
ScienceDirect

Available online at www.sciencedirect.com

Procedia Computer Science 112 (2017) 2354–2362

1877-0509 © 2017 The Authors. Published by Elsevier B.V.
Peer-review under responsibility of KES International
10.1016/j.procs.2017.08.206

10.1016/j.procs.2017.08.206

© 2017 The Authors. Published by Elsevier B.V.
Peer-review under responsibility of KES International

1877-0509

Available online at www.sciencedirect.com

ScienceDirect
Procedia Computer Science 00 (2017) 000–000

 www.elsevier.com/locate/procedia

1877-0509 © 2017 The Authors. Published by Elsevier B.V.
Peer-review under responsibility of KES International.

International Conference on Knowledge Based and Intelligent Information and Engineering
Systems, KES2017, 6-8 September 2017, Marseille, France

A Domain-specific Rule Generation Using Model-Driven
Architecture in Controlled Variability Model

Neel Mani*, Markus Helfert a, Claus Pahlb
aADAPT Centre for Digital Content Technology, Dublin City University, School of Computing, Dublin, Ireland

bFree University of Bozen-Bolzano, Faculty of Computer Science, Bolzano, Italy

Abstract

The business environment changes rapidly and needs to adapt to the enterprise business systems must be considered
for new types of requirements to accept changes in the business strategies and processes. This raises new challenges
that the traditional development approaches cannot always provide a complete solution in an efficient way.
However, most of the current proposals for automatic generation are not devised to cope with rapid integration of
the changes in the business requirement of end user (stakeholder’s and customer’s) resource. Domain-specific Rules
constitute a key element for domain specific enterprise application, allowing configuration of changes, and
management of the domain constraint within a domain. In this paper, we propose an approach to the development of
an automatic generation of the domain-specific rules by using variability feature model and ontology definition of
domain model concepts coming from Software product line engineering and Model Driven Architecture. We
provide a process approach to generate a domain-specific rule based on the end user requirement.

© 2017 The Authors. Published by Elsevier B.V.
Peer-review under responsibility of KES International.

Keywords: Rule Generation; Domain-specific rules; Business Process Model; Variability Model; Model Driven Architecture;

1. Introduction

Nowadays, Enterprises struggle with rapid changes due to the dynamic and competitive nature of the

* E-mail address: neel.mani2@mail.dcu.ie

Available online at www.sciencedirect.com

ScienceDirect
Procedia Computer Science 00 (2017) 000–000

 www.elsevier.com/locate/procedia

1877-0509 © 2017 The Authors. Published by Elsevier B.V.
Peer-review under responsibility of KES International.

International Conference on Knowledge Based and Intelligent Information and Engineering
Systems, KES2017, 6-8 September 2017, Marseille, France

A Domain-specific Rule Generation Using Model-Driven
Architecture in Controlled Variability Model

Neel Mani*, Markus Helfert a, Claus Pahlb
aADAPT Centre for Digital Content Technology, Dublin City University, School of Computing, Dublin, Ireland

bFree University of Bozen-Bolzano, Faculty of Computer Science, Bolzano, Italy

Abstract

The business environment changes rapidly and needs to adapt to the enterprise business systems must be considered
for new types of requirements to accept changes in the business strategies and processes. This raises new challenges
that the traditional development approaches cannot always provide a complete solution in an efficient way.
However, most of the current proposals for automatic generation are not devised to cope with rapid integration of
the changes in the business requirement of end user (stakeholder’s and customer’s) resource. Domain-specific Rules
constitute a key element for domain specific enterprise application, allowing configuration of changes, and
management of the domain constraint within a domain. In this paper, we propose an approach to the development of
an automatic generation of the domain-specific rules by using variability feature model and ontology definition of
domain model concepts coming from Software product line engineering and Model Driven Architecture. We
provide a process approach to generate a domain-specific rule based on the end user requirement.

© 2017 The Authors. Published by Elsevier B.V.
Peer-review under responsibility of KES International.

Keywords: Rule Generation; Domain-specific rules; Business Process Model; Variability Model; Model Driven Architecture;

1. Introduction

Nowadays, Enterprises struggle with rapid changes due to the dynamic and competitive nature of the

* E-mail address: neel.mani2@mail.dcu.ie

 Neel Mani/ Procedia Computer Science 00 (2017) 000–000

environment. The businesses need to adapt and implement changes promptly. The changes occur almost at every
front of the business process. For example, changes in demand of customers, changes in business strategies (internal
and external stakeholder) or changes in various laws. Process model’s languages1 provide expressive and various
verification techniques to ensure the reliable processes2. However, the languages restrict domain experts to make
changes such as defining explicitly the process execution plan as pre-defined task control flow, data flow, and
work/process allocation schema, etc. The changes reflect at the modeling stage or design phase, which makes the
process model rigid3. These may pose challenges in customization, adaptability and maintenance of the system.
These languages limit flexibility of enterprises4,5 and their suitability (or sustainability) for the dynamic
environment. As the nature of organisations is volatile (polices of business) and processes are often excessively
rigid, Domain specific solution will make process model more focussed for a particular domain in statically and
dynamically adaptable in terms of the process execution plan, reducing the dependency on programming, and to
software developers.

Advent of model approach in Business Process Model (BPM) systems, domain or business experts usally work
on high level of model designing, and maintaining the complex behaviours of their enterprise application. The
software professional or programmers are using work on very low level of code who can modify code. Since,
Domain experts are often working, designing, learning and thinking in critical way to solve the complex process of
enterprise in form of decision-making rules, and policy, their intent is rather simple to understandable. The
enterprises are looking for a new standard configurable domain solution for defining the rule, expressing and
facilitating their integration for process model constraint. Domain expert and business expert(stakeholder) often
work on very high level of abstraction (design model and use modeling language and designing tools) and think in
conditional rules, mapping programmer and software expert intent into low level of programming code.

The several steps required for implementation of model transformation and configuration system. These are the
steps of high-level design to low level execution. Enterprises, usually, have high level of legacy model and design as
a domain model or process model. Automatic code generation is a well-known process of getting the low level of
executable code from a given abstract model. Rule generation is the process by which higher level model is
translated or transformed into the lower level program. It is a process of conversion of one form to another; it may
be platform specific or platform independent or generic6. In Model-Driven Architecture(MDA)7, techniques are
expressed by models as the primary development artifact and use them as a basis for obtaining a configurable
domain-specific rule for process model customisation in different ways8, but it does not talk about variability of
models (domain model and process model).

