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Abstract—In this work we show that random-access protocols,
which are used in a range of networks (e.g. WiFi, power line
communications and Internet of Things), may experience a high-
throughput, extremely long (of the order of hours) transitory
phase. This behaviour is not highlighted by common analysis
techniques and experimental evaluations, which can lead to
incorrect prediction of network performance. We identify factors
that led to this transitory behaviour being overlooked in previous
work. Via numerical analysis and experimental evaluation, we
establish under which conditions this transitory phase occurs.
Additionally, we give insight into the duration of this transitory
period and its statistical properties.

I. INTRODUCTION

A noteworthy feature of random-access protocols is that

they provide a service rate dependent on the actual number

of stations with a packet pending for transmission, which

may not be monotonic in the number of backlogged stations.

In this work we show that this state-dependent service rate

may, in combination with Poisson arrivals, cause an extremely

long transitory period (of the order of hours) under certain

conditions. In particular, when the buffer size of the stations

is large enough to be considered infinite and we operate with

the sum of arrival rates slightly higher than the service rate that

the system could serve in saturation (when all stations have

a packet buffered for transmission). Consider, for example, a

network formed by 50 nodes using Homeplug 1.0 Medium

Access Control (MAC) [1]. Fig. 1 shows the evolution of

throughput (measured every second). Observe that the network

remains in a high-throughput phase for several hours and

suddenly changes to a lower-throughput phase.

To illustrate why this effect takes place, consider a set

of nodes with no previous packets buffered for transmission.

Suppose packets are generated at a rate slightly higher than the

maximum rate the network could serve in saturation. Initially,

the probability that a large percentage of the nodes contend

for the channel at the same time is small. Thus, compared

to the case in which many stations are backlogged, the time

to transmit a packet is smaller, as the conditional collision

probability is smaller. Consequently, the probability that a

large number of packets accumulate for transmission is also

low, and higher throughput than that achieved when many

stations are backlogged can be obtained. However, with infinite

buffer sizes, this situation cannot be maintained in the long run.
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Fig. 1. Evolution of throughput in Homeplug MAC from [1].

Eventually, the number of backlogged stations will become

large and so will the time to transmit a packet, leading to an

increased number of the queued packets. As the service rate

is lower than the arrival rate, the system of coupled queues

is unstable [2]. Thus the long-term behaviour of these nodes

corresponds to saturation throughput. Note that this effect does

not correspond to bistability as, under these conditions, the

queue lengths diverge and so a return to the initial high-

throughput phase is eventually impossible.

We show in this work that the time to observe this long-

term behaviour may be extremely long (e.g. Fig. 1), potentially

leading to incorrect results from experimental assessments.

Additionally, common analytical models used for prediction of

network performance cannot identify the long-term operation

of the network and so provide two solutions (one correspond-

ing to the high-throughput phase and the other to saturation).

Unawareness of the two-solution effect and the long duration

of the transitory phase have contributed to incorrect validation

of analytical and experimental results in previous work.

In this work we determine under which conditions this

transitory phase occurs and give insight into its duration. The

specific contributions are as follows:

1) We identify the factors contributing to this transitory

phase being overlooked in previous work.

2) We determine the range of packet arrival rates for which

a long transitory period may occur.
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3) Via numerical analysis and experimental evaluation, we

give insight into the duration of this transitory phase and

its statistical properties.

4) We contribute further understanding of random-access

protocols to avoid incorrect prediction of long-term re-

sults. We show this incorrect prediction has a significant

potential impact on performance evaluation, parametrisa-

tion and optimisation.

This article is organised as follows. In Section II, we point to

previous results that incorrectly predict long-term performance

and provide an overview of related work. In Section III, we

describe factors that contribute to the transitory behaviour

being overlooked in common analysis and experimental evalu-

ation and provide recommendations to avoid misprediction of

network performance. In Section IV, we give more insight into

the duration and statistical properties of this long transitory

phase. We conclude the paper with some final remarks.

II. RELATED WORK

Borst et al. [2] show that, when considering an infinite buffer

size, the system of coupled queues that models the network

behaviour of random-access protocols is unstable when the

total arrival rate is higher than the saturated service rate (when

all stations are backlogged). We show in this work that, for

a range of arrival rates just above the saturated service rate,

the system of coupled queues potentially observes a high-

throughput, long-duration transitory phase. The possibility

of this long transitory phase was postulated in [3] without

experimental findings or formal proof.

