
An Embedded Domain Specific Language
for General Purpose Vectorization

Przemys�law Karpiński1,2(B) and John McDonald2

1 CERN, The European Organization for Nuclear Research,
1211 Geneva 23, Switzerland

przemyslaw.karpinski@cern.ch
2 Maynooth University, Maynooth, Co Kildare, Ireland

Abstract. Portable SIMD code generation is an open problem in mod-
ern High Performance Computing systems. Performance portability can
already be achieved, however it might fail when user-framework interac-
tion is required.

Of all portable vectorization techniques, explicit vectorization, using
wrapper-class libraries, is proven to achieve the fastest performance, how-
ever it does not exploit optimization opportunities outside the simplest
algebraic primitives. A more advanced language is therefore required,
but the design of a new independent language is not feasible due to its
high costs.

This work describes an Embedded Domain Specific Language for solv-
ing generalized 1-D vectorization problems. The language is implemented
using C++ as a host language and published as a lightweight library. By
decoupling expression creation from evaluation a wider range of prob-
lems can be solved, without sacrificing runtime efficiency.

In this paper we discuss design patterns necessary, but not limited, to
efficient EDSL implementation. We also study specific scenarios in which
a language-based interface can surpass procedural interfaces in both effi-
ciency, portability and ease of use. In particular we demonstrate higher
performance when compared with equivalent BLAS Level 1 routines.

Keywords: Vectorization · SIMD · EDSL · Performance · Portability ·
Programmability

1 Introduction

In this paper we present an Embedded Domain Specific Language (EDSL) for
explicit vectorization. This work extends Unified Multi/Many-Core Environment
(UME) [13] framework with the expression template based mechanism to provide
an additional level of abstraction over different SIMD and SIMT architectures.

We start our discussion with an overview of current state-of-art, focusing
on selected techniques and their usage. We also discuss problems arising from
routine-based vectorization interfaces.

c© Springer International Publishing AG 2017
J.M. Kunkel et al. (Eds.): ISC High Performance Workshops 2017, LNCS 10524, pp. 515–537, 2017.
https://doi.org/10.1007/978-3-319-67630-2_37

516 P. Karpiński and J. McDonald

Next we present our abstract vector language and show how this type of
abstraction can reduce overall code complexity, as well as improve code read-
ability and make it easier to comprehend.

Then we discuss how such a language can be implemented for CPU-based
computations, without the need for a costly, custom compilation toolchain. We
also discuss specific problems of portable SIMD code generation.

The discussion is continued with a presentation of selected C++ techniques
useful for solving issues of performance bottlenecks arising between frameworks
and application codes. Specifically we present a technique for compile-time coa-
lescence between user, and framework defined kernels.

We then present a concept of custom evaluation schemes, capable of handling
more complex statement classes. This concept is necessary for providing high
language expressibility without losses in performance.

The discussions described above are followed by a performance compari-
son of vector code kernels and their equivalent implementation using an EDSL
approach.

Finally we discuss scenarios in which this approach might fail, as well as
some of practical limitations flowing from the current C++ specification and
compliant compilers.

The main contribution of this paper is a concept of decoupling expression
graph creation and machine code generation scheme. We show that more than
one evaluator class is required in order to handle arbitrary vector statements.
We also present selected evaluation schemes for handling non-trivial expres-
sions. A secondary contribution is a discussion of design patterns useful for
both evaluator creation and for interaction between framework and end-user
code. In particular we show that user defined expressions can be coalesced with
external solvers thus improving machine code quality. We also investigate sce-
narios in which expression-based vector processing can be more efficient than
routine based approaches, with simultaneous improvement in code readability
and portability. All our considerations are demonstrated by UME::VECTOR,
an open source library that provides an existing implementation of the vector
language [11].

1.1 Prior Work

Evaluation of SIMD programming models performed by [17] showed that explicit
vectorization gives the best performance when compared to compiler auto-
vectorization. We presented a design for this approach [13] that makes the con-
cept of an abstract SIMD vector more portable, and using masking as a primary
mechanism for control flow. As we discuss further this approach for SIMD code
generation has multiple drawbacks. In this paper, we explain how to overcome
these difficulties, with minimal losses in expressibility.

The approach presented here is strongly based on the expression templates
(ET) technique [18,20]. Work presented by Härdtlein et. al. [7] demonstrated an
approach in which the expression templates can be either made easier to imple-
ment or faster in terms of runtime performance. In this work we simplify this idea

An Embedded Domain Specific Language for General Purpose Vectorization 517

by implementing an ET generator which allows us to propagate design changes
in ET without the need for manual code changes. This approach allows simpli-
fications in ET design, without relying on complex template-metaprogramming
techniques needed otherwise, and exploited by libraries such as boost::proto [15]
and NT2 [2].

Creating Embedded Domain Specific Languages has been explained already
in [8] but without considerations for performance. In [2] the authors deal with
parallelization schemes for ET graphs, but the topic of efficient SIMD code gen-
eration is not explained there in detail. We discuss this topic and show what
trade-offs are required between expressibility and ease of use when fine granu-
larity of code generation is required.

Using expression templates for EDSL design for linear algebra package design,
has been already demonstrated multiple times for instance in [6,21]. They both
explore in detail the topic of user-interface for matrix-based computations but
focus only on matrix computations, with more object-oriented approach for data
storage and compute flow. We present a generic set of vector primitives suited to
a wider class of array processing problems and discuss further situations where
this programming model can improve portability and performance, and reduce
software efforts.

1.2 Selected Problems

A basic motivation for this work comes from a practical situation that we
observed in GeantV, a particle detector simulator developed at CERN [1]. The
main goals of the project are to improve performance of simulations by exploit-
ing multi-threading and vectorization capabilities of modern HPC systems. Since
the High Energy Physics(HEP) community is largely fragmented in terms of the
type of computational resources available, the framework has to retain very high
portability. As a framework it is also expected to provide components that can
be re-used for wide variety of fields including HEP, medical imaging, aeronautics
and others, meaning that the interface flexibility is an important design issue.

For the GeantV project, a decision was made to use an explicit SIMD library
for efficient machine code generation. The feasibility of this approach was already
discussed in [13,17]. A problem arising from this solution is, that the framework
code has to implement the iterative structure around the data sets, as presented
in Listing 1.1. In the simplest case, the framework developers need to write both
SIMD and scalar versions of the same kernel. An alternative for loop peeling
is to only use data buffers of lengths that are multiples of hardware supported
SIMD strides. Both approaches require additional effort from developers to either
duplicate the functionality by providing both scalar and SIMD versions of the
same kernel, or to make sure that data sets are padded properly, so that only
the SIMD version of the kernel is required. As we explained before in [13] the
problem of code duplication can be solved by extending the scalar typeset with
support for a vector interface, where certain vector operations become identities
for 1-element vectors. Code Listing 1.2 shows both a peel loop and a remainder
loop implemented using a templated version of such a kernel. Thanks to compiler

518 P. Karpiński and J. McDonald

optimizations, the codes generated by compilers are the same in both situations,
with the latter one requiring only a single framework kernel implementation.