We are using digital content process domain for a case study. The web application’s machine translation
translates source language to target language. The system provides a web based platform where domain expert can
edit the generated domain-specific rule in the natural language configurable editor. In this paper, we focus on two
main elements: (1) How domain-specific rules(DSR)9 can be generated from domain models automatically? (2)
what are processes of approach to get a rule from domain model and what are the core component models with
variability model. We also discuss the benefit of domain models, and configurable rule in process model
customisation.

We discuss the related work in Section 2. In Section 3, we proposed approach and core component of this
research. In Section 4, we describe the integration of process approach for DSR generation. Then, we saw how the
rule generation approach could be implemented using domain model, process model and variability model the
solution implementation in Section 5. We finish with an evaluate of the solution in Section 6 and some conclusion
with future work in Section 7.

2. Related Work

The use of rule and ontology modeling formalism as the MDD source model, along with defining a metamodel to
put it into the framework of MDA has been our proposal. Abdullah et al. (2007) 10, who proposes the possibility of
depicting the profile elements to a Jess platform-specific representation, also embarks upon the idea of using a UML
profile for the framing of knowledge.

Hecht, Piveta, Pimenta and Price11 uses high-level programming as well as code generation approach in
expediting the process of alteration between software design and its implementation in executable code. In order to

http://crossmark.crossref.org/dialog/?doi=10.1016/j.procs.2017.08.206&domain=pdf

	 Neel Mani et al. / Procedia Computer Science 112 (2017) 2354–2362� 2355

Available online at www.sciencedirect.com

ScienceDirect
Procedia Computer Science 00 (2017) 000–000

 www.elsevier.com/locate/procedia

1877-0509 © 2017 The Authors. Published by Elsevier B.V.
Peer-review under responsibility of KES International.

International Conference on Knowledge Based and Intelligent Information and Engineering
Systems, KES2017, 6-8 September 2017, Marseille, France

A Domain-specific Rule Generation Using Model-Driven
Architecture in Controlled Variability Model

Neel Mani*, Markus Helfert a, Claus Pahlb
aADAPT Centre for Digital Content Technology, Dublin City University, School of Computing, Dublin, Ireland

bFree University of Bozen-Bolzano, Faculty of Computer Science, Bolzano, Italy

Abstract

The business environment changes rapidly and needs to adapt to the enterprise business systems must be considered
for new types of requirements to accept changes in the business strategies and processes. This raises new challenges
that the traditional development approaches cannot always provide a complete solution in an efficient way.
However, most of the current proposals for automatic generation are not devised to cope with rapid integration of
the changes in the business requirement of end user (stakeholder’s and customer’s) resource. Domain-specific Rules
constitute a key element for domain specific enterprise application, allowing configuration of changes, and
management of the domain constraint within a domain. In this paper, we propose an approach to the development of
an automatic generation of the domain-specific rules by using variability feature model and ontology definition of
domain model concepts coming from Software product line engineering and Model Driven Architecture. We
provide a process approach to generate a domain-specific rule based on the end user requirement.

© 2017 The Authors. Published by Elsevier B.V.
Peer-review under responsibility of KES International.

Keywords: Rule Generation; Domain-specific rules; Business Process Model; Variability Model; Model Driven Architecture;

1. Introduction

Nowadays, Enterprises struggle with rapid changes due to the dynamic and competitive nature of the

* E-mail address: neel.mani2@mail.dcu.ie

Available online at www.sciencedirect.com

ScienceDirect
Procedia Computer Science 00 (2017) 000–000

 www.elsevier.com/locate/procedia

1877-0509 © 2017 The Authors. Published by Elsevier B.V.
Peer-review under responsibility of KES International.

International Conference on Knowledge Based and Intelligent Information and Engineering
Systems, KES2017, 6-8 September 2017, Marseille, France

A Domain-specific Rule Generation Using Model-Driven
Architecture in Controlled Variability Model

Neel Mani*, Markus Helfert a, Claus Pahlb
aADAPT Centre for Digital Content Technology, Dublin City University, School of Computing, Dublin, Ireland

bFree University of Bozen-Bolzano, Faculty of Computer Science, Bolzano, Italy

Abstract

The business environment changes rapidly and needs to adapt to the enterprise business systems must be considered
for new types of requirements to accept changes in the business strategies and processes. This raises new challenges
that the traditional development approaches cannot always provide a complete solution in an efficient way.
However, most of the current proposals for automatic generation are not devised to cope with rapid integration of
the changes in the business requirement of end user (stakeholder’s and customer’s) resource. Domain-specific Rules
constitute a key element for domain specific enterprise application, allowing configuration of changes, and
management of the domain constraint within a domain. In this paper, we propose an approach to the development of
an automatic generation of the domain-specific rules by using variability feature model and ontology definition of
domain model concepts coming from Software product line engineering and Model Driven Architecture. We
provide a process approach to generate a domain-specific rule based on the end user requirement.

© 2017 The Authors. Published by Elsevier B.V.
Peer-review under responsibility of KES International.

Keywords: Rule Generation; Domain-specific rules; Business Process Model; Variability Model; Model Driven Architecture;

1. Introduction

Nowadays, Enterprises struggle with rapid changes due to the dynamic and competitive nature of the

* E-mail address: neel.mani2@mail.dcu.ie

 Neel Mani/ Procedia Computer Science 00 (2017) 000–000

environment. The businesses need to adapt and implement changes promptly. The changes occur almost at every
front of the business process. For example, changes in demand of customers, changes in business strategies (internal
and external stakeholder) or changes in various laws. Process model’s languages1 provide expressive and various
verification techniques to ensure the reliable processes2. However, the languages restrict domain experts to make
changes such as defining explicitly the process execution plan as pre-defined task control flow, data flow, and
work/process allocation schema, etc. The changes reflect at the modeling stage or design phase, which makes the
process model rigid3. These may pose challenges in customization, adaptability and maintenance of the system.
These languages limit flexibility of enterprises4,5 and their suitability (or sustainability) for the dynamic
environment. As the nature of organisations is volatile (polices of business) and processes are often excessively
rigid, Domain specific solution will make process model more focussed for a particular domain in statically and
dynamically adaptable in terms of the process execution plan, reducing the dependency on programming, and to
software developers.