The bistability of random-access protocols is well known,

e.g. [4] and [5]. Particularly well studied is the situation of

an infinite number of stations with a single packet buffer (e.g.

[6], [7]), where the number of backlogged stations tends to

infinity over time. For the case of a finite population of users

and a single-packet buffer, a long transitory period has been

identified [8], noting that the system may operate outside the

stationary regime for long periods. Our aim, in contrast, is

to consider the system with a finite number of stations but

with larger buffer sizes, as is common in Ethernet, WiFi and

power line communication systems in regimes where a long

transitory phase may lead to incorrect long-term results.

Note that our contributions are fundamentally different

to previous literature on bistability of random-access proto-

cols. In particular, we complement previous contributions by

considering the dynamics of the coupled system of queues

when the long-term operation of the network corresponds to

saturation, as defined in [2]. Thus, the interest in this work is

on unstable queues (with the number of packets buffered for

transmission increasing without bound) that appear stable for

a long duration before the system saturates. To give insight into

the transitory regime in this case is challenging, as common

queuing theory analysis is not applicable to unstable systems.

We make use of similar techniques to [8] in this work (e.g.

the first hitting/exit time of a Markov model simplifying

the full system of coupled queues) to estimate the transitory

period between attracting equilibria, and will make use of drift

analysis similar to that applied to Aloha [4], [5].

We first identified the long transitory behaviour in the

Homeplug MAC in [1] (see Fig. 1) and showed that previous

model results are incomplete [9], as simulation and analytic

results do not correspond to the long-term network perfor-

mance (inducing a relative error of 200% for some configu-

rations). This effect is not Homeplug-specific but common to

many random-access protocols. An example of such incorrect

prediction in WiFi networks can be found in [10], where an

analytical model with infinite buffer sizes is proposed. Higher

throughput than saturation is predicted when 50 and 100 nodes

are contending for the channel (reaching relative errors of 9%
and 50%, respectively). In that work, disagreement is observed

between analytical and experimental results (see Fig. 6 in

[10]): the throughput found in simulation for certain packet

arrival rates corresponds to neither the saturated throughput

nor a higher throughput phase. We believe this is caused by

averaging results from the transitory and long-term operations.

III. FACTORS CONTRIBUTING TO PERFORMANCE

MISPREDICTION

Given that the system of coupled queues is unstable when

the arrival rate is higher than the saturated service rate [2], how

is it then possible that other previous work mispredicts network

performance, showing higher throughput than that obtained

in saturation? Both analysis and experimental assessments

may provide the performance of the high-throughput transitory

phase, thus contributing to incorrect validation of analytic

models with experimental data. In this section we identify the

factors, both from analysis and experimental assessments, that

contribute to misprediction of long-term behaviour.

A. Factors Related to Analytical Modeling

When analysing the performance of a network of nodes

using a random-access protocol, a decoupling approximation is

commonly used in order to make the analysis tractable. Under

this approximation each queue is modelled as independent of

other queues in the network. These models involve solving

a fixed point equation, but, in contrast to saturated models,

the solution may not be unique in models that consider

unsaturated conditions [11]. In particular, we have detected

the long transitory phase as an additional solution under two

conditions: i) for a range of packet arrival rates slightly higher

than the load the system could serve in saturation and ii) under

infinite (or large enough to be considered infinite) buffer size.

The fundamental limitation of these analytical models is

that they do not consider the number of instantaneous con-

tending/backlogged stations, i.e., the number of queues that

have at least a packet buffered at the same time. Our intuition

from Section I regarding the long transitory phase suggests it

arises because of the difference between two extreme cases:

the queues being mostly empty or saturated conditions. Under

the decoupling approximation assumption, both solutions are

equally feasible. However, as previously mentioned, when the

arrival rate is above the saturated service rate and stations
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(c) Service Rate in Saturated Conditions

Fig. 2. The two solutions in throughput and the service rate in saturated conditions obtained from the DCF renewal reward analysis.

have infinite buffer size, the only long-term solution is that of

saturation.

DCF Example: To illustrate the limitation of analyses

based on the decoupling approximation to obtain the long-term

network performance of the system, let us consider a common

analytical model of the IEEE 802.11 DCF MAC considering

variable numbers of stations, traffic arrival rates and infinite

buffer space. All stations are homogeneous and belong to the

same collision domain (details in Appendix).