Listing 1.1. Loop peeling for correct explicit SIMD-ization. Peel loop and remainder
loop require different kernels.

template<int SIMD LENGTH>
void framework func (f loat ∗ input0 ,∗ input1 , f loat ∗output , int LENGTH){
int REMAINDER OFF = (LENGTH/SIMD LENGTH)∗SIMD LENGTH;

for (int i =0; i<LENGTH; i+=SIMD LENGTH) {
SIMD kernel<SIMD LENGTH>(&input0 [i] ,& input1 [i] ,& output [i]) ; // E x e c u t e p e e l l o o p

}
for (int i=REMAINDER OFF; i<LENGTH; i++) {

s c a l a r k e r n e l (input0 [i] , input1 [i] ,& output [i]) ; // E x e c u t e r em a i n d e r l o o p
}

}

Listing 1.2. Loop peeling with SIMD-1. Both peel and remainder loops use the same
kernel definition.

template<int SIMD LENGTH>
void framework func (f loat ∗ input0 ,∗ input1 , f loat ∗output , int LENGTH)
{
int REMAINDER OFF=(LENGTH/SIMD LENGTH)∗SIMD LENGTH;

for (int i =0; i<LENGTH; i+=SIMD LENGTH) {
// E x e c u t e p e e l l o o p
SIMD kernel<SIMD LENGTH>(&input0 [i] ,& input1 [i] ,& output [i]) ;

}
for (int i=REMAINDER OFF; i<LENGTH; i++) {

// E x e c u t e r em a i n d e r l o o p
SIMD kernel<1>(input0 [i] , input1 [i] ,& output [i]) ;

}
}

Even with the scheme described above, the framework has to provide a set of
SIMD kernel implementations, as well as as set of wrapper functions frame-
work func to expose a SIMD-agnostic interface to the end user. The user code
would then make a series of invocations similar to one presented at Listing 1.3. In
this kind of a situation, the user requests execution of specific fast kernels, devel-
oped as part of a domain specific framework. A potential performance problems
arise in this situation. If the data buffers are big enough to exceed the cache size,
the temporary data resulting from call to framework func 1 might be pushed
out from cache towards slower memory, before a call to framework func 2 hap-
pens. In that case, data locality is not preserved, and therefore computational
resources might not be utilised efficiently.

Listing 1.3. User and framework code interaction.

void use r func (f loat ∗ input0 , ∗ input1 , ∗ input2 , f loat ∗output , int LENGTH){
f loat ∗ tmp = new f loat [LENGTH] ; // a l l o c a t e a t em p o r a r y b u f f e r f o r i n t e r m e d i a t e

f ramework func 1 (input0 , intput1 , tmp ,LENGTH) ;
framework func 2 (tmp , input2 , output ,LENGTH) ;

delete [] tmp ;
}

Similar scenarios can lead either to significant performance losses or to users
developing custom kernels of code and effectively replicating work already per-
formed by framework developers. In very optimistic scenarios, framework devel-
opers can design custom functions for instance to merge the functionality of
functions framework func 1 and framework func 2. Unfortunately this will

An Embedded Domain Specific Language for General Purpose Vectorization 519

only happen when there is enough direct feedback from users to framework devel-
opers, when there is an existing business need to do so, and if it doesn’t explode
the size of framework code. In most situations such an approach cannot be used.

Listing 1.4. Scalar solver for 4-th order Runge-Kutta method.

// User−d e f i n e d f u n c t i o n t o b e p a s s e d
// t o RK−4 me t hod a s t h e ‘ f u n c ’ p a r am e t e r
f loat u s e r f u n c s c a l a r (f loat x , f loat y){

return 5 .0 f ∗x∗x/exp (x+y) ;
}
// . . .
f loat f ramework RK4 so lver sca lar (f loat x , f loat y , f loat dx , USER FUNC &func){

f loat hal fdx=dx ∗0.5 f ;
f loat k1=dx∗ func (x , y) ;
f loat k2=dx∗ func (x+halfdx , y+k1∗hal fdx) ;
f loat k3=dx∗ func (x+halfdx , y+k2∗hal fdx) ;
f loat k4=dx∗ func (x+dx , y+k3∗dx) ;
return y+(1.0 f /6 .0 f)∗(k1+2.0 f ∗k2+2.0 f ∗k3+k4) ;

}

Another kind of problem can be visualised by an example shown in List-
ing 1.4. In this example, the framework implements a domain specific algorithm
for calculating Runge-Kutta method. The problem that we can identify quickly,
is that the user defined function func is not known at the time of framework
development. For this reason the framework cannot assure the users that this
function will be properly inlined to avoid excessive function calls, nor that it will
be properly SIMD-ized, as the function defined by the user might not be sub-
ject to vectorization. An alternative would be to force the users to write their
functions using an explicit SIMD library already exploited by the framework.
An example of such interaction is presented in Listing 1.5. In this example the
users need to be fully aware of the concept of SIMD computations. The direct
benefit of this approach is that there is no performance penalty from SIMD
under-utilisation, however the function might still not be inlined properly. In
addition to that, the users still might need to implement a scalar duplicate of
their function, to be used with the rest of their code. Also there is no guarantee
that current explicit SIMD approaches will retain their portability over future
SIMD hardware, forcing the users to write possibly less-portable code.

Listing 1.5. Explicit SIMD solver for 4-th order Runge-Kutta method.

// User−d e f i n e d f u n c t i o n t o b e p a s s e d t o RK−4 me thod a s t h e ‘ f u n c ’ p a r am e t e r
SIMD<f loat ,8> user func SIMD (SIMD<f loat ,8> &x , SIMD<f loat ,8> &y){

return 5 .0 f ∗x∗x / (x+y) . exp () ;
}
. . .
SIMD<f loat ,8> f ramework RK4 so lver sca lar (SIMD<f loat ,8> &x , SIMD<f loat ,8> &y ,

f loat dx , USER FUNC &func){
SIMD<f loat ,8> dx vec (dx) ;
SIMD<f loat ,8> ha l fdx vec (dx ∗0.5 f) ;
SIMD<f loat ,8> k1=dx∗ func (x , y) ;
SIMD<f loat ,8> k2=dx∗ func (x+halfdx , y+k1∗hal fdx) ;
SIMD<f loat ,8> k3=dx∗ func (x+halfdx , y+k2∗hal fdx) ;
SIMD<f loat ,8> k4=dx∗ func (x+dx , y+k3∗dx) ;
return y+(1.0 f /6 .0 f)∗(k1+2.0 f ∗k2+2.0 f ∗k3+k4) ;

}

2 Vector EDSL Overview

Given the issues detailed in the previous section we would argue that there
is a clear need for a more expressive way to communicate between user and

520 P. Karpiński and J. McDonald

framework codes. We could imagine such communication happening by a user
expressing an intent for a more complex aggregation of framework primitives
(routines), and by frameworks making decisions as late as possible about the
final machine code to be executed. This concept of Lazy evaluation is already
being explored for higher level parallelism, for example in [10], however it cannot
be applied for efficient code generation at instruction level. The main problem
is the requirement for the higher-level code to be presented in a form that is
statically deductible. That is, the decision about the specific instruction to be
generated, must be made at the compile time. Hence, this lazy code generation
applies currently at the level of low-level programming languages and is handled
by compilers.

Development of a new language, and a corresponding compiler, is not a fea-
sible solution for a lazy SIMD code generation, as it would require replication
of work already done at the level of compiler toolchains and core libraries. An
equivalent effort put into extension of C++ language and compliant compilers
could bring more benefits, than re-designing a new language just to exploit this
specific hardware feature. Recent developments in C++ language standard made
it more feasible to use Expression Templates as a way to provide a library with
compiler-like capabilities [19]. Specific meta-programming features, such as auto-
matic type deduction, variadic templates, move semantics and constant expres-
sions allow providing more static (compile-time) information to the compiler,
enabling it to generate more efficient machine code. By operator overloading
expression templates also allow creation of more intuitive interfaces.

In this paper we present UME::VECTOR which provides a C++ based imple-
mentation of EDSL dedicated for handling 1-dimensional vectors, focusing on
efficient SIMD code generation. The language provides a set of types represent-
ing scalars and vectors of scalar elements, and a set of basic operations applicable
to these types.

