V framework (Wampler 1998). This is a
cross-platform framework which provides a good set of
tools for building user interfaces. The fact that it is
implemented in C++ helps its integration with the lib-
rary. This is a clear advantage over other possibilities
using another implementation language, such as Tcl/Tk
or Java. A simple sample application, developed using
V, is available for developers interested in examining
the use of that framework in conjunction with the
SndObj library. An interesting possibility which was
considered is the design of a graphical patching applica-
tion which would use the library as its processing
engine. This is another exciting prospect for develop-
ment opened by the research work which generated the
SndObj library.

6. CONCLUSION

As introduction to the subject, this article initially pre-
sented some of the currently available systems for com-
puter-generated music. Sound compilers were presented
as one option for the development of signal processing
applications, together with libraries and toolkits. The
SndObj library, version 1.0, was presented as an object-
oriented framework and toolkit for audio processing. Its
components were discussed in detail and its class hier-
archy was explained. It was shown that the library is
composed of a set of classes that encapsulate all pro-
cesses involved in synthesis, processing and IO opera-
tions. The library was demonstrated to be a modular and
user-friendly object-oriented system. Application
examples were provided as an introduction to the design
of programs that can make use of the library facilities.
A complete reference documentation is available, in
HTML format, and the library can be downloaded from
the Internet. There are good prospects for the continuous

https://doi.org/10.1017/S1355771800001060
Downloaded from https://www.cambridge.org/core. Maynooth University, on 21 Aug 2019 at 09:54:54, subject to the Cambridge Core terms of use, available at https://www.cambridge.org/core/terms.

https://doi.org/10.1017/S1355771800001060
https://www.cambridge.org/core
https://www.cambridge.org/core/terms

48 Victor E. P. Lazzarini

development and expansion of its possibilities and
applications.

APPENDIX A

List and description of SndObj Library version 1.0
classes:
SndObj Abstract base class for all audio pro-

cessing classes
ADSR Attack–Decay–Sustain–Release envel-

ope generator/processor
IADSR Similar to ADSR but including an ini-

tial and a final state
Balance Balances the rms output of one input

according to another
Buzz Discrete summation formula pulse

wave generator
DelayLine Simple delay line
Comb Comb filter
Allpass Allpass filter
StringFlt String resonator combining a feedback

delay line with allpass and lowpass
filters

Pluck Karplus–Strong plucked-string sound
generator

Vdelay Variable delay with feedback, feedfor-
ward and direct gain controls

Filter Abstract base class for filter classes
ButtBP Butterworth band-pass filter
ButtBR Butterworth band-reject filter
ButtHP Butterworth high-pass filter
ButtLP Butterworth low-pass filter
Freson Fixed 2nd-order resonator
Reson Variable resonator
Gain Gain attenuator/booster
Interp Interpolation between two points
Lookup Table lookup on behalf of an input

index
Lookupi Interpolating table lookup
Mixer SndObj mixer class
Oscil Abstract base class for all oscillator

classes
Oscilt Truncating oscillator
Oscili Interpolating oscillator
Rand Random-signal generator
Randh Sample-and-hold random signal gen-

erator
Ring General purpose multiplier and ring

modulator
SndIn SndIO-based signal input
Unit Test signal generator
SndIO Abstract base class for all input/output

classes
SndFIO Abstract base class for all file input/

output classes
SndAiff Abstract base class for AIFF-format

classes

SndAiffI AIFF file input
SndAiffO AIFF file output
SndRaw Abstract base class for Raw file classes
SndRawI Raw file input
SndRawO Raw file output
SndWave Abstract base class for RIFF-Wave

classes
SndWaveI RIFF-Wave file input
SndWaveO RIFF-Wave file output
SndStdIO Standard input/output class
SndOssRT Abstract base class for Open Sound

System realtime IO
SndOssRTI Open Sound System realtime input
SndOssRTO Open Sound System realtime output
SndSgiRT Abstract base class for Silicon Graph-

ics realtime IO
SndSgiRTI Silicon Graphics realtime input
SndSgiRTO Silicon Graphics realtime output
SndWinRT Abstract base class for Windows

MME realtime IO
SndWinRTI Windows MME realtime input
SndWinRTO Windows MME realtime output
Table Abstract base class for all maths func-

tion table classes
HarmTable Harmonic function table
Ham- Generalised Hamming window
mingTable
PinTable Polynomial table
SndTable SndIO-audio input table
TrisegTable Three-segment table
UserHarm- User-defined harmonic function table
Table
UserTable User-defined table

