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Abstract: We consider the design of differentially private observers for positive linear systems
in discrete time. In particular, we first provide a general bound for the l1 sensitivity of the map
defined by a Luenberger observer for a linear time invariant (LTI) system and show that this can
be tight as well as describing how it relates to previous work. We then define an optimisation
problem for minimising this bound for positive linear observers and provide a characterisation of
optimal solutions for systems with a single measured output. Finally, we show how the addition
of Laplacian noise can violate positivity, even for the optimally designed positive observer and
discuss directions for future work.
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1. INTRODUCTION

Modern cyber-physical systems in domains such as trans-
port, public health and logistics often require the transmis-
sion and processing of sensitive or personal data (Lucia
et al. (2016)). Hence, it is important to develop control
methodologies for such systems that protect user pri-
vacy while delivering near optimal performance in order
to maintain public confidence in their adoption. In the
past decade, quantitative privacy paradigms have been
proposed in the computer science community; differential
privacy (Dwork (2006)) has emerged as one of the most
promising frameworks for privacy preserving control de-
sign, and we adopt it as our quantitative privacy paradigm
here. Our results build on the recent work of Le Ny and
Pappas (2014); Le Ny (2015) and others on differentially
private filtering and control and efforts to extend differ-
ential privacy to more general data types (Holohan et al.
(2015)). Other recent noteworthy contributions in the area
include: Dong et al. (2015) which describes differentially
private mechanisms for routing people through a trans-
portation network; while in Venkitasubramaniam (2013), a
Markov decision process model was used to design optimal
data sharing policies for a social network, based on an
information theoretic measure of privacy.

Le Ny and Pappas (2014) defined a system theoretic for-
mulation of differential privacy as well as two fundamen-
tal mechanisms to provide differential privacy for inputs.
These extended appropriately the Laplacian and Gaussian
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mechanisms used in earlier work for static databases. In
both cases, the sensitivity of the input-output map plays a
crucial role in determining the magnitude of noise required
to ensure differential privacy. In a subsequent paper (Le Ny
(2015)) these results were used to construct differentially
private observers for nonlinear systems satisfying appro-
priate contraction properties.

Many motivating examples for privacy preserving control
fall within the class of positive systems (Valcher (1996),
Fornasini and Valcher (2012), Blanchini et al. (2015)).
Previous work on privacy preserving control and observer
design has not explicitly considered positive systems; how-
ever, positivity has a strong impact on system behaviour.
In Hardin and van Schuppen (2007), a formal mathemati-
cal description of the positive observer design problem for
linear systems, together with canonical forms appropriate
to the positive setting was described. Further work on pos-
itive observer design, for more general classes of observer,
can be found in Shu et al. (2008). Our objective here is
to introduce the problem of differentially private positive
observer design; starting from the work of Le Ny (2015)
and concentrating on what can be said for the sensitivity
of observers for positive linear systems.

1.1 Outline of paper/contributions

In Section 2 we introduce our notation and provide back-
ground on differential privacy for dynamical systems. In
Section 3, we derive an upper bound for the l1 sensitivity
of a linear observer of Luenberger type and show that
this bound can be attained. In Section 4 we specialise
to positive systems and define an optimization problem
for designing a positive observer that also minimises the
bound from Section 3.
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2. BACKGROUND ON DIFFERENTIAL PRIVACY
AND OBSERVERS

Throughout the paper, Rn denotes the vector space of n-
tuples of real numbers and Rn×n the space of n×nmatrices
with real entries. For x ∈ Rn: x ≥ 0 means that xi ≥ 0 for
1 ≤ i ≤ n. Rn

+ denotes the nonnegative orthant

Rn
+ := {x ∈ Rn | x ≥ 0}.

Analogous notation is also used for matrices throughout.
AT denotes the transpose of A ∈ Rn×n and ρ(A) is used
to denote its spectral radius.