Fig. 2 shows the aggregated throughput as well as the

service rate in saturated conditions for different numbers of

nodes (N ) and packet arrival rates (λ). We have considered

setting the minimum contention window (W ) to 8 and 32
and the number of backoff stages (m) to 3 and 5. Thus, the

maximum contention windows are 64 and 1024 respectively

(refer to [12] for more details). Parameters shown in Table I

are used with data payload (L) set to 1500 bytes. This

model involves solving a fixed-point equation. The solution

labelled as Analysis 1 is obtained by iterating an initial

point representing saturation while the solution labelled as

Analysis 2 considers iterating an initial lightly-loaded point.

Both represent solutions of the model.

Figs. 2(a) and 2(b) show that while these solutions are often

the same, two distinct solutions are possible. Fig. 2(c) shows

the saturation service rate and that two solutions emerge when

the arrival rate is above this service rate. It seems that the

decoupling assumption may cause misprediction of long-term

network performance if the iterative solver converges to the

Analysis 2 solution.
1) Challenges to Model the Coupled Behaviour: The vast

majority of analytical models of random-access protocols are

based on the decoupling approximation. However, some au-

thors have already pointed out the inaccuracy of this assump-

tion and have made efforts to model the coupled dynamics of

the system of queues, as proposed in [13], [14].

The main problem in considering the number of packets at

each buffer and modelling the coupled behaviour is the large

resulting state space. Keeping track of the number of packets

buffered for transmission at each queue results in a state space

of QN , where Q denotes the maximum length of the queues

TABLE I
SYSTEM PARAMETERS OF THE IEEE 802.11B SPECIFICATION.

Parameter Value in IEEE 802.11b

Rdata 11 Mbps

Rbasic/RPHY 1 Mbps

LMACH 272 bits

LPLCPPre 144 bits

LPLCPH 48 bits

Lack 112 bits

σ 20 µs

DIFS 50 µs

SIFS 10 µs

and N the number of stations. Consequently, the complexity

of the system is considerably higher than modelling the

network assuming that the decoupling approximation holds.

Furthermore, as Q → ∞, the analysis becomes intractable.

2) Method to Identify the Potential for Two Solutions:

Figs. 2(a) and 2(b) show that as λ increases the analysis

provides only the long-term throughput solution, regardless

of the initial conditions for iteration. Observe that despite our

efforts to choose the initial values for the solver to produce two

solutions, only one solution is obtained when the two solutions

are very close (as seen in Fig. 2(a) for N = 10, λ ≈ 34). Thus,

a method to identify the range of packet arrival rates for which

two solutions exist can be useful to avoid misprediction.

In order to gather insight into the system of coupled queues

with reduced complexity, we model the system as a Markov

chain with states in {0, 1, . . .N} in which the state represents

the number of backlogged stations (X = nx). Although the

queue occupancy probability is not memoryless, in this section

we model it as independent of the previous states as follows.

The probability that a station remains still backlogged after

transmitting is the standard queue busy probability: ρx =
min(λ/µ(x), 1), where x denotes the current state, i.e., the

number of backlogged stations and µ(x) is determined from

a model for state-dependent services (e.g. the Appendix with

x saturated stations). Using this approximation, we model the

queue coupling but ignore the queue occupancy at each node

and only consider whether the queue has a packet pending for
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Fig. 3. Drift analysis for the number of backlogged stations in DCF (N = 50).

transmission.

We set the number of states of the Markov chain to 1+N ′

(from having no backlogged station up to the case in which

N ′ stations are backlogged), where N ′ is the smallest value of

N for which the condition λ ≥ µ(n), ∀n ≥ N ′. Observe that

ρx = 1 when N ′ stations have a packet pending for transmis-

sion. Thus, in order to partially capture the conclusions in [2]

without actually tracking the queue dynamics, we consider

the last state to be absorbing, i.e., P (N ′ 7→ N ′) = 1. The

transition probabilities for x < N ′ are shown in Eq. 1.