2.1 Typeset

Listing 1.6 shows basic declarations for terminal types. The basic requirement
is made that the size of a vector needs to be passed at the latest moment of
vector declaration. The rationale behind this requirement is, that the operations
between vectors are possible only if specific requirements on vector lengths are
correct in terms of the arithmetic operations to be executed. The fundamental
type of packed elements is passed as a template parameter. This requirement is
in line with standard C++ conventions, and it is driven by static deductibility
requirement.

In the given example, vectors a and b are initialized using external memory
locations owned and managed by user code. By binding the memory region
to vector primitives it is possible to decrease both the memory footprint and
execution time. Since the vector primitive does not own any memory location,
no additional allocations have to be performed. If such an allocation would have
to be handled, the data from the original location would still have to be copied

An Embedded Domain Specific Language for General Purpose Vectorization 521

to new location, requiring significant amount of time if a specific computational
kernel has to be executed repetitively.

In some cases the user might want to have a dedicated memory region, used
for the storage of vectors, e.g. for temporaries. It is possible for the user to pass
a specific allocator type to be used to handle specific memory region allocations.
Since the language cannot make extensive assumptions about specific execution
environment and target platform, the possibility to allocate memory in the spe-
cific memory regions, such as high bandwidth memory, is required. Since the
method of allocation, or specific external tools required might differ depending
on the user platform, it is up to the user to choose a proper allocator. The
information about specific vector storage locations can be used by an expres-
sion evaluator to perform additional memory-based optimizations. At the same
time a default allocation mechanism is provided to facilitate ease of use in the
simplest scenarios.

Listing 1.6. Declaration of terminals.

f loat raw a [1 0 0 0] ;
int raw b [1 2 3] ;
bool raw mask [1 0 0 0] ;

UME: :VECTOR: : Vector<f loat> a (1000 , raw a) ;
UME: :VECTOR: : Vector<int> b(123 , raw b) ;
UME: :VECTOR: : Vector<f loat , u s e rA l l ocator> c (1000) ;

// V e c t o r i s r e s p o n s i b l e f o r memory management .
UME: :VECTOR: : Scalar<f loat> pi (3 . 1 4) ;
UME: :VECTOR: : Mask mask (1000 , raw mask) ;

Listing 1.6 presents also a declaration of a Scalar<float> type. Since C++
already provides a mechanism, for scalar declarations, the standard scalar types
can be used in user defined formulas instead. Any C++ scalar variable and con-
stant will be automatically converted to a corresponding Scalar<> type when
used in such a formula. The main reason behind this wrapping of scalar types is
that different semantic rules apply for C++ fundamental and non-fundamental
types. Creating a scalar wrapper allows more uniform handling of 1-D vectors
and scalars within a language implementation. The second reason is, that a
wrapped scalar type is derived from the same interface as the Vector types and
composite expressions. As a result the same invocation conventions and inter-
faces can be used to handle both scalar variables and vector variables within the
library implementation. Awareness of the Scalar type might be important for
handling some minor corner-cases in user code, and is critical for the situations
when a custom, user-defined evaluator is developed. We will discuss the topic of
evaluators in Sect. 3.

The last type in Listing 1.6 is a Mask type. A mask, or a predicate vector, is
a vector of elements responsible for conditional evaluation of an expression. The
concept has been already discussed in [13,14] with the rationale of masks already
being an integral part of existing instruction sets [9,16]. The vector EDSL does
not provide any block level control flow, such as if-else or for statements. The
only way of providing an efficient handling of conditional executions is by the
means of mask types. For the purpose of C++ compatibility, a mask vector
should be considered as a vector of packed boolean variables used for selective
execution of specified operations.

522 P. Karpiński and J. McDonald

2.2 Syntax

The most natural way of providing language extensions in C++ can be done
using the operator overloading mechanism. Overloaded operators offer the capa-
bility of changing the default meaning of supported unary and binary operators,
and provide a custom evaluation scheme for a new operation. There are couple
of issues that have to be overcome when dealing with operator overloading in
terms of performance and expressibility.

First of all, an operator is essentially a function. For efficiency reasons, exces-
sive function calls have to be avoided. In the case of the vector language each
overloaded function relates roughly to a single CPU instruction, therefore func-
tion calls have to be completely avoided. C++ offers the inline keyword to
inform the compiler that a given function (or an operator) should not gener-
ate a corresponding stack frame, however due to the fact that inline is only a
hint, there is no guarantee on compiler behaviour. Luckily most of the compilers,
including open-sourced GNU GCC and Clang++, support additional function
attribute to force inlining. We use this non-standard keyword wrapped as a
portable macro to pass our stronger intent to compilers.

The second problem is, that at the moment C++ only permits a limited
number of operators to be overloaded. As we already pointed out in [13] the
number of available operators is not sufficient for expressive SIMD vectorization.
There is also no possibility to overload the ternary operator (<mask >? <true-
exp >: <false-exp >), required for binary operations using the optional mask
operand. This made it necessary to develop an alternative interface. We therefore
use a Member Function Interface (MFI) to provide the user with a mechanism
to express all operations with a uniform interface. At the same time, we also
allow users to use the classical operator form to facilitate easier expressibility
for operations for which it is possible. Listing 1.7 shows few examples of how the
user can write down specific expressions. In case of MFI operations, the operand
on the left of . operator is treated as an implicit operand.

As can be observed, some of the operations do not have a corresponding C++
operator. MFI offers a wider and more uniform interface. As we pointed out
already in [13], the MFI function calls can be easily mapped to C-like functions
without further losses in portability and performance. We reserve this type of
language syntax for future library releases.

Listing 1.7. Syntactic conventions of vector language.

\\ Operator syntax
a=b+c ;
\\ Masked syntax with MFI
a=b . add (mask , c) ;
\\ Ternary operat ion with MFI
a=b . fmuladd (c , d) ;
\\ Binary de s t ru c t i v e add i t i on (+=)
a . adda (b) ;
\\ Operations can be nested i f neces sary
c=b . add (a > 0 , d ∗ e) ;

Element-Wise Operations. The set of arithmetic operations consists of the
ones already defined by the C++ standard but generalized for vectors of packed

An Embedded Domain Specific Language for General Purpose Vectorization 523

scalars. As already mentioned most of the arithmetic operations accept required
Vector and arithmetic expression operands, and return an arithmetic expression
or, in case of comparison operations, a logical expression. Similarly all logical
operations accept Mask and logical expressions and return a logical expression.
Except for comparison instructions, all arithmetic operations accept an optional
mask operand.

A subset of arithmetic operations called destructive operations allow the
operation to modify one of the operands. A C++ equivalent of such operations
would be to use assignment operators, such as ‘+=’ or ‘\=’. Since use of an
assignment operator with a left hand vector is considered to be an evaluation
trigger, that is an operation forcing expression evaluation, its use would prohibit
nesting of destructive operations within expressions. From the performance per-
spective however, nesting these operation within composite expressions allow us
to improve data locality. Therefore destructive operations need to be accessed
using MFI interface, if they are meant to be used as parts of an expression. An
example can be reviewed in Listing 1.8. In the second case of that listing, the
destructive operation is performed on operand ‘c’ before its value is passed for
evaluation of the rest of the expression. Since a destructive operation can only be
applied to a proper l-value, a compile-time error will occur when the operation
is applied on a r-value type.

Listing 1.8. Using destructive operations.

\\ bas i c d e s t r u c t i v e operat ion (/=)
a/=b ;
\\ Nested de s t ru c t i v e operat ion (+=)
\\ Both ’ a ’ and ’ c ’ are modi f ied .
a = b + c . adda (d) ;

Control Flow. As mentioned before, masking is the only way to perform control
flow in this language. An example of a masking operation has already been
presented in Listing 1.7. For MFI functions, the optional mask operator is always
the first parameter.