Advent of model approach in Business Process Model (BPM) systems, domain or business experts usally work
on high level of model designing, and maintaining the complex behaviours of their enterprise application. The
software professional or programmers are using work on very low level of code who can modify code. Since,
Domain experts are often working, designing, learning and thinking in critical way to solve the complex process of
enterprise in form of decision-making rules, and policy, their intent is rather simple to understandable. The
enterprises are looking for a new standard configurable domain solution for defining the rule, expressing and
facilitating their integration for process model constraint. Domain expert and business expert(stakeholder) often
work on very high level of abstraction (design model and use modeling language and designing tools) and think in
conditional rules, mapping programmer and software expert intent into low level of programming code.

The several steps required for implementation of model transformation and configuration system. These are the
steps of high-level design to low level execution. Enterprises, usually, have high level of legacy model and design as
a domain model or process model. Automatic code generation is a well-known process of getting the low level of
executable code from a given abstract model. Rule generation is the process by which higher level model is
translated or transformed into the lower level program. It is a process of conversion of one form to another; it may
be platform specific or platform independent or generic6. In Model-Driven Architecture(MDA)7, techniques are
expressed by models as the primary development artifact and use them as a basis for obtaining a configurable
domain-specific rule for process model customisation in different ways8, but it does not talk about variability of
models (domain model and process model).

We are using digital content process domain for a case study. The web application’s machine translation
translates source language to target language. The system provides a web based platform where domain expert can
edit the generated domain-specific rule in the natural language configurable editor. In this paper, we focus on two
main elements: (1) How domain-specific rules(DSR)9 can be generated from domain models automatically? (2)
what are processes of approach to get a rule from domain model and what are the core component models with
variability model. We also discuss the benefit of domain models, and configurable rule in process model
customisation.

We discuss the related work in Section 2. In Section 3, we proposed approach and core component of this
research. In Section 4, we describe the integration of process approach for DSR generation. Then, we saw how the
rule generation approach could be implemented using domain model, process model and variability model the
solution implementation in Section 5. We finish with an evaluate of the solution in Section 6 and some conclusion
with future work in Section 7.

2. Related Work

The use of rule and ontology modeling formalism as the MDD source model, along with defining a metamodel to
put it into the framework of MDA has been our proposal. Abdullah et al. (2007) 10, who proposes the possibility of
depicting the profile elements to a Jess platform-specific representation, also embarks upon the idea of using a UML
profile for the framing of knowledge.

Hecht, Piveta, Pimenta and Price11 uses high-level programming as well as code generation approach in
expediting the process of alteration between software design and its implementation in executable code. In order to

2356	 Neel Mani et al. / Procedia Computer Science 112 (2017) 2354–2362 Neel Mani/ Procedia Computer Science 00 (2017) 000–000

lessen the programming code writing effort in a manual set up in addition to checking errors inherent to it like
spelling mistake, Code generation technique is used.

Code generation constitutes the means of obtaining programming constructs from design-level constructs.
Automatic code generation deals with the conversion of software design into tools fit for execution with very little or
no manual intervention. On the other hand, Hecht, Piveta, Pimenta and Price11 opine that Aspect Oriented code
generation12 is the blend of automatic code generation techniques with aspect oriented programing concepts to derive
both their advantages. To implement this separation of crosscutting behavior has to be ensured at both designs and
coding levels. An approach by Groher & Schulze[10] uses UML extension medium to segregate and encase the
design of crosscutting behavior whereas Dijkstra12 constituted a mechanism that deals with the code part of
crosscutting behavior.

Models fitting web application development, as defined by web engineering uses methodologies such as13,
WebML14 and WebDSL15 which provide conceptual tools16. These emphasize on content, navigation and
presentation models17 outlines a proposal wherein Web application development rests upon MVC and JavaServer
Faces but doesn’t follow rule modeling. Whereas we have constituted an approach which considers it and hence is
inventive. Instead of considering other modeling concerns, we used fixed and preset define functionality operationa
links to define functionality operations.

In the context of Rule language, Rule Markup Initiative (RuleML)18, the REWERSE Rule Markup Language
(R2ML)19, and the Semantic Web Rule Language (SWRL)20 are the important measures in standardization and
exchanging of rules. Likewise, the World Wide Web Consortium (W3C) advocates rule-based interchange for the
Web with the Rule Interchange Format (RIF)21.

Dioufet al. (2007)22 describes means to amalgamate OWL ontologies and UML models for generation of business
rule automatically. They recommend the usage of ontologies to attach for semantics to UML models and applying
the MDA approach in the extraction of deducible rules from models. Their business rules are generated in the
Semantics of Business Vocabulary and Business Rules (SBVR) syntax23 but they propound a common framework
for applying MDA and OWL ontologies for the creation of rulesets in a target rule engine, and till now only the first
abstraction version of business rules have been generated. It is still a subject of research, and no precise development
methodology has been proposed for creating rule based systems embedded in Semantic Web Application. Although,
the proposed the combination of UML and ontologies semantic for extracting the set of rules in target rule engine,
they only generated the first level of the abstraction of the rules.

We have proposed process approach for generating the rule from high-level of domain model. The domain-
specific rule language (DSRL)24 is transformed from domain model based on the requirement of the domain user.
Our approach provides the steps and component of rule generation from high-level of model.

3. Proposed Approach

3.1. Model Driven Architecture

For constructing Our approach and its fundamentals comes from MDA concepts which are related to
transformation of model in domain-specific applications. The developing of the prototyping of the application, the
application must have Platform Specific Models (PSM). The transformation of PIM obtains these models and adds
to relative technical information to platforms. These models provide the platform for facilitating the rule generation.
The MDA approach is commonly used for advanced and complexed model generators. The architecture of the
DSRL generator follows the MDA four-level model organization presented by Bézivin25 as illustrated in Figure 1.
At the top level, the M3 is the Syntax Definition Formalism (SDF) metametamodel which is the grammar of the
SDF. This level is also known as Computational Independent Model(CIM) or metametamodel which is defined and
thus conforms to itself26. The BNF notation takes as a self-representation metasyntax. This notation facilities to
define multiple well-formed grammar. A given grammar allows defining the infinity of syntactically correct DSR
configuration.