P (x 7→ x+ 1 ≤ N ′) =
(N − x)λ

(N − x)λ+ xµ(x)
,

P (x 7→ x− 1 ≥ 0) =
xµ(x)(1 − ρx)

(N − x)λ+ xµ(x)
,

P (x 7→ x) =
xµ(x)ρx

(N − x)λ+ xµ(x)
. (1)

Now, similar to [4], we define the drift, Dx, in a given

state x as the expected change in the number of backlogged

stations, which according to Eq. 1 is:

Dx =
(N − x)λ − xµ(x)(1 − ρx)

(N − x)λ + xµ(x)
. (2)

DCF Example: Fig. 3 shows the drift for each state

considering N = 50 nodes for DCF (W = 8,m = 3 and

W = 32,m = 5). We have obtained the state-dependent

service rates using the analysis in the Appendix for saturated

conditions. Three selected packet arrival rates, λ, are shown

for each case. The smallest λ corresponds to arrival rates

below saturated operation in Fig. 2, while the two higher

rates correspond to operation above this stability limit. For the

middle arrival rates (λ = 5 and λ = 7.5 for W = 8,m = 3 and

W = 32,m = 5 respectively) the decoupled model provided

two solutions in Fig. 2, while there was a single solution in

the other cases.

Note in Fig. 3 that for the lowest packet arrival rates

considered (unsaturated conditions), the drift is negative above

a certain x. Thus, the system tends to move to states with a

reduced number of backlogged stations and we observe an

attractive equilibrium point close to 0.5 and 1 backlogged

stations respectively. The contrary happens for the highest

packet arrival rates: the drift is always positive, meaning that

the system tends to move to states with a high number of

backlogged stations.

Interestingly, the behaviour is more complex for the middle

packet arrival rates where two solutions are obtained in Fig. 2.

In these cases, we observe three equilibria: an attractive

one at states with a small number of backlogged stations

(approximately x = 0.5 and 1, respectively); a repelling one

with a moderate number of backlogged stations (x = 24
and 29); and an attractive one at the maximum number of

backlogged stations. Once the number of backlogged stations

moves past the repelling equilibrium, the positive drift means

that the system tends towards all stations being backlogged.

Therefore, when these three equilibria are observed, we expect

the system to operate in the transitory phase for a certain

duration (i.e., the equilibrium point at states with small number

of backlogged stations) but then, after exceeding a threshold,

it tends to move to states with a large number of backlogged

stations. Ultimately, results in [2] tell us that the full system

remains in this state.

Note that the range of values for which we see multiple

equilibria in the drift analysis closely matches the range

of packet arrival rates for which multiple solutions exist in

Fig. 2. An equilibrium corresponds to network conditions

where the number of backlogged stations is approximately

constant, these conditions also correspond to a situation with

an approximately fixed collision probability for this level of

transmissions. Thus, we do expect an approximate correspon-

dence between the equilibria in this section and solutions

of the fixed-point equations in the previous section. In fact,

we observe the presence of a third solution to the fixed-

point equation which is not discovered by the simple iterative

method, corresponding to the repelling equilibrium.

Consequently, we believe this drift analysis provides a

simple method for identification of packet arrival rates for

which a long transitory phase is potentially present. Note, we

also see in Fig. 3, that as we increase the arrival rate, the drift

curve moves upwards, and so the repelling equilibrium moves

to a smaller number of stations. This means we expect the

threshold value to reduce as λ increases. A reduced threshold

is more likely to be crossed, and so we expect that the duration
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of the transitory period will decrease.

B. Factors Related to Experimental Assessment

In simulation, we do observe that as λ increases, the system

rapidly converges to the long-term operation of the network

even if there is potentially a transitory phase. However, per-

forming an experimental evaluation with arrival rate just above

the saturated service rate of the system of coupled queues can

provide wrong results as the length of the transitory phase

can be extremely long (see Fig. 1 in Section I). Specifically,

when the experiments are started with the queues empty, it

can take a long time to observe the long-term behaviour since

the system has to reach a point at which a large number of

nodes are simultaneously contending for the channel. This can

easily defeat the aim of a burn-in period for a simulation.

One way to obtain the long-term performance is to start with

the queues empty, run the experiments for a long time until

the system moves to long-term operation and then start taking

statistics of the performance metrics of interest. The drawback

of this method is that, due to the extremely long duration of

the transient period, the statistics from the transitory phase

must be discarded in order to reduce the bias in performance

results.