A mask can be either loaded by the user in the process of binding with a bool
array, or obtained as a result of one of the arithmetic comparison instructions.
The comparison operations can be expressed using either one of the relational
operators, or an equivalent MFI function. The class of logical expressions does
not accept an optional mask parameter, as it accepts and returns a mask para-
meter only. Masking of a logical operation can therefore be performed using an
additional .land (Logical AND, or &&) operation.

When a masked operation is executed, its effect is applied only for the ele-
ments where the mask value was equivalent to ‘true’. We don’t specify how an
implementation should treat the masks within an expression, as such assump-
tions might impact the performance on specific platforms. We only make a
requirement on the final persistent result of the operation. In that sense, a
masked operation has to operate ‘as if’ it was propagated towards the evaluation
destination (left hand side of the“=”operator) and through specific destructive

524 P. Karpiński and J. McDonald

operations. This soft requirement offers optimization opportunities for platform
specific evaluators’ implementations.

Reduction Operations. A set of operations converting a vector type into
a fundamental-castable type is called a reduction operation. At the same time
applying a reduction operation on a Scalar<T> will be considered an identity
operation. Reductions are an important class of basic problems, as they already
have their reflection in existing instruction sets. On the other hand, reduction
operations are not as trivial to parallelize as element-wise operations. Since a
reduction operation requires traversal of all elements of a vector, or evaluation
of sub-expression forming such vector, it might create a performance bottleneck.
For that reason reductions might require a specialized implementation. A classi-
cal way of providing a serial reduction operation in C/C++ consists of iterating
over an array of elements, and performing a partial reduction in each iteration.
Implemented as such, reductions might require a small number of additional
lines of code to be expressed.

By making basic reduction operations accessible using the MFI interface,
it is possible to make the user code more compact, and easier to read. At the
same time writing more complex reduction operations can be implemented using
existing horizontal operations, and basic reduction operations. Listing 1.9 shows
the example implementation of an infinity norm applied between two vectors.

A complete list of operations available as part of the language is subject to
frequent changes, therefore we refer the reader to the implementation website
[11] for further reading.

Listing 1.9. Using max-reduction to calculate infinity norm between two vectors.

// I n i f i n i t y norm c a l c u l a t i o n u s i n g v e c t o r EDSL :
e r r = ((a−b) . abs ()) . hmax () ;
. . .
// The same i n t e n t e x p r e s s e d u s i n g s c a l a r C++ c o d e :
e r r = 0 .0 f ;
for (int i =0; i<LEN; i++) {

f loat d i f f=abs (a [i]−b [i]) ;
i f (d i f f >e r r) e r r=d i f f ;

}

3 EDSL Implementation

While we don’t limit the possibility of implementing our vectorization EDSL to
any type of interpreted or compiled languages, it was designed primarily to be
implemented using a library approach. As the implementation required has to
be able to reach very high performance without sacrificing usability, we find it
important to discuss specific design patterns and techniques used. Most of these
techniques can be adopted to user codes to reach more flexible and efficient
designs.

We find two existing design patterns to be critical for our design: Expres-
sion Templates (ET) and Curiously Recurring Template Pattern (CRTP). Both
patterns are already well established and can be referred to in [18]. In our case

An Embedded Domain Specific Language for General Purpose Vectorization 525

ET pattern is important, as it gives the ability to construct expression graphs
with minimal overhead, and handle them using a lazy evaluation approach. The
CRTP technique is used as a basis not only for ET creation, but also as a core
technique for advanced patterns and for expression evaluator creation. Its biggest
advantage is that it allows generation of machine codes specialized for specific
expressions.

3.1 Additional Design Patterns

We would like to present few additional design patterns that show flexibility
of the embedded language, and its compiler-like nature. We discuss these pat-
terns on simple examples, however we would like to point out that the their
applicability is not limited to such.

Static Expression Visitor Pattern. A visitor pattern, such as described in
[4] is useful for recursive traversal of a tree-like graph. The visitor pattern has
the advantage of being separate from the graph structure definition and allows
both introspection and modification of graphs. Since the ET pattern creates a
static graph, there is no need for virtual function dispatch. Instead, the visitor
class takes the form of a template class with the type of expression treated as
a specialization parameter. Such a functor might still need to perform certain
operations at runtime as some information, such as exact memory locations, is
not available at compilation time. Because the graph traversal order is known
at compile time visit methods can be inlined, possibly decreasing the runtime
overhead.

Listing 1.10 shows an example of Static Expression Visitor pattern with the
purpose of printing a specific instance of an expression. We found this technique
particularly useful when debugging EDSL code, as mangled names for nested
types are difficult to analyse.

Static Transformation Pattern. The Static Expression Visitor pattern, can
be further used to implement Static Transformations of expressions. We don’t
provide a detailed exploration of the requirements here, or an effective complex
implementation of this pattern, but only show that a basic variation can be
constructed and applied easily.

In the example given in Listing 1.11, an expression A*B is being transformed
into an expression A+B. As the traversal happens using type recursion, it is
possible to apply this pattern for a complex expressions, to replace all occur-
rences of a given expression structure with a different one. The transformation
happens at compilation time so no runtime overhead is introduced.

526 P. Karpiński and J. McDonald

Listing 1.10. Expression printing is a simple way to debug ET code.
template<typename EXP>
c lass Expres s ionPr inte r {
public :

// C o n s t r u c t t h e v i s i t o r f r om
// s p e c i f i c e x p r e s s i o n i n s t a n c e
Expres s ionPr inte r (EXP exp){ v i s i t (exp) ; }
. . .
// V i s i t a t e r m i n a l
template<typename SCALAR T>
FORCE INLINE void v i s i t (FloatVector<SCALAR T> exp){

std : : cout<<”Vector (”<<exp : :LENGTH()<<”) ”<<&exp . e lements [0]<<”\n” ;
}
. . .
// R e c u r s i v e l y p r i n t ADD e x p r e s s i o n
template<typename SCALAR T, typename E1 , typename E2>
FORCE INLINE void v i s i t (ArithmeticADDExpression<SCALAR T,E1 ,E2> exp){

std : : cout <<”ADD:\n” ;
v i s i t (exp . e1) ; // V i s i t c h i l d r e n
v i s i t (exp . e2) ;

}
. . .

} ;
. . .
// P r i n t e x p r e s s i o n
Expres s ionPr inte r p r i n t e r (myExpression) ;
. . .

Listing 1.11. An example on how to transform one expression into another.
// R e p l a c e a MUL(E1 , E2) node
// w i t h an ADD(E1 , E2) node
template< typename SCALAR TYPE, typename E1 , typename E2>
FORCE INLINE ArithmeticADDExpression<SCALAR TYPE,E1 , E2>

transform (ArithmeticMULExpression<SCALAR TYPE,E1 , E2> exp)
{

// C o n s t r u c t a r e p l a c e m e n t e x p r e s s i o n u s i n g sub−e x p r e s s i o n n o d e s o f ‘ e x p ’
return ArithmeticADDExpression<SCALAR TYPE,E1 , E2>(exp . e1 , exp . e2) ;

}
. . .
// C a l l t r a n s f o r m a t i o n on
f loat a [1 0] , b [1 0] ;
Vector<f loat> A(10 , a) , B(10 , b) ;
auto t0=A∗B;
auto t1=transform (t0) ; // t 1 i s now ‘A+B ’
. . .

Static Expression Coalescence Pattern. Certain scenarios of interaction
between user and framework codes such as Runge-Kutta method described in
Sect. 1.2 can now be solved effectively using vector EDSL. By using the Static
Expression Coalescence pattern, a generic solver provided by a framework can
be specialized for a specific user defined function.