At the M2 level, we define the DSRL metamodel, i.e., the grammar of DSRL with ECA defined in SDF and this
level is called Platform Independent Model (PIM). The metamodel conforms to the metametamodel at level M3. At
the M1 level, we define DSRL models of configuration applications. This is known as Platform Specific Model

 Neel Mani/ Procedia Computer Science 00 (2017) 000–000

(PSM), consisting of entity and definitions. The model conforms to the metamodel at level M2. The bottom level is
called M0, we define the configuration of BPM customization consisting with DSR and XML rules, which represent
the models at the M1 level.

Fig. 1. MDA organisation view of models approach and artifacts of DSRL generator

3.2. Software Product Line Engineering

The key contribution of this paper is the use of a feature model to bridge between an assumed domain model
(here in ontology form) and business process. The feature model streamlines customisation for domain template
(domain model and process model) and configures constraints of domain. It acts as a bridge between domain model
and process model for activation and deactivation of their component.

A software product line framework or lifecycle has two phases and two focuses (see Fig. 2): (i) Problem Space
will address the problem of the application is terms of in individual and group of the application to define the
belongness of the family; (ii) Solution Space will address the software components for solving that problem; (iii)
Domain engineering phase is formal representation of a common platform where a number of arbitrary products are
developed and implemented. This includes a variability model and the core assets of the product family. Feature
models are standard variability modeling techniques in SPLE that represents variability in a hierarchical way to
simplify or differentiate the feature of products that belong to a software family. A feature is a logical unit that is
specified by a set of functional (what the system should do) and non-functional requirements (how the system
works, should behave and quality attributes) 27, 28, and; (iv) Application engineering phase provide a platform for the
end users or customers that capture their requirement for the target application. This is responsible for concreate or
final product from variability model trough a generation of rule, configuration of the rule and deploying the final
product.

3.3. Domain-specific Language

The domain experts, business expert and subject matter experts (SMEs) are the process developers of enterprise
business design. They require a high-level language platform or environment to develop and configure their
application that is domain-specific language (DSLs)29. Domain expert and software developer can solve a domain
development tasks issue. Domain experts are required to use their domain knowledge, experience, expertise and
intellect to solve the challenges. Software developers provide a solution through code and it will be in the form of
some executable in a programing language to obtain a program/application/solution that can be performed to run on
the systems to solve development task issue. In both the cases, cognitive challenges and significant amount of
logical, mental and thinking activities are involved.

	 Neel Mani et al. / Procedia Computer Science 112 (2017) 2354–2362� 2357 Neel Mani/ Procedia Computer Science 00 (2017) 000–000

lessen the programming code writing effort in a manual set up in addition to checking errors inherent to it like
spelling mistake, Code generation technique is used.

Code generation constitutes the means of obtaining programming constructs from design-level constructs.
Automatic code generation deals with the conversion of software design into tools fit for execution with very little or
no manual intervention. On the other hand, Hecht, Piveta, Pimenta and Price11 opine that Aspect Oriented code
generation12 is the blend of automatic code generation techniques with aspect oriented programing concepts to derive
both their advantages. To implement this separation of crosscutting behavior has to be ensured at both designs and
coding levels. An approach by Groher & Schulze[10] uses UML extension medium to segregate and encase the
design of crosscutting behavior whereas Dijkstra12 constituted a mechanism that deals with the code part of
crosscutting behavior.

Models fitting web application development, as defined by web engineering uses methodologies such as13,
WebML14 and WebDSL15 which provide conceptual tools16. These emphasize on content, navigation and
presentation models17 outlines a proposal wherein Web application development rests upon MVC and JavaServer
Faces but doesn’t follow rule modeling. Whereas we have constituted an approach which considers it and hence is
inventive. Instead of considering other modeling concerns, we used fixed and preset define functionality operationa
links to define functionality operations.

In the context of Rule language, Rule Markup Initiative (RuleML)18, the REWERSE Rule Markup Language
(R2ML)19, and the Semantic Web Rule Language (SWRL)20 are the important measures in standardization and
exchanging of rules. Likewise, the World Wide Web Consortium (W3C) advocates rule-based interchange for the
Web with the Rule Interchange Format (RIF)21.

Dioufet al. (2007)22 describes means to amalgamate OWL ontologies and UML models for generation of business
rule automatically. They recommend the usage of ontologies to attach for semantics to UML models and applying
the MDA approach in the extraction of deducible rules from models. Their business rules are generated in the
Semantics of Business Vocabulary and Business Rules (SBVR) syntax23 but they propound a common framework
for applying MDA and OWL ontologies for the creation of rulesets in a target rule engine, and till now only the first
abstraction version of business rules have been generated. It is still a subject of research, and no precise development
methodology has been proposed for creating rule based systems embedded in Semantic Web Application. Although,
the proposed the combination of UML and ontologies semantic for extracting the set of rules in target rule engine,
they only generated the first level of the abstraction of the rules.

We have proposed process approach for generating the rule from high-level of domain model. The domain-
specific rule language (DSRL)24 is transformed from domain model based on the requirement of the domain user.
Our approach provides the steps and component of rule generation from high-level of model.

3. Proposed Approach

3.1. Model Driven Architecture

For constructing Our approach and its fundamentals comes from MDA concepts which are related to
transformation of model in domain-specific applications. The developing of the prototyping of the application, the
application must have Platform Specific Models (PSM). The transformation of PIM obtains these models and adds
to relative technical information to platforms. These models provide the platform for facilitating the rule generation.
The MDA approach is commonly used for advanced and complexed model generators. The architecture of the
DSRL generator follows the MDA four-level model organization presented by Bézivin25 as illustrated in Figure 1.
At the top level, the M3 is the Syntax Definition Formalism (SDF) metametamodel which is the grammar of the
SDF. This level is also known as Computational Independent Model(CIM) or metametamodel which is defined and
thus conforms to itself26. The BNF notation takes as a self-representation metasyntax. This notation facilities to
define multiple well-formed grammar. A given grammar allows defining the infinity of syntactically correct DSR
configuration.

At the M2 level, we define the DSRL metamodel, i.e., the grammar of DSRL with ECA defined in SDF and this
level is called Platform Independent Model (PIM). The metamodel conforms to the metametamodel at level M3. At
the M1 level, we define DSRL models of configuration applications. This is known as Platform Specific Model

 Neel Mani/ Procedia Computer Science 00 (2017) 000–000

(PSM), consisting of entity and definitions. The model conforms to the metamodel at level M2. The bottom level is
called M0, we define the configuration of BPM customization consisting with DSR and XML rules, which represent
the models at the M1 level.