We suggest a more practical way to force the system to

quickly reach long-term operation: to start the experiments

with a number of packets preloaded in the queues. If the

queues are unstable, the initial conditions are closer to the

long-term behaviour, and the long-term throughput is obtained

faster. This technique is based on the recommendation to set

the initial conditions to those in steady-state proposed in [15].

This method is shown to be more effective in estimating the

steady-state mean if compared to discarding the transients,

as previously described. The disadvantage of this technique

is that, if the system of coupled queues is stable, there is

a transitory phase during which those extra packets will be

released. However, the previous method for identifying the

range of packet arrival rates for which a potential transitory

exists based on drift analysis can be used to determine the

cases where queues should be preloaded. Alternatively, sim-

ulations beginning with preloaded queues could be compared

with simulations beginning with empty queues, and significant

discrepancies could be regarded as reason for caution.

IV. INSIGHTS INTO THE DURATION OF THE LONG

TRANSITORY

In this section we provide insights into the duration of

the long transitory phase and its statistical properties using

numerical analysis and experimental evaluations.

A. A Lower Bound on the Duration of the Transitory Phase

Here we provide a lower bound on the duration of the

transitory phase via numerical analysis. With this purpose, we

reuse the Markov model from Section III-A2, which tracked

the number of backlogged stations, to perform a hitting time

analysis to the state in which arrival rate will be greater than

the service rate, so the drift leads us to all stations being

backlogged.
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Fig. 4. Results of the hitting time analysis on the system modelling the
number of backlogged stations).

1) Hitting Time to Limiting States: Starting with the queues

empty, we consider the instant, on average, at which a limiting

state N ′, where the arrival rate exceeds the service rate is

first hit. This metric allows us to track the number of events

(arrivals/departures) elapsed since the network start-up until

N ′ stations are backlogged. We can thus analytically obtain

the average number of events to hit state x = N ′ starting

from x = 0 (denoted as h(0)) by solving the system of linear

equations formed by Eq. 3 along with h(N ′) = 0.

h(x < N ′) = 1 +
(N − x)λ

(N − x)λ+ xµ(x)
h(x+ 1)+

xµ(x)(1 − ρx)

(N − x)λ + xµ(x)
h(x−1 > 0)+

xµ(x)ρx
(N − x)λ + xµ(x)

h(x).

(3)

This analysis is similar to the FET analysis in [8] and is

extremely computationally efficient. Thus it can be used to

perform an extensive numerical evaluation. However, results

are affected by the approximation of not tracking the queue

occupancies of the nodes. Also observe that while reaching

x = N ′ is necessary to end the transitory phase, having N ′

backlogged stations is not sufficient for the system to move to

long-term operation. If the number of packets in the queues is
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small when x = N ′, there is some non-zero probability that

stations transmit those packets without a consequent increase

in the number of packets accumulated for transmission. Thus,

the average number of events to hit state N ′ is a lower bound

for the events necessary to escape from the transitory period.

We illustrate this later in this section.

DCF Example: We have solved the linear system in Eq. 3

for N = 50 nodes for the DCF (W = 8, m = 3 and

W = 32, m = 5), obtaining the state-dependent service rates

(µ(x)) from the analytical model presented in the Appendix,

considering saturated conditions. Fig. 4 shows the average

number of events to hit state N ′ for different arrival rates.

Observe that, in all cases considered, as the packet arrival rate

increases, the average number of events to hit state N ′ tends to

zero. On the contrary, for reduced packet arrival rates, it can be

substantial. One might expect that the mean hitting time would

have a relatively simple leading term. We found that a simple

curve for the form A(λ− λ0)
α provides a relatively good fit,

where λ0 is close to the saturation throughput and α < 0 is

also dependent on the network configuration. Considering the

hitting time analysis provides a lower bound for the duration of

the transitory phase, these results demonstrate that for arrival

rates above than the saturated throughput (µ(N)), the duration

of the transitory phase can be extremely long.

2) Modelling the System of Coupled Queues: To illustrate

the fact that the previous hitting time analysis is a lower bound

on the actual duration of the transitory phase, we present here

experimental results on the queue occupancy evolution of the

system modeling the coupled behaviour of the queues. We

model the system of N parallel queues as a discrete Markov

chain with states in {0, 1, . . . , Q}
N

, the state represents the

number of packets waiting for transmission at each queue:

X = (X1, ..., XN ). We assume the system of parallel queues

to be homogeneous, i.e., same maximum queue length, packet

arrival and conditional service rate distribution at all queues.