Throughout this paper, we will work exclusively with the
l1 norm and the corresponding induced norm for matrices,
as these are the natural norms for use in connection with
Laplace mechanisms for differential privacy (Le Ny and
Pappas (2014); Dwork (2006)). As no confusion will arise,
we use ‖x‖ for the l1 norm of x ∈ Rn and for T ∈ Rm×n,
‖T‖ denotes the l1 induced (operator) norm of T . It is
standard (Horn and Johnson (2012)) that this is given by

‖T‖ = max
j

m∑
i=1

|tij |. (1)

Our work is motivated by the design of differentially
private observers for linear time-invariant (LTI) systems in
discrete time. Following Hardin and van Schuppen (2007);
Ait Rami and Tadeo (2006), we consider systems of the
form:

x(k + 1) =Ax(k)

y(k) =Cx(k) (2)

where A ∈ Rn×n, C ∈ Rp×n. The design of a Luenberger
observer for this system requires a matrix L ∈ Rn×p such
that the solution z(·) of the system L given by

z(k + 1) =Az(k) + L(y(k)− Cz(k)) (3)

= (A− LC)z(k) + Ly(k)

satisfies ‖z(k) − x(k)‖ → 0 as k → ∞ where x is the
solution of (2). In the absence of additional constraints,
the classical solution is to construct a matrix L such that
A− LC is Schur-stable (Sontag (1998)).

When the signal y contains sensitive or personal informa-
tion we wish to release a noisy observer signal ẑ such that
the mapping y → ẑ is differentially private. We now recall
the relevant definition in a system theoretic context from
Le Ny and Pappas (2014); Le Ny (2015).

Let K > 0 and 0 ≤ α < 1 be given. Then two
sequences/signals y, y′ are adjacent, written y ∼ y′ if

∃ k0 ≥ 0 s.t.

{
y(k) = y′(k), k < k0
‖y(k)− y′(k)‖ ≤ Kαk−k0 , k ≥ k0

(4)

The intuition is that adjacent signals correspond to a
change in the entries of a small number of individuals at a
particular time; the initial magnitude of the change is K
and its magnitude then decays geometrically at rate α.

Given a system G mapping input sequences y in Y to
output signals z in Z, a differentially private mechanism is

defined by a set of random variables {ZG,y | y ∈ Y} taking
values in Z satisfying:

P(ZG,y ∈ A) ≤ eεP(ZG,y′ ∈ A) (5)

for all measurable sets A of Z and all y ∼ y′.

For a sequence/signal y(k), 0 ≤ k < ∞ with y(k) ∈ Rn for
all k, we follow Le Ny (2015) and define its l1 norm by

‖y‖ =

∞∑
k=0

‖y(k)‖.

We next recall the key concept of sensitivity which deter-
mines the magnitude of noise required to ensure differen-
tial privacy.

Definition 2.1. The l1 sensitivity ∆(G) of a system G is
defined as

∆(G) := sup
y∼y′

‖G(y)−G(y′)‖. (6)

It is possible to define sensitivity with respect to other
norms; in particular the l2 norm is used in the definition
of Gaussian mechanisms for relaxed differential privacy
(Le Ny and Pappas (2014)).

An ε differentially private mechanism can be defined by
adding iid noise generated from the Laplace distribution

with parameter b = ∆(L)
ε to each component of each

z(k) (Le Ny and Pappas (2014)). For this reason we
are interested in characterising the l1 sensitivity of the
observer (3) mapping y to z.

3. SENSITIVITY FOR POSITIVE LUENBERGER
OBSERVERS

The results described at the end of the last section natu-
rally motivate the problem of determining bounds for the
l1 sensitivity of (3).

Proposition 3.1. Let A ∈ Rn×n, C ∈ Rp×n, L ∈ Rn×p

be given and suppose that ‖A − LC‖ < 1. Consider
the Luenberger observer, L given by (3). Then for the
adjacency relation defined by (4), the l1 sensitivity of L
(as given in (6)) is bounded by

∆(L) ≤
(

K

1− α

)(
‖L‖

1− ‖A− LC‖

)
. (7)

Proof: Let two adjacent sequences y ∼ y′ be given. The
(zero-initial state) map from y to z corresponding to (3)
is described by

z(k + 1) =

k∑
i=0

(A− LC)k−iLy(i) (8)

Write z′ for the observer output corresponding to y′ so
that

z′(k + 1) =

k∑
i=0

(A− LC)k−iLy′(i). (9)

As y ∼ y′, it follows that z′(k) = z(k) for k ≤ k0.
Moreover, for k > k0, we have

z(k)− z′(k) =

k−1∑
i=k0

(A− LC)k−i−1L(y(i)− y′(i)). (10)
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We need to bound ‖z(k) − z′(k)‖; for k > k0, using the
triangle inequality and the submultiplicative property of
the induced matrix norm we have:

‖z(k)− z′(k)‖= ‖
k−1∑
i=k0

(A− LC)k−i−1L(y(i)− y′(i))‖

≤ ‖L‖K
k−1∑
i=k0

‖(A− LC)‖k−i−1αi−k0

The l1 norm of z(k) − z′(k) will be given by the sum∑∞
k=0 ‖z(k) − z′(k)‖ which, in the light of the above

calculation and remarks, will be bounded above by

‖L‖K
∞∑

k=k0

k∑
i=k0

‖(A− LC)‖k−iαi−k0 . (11)

The infinite series above can be rearranged as follows
(keeping in mind that the series is absolutely convergent
as α < 1, ‖A− LC‖ < 1):

∞∑
k=0

k∑
i=0

‖(A− LC)‖k−iαi

=

(
1

1− α

)(
1

1− ‖A− LC‖

)
.

Putting everything together, we see that the l1 norm of
z − z′ is bounded above by(

K

1− α

)(
‖L‖

1− ‖A− LC‖

)

which completes the proof as y ∼ y′ were arbitrary.

3.1 Tightness of upper bound

It is natural to ask whether the upper bound on the
sensitivity of (3) derived in Proposition 3.1 is tight. To
this end, we next describe a simple example for which the
bound is indeed attained.

Example 3.1. Consider

A =

(
1 1/2
1/4 3/4

)
, C = ( 1/3 1/3 ) , L =

(
1

1/2

)
.

A straightforward calculation shows that

A− LC =

(
2/3 1/6
1/12 7/12

)

so that ‖A− LC‖ = 3/4 < 1. Moreover,

(A− LC)L = (3/4)L = ‖A− LC‖L
so that (A − LC)iL = ‖A − LC‖iL for all i ≥ 1. Using
this, we can see that for a pair of adjacent sequences y, y′

where y(k), y′(k) are in R for all k and satisfy (4) with
equality replacing the inequality (as we are dealing with
scalars, this is not difficult to achieve), the corresponding
observer states z, z′ satisfy

‖z − z′‖ =

(
K

1− α

)(
‖L‖

1− ‖A− LC‖

)

so that the bound of Proposition 3.1 is attained for this
choice of A,C,L.

Comment The previous example demonstrates that it is
possible for the upper bound for the l1 sensitivity of the

system (3) given in Proposition 3.1 to be exact for certain
choices of A,C,L. Note also that the matrices A,C,L and
A− LC above are all nonnegative.

3.2 Relation to bounds given in Le Ny (2015)

Corollary 2 of Le Ny (2015), which applies to contractive
nonlinear systems can be used to obtain an alternative
expression for an upper bound of the l1 sensitivity of (3).
For comparison, we briefly describe how this earlier result
relates to the bound in Proposition 3.1. We write M for
the upper bound (7).

The bound in Le Ny (2015) is:

M1 = η

(
1

1− γ
− 1

1− α

)
(12)

where η > 0 is arbitrary and, in our notation:

‖A− LC‖ ≤ β, γ = max{α+
K‖L‖

η
, β}.

Manipulation of inequalities shows that

M1 ≥
(
β − α

γ − α

)(
K

1− α

)(
‖L‖

1− ‖A− LC‖

)
.

Thus M1 ≥ β−α
γ−αM and in the case where β = γ, the upper

bound M1 is at best as tight as our bound in (7). Further,
it is important to note that we have shown that the bound
(7) is attained for some systems.

4. POSITIVE OBSERVERS

In applications such as epidemiology and social network
analysis, the underlying dynamical system is typically a
positive system. When considering observer design for a
positive system, it is natural to require that the observer
system (3) and all the signals involved respect the posi-
tivity constraint of the underlying system (Ait Rami and
Tadeo (2006); Hardin and van Schuppen (2007); Back
and Astolfi (2008)). This defines the problem of positive
observer design which is distinct to classical observer de-
sign due to the positivity constraint. In the remainder of
this paper, we address the design of a positive observer
that minimises the bound for the l1 sensitivity given in
Proposition 3.1.

The system (2) is positive if and only if the matrices A,
C are nonnegative. The positive observer design problem
(Ait Rami and Tadeo (2006)) is equivalent to: construct
a matrix L such that A − LC ≥ 0, LC ≥ 0 and ρ(A −
LC) < 1.

K and α are fixed parameters determined by the definition
of adjacency (4) and the bound given by (7) is valid for L
with ‖A − LC‖ < 1. With this in mind, we propose the
following problem.