In Listing 1.12 we show an implementation together with an invocation of a
RK-4 solver. The auto keyword used on input parameters of the solver makes
it possible to pass either specific scalar or vector expression types. In the case of
the former, the behaviour would be the same as if the solver was defined using
scalar code similar to one from Listing 1.4.

If the parameters passed as x, y are of the EDSL types then instead of
carrying in-place computations, such as calls to the function func, a static graph
is created. This graph treats the user function as a structure to be merged into a
full computational graph, meaning that both the framework code, and user code
become coalesced into a single vector EDSL expression. As the language can
then apply lazy code generation for the fully coalesced expression, the resulting
code can be vectorized and inlined more effectively.

Two minor drawbacks of this design pattern exist at present. First of all, the
constructions used require generalized return type deduction features available

An Embedded Domain Specific Language for General Purpose Vectorization 527

as of C++14. This might delay the introduction of this design pattern into
popular frameworks relying on older language standards. Second, a contractual
agreement needs to exist between framework and user code to use vector EDSL,
or its specific dialect. While this can be easily achieved for framework codes,
additional user education might be required.

Listing 1.12. Static Expression Coalescence pattern merges user function written
using Vector EDSL with framework-defined solver.

template<typename USER FUNC T>
void rk4 f ramework so lve r (auto & re su l t , auto x , auto y , f loat dx ,

USER FUNC T& func) {
f loat hal fdx=dx ∗0.5 f ;
auto k1=dx∗ func (x , y) ;
auto k2=dx∗ func (x+halfdx , y+k1∗hal fdx) ;
auto k3=dx∗ func (x+halfdx , y+k2∗hal fdx) ;
auto k4=dx∗ func (x+dx , y+k3∗dx) ;
r e s u l t=y+(1.0 f /6 .0 f)∗(k1+2.0 f ∗k2+2.0 f ∗k3+k4) ;

// E v a l u a t i o n s t a r t s w i t h t h i s s t a t e m e n t
}
. . .
// Us e r d e f i n e d f u n c t i o n h a s t o b e d e f i n e d u s i n g t h e same V e c t o r EDSL d i a l e c t .
auto userFunct ion =[] (auto X, auto Y){

return X. s in ()∗Y. exp () ;
} ;
. . .
// Us e r p a s s e s h e r f u n c t i o n t o s o l v e r
rk4 f ramework so lve r (r e su l t v e c , x exp , y exp , t imestep , userFunct ion) ;
. . .

An obvious benefit of this approach is that it greatly simplifies complexity
of both user and framework code. A specific solver is described as a hardware-
agnostic kernel which can be treated differently by the language depending on
target architecture. The same observation applies for user codes as the user is
no longer required to write architecture specific SIMD code, using for instance
an explicit vectorization approach. The same user-defined function can be used
for graph coalescing, as well as directly within the user code, meaning that no
unnecessary code replication happens.

3.2 Evaluators

As we have explained, the vector EDSL is used to construct a static graph of
vector operations. This graph stores the relation between nodes representing
specific vector operations, and vector terminals. The construction of a graph is a
process taking place at compile-time. At the same time we want to create a ker-
nel of code, preferably using SIMD instructions, and responsible for evaluation
of a given expression depending on specific run-time terminals. For performance
reasons, construction of such kernel should follow the lazy code generation prin-
ciple, and for that reason has to be also carried at a compile-time.

Default Evaluators. We described previously, that the evaluation of a specific
expression is triggered when an assignment operator = is used with a LHS
expression being either of Vector or Scalar type, and with RHS being a valid
vector EDSL expression. We call this evaluation method a default evaluator. The
default evaluator is an integral part of current implementation and is provided
together with ET classes. The evaluation is triggered by Vector::operator=
implementation, as presented in Listing 1.13. This scheme splits the execution of

528 P. Karpiński and J. McDonald

a vector expression into two loops similar to ones from Listing 1.1. In each loop
a recursive evaluation of the expression, for a given dataset offset is triggered,
and the result is written to the data array representing LHS vector.

Each expression class defines evaluate SIMD method (Listing 1.14),
responsible for generating instructions corresponding to the specific expression
semantics. The evaluation method is forced to be inlined as, in most cases, the
actual code is limited to only a few machine instructions. Depending on the
number of arguments of the expression and its additional semantic meaning, the
method calls evaluation methods of sub-expressions.

Listing 1.13. Default evaluator uses very straightforward evaluation scheme. Instead
of traversing a vector in the data direction (horizontally), depth-first (vertical) traversal
of the full expression is performed. The ‘elements’ pointer refers to the memory location
represented by an instance of ‘FloatVector’ type.

template<typename E>
UME FORCE INLINE FloatVector<SCALAR TYPE>&

operator= (ArithmeticExpress ion<SCALAR TYPE,E>& vec){
E & r e i n t e r p r e t v e c=stat ic cast<E&>(vec) ;

// SIMD STRIDE − a t a r g e t s p e c i f i c l i b r a r y macro
for (int i =0; i<LOOP PEEL OFFSET() ; i+=SIMD STRIDE){

auto t0=r e i n t e r p r e t v e c . evaluate SIMD<SIMD STRIDE>(i) ;
t0 . s t o r e (&this−>elements [i]) ;

// t 0 n e e d s t o b e a t y p e r e s p e c t i n g UME : : SIMD i n t e r f a c e .
}
for (int i=LOOP PEEL OFFSET() ; i<mLength ; i++){

auto t1=r e i n t e r p r e t v e c . evaluate SIMD<1>(i) ;
// E v a l u a t e r em a i n d e r p a r t u s i n g SIMD−1 (s c a l a r) mode .

t1 . s t o r e (&this−>elements [i]) ;
}
return ∗ this ;

}

Listing 1.14. Evaluation method can use a depth-first approach to calculate
dependencies.

template<int SIMD STRIDE>
UME FORCE INLINE SIMDVec<SCALAR T,SIMD STRIDE> evaluate SIMD (int index){

SIMDVec<SCALAR T,SIMD STRIDE> t0= e1 . evaluate SIMD (index) ;
// E v a l u a t e s u b e x p r e s s i o n s

SIMDVec<SCALAR T,SIMD STRIDE> t1= e2 . evaluate SIMD (index) ;
return t0 . add (t1) ; // E v a l u a t e c u r r e n t e x p r e s s i o n node

}

Custom Evaluators. The scheme just described is useful only in basic cases,
when the left-hand destination is an explicit terminal. When the destination is an
implicit operand, for instance when the last operation is a destructive operation,
an alternative trigger mechanism must be provided. The operator= trigger can
be generalized by providing an external class with a specific evaluation scheme,
dedicated to handling a specific statement form. Because of that there is no
explicit LHS operand to be used to trigger the evaluation. A similar situation
will also happen when the last operation is a reduction operation.

An Embedded Domain Specific Language for General Purpose Vectorization 529

Listing 1.15. Monadic evaluator definition. Stores are removed, as they will be carried
as side-effects of evaluate SIMD calls.
c lass MonadicEvaluator {
. . .
// E v a l u a t e e x p r e s s i o n w i t h an i m p l i c i t d e s t i n a t i o n
template<typename SCALAR TYPE, typename EXP T>
FORCE INLINE MonadicEvaluator (ArithmeticExpress ion<SCALAR TYPE,EXP T>& exp){

EXP T& r exp=stat ic cast<EXP T&>(exp) ;

for (int i =0; i<r exp .LOOP PEEL OFFSET() ; i+=SIMD STRIDE){
r exp . evaluate SIMD<SIMD STRIDE>(i) ; // i m p l i c i t o p e r a n d i s u p d a t e d a u t o m a t i c a l l y

}
for (int i=r exp .LOOP PEEL OFFSET() ; i<r exp .LENGTH() ; i++) {

r exp . evaluate SIMD<1>(i) ;
}

}
. . .