The number of backlogged stations in a given state x is

denoted by nx and represents the number of queues with

at least one packet pending for transmission. We take into

account Poisson arrivals at rate λ packets/s. The service rate

(µ(nx)) is also considered to be exponentially distributed as

well as state-dependent. Including dependence on the number

of backlogged stations (nx) changes quantities in the model,

such as the conditional collision probability and/or the aver-

age backoff duration. The transition probabilities among the

different states of this process are:

P (x 7→ x+ ei ≤ q) =
λ

Nλ+ nxµ(nx)
,

P (x 7→ x− ei ≥ 0) =
µ(nx)

Nλ+ nxµ(nx)
, (4)

with the relational operators being element-wise and q and ei
being the all Q and i-th unit vectors in Z

N
+ , respectively. The

number of backlogged stations in state x is computed as:

nx =

N∑

i=1

I(xi), (5)
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(b) Simulation Run 2

Fig. 5. Evolution of the queue occupancy (maximum, average, minimum) of
the N nodes for two simulation runs in DCF (λ = 7.5 packets/s). Hitting
instant of first state such that λ > µ(nx) also displayed (vertical line).

where I(xi) is the indication function of having at least one

packet pending for transmission in queue i (i.e., I(xi) = 1 if

xi > 0 and 0 otherwise).

This system provides a close description of the behaviour of

the network with the main assumption being Poisson service.

As we mentioned in Section III, the complexity of solving

it explicitly is prohibitive. Its state space is of the order of

QN and we are interested in the case when Q → ∞. In fact,

the system is computationally intractable even for small N ,

even taking into account that the transition matrix is sparse.

However, assessment via Monte Carlo simulation is practical.

DCF Example: We track the queue evolution at every

instant (packet arrival/departure) of Monte Carlo simulations

using the state-dependent service rates from the model of the

DCF described in the Appendix. The minimum, average and

maximum queue length of N = 50 nodes using the DCF

protocol with λ = 7.5 packets/s for two different simulation

runs are depicted in Fig. 5. Observe that the queue occupancies

remain low for a long interval, until they start to increase to

the maximum queue length (effectively leaving the transitory

phase and entering into saturated conditions). We plot the

instant at which the limiting state (first x such that λ > µ(nx))
is first reached (vertical line). Note that, in Fig. 5(a), this

instant coincides with the moment at which the queues start
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Fig. 6. Empirical CDF obtained via network simulations of the last instant N −1 stations backlogged using in DCF with W = 32, m = 5. Inverse Gaussian
(and exponential in Fig. 6(a)) distribution with parameters selected to best fit the empirical distribution also depicted.

to be filled with packets. However, in Fig. 5(b), the system is

able to recover from this situation and remain in the transitory

phase for a longer interval, showing that the hitting time

analysis in the previous subsection actually corresponds to a

lower bound on the duration of the transitory period.

B. Transient Duration and Statistical Properties

For empirical assessment of the transitory phase duration

and evaluation of its statistical properties, we use a network

simulator based on the SENSE framework [16]. Packet interar-

rival times are modelled as exponentially distributed while the

service rate strictly follows the DCF random-access procedure.

We estimate the long transitory duration as TE, that we

define as the last time instant at which N − 1 stations were

backlogged once the average queue occupancy reached 75%
of the maximum queue size (with Q = 1000 packets). The

empirical Cumulative Distribution Functions (CDF) of TE,

obtained from 1000 simulation runs for different packet arrival

rates with N = 50 and W = 32, m = 5 is shown in Fig. 6.

First, observe that for shorter durations of the transitory

period (Figs. 6(b-c)), the empirical distribution resembles

that of an inverse Gaussian (best goodness of fit). However,

for longer durations of the transitory period (Fig. 6(a)), the

distribution obtained can be better described as an exponential.

These numerical results suggest that the actual distribution

could be described as a combination of two distributions, with

the exponential one having more influence for longer durations

(smaller packet arrival rates) and the inverse Gaussian being

more relevant for shorter durations (higher packet arrival

rates). Second, note that the actual length of the transitory

period in simulations when the packet arrival rate is 7.5
packets/s is in the order of several hours (Fig. 6(a)).

V. FINAL REMARKS

In this work we identify that there is a potential to observe

a long-duration transitory phase in random-access protocols

when we operate right above the saturated service rate of the

system of coupled queues and under certain circumstances,

such as infinite buffer size and exponentially distributed inter-

arrival of packets.