APPENDIX B

List and description of basic SndObj-based sample
application programs:
beau Beauchamp cornet emulation using

waveshaping and high-pass filter
cutsf Soundfile segment cutting
cvoc Channel vocoder using Butterworth

filters
cvoc2 Channel vocoder using fixed reson-

ators
flanger Flanging and phasing effects processor
karplus Plucked-string emulation
mixsf Soundfile mixer
risset Cascading harmonics drone generator
raw2wave Raw to RIFF-Wave format conversion
schroeder Reverberator using Schroeder config-

uration
slicesf Soundfile splicing
streson String resonator
wavegen Simple wave generator
windharp 5-string windharp using string reson-

ators

https://doi.org/10.1017/S1355771800001060
Downloaded from https://www.cambridge.org/core. Maynooth University, on 21 Aug 2019 at 09:54:54, subject to the Cambridge Core terms of use, available at https://www.cambridge.org/core/terms.

https://doi.org/10.1017/S1355771800001060
https://www.cambridge.org/core
https://www.cambridge.org/core/terms

The SndObj Sound Object Library 49

REFERENCES

Atkins, M., et al. 1987. The Composer’s Desktop Project.
Proc. of the 1987 Int. Computer Music Conf., pp. 146–50.
San Francisco: International Computer Music Association.

Cook, P. 1996. Synthesis Toolkit in C++ Version 1.0. Postscript
paper available at http://www.cs.princeton.edu/�prc/
STKPaper.ps

Garton, B. 1994. What is Cmix? HTML document available at
http://silvertone.princeton.edu/winham/Garton.html

Jaffe, D., and Boynton, L. 1991. An overview of the Sound
and Music Kits for the NeXT computer. In S. Pope (ed.)
The Well-Tempered Object, pp. 107–18. Cambridge, MA:
MIT Press.

Lansky, P. 1990. Cmix Release Notes and Manuals. Princeton:
Department of Music, Princeton University.

Lazzarini, V. 1998. A proposed design for an audio processing
system. Organised Sound 3(1): 77–84.

Lazzarini, V. 1999. The SndObj Reference Manual. HTML ref-
erence available online at http://www.may.ie/academic/
music/music/man/SndObj/index.html

Lazzarini, V., and Accorsi, F. 1998. Designing a sound object
library. In M. Loureiro (ed.) Proc. of the V Brazilian Com-
puter Music Symp., pp. 95–104. Belo Horizonte: Editora da
UFMG.

Lorrain, D. 1980. Inharmonique, Analyse de la Bande de
L’Oeuvre de Jean-Claude Risset. Rapports Ircam 26.

Mathews, M. 1960. Computer program to generate acoustic
signals. Abstract in Journal of the Acoustical Society of
America 32: 1,493.

Mathews, M. 1961. An acoustical compiler for music and psy-
chological stimuli. Bell System Technical Journal 40:
677–94.

Mathews, M. 1969. The Technology of Computer Music. Cam-
bridge, MA: MIT Press.

Moore, F. R. 1990. Elements of Computer Music. Englewood
Cliffs, NJ: Prentice-Hall.

Pope, S. 1991. Machine Tongues IX: object-oriented software
design. In S. Pope (ed.) The Well-Tempered Object, pp. 32–
48. Cambridge, MA: MIT Press.

Pope, S. 1993. Machine Tongues XV: three packages for soft-
ware sound synthesis. Computer Music Journal 17(2).

Scalletti, C. 1991. The Kyma/Platypus computer music
workstation. In S. Pope (ed.) The Well-Tempered Object,
pp. 119–40. Cambridge, MA: MIT Press.

Schottstaedt, W. 1992. CLM Manual. HTML reference manual
available at http://ccrma-www.stanford.edu/CCRMA/
software/CLM/clm-manual/clm.html

Stroustrup, B. 1995. The C++ Programming Language. Read-
ing, MA: Addison-Wesley Publishing Co.

Vercoe, B., and Piche, J. 1997. Csound Manual (version 3.47).
HTML reference manual available at

ftp://ftp.maths.bath.ac.uk/pub/dream
Wampler, B. 1998. V Reference Manual. HTML document

available at http://www.objectcentral.com

https://doi.org/10.1017/S1355771800001060
Downloaded from https://www.cambridge.org/core. Maynooth University, on 21 Aug 2019 at 09:54:54, subject to the Cambridge Core terms of use, available at https://www.cambridge.org/core/terms.

https://doi.org/10.1017/S1355771800001060
https://www.cambridge.org/core
https://www.cambridge.org/core/terms

https://doi.org/10.1017/S1355771800001060
Downloaded from https://www.cambridge.org/core. Maynooth University, on 21 Aug 2019 at 09:54:54, subject to the Cambridge Core terms of use, available at https://www.cambridge.org/core/terms.

https://doi.org/10.1017/S1355771800001060
https://www.cambridge.org/core
https://www.cambridge.org/core/terms