} ;
. . .
// u s e r c o d e u s e s d e s t r u c t i v e o p e r a t i o n :
auto t0=a . adda (b) ;
// u s e r t r i g g e r s e v a l u a t i o n m a n u a l l y
MonadicEvaluator eva l (t0) ;

The example of a generalized monadic evaluator is presented in Listing 1.15.
A monadic evaluator is responsible for evaluating an expression with only one,
possibly implicit, destination operand. In the scheme presented, no explicit store
operations occur, as they are carried out as a side-effect of the destructive oper-
ation evaluation.

Listing 1.16. Expression divergence happens when two expressions share a common
sub-expression. This problem can cause memory locality issues, but can be solved with
a very simple evaluation scheme.
auto t0=A+B;
auto t1=C+D;
auto t2=t0∗ t1 ;
E=t2∗F;
G=t2∗H;

Listing 1.17. Dyadic evaluator calculates both expressions before updating destination
values. This way data hazards are avoided.
c lass DyadicEvaluator {
public :

. . .
// E v a l u a t e a p a i r o f e x p r e s s i o n s s i m u l t a n e o u s l y
template<typename SCALAR T 1 , typename DST T 1 , typename EXP T 1 ,

typename SCALAR T 2 , typename DST T 2 , typename EXP T 2>
DyadicEvaluator (

DST T 1& dst1 , ArithmeticExpress ion<SCALAR T 1 , EXP T 1>& exp1 ,
DST T 2& dst2 , ArithmeticExpress ion<SCALAR T 2 , EXP T 2>& exp2)

{
EXP T 1& r exp1=stat ic cast<EXP T 1&>(exp1) ;
EXP T 2& r exp2=stat ic cast<EXP T 2&>(exp2) ;

for (int i =0; i<dst1 .LOOP PEEL OFFSET() ; i+=SIMD STRIDE){
auto t0= r exp1 . evaluate SIMD<SIMD STRIDE>(i) ;

// e v a l u a t e m u l t i p l e r e s u l t s a t a t im e
auto t1= r exp2 . evaluate SIMD<SIMD STRIDE>(i) ;
dst1 . update SIMD(t0 , i) ;
dst2 . update SIMD(t1 , i) ;

}
for (int i=dst1 .LOOP PEEL OFFSET() ; i<dst1 .LENGTH() ; i++){

auto t0= r exp1 . evaluate SIMD<1>(i) ; // e v a l u a t e s i n g l e r e s u l t a t a t im e
auto t1= r exp2 . evaluate SIMD<1>(i) ;
dst1 . update s ca l a r (t0 , i) ;
dst2 . update s ca l a r (t1 , i) ;

}
}

} ;
. . .
auto t0=A+B;
auto t1=C+D;
auto t2=t0∗ t1 ;

DyadicEvaluator eva l (E, t2∗F,G, t2∗H) ; // E v a l u a t i o n t r i g g e r

530 P. Karpiński and J. McDonald

Non-monadic Evaluators. A more complicated scenario, when the default
evaluator cannot be used is when expression divergence occurs. In the exam-
ple in Listing 1.16 the sub-expression t2 is calculated twice: once for statement
E=t2*F and once for statement F=t2*H. In both cases both sub-expressions
t0 and t1 require accessing all data fields of A, B, C and D. This might have
a serious performance impact when operating on long vectors, as data locality
will not be preserved.

Listing 1.18. Main loop of DyadicEvaluator generated by Clang++. The assembly
code is very close to expected.
.LBB019 :

vmovups ymm0,ymmword ptr [rbx+4∗rdx] # A
vaddps ymm0,ymm0,ymmword ptr [r s i +4∗rdx] # t0=A+B
vmovups ymm1,ymmword ptr [r d i+4∗rdx] # C
vaddps ymm1,ymm1,ymmword ptr [rcx+4∗rdx] # t1=C+D
vmulps ymm0,ymm0,ymm1 # t2=t0∗ t1
vmulps ymm1,ymm0,ymmword ptr [r14+4∗rdx] # t3=t2∗E
vmulps ymm0,ymm0,ymmword ptr [r12+4∗rdx] # t4=t2∗F
vmovups ymmword ptr [rbp+4∗rdx] ,ymm1 # G=t3
vmovups ymmword ptr [r15+4∗rdx] ,ymm0 # H=t4
add rdx ,8
cmp rdx , rax
j l .LBB019

By defining a Dyadic Evaluator, such as presented in Listing 1.17, we can
improve the data locality of such divergent expressions by a mechanism that
triggers evaluation of both of them simultaneously. With such an evaluation
scheme, any data reads on input vectors are local, as the expression evaluation
is carrying the same index localization to both expressions. In addition a capable
compiler, such as Clang, is able to remove recursive function calls, and reorder
operations in such a way that common dependencies are executed only once.
Listing 1.18 shows the optimized loop for the dyadic evaluator compiled for an
AVX2 instruction set. Because a specific instance of evaluator is specialized for
a specific expression, generated code can be highly specialized.

3.3 Language Extensibility

As with every language, there are certain limitations for both expressibility and
performance. By its nature, a DSL should offer users the ability to adopt it for
specific scenarios required within the computational domain.

By making the language embedded, it is possible to extend it with user
defined operations, without the need to re-design the language from scratch. The
process of extension can be achieved in two ways. The first approach is to design
a functor composed with basic operations and provide more compact notation for
the user code. An example can be viewed in Listing 1.19. This mode of extension
is the advised mode, as it is similar to already known paradigms of functional
programming and, except for a few syntactic differences, is as easy to work with,
as regular C++ functions. The second method of extending the functionality
of the EDSL is to provide custom expressions and specific evaluation schemes
for these expressions. The drawback of this method is that it might require
modifications to all evaluators used by the user code. A most obvious benefit of
this solution is that the user can express precisely the meaning of such scheme
and reach potentially higher performance for specific usage scenarios.

An Embedded Domain Specific Language for General Purpose Vectorization 531

Listing 1.19. Infinity L∞ norm functor.

auto in f norm (auto a , auto b) {
return ((a−b) . abs ()) . hmax () ;

}
. . .
auto c = inf norm (a , b) ;

The default evaluation scheme works only for platforms that can be supported
under the UME::SIMD typeset. For other targets, a separate implementation
would have to be provided to carry out computations using specific language
extensions or techniques. Providing additional evaluators does not require mod-
ification to either EDSL-based expressions, nor to the expression-based code.
The only modification required might be the evaluation trigger invocation.

At the same time a number of particular cases, which cannot be predicted
at the moment of language design, might appear for specific domains or even
expression groups. The users are given the ability to design additional evaluation
schemes that might accelerate the evaluation of their codes, without the need to
re-write user or framework based algorithms.

4 Performance Evaluation

Performance evaluation of vectorization techniques poses multiple issues. Var-
ious compiler optimizations such as auto-vectorization, inlining and constant
folding/propagation can affect the results obtained. As compilers evolve, we can
also expect performance improvements on the same benchmarking target and
configuration. Selection of compiler flags can also affect the results, as some
unsafe optimizations, such as fast-math [3] offer significant speedups with the
cost of decreased accuracy. As different compilers offer different sets of com-
piler flags, improper selection of flag configuration might result in an unfair
comparison.

At the same time incorrect benchmarking methodology can lead to results
which do not reflect the actual computational problem. A simple, yet not uncom-
mon, example is when the results of computation is not used in any way within
the benchmarking application. In such case compilers can generate code that
carries incorrect or incomplete computations.

Each computational kernel might depend on specific compile-time and run-
time parameters, as well as on data with or without specific distribution. Differ-
ent algorithms/implementations can perform differently based on given parame-
trization. It is therefore required to verify specific implementations for a whole
range of input parameter values.