Fig. 1. MDA organisation view of models approach and artifacts of DSRL generator

3.2. Software Product Line Engineering

The key contribution of this paper is the use of a feature model to bridge between an assumed domain model
(here in ontology form) and business process. The feature model streamlines customisation for domain template
(domain model and process model) and configures constraints of domain. It acts as a bridge between domain model
and process model for activation and deactivation of their component.

A software product line framework or lifecycle has two phases and two focuses (see Fig. 2): (i) Problem Space
will address the problem of the application is terms of in individual and group of the application to define the
belongness of the family; (ii) Solution Space will address the software components for solving that problem; (iii)
Domain engineering phase is formal representation of a common platform where a number of arbitrary products are
developed and implemented. This includes a variability model and the core assets of the product family. Feature
models are standard variability modeling techniques in SPLE that represents variability in a hierarchical way to
simplify or differentiate the feature of products that belong to a software family. A feature is a logical unit that is
specified by a set of functional (what the system should do) and non-functional requirements (how the system
works, should behave and quality attributes) 27, 28, and; (iv) Application engineering phase provide a platform for the
end users or customers that capture their requirement for the target application. This is responsible for concreate or
final product from variability model trough a generation of rule, configuration of the rule and deploying the final
product.

3.3. Domain-specific Language

The domain experts, business expert and subject matter experts (SMEs) are the process developers of enterprise
business design. They require a high-level language platform or environment to develop and configure their
application that is domain-specific language (DSLs)29. Domain expert and software developer can solve a domain
development tasks issue. Domain experts are required to use their domain knowledge, experience, expertise and
intellect to solve the challenges. Software developers provide a solution through code and it will be in the form of
some executable in a programing language to obtain a program/application/solution that can be performed to run on
the systems to solve development task issue. In both the cases, cognitive challenges and significant amount of
logical, mental and thinking activities are involved.

2358	 Neel Mani et al. / Procedia Computer Science 112 (2017) 2354–2362
 Neel Mani/ Procedia Computer Science 00 (2017) 000–000

Fig.2. Framework for SPLE: domain and application engineering, problem and solution space

Moreover, the considerable amount of cognitive activity on the part of developer cannot be reduced just because
significant research has been done in machine learning and automatic programming. Although a considerable
amount of research in machine learning and automatic programming has been carried out, still reducing the
cognitive activity of the domain expert is stupendously difficult, if not impossible. The programmer has to invest a
lot of mental and logical effort, even though, the semantic gap between the domain solution procedure (DSP) and
programming language is still present. The domain experts are thinking at a very high level of abstraction while
designing the DSP. This results in a huge semantic gap when the developers use the low level of programming
language instead of high level. If we have a specific language that have the right level of abstraction at which
domain user can design and think, the tasks of creating the program will be much easier30. A domain-specific
language technology can make it possible.

DSLs are always depended on GPL (General Purpose Language) languages, support of GPL is required either at
the time of compilation or while designing and developing a new compiler/ interpreter for a particular domain. The
DSRL is a combination of rules and BPMN process; it is simpler and easier as compared to other modular language
systems. Moreover, DSR generation process is based on Template Model which carry domain model and process
model(BPMN) and it is a responsible for the primary flow and functional process of the whole process. ECA (Event
Condition Action) Language is the focus on the operation part of the DSR system (fulfil the condition and actions
perform based on process model event). In DSRL, there is no need GPL language, though we use a little bit of GPL
language for process but it is very less in comparison of DSL.

4. Approach for Domain-specific Rule Automatic Generation

The principle argument here is that customisation of process models can be carried out at run time which is
possible by the software product line engineering (SPLE). An SPLE facilitates mass customization and satisfies the
different stakeholder requirement31. The SPLE can be implemented in two steps: domain engineering and
application engineering. The domain engineering is responsible for reusable platform and defines the commonality
and the variability of the product line. In this research, we are using for domain template model which is the
combination of domain model and process model. The application engineering is responsible for facilitating a
platform for end user applications interface which through connect the domain engineering. Therefore, we consider
the SPLE as an enabler for mass customisation. Rule generation is another challenge. MDA concept can be used to
generate rules, provide definition and composition, and validation of domain constraint challenges.

 Neel Mani/ Procedia Computer Science 00 (2017) 000–000

The MDA concept can provide a multiple conceptual platform that allows a domain user to create models of the
application, concept of the business logic and generate rule for a target model or platform by means of
transformations. By using the MDA concept domain expert would be able to solve and focus on domain engineering
and domain related challenges that are specific to the application domain. The generated DSR is completely
independent from any platform, the application developer also get benefited from writing platform-specific codes32.
In this way, MDA provides the abstraction level of the new software development and existing
customisation(reuse).
We express rule generation of DSR (Domain-specific Rule) in terms of functional and operational. The
representation of the rules is done with based XML-based ECA language called DSRL. In the figure 3, a case of rule
generation illustrates the DSRL processor is loaded (or as loaded in?) the UML class diagram and a semantic model
is expressed as a relationship between attributes (Length:int) and operations (fileType():bool).

Fig. 3. DSR generation and signature

Both are a major component of the rule process builder for the appropriate rule conversation processor. During
the rule conversion, the DSRL processor would produce rule that will save in a rule repository or process by the
BPMN system, perhaps some kind of rules may be verified and evaluated by user end or human based computing.

A DSR is a XML rule which is independent from system and its platform. The Semantic model provides a
semantic meaning in term of structure and syntax. It can be varied to do away with rule constraints like
inconsistency, redundancy and incorrectness resulted from multiple views and abstraction. Semantic consistency is a
major issue when compatibility of specific behaviour. A typical example is compatibility between sequence diagram
and state chart diagram when class is implemented 33.