Problem 4.1. Given A ∈ Rn×n
+ , C ∈ Rp×n

+ , minimise

F (L) :=
‖L‖

1− ‖A− LC‖
(13)

subject to the constraints:

LC ≥ 0 , A− LC ≥ 0, ‖A− LC‖ < 1 (14)
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We need to bound ‖z(k) − z′(k)‖; for k > k0, using the
triangle inequality and the submultiplicative property of
the induced matrix norm we have:

‖z(k)− z′(k)‖= ‖
k−1∑
i=k0

(A− LC)k−i−1L(y(i)− y′(i))‖

≤ ‖L‖K
k−1∑
i=k0

‖(A− LC)‖k−i−1αi−k0

The l1 norm of z(k) − z′(k) will be given by the sum∑∞
k=0 ‖z(k) − z′(k)‖ which, in the light of the above

calculation and remarks, will be bounded above by

‖L‖K
∞∑

k=k0

k∑
i=k0

‖(A− LC)‖k−iαi−k0 . (11)

The infinite series above can be rearranged as follows
(keeping in mind that the series is absolutely convergent
as α < 1, ‖A− LC‖ < 1):

∞∑
k=0

k∑
i=0

‖(A− LC)‖k−iαi

=

(
1

1− α

)(
1

1− ‖A− LC‖

)
.

Putting everything together, we see that the l1 norm of
z − z′ is bounded above by(

K

1− α

)(
‖L‖

1− ‖A− LC‖

)

which completes the proof as y ∼ y′ were arbitrary.

3.1 Tightness of upper bound

It is natural to ask whether the upper bound on the
sensitivity of (3) derived in Proposition 3.1 is tight. To
this end, we next describe a simple example for which the
bound is indeed attained.

Example 3.1. Consider

A =

(
1 1/2
1/4 3/4

)
, C = ( 1/3 1/3 ) , L =

(
1
1/2

)
.

A straightforward calculation shows that

A− LC =

(
2/3 1/6
1/12 7/12

)

so that ‖A− LC‖ = 3/4 < 1. Moreover,

(A− LC)L = (3/4)L = ‖A− LC‖L
so that (A − LC)iL = ‖A − LC‖iL for all i ≥ 1. Using
this, we can see that for a pair of adjacent sequences y, y′

where y(k), y′(k) are in R for all k and satisfy (4) with
equality replacing the inequality (as we are dealing with
scalars, this is not difficult to achieve), the corresponding
observer states z, z′ satisfy

‖z − z′‖ =

(
K

1− α

)(
‖L‖

1− ‖A− LC‖

)

so that the bound of Proposition 3.1 is attained for this
choice of A,C,L.

Comment The previous example demonstrates that it is
possible for the upper bound for the l1 sensitivity of the

system (3) given in Proposition 3.1 to be exact for certain
choices of A,C,L. Note also that the matrices A,C,L and
A− LC above are all nonnegative.

3.2 Relation to bounds given in Le Ny (2015)

Corollary 2 of Le Ny (2015), which applies to contractive
nonlinear systems can be used to obtain an alternative
expression for an upper bound of the l1 sensitivity of (3).
For comparison, we briefly describe how this earlier result
relates to the bound in Proposition 3.1. We write M for
the upper bound (7).

The bound in Le Ny (2015) is:

M1 = η

(
1

1− γ
− 1

1− α

)
(12)

where η > 0 is arbitrary and, in our notation:

‖A− LC‖ ≤ β, γ = max{α+
K‖L‖

η
, β}.

Manipulation of inequalities shows that

M1 ≥
(
β − α

γ − α

)(
K

1− α

)(
‖L‖

1− ‖A− LC‖

)
.

Thus M1 ≥ β−α
γ−αM and in the case where β = γ, the upper

bound M1 is at best as tight as our bound in (7). Further,
it is important to note that we have shown that the bound
(7) is attained for some systems.

4. POSITIVE OBSERVERS

In applications such as epidemiology and social network
analysis, the underlying dynamical system is typically a
positive system. When considering observer design for a
positive system, it is natural to require that the observer
system (3) and all the signals involved respect the posi-
tivity constraint of the underlying system (Ait Rami and
Tadeo (2006); Hardin and van Schuppen (2007); Back
and Astolfi (2008)). This defines the problem of positive
observer design which is distinct to classical observer de-
sign due to the positivity constraint. In the remainder of
this paper, we address the design of a positive observer
that minimises the bound for the l1 sensitivity given in
Proposition 3.1.