We first identified that previous work has overlooked this

transitory regime, leading to significant misprediction of long-

term performance. We then determined the relation between

incorrect prediction of long-term performance with i) the use

of iterative solvers of analytical models based on the decou-

pling approximation and ii) the presence of the extremely long

transitory phase in experimental evaluations.

Then, we determined the range of packet arrival rates for

which there is a potential for a long transitory phase to occur

by evaluating the equilibrium points via drift analysis of the

system modeling the number of backlogged stations. We also

provided a lower bound on the long transitory duration via a

hitting times numerical evaluation and gave more insight into

the actual duration of the transitory phase and its statistical

properties through network simulations.

APPENDIX: RENEWAL REWARD ANALYSIS OF THE WIFI

DCF MEDIUM ACCESS CONTROL PROTOCOL

We take a common renewal reward approach [17], [18],

[19] to model the DCF network performance that makes use

of the decoupling approximation. We also consider: i) large

enough to be considered infinite buffer size and retry limit,

ii) exponentially distributed interarrival of packets, iii) ideal

channel conditions, and iv) that all nodes can overhear each

other’s transmissions. The mean queue occupancy (ρ) of a

node is derived considering the service rate (µ) and the packet

arrival rate from the network layer (λ) as ρ = min(λ/µ, 1).

The service rate depends on the following: i) the total

time on average spent in transmitting packets that result in

a collision and ii) the time spent successfully transmitting the

packet, both including the total average backoff duration until

the successful frame transmission (E[w]α):

µ = 1/((nt − 1)(E[w]α + Tc) + E[w]α+ Ts), (6)

where nt is the average number of attempts to successfully

transmit a packet. A successful transmission (Ts) and a colli-

sion (Tc) are computed as: Ts = Tc = DIFS + Tfra + SIFS +
Tack, where Tfra and Tack denote the times to transmit the
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frame and the acknowledgement, respectively. We compute

Tfra as shown in Eq. 7 and Tack as in Eq. 8.

Tfra =
LPLCPPre + LPLCPH

RPHY

+
LMACH

Rbasic

+
L

Rdata

, (7)

Tack =
LPLCPPre + LPLCPH

RPHY

+
Lack

Rbasic

, (8)

with LPLCPPre, LPLCPH, LMACH, Lack and L being the

length of the PLCP preamble, PLCP header, MAC header,

acknowledgement and data payload, respectively, while RPHY,

Rbasic and Rdata denote the physical, basic and data rates [12].

Under the decoupling assumption with an infinite number

of retries, the average number of attempts to transmit a frame

(nt) is computed as nt = /(1 − p), where the conditional

collision probability (p) is obtained as the complementary of

having at least one of the other N − 1 nodes transmitting a

frame in the same slot (Eq. 9), with τ denoting the attempt

rate of a node.

p = 1− (1− τ)N−1. (9)

We view the attempt rate as a regenerative process, where

the renewal events are when the MAC begins processing a new

frame. Thus, we apply the renewal reward theorem (Eq. 10).

τ =
nt

nt (E[w] + 1) + I
. (10)

The term I in Eq. 10 accounts for the number of slots in

idle state (when there is no packet waiting in the queue for

transmission) and is computed as the probability of having an

empty queue over the probability of a packet arrival in a slot.

Considering an M/M/1 FIFO queue, we then compute I as in

Eq. 11.

I =
1− ρ

1− e−λα
, (11)

where α is the average slot duration while the node is in

backoff, which is derived depending on the type of slot that is

overheard. A slot can be empty if no other node transmits (that

occurs with pe probability) and, in such a case, its duration

is σ (defined in [12]). Otherwise, it can be occupied due to a

successful transmission (that happens with probability ps) or

a collision (that occurs with pc probability), with durations Ts

and Tc, respectively. Thus: α = psTs + pcTc + peσ, with:

ps = (n− 1)τ(1 − τ)N−2,

pe = (1− τ)N−1,

pc = 1− ps − pe. (12)

The average number of backoff slots can be computed as

shown in Eq. 13 derived in [17].

E[w] =
1− p− p(2p)m

1− 2p

W

2
−

1

2
. (13)

Finally, we obtain the throughput as: S = ρµL.
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