4.1 Benchmarking Methodology

To follow the spirit of scientific method, we developed a set of benchmarks that
allow easier comparison of different approaches in both the performance, and
expressibility. All benchmarks are available as a part of the UME framework
and can be accessed online [12]. Due to large number of possible combinations,

532 P. Karpiński and J. McDonald

we only present a few selected benchmarks here, and discuss both qualitative and
quantitative aspects of the EDSL approach. As it is difficult to find universal
metrics to assess expressibility of a language, we reserve additional space for
discussion of why an EDSL approach is easier to operate with the context of
such benchmarks.

We limit the discussion to a single platform (Intel Xeon E3-1280v3, Haswell
architecture, 16GB of DDRAM, running SLC6 operating system), as the quali-
tative differences would only be an effect of the different system software stack
and the underlying explicit SIMD implementation. The platform we used is dedi-
cated for benchmarking purposes and was not used for any other purpose during
each benchmarks’ execution. We used linux top command to determine least
used core and pinned each benchmark execution to that core using the taskset
command.

We built each benchmark using selected toolchains and equivalent compile-
time configuration (−O2, AVX2 enabled, no fast-math). In each execution of a
benchmark, we ran each implementation of the benchmark multiple times, cal-
culating average of all runs. We also ran each benchmarking application multiple
times, averaging results from each run. The reason for this approach is that inter-
lacing of different implementation executions distributes noise uniformly over all
configurations. The specific number of repetitions is defined separately for each
benchmark, as the memory and execution time requirements vary.

Each benchmarking code is written carefully, so that compilers couldn’t
remove or reorder measurement-sensitive fragments of the code. A specific tech-
nique we used was to place fragments of benchmarked code within a function
marked with the never-inline attribute (actual mapping varies for different
compilers). Such a function is placed between two calls to a stopwatch using
std::chrono. The time is measured with nanosecond precision.

For all benchmarks, a mandatory verification step is performed which serves
two purposes. Firstly, the numerical correctness of an implementation is verified.
We don’t impose any limit on how accurate a specific implementation should be,
but we rather treat this as a measure of performance orthogonal to execution
time. Secondly, the verification steps disallow compilers to generate code carrying
incorrect computations and possibly generating fake time measurements.

4.2 Runge-Kutta Solver

In each case the user function is available as a lambda function, defined within the
benchmarked routine as: x2 + y. The solver is defined outside the benchmarking
code, as a templated function with the approach defined previously.

Results of the Runge-Kutta benchmark can be reviewed in Table 1. All values
are shown as speedup versus scalar code compiled with GCC. Numbers separated
with ‘/’ are for single and double floating point precision, respectively. There are
two important points to note here. Firstly, out of the three compilers used, only
Clang was able to auto-vectorize the code efficiently. This suggests that this
code could be, but is not, auto-vectorized by other compilers. For Clang the
performance obtained with an explicit SIMD approach is almost the same as for

An Embedded Domain Specific Language for General Purpose Vectorization 533

the scalar code. Secondly, for all configurations the majority of the best results,
are reached using vector EDSL, with the explicit approach being second-best.
Furthermore, the best performance obtained with GCC and ICPC is, in general,
higher than for Clang.

Table 1. Speedup of different implementations of RK4 solver vs. reference. Values
given for single/double precision. Only Clang gives comparable results with auto-
vectorization. Highest performance obtained with explicit SIMD and EDSL in all cases.

Problem size 1 10 102 103 104 105 106 107 Geomean

GCC 5.2

Scalar 1.00/1.00 1.00/1.00 1.00/1.00 1.00/1.00 1.00/1.00 1.00/1.00 1.00/1.00 1.00/1.00 1.00/1.00

UME::SIMD 0.97/0.98 2.66/2.43 5.72/3.72 7.33/3.09 6.39/3.26 6.13/3.17 6.12/2.68 5.78/2.99 4.43/2.63

UME::

VECTOR

0.96/0.98 2.75/3.50 6.37/4.47 7.39/3.44 7.38/3.76 7.27/3.61 7.01/2.93 6.43/3.34 4.84/3.02

ICPC 17.0

Scalar 1.29/1.78 1.58/1.98 1.58/1.53 1.58/1.77 1.65/1.76 1.65/1.76 1.66/1.90 1.63/1.60 1.57/1.75

UME::SIMD 1.17/1.60 2.85/3.61 8.27/5.74 10.89/4.67 8.85/5.04 8.73/4.80 8.68/3.84 7.07/3.69 5.88/3.9

UME::

VECTOR

1.56/2.16 2.70/4.17 8.21/6.11 9.56/4.66 8.95/4.94 8.77/4.72 8.66/3.66 6.87/3.60 5.94/4.1

Clang 3.9

Scalar 1.01/1.21 2.66/2.54 6.01/2.66 7.40/1.92 6.83/3.20 6.76/3.25 6.55/3.78 6.18/3.32 4.66/2.6

UME::SIMD 0.97/1.19 2.69/2.63 6.06/4.40 7.18/2.58 6.88/3.15 6.68/3.22 6.53/3.52 5.89/3.06 4.6/2.81

UME::

VECTOR

0.98/1.15 2.76/3.15 6.13/4.41 7.21/2.88 7.15/3.20 6.90/3.29 6.70/3.28 5.86/3.09 4.68/2.89

4.3 BLAS Kernels

We will now present a comparison of three selected BLAS-based kernels, with
a very straightforward implementations obtained using vector EDSL. As the
nature of the EDSL presented is to operate on vector primitives and not matrices,
we only compare vector-vector operations.

Some works such as Eigen [5] show comparison for kernels consisting of a
single invocation of a BLAS primitive. A similar comparison for BLAS AXPY
kernel performance is presented in Fig. 1 (a) & (b). Performance of vector EDSL
is similar to that of the BLAS implementation, and compiler-optimized scalar
code.

Rarely a single kernel is all we need to execute in a complex algorithm. We
therefore defined a second benchmark, which consists of a chained execution of
10 AXPY kernels, with each of them being dependant on results of the previous
one. Results for this variant are presented in Fig. 1 (c) & (d). The second variant
shows an interesting property of kernel-based computations: operation atomicity
breaks potential for data-locality based optimization. For high problem sizes
UME configurations are up to 2x faster than the BLAS implementation. At
the same time this potential does not seem to be exploited by the compilers
when dealing with scalar codes. This performance gap can be only exploited
with an expression-based interface, as it requires information about a broader
computational context.

534 P. Karpiński and J. McDonald

Fig. 1. Blas comparison benchmarks. Clang configuration uses OpenBlas, ICC uses
MKL. (a) and (b) show results of a single AXPY kernel execution for 32b and 64b
precision. Vector EDSL (UME::VECTOR) does not differ significantly from current
technologies. (c) and (d) show that both UME::SIMD and EDSL are faster when solving
complicated vector expressions. In (e) and (f) we show that there is no performance
penalty when evaluating multi-statement expressions.

An Embedded Domain Specific Language for General Purpose Vectorization 535

Given that AXPY is a very straightforward kernel and might put into doubt
the actual expressibility of the language, we also present results for BLAS ROT
kernel (Fig. 1 (e) & (f)). In this kernel a pair of variables is updated simultane-
ously, and depend on previous values of each variable. This makes it impossible
to evaluate such a scheme as a single expression. It is also not possible to serial-
ize both expressions, as the results would be invalid. We therefore construct two
expressions and then use a dyadic evaluator to perform simultaneous evaluation.
Results show that there is no performance degradation and no losses in language
expressibility.

5 Practical Limitations

While we already showed, that with modern C++ techniques EDSLs can be
a very powerful mechanism however, we would like to briefly point at certain
limitations of this technique. Identification of these limitations is necessary for
future developments of both EDSL, and its host language.