The system (2) is positive if and only if the matrices A,
C are nonnegative. The positive observer design problem
(Ait Rami and Tadeo (2006)) is equivalent to: construct
a matrix L such that A − LC ≥ 0, LC ≥ 0 and ρ(A −
LC) < 1.

K and α are fixed parameters determined by the definition
of adjacency (4) and the bound given by (7) is valid for L
with ‖A − LC‖ < 1. With this in mind, we propose the
following problem.

Problem 4.1. Given A ∈ Rn×n
+ , C ∈ Rp×n

+ , minimise

F (L) :=
‖L‖

1− ‖A− LC‖
(13)

subject to the constraints:

LC ≥ 0 , A− LC ≥ 0, ‖A− LC‖ < 1 (14)
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If F ∗ is an optimal value for Problem 4.1, the minimal
value of (7) is given by

K

1− α
F ∗.

Comment: It is worth noting that the function F in
general is not convex so algorithms for convex optimisation
cannot be directly applied. Further, to the best of our
knowledge, no prior work has been done on the specific
question of minimising the l1 sensitivity of positive Luen-
berger observers.

We next characterise the feasibility and solution of Prob-
lem 4.1 for systems with a single output variable (p = 1).
In this case (where C ≥ 0) the constraint LC ≥ 0 can be
replaced by L ≥ 0 (Ait Rami and Tadeo (2006)).

4.1 The single-output case: feasibility

If the measured output y is 1-dimensional, so that C ∈
R1×n, we will write cT for C where c ∈ Rn is a column
vector and L = l where l ∈ Rn. In this case, testing the
feasibility of Problem 4.1 (the existence of a positive linear
observer satisfying ‖A − lcT ‖ < 1) is straightforward. In
the following result, we adopt the notational convention
that 0

0 = 0 and t
0 = ∞ for t > 0.

Proposition 4.1. Let A ∈ Rn×n
+ , c ∈ Rn

+, c �= 0 be given.
There exists some l ∈ Rn

+ satisfying (14) if and only if
n∑

i=1

min
j

aij
cj

> max
j

1

cj

(
n∑

i=1

aij − 1

)
. (15)

Proof. If such an l exists then it follows from A− lcT ≥ 0
that li ≤ aij

cj
for all j and hence li ≤ minj

aij

cj
. It now

follows from ‖A− lcT ‖ < 1 that for all j

n∑
i=1

(aij − licj) < 1

⇒ cj

n∑
i=1

li >

n∑
i=1

aij − 1

⇒ cj

n∑
i=1

min
j

aij
cj

>

n∑
i=1

aij − 1

and (15) follows immediately.

Conversely if (15) holds, then it is simple to check that the
vector l defined by setting li = minj

aij

cj
will satisfy (14).

4.2 The single output case: optimality

Continuing with the case where p = 1, the induced l1 norm
of L in Rn×1 is simply the usual l1 norm of the associated
column vector l, so ‖L‖ =

∑n
i=1 li. We next note that in

this case, the function F in (13) can be written in a simpler
form.

Lemma 4.1. Given A ∈ Rn×n
+ , c, l ∈ Rn, we can write:

F (l) = max
j

∑n
i=1 li

(1−
∑n

i=1 aij) + cj
∑n

i=1 li
.

Proof. This is a simple calculation as:

F (l) =
‖l‖

1− ‖A− lcT ‖

=

∑n
i=1 li

1−maxj (
∑n

i=1(aij − licj)

=max
j

∑n
i=1 li

(1−
∑n

i=1 aij) + cj
∑n

i=1 li
as claimed.

Taken together, Lemma 4.1 and Proposition 4.1 show that
for the single output case, minimising the l1 sensitivity
bound (7) reduces to the following uni-variate constrained
optimisation problem.

Problem 4.2. Minimise

f(x) = max
j

x

(1−
∑n

i=1 aij) + cjx

subject to

x ≥ 0& max
j

1

cj

(
n∑

i=1

aij − 1

)
< x≤

n∑
i=1

min
j

aij
cj

(16)

Note that as one of the constraints is strict, our optimal
solution may be an infimum rather than a minimum in
some circumstances.

In the following, we will use F to denote the feasibility
region defined by (16).

If we define

fj(x) =
x

(1−
∑n

i=1 aij) + cjx
, 1 ≤ j ≤ n,

then the following facts can be easily verified by direct
computation.