5. Implementation

Our paper is being focused on the conceptual aspects; the prototype system has been implemented. The web
application prototype provides a platform for a domain user or expert that selects the feature based on their
requirement and desires to build a rule generation and configurable processes for Digital content problem and
constraints. In this architecture, a software product line used as a platform and MDA to perform participate in rule
generation. Overall application is used by non-technical domain expert or business expert (understand the particular
domain) to specify the future application. The flow of application is started from domain engineering where domain
expert creates template models (domain, variability, and process model) and connect all models through a waving
model. The feature selection as input is processed through the domain user or customers, based on selected feature

	 Neel Mani et al. / Procedia Computer Science 112 (2017) 2354–2362� 2359
 Neel Mani/ Procedia Computer Science 00 (2017) 000–000

Fig.2. Framework for SPLE: domain and application engineering, problem and solution space

Moreover, the considerable amount of cognitive activity on the part of developer cannot be reduced just because
significant research has been done in machine learning and automatic programming. Although a considerable
amount of research in machine learning and automatic programming has been carried out, still reducing the
cognitive activity of the domain expert is stupendously difficult, if not impossible. The programmer has to invest a
lot of mental and logical effort, even though, the semantic gap between the domain solution procedure (DSP) and
programming language is still present. The domain experts are thinking at a very high level of abstraction while
designing the DSP. This results in a huge semantic gap when the developers use the low level of programming
language instead of high level. If we have a specific language that have the right level of abstraction at which
domain user can design and think, the tasks of creating the program will be much easier30. A domain-specific
language technology can make it possible.

DSLs are always depended on GPL (General Purpose Language) languages, support of GPL is required either at
the time of compilation or while designing and developing a new compiler/ interpreter for a particular domain. The
DSRL is a combination of rules and BPMN process; it is simpler and easier as compared to other modular language
systems. Moreover, DSR generation process is based on Template Model which carry domain model and process
model(BPMN) and it is a responsible for the primary flow and functional process of the whole process. ECA (Event
Condition Action) Language is the focus on the operation part of the DSR system (fulfil the condition and actions
perform based on process model event). In DSRL, there is no need GPL language, though we use a little bit of GPL
language for process but it is very less in comparison of DSL.

4. Approach for Domain-specific Rule Automatic Generation

The principle argument here is that customisation of process models can be carried out at run time which is
possible by the software product line engineering (SPLE). An SPLE facilitates mass customization and satisfies the
different stakeholder requirement31. The SPLE can be implemented in two steps: domain engineering and
application engineering. The domain engineering is responsible for reusable platform and defines the commonality
and the variability of the product line. In this research, we are using for domain template model which is the
combination of domain model and process model. The application engineering is responsible for facilitating a
platform for end user applications interface which through connect the domain engineering. Therefore, we consider
the SPLE as an enabler for mass customisation. Rule generation is another challenge. MDA concept can be used to
generate rules, provide definition and composition, and validation of domain constraint challenges.

 Neel Mani/ Procedia Computer Science 00 (2017) 000–000

The MDA concept can provide a multiple conceptual platform that allows a domain user to create models of the
application, concept of the business logic and generate rule for a target model or platform by means of
transformations. By using the MDA concept domain expert would be able to solve and focus on domain engineering
and domain related challenges that are specific to the application domain. The generated DSR is completely
independent from any platform, the application developer also get benefited from writing platform-specific codes32.
In this way, MDA provides the abstraction level of the new software development and existing
customisation(reuse).
We express rule generation of DSR (Domain-specific Rule) in terms of functional and operational. The
representation of the rules is done with based XML-based ECA language called DSRL. In the figure 3, a case of rule
generation illustrates the DSRL processor is loaded (or as loaded in?) the UML class diagram and a semantic model
is expressed as a relationship between attributes (Length:int) and operations (fileType():bool).

Fig. 3. DSR generation and signature

Both are a major component of the rule process builder for the appropriate rule conversation processor. During
the rule conversion, the DSRL processor would produce rule that will save in a rule repository or process by the
BPMN system, perhaps some kind of rules may be verified and evaluated by user end or human based computing.

A DSR is a XML rule which is independent from system and its platform. The Semantic model provides a
semantic meaning in term of structure and syntax. It can be varied to do away with rule constraints like
inconsistency, redundancy and incorrectness resulted from multiple views and abstraction. Semantic consistency is a
major issue when compatibility of specific behaviour. A typical example is compatibility between sequence diagram
and state chart diagram when class is implemented 33.

5. Implementation

Our paper is being focused on the conceptual aspects; the prototype system has been implemented. The web
application prototype provides a platform for a domain user or expert that selects the feature based on their
requirement and desires to build a rule generation and configurable processes for Digital content problem and
constraints. In this architecture, a software product line used as a platform and MDA to perform participate in rule
generation. Overall application is used by non-technical domain expert or business expert (understand the particular
domain) to specify the future application. The flow of application is started from domain engineering where domain
expert creates template models (domain, variability, and process model) and connect all models through a waving
model. The feature selection as input is processed through the domain user or customers, based on selected feature

2360	 Neel Mani et al. / Procedia Computer Science 112 (2017) 2354–2362
 Neel Mani/ Procedia Computer Science 00 (2017) 000–000

from template models, components are activated and de-activated. The final domain model is transformed in rule by
MDA. During MDA process, entire rule specification such as: grammar definition, abstract and concreate rule
formation based on syntax, apply the DSR grammar and rule language semantic and validation etc. After rule
generation, next step is configuration of process model constraint; it could be automatic or semi-automatic. The
automatic configuration is used as the constraint value in the form of parametric at the time when user selects the
feature. In the semi-automatic, experts can configure the constraint value after rule generation.

After this step of the rule generation and formalism the next the stage was to implement our approach on DSRs
generation automatically. From the Fig.1 and 3, a first prototype of our approach in a Microsoft environment. Our
model is a web based application model, our domain mode is used as a digital content domain. For our domain
model definition Metamodel arrives just in time, while we were using the ontology directly in form of UML with
MOF model. We use a Microsoft .Net framework for implementation of user feature model selection to DSRs
generation. The process step is the follow as: use Object Model for transforming our domain model to data model.
This data model is a simple own define mode (follow the grammar) l which contain different object models for
abstract syntax, concreate syntax, grammar and semantic models. In Fig. 3, we illustrated a signature of DSR with
one example of file uploading, where there are two parametric functions, one can calculate the file length and other
is to validate the file type or extension (like .txt,.pdf,.html, etc.) After this, using the modeling language as UML in
.Net, we enrich the object model with three different class to care varies object model based on UML fundamental
properties: attribute, function and data structure. The implementation this state, rules are generated from domain
model with semantic through the Domain Vocabulary34 and Domain-specific Rules like format.

