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Abstract: In digital holographic microscopy, one often obtains an in-focus image of the sample
by applying a focus metric to a stack of numerical reconstructions. We present an alternative
approach using a deep convolutional neural network.
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1. Introduction

Digital holographic microscopy (DHM) is a label-free, single-shot technique that is well suited for imaging three dimen-
sional objects [1]. DHM overcomes a problem present in conventional optical microscopes of a shallow depth-of-field,
permitting one to reconstruct at different in-focus planes of a volume. Nevertheless, an object of interest is usually in-focus
only in one or few depths as a single reconstruction layer still has a shallow depth-of-field. To solve the problem of finding a
focus plane of an object different methods have been proposed. These methods can be based on self-entropy [2], amplitude
analysis [3], power spectra [4] or other metrics [5]. Common to all of these single wavelength methods is that they recon-
struct a stack of images that the focus metric is applied to. A minimum or a maximum value, depending on the used focus
metric, is used to determine the in-focus plane. This procedure is applied to each of the holograms. We propose to use deep
learning as an autofocusing method. The greatest benefit of the proposed method is that after the training is completed, the
in-focus plane can be obtained by using only the single in the hologram plane and without any reconstruction.

2. Digital holographic microscopy

A magnified digital hologram H0(x,y) = |R|2 + |O|2 +R∗O+RO∗ that is sampled by a digital camera, can be propagated
at any depth z of the reconstruction volume using the Fresnel approximation [6] as

U(x,y;z) =

−i
λ z

exp(ikz) I0(x,y)⊗ exp
[

iπ
x2 + y2

λ z

] (1)

where λ is the wavelength of the light, ⊗ denotes a convolution operation, and k = 2π/λ . The terms R∗ and O∗ denote the
complex conjugates of the reference wave and the object wave, respectively. From the complex valued reconstruction, the
amplitude component is defined

I(x,y;z) =
√

Re[U(x,y;z)]2 + Im[U(x,y;z)]2 (2)

3. Deep learning

Deep learning is a computational approach that enables multiple levels of abstraction and can be used efficiently in var-
ious applications [7]. In practice, every neural network with more than one hidden layer can be considered as a deep
learning architecture. A convolutional neural network has one or more layers that perform convolution operations on its
two-dimensional input. Deep convolutional neural networks that are one form of deep learning have been used successfully
in various different visual object recognition and object detection applications [8–10].
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We chose a convolutional neural network approach to tackle the autofocusing problem still existing in digital holographic
microscopy of transparent samples. The architecture of the network is based on the AlexNet architecture that won the Large
Scale Visual Recognition Challenge 2012 [9].

3.1. Training

In total 494 holograms of semitransparent Madine Darby canine kidney (MDCK) multicellular samples were prepared and
captured by using an off-axis Mach Zehnder digital holographic microscope (Lyncée Tec T1000, Lyncée Tec SA, Lausanne,
Switzerland) with 660 nm laser source and 40X microscope objective. Each hologram was numerically reconstructed at
the middle region of a sample by using a manually chosen reconstruction depth. Each hologram was reconstructed to 20
other depths (±100 mm from the in-focus plane) with the reconstruction step being 10 mm. The data was processed and
augmented by scaling each amplitude reconstruction down to 256×256 pixel image, that was followed by five 227×227
cropping operations to each corner and the center. Each cropped image was rotated three times (90 degree rotations) and
each resulting image was augmented through horizontal mirroring. In addition each 1024×1024 pixel amplitude recon-
struction was scaled down to 227×227 pixel image that underwent the same rotation and mirroring augmentation proce-
dures. After data processing and augmentation the total amount of images used in training was 485 856, which was divided
to actual training data (90%, 437 271) and validation data (10%, 48 585). Example images used in the training are shown
in the Fig. 1. The learning rate was set to 0.001. During the training a mean pixel value over the whole training set was
subtracted from each training image pixel.

Fig. 1. 227×227 pixel example images used in training. Each image is an amplitude reconstruction
of a hologram. Column A -100 mm, column B -50 mm, column C 0 mm, column D 50 mm, and
column E 100 mm from the in-focus plane, respectively.

4. Results

The network was tested with 12 holograms that went through the same preprocessing as the images used in the training
(including the augmentation). In total, 12 096 images were used in the testing. A histogram of the test result is shown in
the Fig. 2. In addition, the method was tested by using amplitude images of the hologram plane. Fig. 3 shows example
amplitude images on the hologram plane.

5. Conclusions

In this paper, it was shown that autofocusing of digital holograms of semitransparent biological samples can be achieved
efficiently by using deep learning. The method was theoretically described and experimental results were demonstrated.
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Fig. 2. Histogram of the testing phase. Showing in-focus depth estimate errors between the
groundtruth and an estimate returned by the trained convolutional neural network. 99.9% of the
estimates are within one reconstruction step.

Fig. 3. 227×227 pixel example images used in the testing. An average absolute error in in-focus
depth estimate returned by the convolutional neural network was 5.1 mm by using 12 test holograms.
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