• If
∑n

i=1 aij < 1 then: fj is a strictly increasing

concave function on
[
0,
∑n

i=1 minj
aij

cj

]
and fj(0) = 0;

• If
∑n

i=1 aij > 1 then: fj is a strictly decreasing convex

function on
(

1
cj

(
∑n

i=1 aij − 1) ,
∑n

i=1 minj
aij

cj

]
and

fj(x) → ∞ as x tends to 1
cj

(
∑n

i=1 aij − 1) from the

right.
• If

∑n
i=1 aij = 1 then fj(x) =

1
cj
.

The discussion above suggests the following simple graph-
ical scheme for solving Problem 4.2.

(1) Determine the feasibility region (16) from A and c.
(2) Plot each fj in this region and mark off the graph of

f = max fj .
(3) Find the point x∗ where f attains its minimum in

(16). This value of f will be the minimum of the
l1 sensitivity bound (7) for the positive observer
problem.

(4) A vector l satisfying (15) with
∑n

i=1 li = x∗ will be
an optimal positive observer. It is not difficult to see
that such an l will always exist.

Before describing the optimal solution in detail for 2-
dimensional systems, we note that there are essentially 3
cases to consider in the above scheme.

All fj concave

If
∑n

i=1 aij < 1 for all j, then as every fj is strictly
increasing, it is not hard to see that the optimal point
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If F ∗ is an optimal value for Problem 4.1, the minimal
value of (7) is given by

K

1− α
F ∗.

Comment: It is worth noting that the function F in
general is not convex so algorithms for convex optimisation
cannot be directly applied. Further, to the best of our
knowledge, no prior work has been done on the specific
question of minimising the l1 sensitivity of positive Luen-
berger observers.

We next characterise the feasibility and solution of Prob-
lem 4.1 for systems with a single output variable (p = 1).
In this case (where C ≥ 0) the constraint LC ≥ 0 can be
replaced by L ≥ 0 (Ait Rami and Tadeo (2006)).

4.1 The single-output case: feasibility

If the measured output y is 1-dimensional, so that C ∈
R1×n, we will write cT for C where c ∈ Rn is a column
vector and L = l where l ∈ Rn. In this case, testing the
feasibility of Problem 4.1 (the existence of a positive linear
observer satisfying ‖A − lcT ‖ < 1) is straightforward. In
the following result, we adopt the notational convention
that 0

0 = 0 and t
0 = ∞ for t > 0.

Proposition 4.1. Let A ∈ Rn×n
+ , c ∈ Rn

+, c �= 0 be given.
There exists some l ∈ Rn

+ satisfying (14) if and only if
n∑

i=1

min
j

aij
cj

> max
j

1

cj

(
n∑

i=1

aij − 1

)
. (15)

Proof. If such an l exists then it follows from A− lcT ≥ 0
that li ≤ aij

cj
for all j and hence li ≤ minj

aij

cj
. It now

follows from ‖A− lcT ‖ < 1 that for all j

n∑
i=1

(aij − licj) < 1

⇒ cj

n∑
i=1

li >

n∑
i=1

aij − 1

⇒ cj

n∑
i=1

min
j

aij
cj

>

n∑
i=1

aij − 1

and (15) follows immediately.

Conversely if (15) holds, then it is simple to check that the
vector l defined by setting li = minj

aij

cj
will satisfy (14).

4.2 The single output case: optimality

Continuing with the case where p = 1, the induced l1 norm
of L in Rn×1 is simply the usual l1 norm of the associated
column vector l, so ‖L‖ =

∑n
i=1 li. We next note that in

this case, the function F in (13) can be written in a simpler
form.

Lemma 4.1. Given A ∈ Rn×n
+ , c, l ∈ Rn, we can write:

F (l) = max
j

∑n
i=1 li

(1−
∑n

i=1 aij) + cj
∑n

i=1 li
.

Proof. This is a simple calculation as:

F (l) =
‖l‖

1− ‖A− lcT ‖

=

∑n
i=1 li

1−maxj (
∑n

i=1(aij − licj)

=max
j

∑n
i=1 li

(1−
∑n

i=1 aij) + cj
∑n

i=1 li
as claimed.

Taken together, Lemma 4.1 and Proposition 4.1 show that
for the single output case, minimising the l1 sensitivity
bound (7) reduces to the following uni-variate constrained
optimisation problem.