6. Evaluation

In this section, we describe how to evaluate the generated DSR. A model-based design and automated rule
generation are new concept and there is no standard system which can be used for evaluating this proposed solution.
We validate the type of generation output in terms correctness, completeness, output effectiveness and efficiency.
Our primary goal is to have a proof of full functional and operational correctness, and completeness of the rule with
respect to its feature requirement selected by the domain user. Among the types of investigations (strategies), we
plan to carry out two different evaluation strategies to evaluate this DSR, generated rule evaluation will consist of
following:

6.1. Fixed Validation of generated rule

 In this section, we describe how to evaluate the generated DSR. A model-based design and automated rule
generation are new concept and there is no standard system which can be used for evaluating this proposed solution.
We validate the type of generation output in terms of correctness, completeness, output effectiveness and efficiency.
Our primary goal is to have a proof of full functional and operational correctness, and completeness of the rule with
respect to its feature requirement selected by the domain user. Among the types of investigations (strategies), we
plan to carry out two different evaluation strategies to evaluate this DSR generated rule evaluation will consist of
following:

6.2. Fixed Validation of generated rule

Firstly, this approach investigates the generated rule in terms of whether the end user selected features are
converted into rule or not? We validate this issue with under and over generation of rule. Secondly, as the grammar
of the rule is based on operational and functional of the models via validation, we can argue that the selection of the
feature model can be verified easily.

• Under generation – We define under generation as missing instance (for example events, actions etc.) at the
time of generation or after generation.

• Over generation- This would be identified as some extra information in terms of syntax and semantic
(functional and operational information).

 Neel Mani/ Procedia Computer Science 00 (2017) 000–000

Thus, using this approach validate we can validate the generated rule with find some extra or less information
generated during the model transformation. This is quickly along with the reuse of existing opaque behavior(s),
creating a flexible and easy to reconfigure complex systems environment.

7. Conclusion

In this paper, we have proposed a process approach of a domain-specific rule generation through variability
management. We have presented a novel approach to generate the rule from domain model and process model based
on the end user requirement by applying variability modeling as a systematic approach. We provide a process
support and its approach to allow the end user (non-technical domain experts). They can select suitable features that
satisfy their business constraint within domain aspects. We have added adaptively to domain model. We provide a
conceptual view of domain-specific rule generation and manage the domain model, and variability model using
MDA. It helps in managing frequent changes of the business process along with variability schema of a set of
structured variation mechanisms for the specification. The domain user can generate the DSRs and configure
domain constraints in a dynamic environment.

We plan to extend this approach in combination with our existing work on business process model customization
based on user requirement (feature model, domain model and process models), so that a complete development life
cycle for the customization and configuration of business process models are supported. We also see the need for
other domain, how to apply in different domain as a generic approach.

Acknowledgement

This research is supported by Science Foundation Ireland (SFI) as a part of the ADAPT Centre at Dublin City
University (Grant No: 12/CE/I2267).

References

1. Van der Aalst, W.M. and A.H. Ter Hofstede, YAWL: yet another workflow language. Information systems, 2005. 30(4): p. 245-275.
2. Boukhebouze, M., et al., A rule-based approach to model and verify flexible business processes. International Journal of Business Process

Integration and Management, 2011. 5(4): p. 287-307.
3. Rangiha, M.E. and B. Karakostas. Goal-driven social business process management. in Science and Information Conference (SAI), 2013.

2013. IEEE.
4. van Eijndhoven, T., M.-E. Iacob, and M.L. Ponisio. Achieving business process flexibility with business rules. in Enterprise Distributed

Object Computing Conference, 2008. EDOC'08. 12th International IEEE. 2008. IEEE.
5. Ayora, C., et al. Towards run-time flexibility for process families: open issues and research challenges. in Business Process Management

Workshops. 2013. Springer.
6. Bergmayr, A. and M. Wimmer. Generating Metamodels from Grammars by Chaining Translational and By-Example Techniques. in

MDEBE@ MoDELS. 2013.
7. Poole, J.D. Model-driven architecture: Vision, standards and emerging technologies. in Workshop on Metamodeling and Adaptive Object

Models, ECOOP. 2001.
8. Gonçalves, R.C.A., Parallel programming by transformation. 2015.
9. Mani, N., M. Helfert, and C. Pahl, Business Process Model Customisation using Domain-driven Controlled Variability Management and Rule

Generation. International Journal on Advances in Software, 2016. 9(Numbers 3 & 4, 2016): p. 179 - 190.
10. Groher, I. and S. Schulze. Generating aspect code from UML models. in The 4th AOSD Modeling With UML Workshop. 2003.
11. Hecht, M.V., et al., Aspect-oriented code generation. Simpsio Brasileiro de Engenharia de Software, 2005.
12. Dijkstra, E.W., A discipline of programming. Vol. 1.
13. Koch, N., et al., UML-based web engineering, in Web Engineering: Modelling and Implementing Web Applications. 2008, Springer. p. 157-

191.
14. Ceri, S., et al., Morgan Kaufmann series in data management systems: Designing data-intensive Web applications. 2003: Morgan Kaufmann.
15. Groenewegen, D.M., et al. WebDSL: a domain-specific language for dynamic web applications. in Companion to the 23rd ACM SIGPLAN

conference on Object-oriented programming systems languages and applications. 2008. ACM.
16. Ceri, S., P. Fraternali, and M. Matera, Conceptual modeling of data-intensive Web applications. IEEE Internet Computing, 2002. 6(4): p. 20-

30.

	 Neel Mani et al. / Procedia Computer Science 112 (2017) 2354–2362� 2361
 Neel Mani/ Procedia Computer Science 00 (2017) 000–000

from template models, components are activated and de-activated. The final domain model is transformed in rule by
MDA. During MDA process, entire rule specification such as: grammar definition, abstract and concreate rule
formation based on syntax, apply the DSR grammar and rule language semantic and validation etc. After rule
generation, next step is configuration of process model constraint; it could be automatic or semi-automatic. The
automatic configuration is used as the constraint value in the form of parametric at the time when user selects the
feature. In the semi-automatic, experts can configure the constraint value after rule generation.