One of the most important limitations is the fact, that type-based expressions
cannot be manipulated during program runtime. This limitation comes from the
fact that usual machine code generation cannot happen at runtime.

Another limitation is the possibility of inefficient code generation in cases
when a specific vector is used more than once in expression evaluation. Pointer
aliasing might not be recognized and as a result some amount of repetition of
code might appear, leading to suboptimal performance.

Last but not least, an optimal evaluator for a given class of statements might
be difficult to create. The same expression can have more than one optimal
evaluation scheme, depending on specific runtime-data and target platforms.
This limitation might prohibit creation of very complex expressions and in turn
lead users to revert to non-portable coding techniques.

6 Conclusions and Future Work

We have presented an EDSL for explicit vectorization. The language allows high-
performance operations to be carried on 1-D vectors and scalars. We have shown
that the SIMD programming model can be simplified, compared to an explicit
SIMD approach, without a need for any compiler toolchain extensions. Further-
more we showed that in certain situations an expression-based approach can
make better use of memory locality, leading to performance improvements over
kernel-based interfaces such as BLAS.

The construction of an EDSL can be difficult, especially when performance is
of highest importance. We presented a study of specific design patterns required
for an effective EDSL implementation, as well as discussion of selected problems
related to user-code. We presented a concept of separation between expression
graph creation and evaluation, which allows solving more general classes of com-
putational problems.

536 P. Karpiński and J. McDonald

For future work we predict two directions: investigation of possible perfor-
mance improvements for matrix expressions, and generalization of the concept
of evaluators, so that arbitrary classes of vector statements could be handled.
We hope to also investigate the possibility of JIT compilation given that it
might allow building a dynamic language representation, further improving per-
formance of expression evaluators.

References

1. Apostolakis, J., Bandieremonte, M., Bitzes, G., Brun, R., Canal, P., Carminati, F.,
Cosmo, G., De Fine Licht, J.C., Duchem, L., Elviera, V., Gheatea, A., Jun, S.Y.,
Lima, G., Nikitina, T., Novak, M., Sehgal, R., Shadura, O., Wenzel, S.: Towards a
high performance geometry library for particle-detector simulations. J. Phys. Conf.
Ser. 608(1) (2015). IOP Publishing

2. Falcou, J., Sérot, J., Pech, L., Lapresté, J.-T.: Meta-programming applied to
automatic SMP parallelization of linear algebra code. In: Luque, E., Margalef,
T., Beńıtez, D. (eds.) Euro-Par 2008. LNCS, vol. 5168, pp. 729–738. Springer,
Heidelberg (2008). doi:10.1007/978-3-540-85451-7 78

3. Free Software Foundation: GNU GCC reference: Semantics of Floating Point Math
in GCC. https://gcc.gnu.org/wiki/FloatingPointMath. Accessed 27 Mar 2016

4. Gamma, E., Helm, R., Johnson, R., Vlissides, J.: Design Patterns: Elements of
Reusable Object-Oriented Software. Addison-Wesley Longman, Reading (1995).
ISBN:0-201-63361-2

5. Gunnabaus, G., Jacob, B., et al.: Eigen benchmarks website: http://eigen.
tuxfamily.org/index.php?title=Benchmark. Accessed 27 Mar 2016

6. Gunnabaus, G., Jacob, B., et al.: Eigen v3. http://eigen.tuxfamily.org. Accessed
27 Mar 2016

7. Härdtlein, J., Pflaum, C., Linke, A., Wolters, C.H.: Advanced expression templates
programming. Comput. Vis. Sci. 13, 59–68 (2010). ISBN:1432-9360

8. Hudak, P.: Building Domain-Specific Embedded Languages. ACM Comput. Surv.
28 (1996)

9. Intel Corporation: Intel R©64 and IA-32 Architectures Software Developer’s Manual.
https://software.intel.com/sites/default/files/managed/39/c5/325462-sdm-vol-1-
2abcd-3abcd.pdf. Accessed 27 Mar 2016

10. Kaiser, H., et al.: HPX V0.9.99: A general purpose C++ runtime system for parallel
and distributed applications of any scale, July 2016. https://zenodo.org/record/
58027

11. Karpiński, P.: UME:: VECTOR: Vectorization EDSL library. https://github.com/
edanor/umevector. Accessed 27 Mar 2016

12. Karpiński, P.: UME: Unified Multi/Many-Core Environment. https://github.com/
edanor/ume. Accessed 27 Mar 2016

13. Karpinski, P., McDonald, J.: A high-performance portable abstract interface for
explicit SIMD vectorization. In: PMAM 2017 (2017). ISBN: 978-1-4503-4883-6

14. Kretz, M., Lindenstruth, V.: VC: A C++ library for explicit vectorization. Softw.
Pract. Experience 42(11), 1409–1430 (2012). Wiley

15. Niebler, E.: Proto: A compiler Construction Toolkit for DSELs. In: LCSD 2007.
ACM, October 2007. ISBN 978-1-60558-086-9

16. Petrogalli, F.: A sneak peak into SVE and VLA programming. https://developer.
arm.com/hpc/a-sneak-peek-into-sve-and-vla-programming. Accessed 27 Mar 2016

http://dx.doi.org/10.1007/978-3-540-85451-7_78
https://gcc.gnu.org/wiki/FloatingPointMath
http://eigen.tuxfamily.org/index.php?title=Benchmark
http://eigen.tuxfamily.org/index.php?title=Benchmark
http://eigen.tuxfamily.org
https://software.intel.com/sites/default/files/managed/39/c5/325462-sdm-vol-1-2abcd-3abcd.pdf
https://software.intel.com/sites/default/files/managed/39/c5/325462-sdm-vol-1-2abcd-3abcd.pdf
https://zenodo.org/record/58027
https://zenodo.org/record/58027
https://github.com/edanor/umevector
https://github.com/edanor/umevector
https://github.com/edanor/ume
https://github.com/edanor/ume
https://developer.arm.com/hpc/a-sneak-peek-into-sve-and-vla-programming
https://developer.arm.com/hpc/a-sneak-peek-into-sve-and-vla-programming

An Embedded Domain Specific Language for General Purpose Vectorization 537

17. Pohl, A., Cosenza, B., Mesa, M., Chi, C., Juurlink, B.: An evaluation of current
SIMD programming models for C++. In: WPMVP 2016. ACM, March 2016. ISBN
978-1-4503-4060-1

18. Vandevoorde, D., Josuttis, N.: C++ Templates: The Complete Guide. Addison-
Wesley, Boston (2002). ISBN:0-201-73484-2

19. Veldhuizen, T.: Blitz++: The library that thinks it is a compiler. In: Langtangen,
H.P., Bruaset, A.M., Quak, E. (eds.) Advances in Software Tools for Scientific
Computing. Lecture Notes in Computational Science and Engineering, vol. 10, pp.
57–87. Springer, Heidelberg (2000)

20. Veldhuizen, T.: Expression Templates. C++ Mag., June 1995. ISSN:1040–6042
21. Veldhuizen, T., Ponnambalam, K.: Linear algebra with C++ template metapro-

grams. Dr. Dobb’s J. Softw. Tools (1996)

	An Embedded Domain Specific Language for General Purpose Vectorization
	1 Introduction
	1.1 Prior Work
	1.2 Selected Problems

	2 Vector EDSL Overview
	2.1 Typeset
	2.2 Syntax

	3 EDSL Implementation
	3.1 Additional Design Patterns
	3.2 Evaluators
	3.3 Language Extensibility

	4 Performance Evaluation
	4.1 Benchmarking Methodology
	4.2 Runge-Kutta Solver
	4.3 BLAS Kernels

	5 Practical Limitations
	6 Conclusions and Future Work
	References