Problem 4.2. Minimise

f(x) = max
j

x

(1−
∑n

i=1 aij) + cjx

subject to

x ≥ 0& max
j

1

cj

(
n∑

i=1

aij − 1

)
< x≤

n∑
i=1

min
j

aij
cj

(16)

Note that as one of the constraints is strict, our optimal
solution may be an infimum rather than a minimum in
some circumstances.

In the following, we will use F to denote the feasibility
region defined by (16).

If we define

fj(x) =
x

(1−
∑n

i=1 aij) + cjx
, 1 ≤ j ≤ n,

then the following facts can be easily verified by direct
computation.

• If
∑n

i=1 aij < 1 then: fj is a strictly increasing

concave function on
[
0,
∑n

i=1 minj
aij

cj

]
and fj(0) = 0;

• If
∑n

i=1 aij > 1 then: fj is a strictly decreasing convex

function on
(

1
cj

(
∑n

i=1 aij − 1) ,
∑n

i=1 minj
aij

cj

]
and

fj(x) → ∞ as x tends to 1
cj

(
∑n

i=1 aij − 1) from the

right.
• If

∑n
i=1 aij = 1 then fj(x) =

1
cj
.

The discussion above suggests the following simple graph-
ical scheme for solving Problem 4.2.

(1) Determine the feasibility region (16) from A and c.
(2) Plot each fj in this region and mark off the graph of

f = max fj .
(3) Find the point x∗ where f attains its minimum in

(16). This value of f will be the minimum of the
l1 sensitivity bound (7) for the positive observer
problem.

(4) A vector l satisfying (15) with
∑n

i=1 li = x∗ will be
an optimal positive observer. It is not difficult to see
that such an l will always exist.

Before describing the optimal solution in detail for 2-
dimensional systems, we note that there are essentially 3
cases to consider in the above scheme.

All fj concave

If
∑n

i=1 aij < 1 for all j, then as every fj is strictly
increasing, it is not hard to see that the optimal point
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for Problem 4.2 occurs at x = 0 corresponding to l = 0
and ∆(L) = 0. This is not surprising as in this case the
matrix A has l1 induced norm less than 1. Note however
that while l = 0 may minimise sensitivity, it will deliver a
sub-optimal rate of convergence in most cases.

If
∑n

i=1 aij = 1 for some indices j, then x = 0 will again
be an optimal point but in this case, the minimum of f
will be given by maxj∈J1

1
cj

where J1 is the set of those

indices for which the column sum is equal to one.

All fj convex

If
∑n

i=1 aij > 1 for all j, then as every fj is strictly
decreasing, it is not hard to see that the optimal point
for Problem 4.2 occurs at the upper limit of the feasibility
region, x =

∑n
i=1 minj

aij

cj
, corresponding to the observer

gain defined by li = minj
aij

cj
for 1 ≤ i ≤ n. This is also

true if some of the row sums are equal to 1. In this case,
the gain matrix l that minimises f is also optimal with
respect to l1 observer convergence.

Mixed case

In the case where J+ = {j |
∑n

i=1 aij > 1} and J− =
{j |

∑n
i=1 aij < 1} are both non-empty, we proceed as

follows. Determine all points of intersection x in F where
fj(x) = fk(x) for j ∈ J+, k ∈ J−. This amounts to solving
a finite set of quadratic equations. If there are no such
points in F , then the optimal point will again occur at the
upper limit of F . Otherwise, the optimal point x∗ will be
one of the points of intersection.

4.3 The 2-d case

To illustrate some of the points made above, we now
describe how to find an optimal observer for a 2-d positive
linear system.

Let

A =

(
a11 a12
a21 a22

)
, cT = (c1 c2) , l =

(
l1
l2

)
.

Since A− lcT ≥ 0, we have

0 ≤ l1 ≤ min

{
a11
c1

,
a12
c2

}
, 0 ≤ l2 ≤ min

{
a21
c1

,
a22
c2

}

If ‖A‖ < 1, then we minimise F (l), by setting l =

(
0
0

)
. In

the case where ‖A‖ ≤ 1 and one column sum is equal to 1,
the infimum of F in F is given by 1

cj
where j is the index

of the column summing to 1. This can be approximated
to any desired degree of accuracy by choosing l > 0
sufficiently small.

If ‖A‖ > 1 and
∑2

i=1 aij > 1, for j = 1, 2, then the optimal
observer gain is given by

l1 = min

{
a11
c1

,
a12
c2

}
, l2 = min

{
a21
c1

,
a22
c2

}
. (17)

If ‖A‖ > 1 and
∑2

i=1 aij < 1, for some j ∈ {1, 2}, then let

x = ‖L‖ and write αj = 1−
∑2

i=1 aij for j = 1, 2.

We need to find the intersection of the two curves defined
by f1(x) =

x
α1+c1x

and f2(x) =
x

α2+c2x
. Setting

x

α1 + c1x
=

x

α2 + c2x

we find x = 0 or x = α2−α1

c1−c2
. If x lies outside of our feasible

set F , then the optimal value of l is again given by (17).

If x is within F then it corresponds to an optimal
l and we need to choose l1 and l2 such that l1 ≤
min

{
a11

c1
, a12

c2

}
, l2 ≤ min

{
a21

c1
, a22

c2

}
and l1 + l2 = x. This

can be done by setting

l1 = min{min
j

aij
cj

, x}, l2 = max{0, x− l1}.

The discussion of the previous paragraphs can readily be
codified as an algorithm to find an optimal l for Problem
4.1 for 2-dimensional positive systems. While technically
more involved, it is not too difficult to see how this may
be extended to provide an algorithm for computing an
optimal gain matrix for n-dimensional systems.

Example 4.1. Consider the system defined by

A =

(
1/2 2/3
1/3 1/2

)
, cT = ( 2 3 ) .

It is a straightforward computation to see that F =
( 1
18 ,

7
18 ]. In this case, we have one column sum greater than

1 and one less than 1 so we compute the intersection point

x =
7/6− 9/6

2− 3
=

1

3
.

As x ∈ F , we can now compute the optimal l by setting
l1 = min{2/9, 1/3} = 2/9 and l2 = max{0, 1/3 − 2/9} =
1/9 giving an optimal observer gain l = (2/9 1/3)T . The
curves corresponding to f1, f2 for this example are shown
in Figure 1

Fig. 1. This graph shows the intersection of the curves
f1(x) and f2(x), is within the range for ‖L‖ ∈ ( 1

18 ,
7
18 ],

where
∑2

i=1 ai1 < 1 and
∑2

i=1 ai2 > 1.

Figures 2 and 3 illustrate two of the other scenarios that
can arise in the solution of Problem 4.2 for 2-d systems. In
all figures, the limits of the feasible region F are indicated
by vertical lines.

5. CONCLUSIONS AND FUTURE WORK

We have considered the design of differentially private
positive linear observers and described how to minimise
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Fig. 2. This graph shows the intersection of the curves
f1(x) and f2(x), is outside the range for ‖L‖ ∈ ( 16 ,

5
6 ],

where
∑2

i=1 ai1 < 1 and
∑2

i=1 ai2 > 1

Fig. 3. This graph shows the curves f1(x) and f2(x), where∑2
i=1 ai1 > 1 and

∑2
i=1 ai2 > 1.

a bound for the l1 sensitivity of a positive Luenberger
observer. We have also shown that this bound can be tight
and explained how it relates to that given in Le Ny (2015).

It should be noted that even when we design an optimal
positive observer in the sense of Problem 4.1, it is possible
to violate the positivity constraint when we add Laplacian
noise to the observer state z.

Example 5.1. Consider

A =

(
0.74905 0.76393
0.41093 0.29756

)
, C =

(
0.61685
0.53626

)

We find that the optimal value for L is L = (1.21431 0.55489)T .
Using initial conditions: x(0) = (6 17)T and z(0) =
(23 28)T , x(k), y(k) and z(k) will always be nonnegative.
However using the optimal upper bound for the sensitivity
of 3.988 and adding on Laplace noise with ε = 0.5, K = 1
and α = 0.5, it is possible to get negative values for
z′(k). For example, in one simulation run, we find z′(1) =
(−1.9324 15.5667)T and z′(2) = (26.1538 − 13.6552)T .

This motivates the following problem: design randomised
mechanisms that deliver differential privacy for positive
systems and still remain positive after the addition of
noise.

A natural next step is to extend the work here to sen-
sitivities with respect to other norms and corresponding
mechanisms. For instance, can we bound l2 sensitivity for
positive systems and obtain a corresponding characterisa-
tion of near-optimal observers for mechanisms based on

Gaussian noise? Another question concerns extensions to
nonlinear positive systems and to systems with multiple
outputs. These questions are the focus of ongoing work by
the authors and we hope to publish results on them in the
near future.
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