After this step of the rule generation and formalism the next the stage was to implement our approach on DSRs
generation automatically. From the Fig.1 and 3, a first prototype of our approach in a Microsoft environment. Our
model is a web based application model, our domain mode is used as a digital content domain. For our domain
model definition Metamodel arrives just in time, while we were using the ontology directly in form of UML with
MOF model. We use a Microsoft .Net framework for implementation of user feature model selection to DSRs
generation. The process step is the follow as: use Object Model for transforming our domain model to data model.
This data model is a simple own define mode (follow the grammar) l which contain different object models for
abstract syntax, concreate syntax, grammar and semantic models. In Fig. 3, we illustrated a signature of DSR with
one example of file uploading, where there are two parametric functions, one can calculate the file length and other
is to validate the file type or extension (like .txt,.pdf,.html, etc.) After this, using the modeling language as UML in
.Net, we enrich the object model with three different class to care varies object model based on UML fundamental
properties: attribute, function and data structure. The implementation this state, rules are generated from domain
model with semantic through the Domain Vocabulary34 and Domain-specific Rules like format.

6. Evaluation

In this section, we describe how to evaluate the generated DSR. A model-based design and automated rule
generation are new concept and there is no standard system which can be used for evaluating this proposed solution.
We validate the type of generation output in terms correctness, completeness, output effectiveness and efficiency.
Our primary goal is to have a proof of full functional and operational correctness, and completeness of the rule with
respect to its feature requirement selected by the domain user. Among the types of investigations (strategies), we
plan to carry out two different evaluation strategies to evaluate this DSR, generated rule evaluation will consist of
following:

6.1. Fixed Validation of generated rule

 In this section, we describe how to evaluate the generated DSR. A model-based design and automated rule
generation are new concept and there is no standard system which can be used for evaluating this proposed solution.
We validate the type of generation output in terms of correctness, completeness, output effectiveness and efficiency.
Our primary goal is to have a proof of full functional and operational correctness, and completeness of the rule with
respect to its feature requirement selected by the domain user. Among the types of investigations (strategies), we
plan to carry out two different evaluation strategies to evaluate this DSR generated rule evaluation will consist of
following:

6.2. Fixed Validation of generated rule

Firstly, this approach investigates the generated rule in terms of whether the end user selected features are
converted into rule or not? We validate this issue with under and over generation of rule. Secondly, as the grammar
of the rule is based on operational and functional of the models via validation, we can argue that the selection of the
feature model can be verified easily.

• Under generation – We define under generation as missing instance (for example events, actions etc.) at the
time of generation or after generation.

• Over generation- This would be identified as some extra information in terms of syntax and semantic
(functional and operational information).

 Neel Mani/ Procedia Computer Science 00 (2017) 000–000

Thus, using this approach validate we can validate the generated rule with find some extra or less information
generated during the model transformation. This is quickly along with the reuse of existing opaque behavior(s),
creating a flexible and easy to reconfigure complex systems environment.

7. Conclusion

In this paper, we have proposed a process approach of a domain-specific rule generation through variability
management. We have presented a novel approach to generate the rule from domain model and process model based
on the end user requirement by applying variability modeling as a systematic approach. We provide a process
support and its approach to allow the end user (non-technical domain experts). They can select suitable features that
satisfy their business constraint within domain aspects. We have added adaptively to domain model. We provide a
conceptual view of domain-specific rule generation and manage the domain model, and variability model using
MDA. It helps in managing frequent changes of the business process along with variability schema of a set of
structured variation mechanisms for the specification. The domain user can generate the DSRs and configure
domain constraints in a dynamic environment.

We plan to extend this approach in combination with our existing work on business process model customization
based on user requirement (feature model, domain model and process models), so that a complete development life
cycle for the customization and configuration of business process models are supported. We also see the need for
other domain, how to apply in different domain as a generic approach.

Acknowledgement

This research is supported by Science Foundation Ireland (SFI) as a part of the ADAPT Centre at Dublin City
University (Grant No: 12/CE/I2267).

References

1. Van der Aalst, W.M. and A.H. Ter Hofstede, YAWL: yet another workflow language. Information systems, 2005. 30(4): p. 245-275.
2. Boukhebouze, M., et al., A rule-based approach to model and verify flexible business processes. International Journal of Business Process

Integration and Management, 2011. 5(4): p. 287-307.
3. Rangiha, M.E. and B. Karakostas. Goal-driven social business process management. in Science and Information Conference (SAI), 2013.

2013. IEEE.
4. van Eijndhoven, T., M.-E. Iacob, and M.L. Ponisio. Achieving business process flexibility with business rules. in Enterprise Distributed

Object Computing Conference, 2008. EDOC'08. 12th International IEEE. 2008. IEEE.
5. Ayora, C., et al. Towards run-time flexibility for process families: open issues and research challenges. in Business Process Management

Workshops. 2013. Springer.
6. Bergmayr, A. and M. Wimmer. Generating Metamodels from Grammars by Chaining Translational and By-Example Techniques. in

MDEBE@ MoDELS. 2013.
7. Poole, J.D. Model-driven architecture: Vision, standards and emerging technologies. in Workshop on Metamodeling and Adaptive Object

Models, ECOOP. 2001.
8. Gonçalves, R.C.A., Parallel programming by transformation. 2015.
9. Mani, N., M. Helfert, and C. Pahl, Business Process Model Customisation using Domain-driven Controlled Variability Management and Rule

Generation. International Journal on Advances in Software, 2016. 9(Numbers 3 & 4, 2016): p. 179 - 190.
10. Groher, I. and S. Schulze. Generating aspect code from UML models. in The 4th AOSD Modeling With UML Workshop. 2003.
11. Hecht, M.V., et al., Aspect-oriented code generation. Simpsio Brasileiro de Engenharia de Software, 2005.
12. Dijkstra, E.W., A discipline of programming. Vol. 1.
13. Koch, N., et al., UML-based web engineering, in Web Engineering: Modelling and Implementing Web Applications. 2008, Springer. p. 157-

191.
14. Ceri, S., et al., Morgan Kaufmann series in data management systems: Designing data-intensive Web applications. 2003: Morgan Kaufmann.
15. Groenewegen, D.M., et al. WebDSL: a domain-specific language for dynamic web applications. in Companion to the 23rd ACM SIGPLAN

conference on Object-oriented programming systems languages and applications. 2008. ACM.
16. Ceri, S., P. Fraternali, and M. Matera, Conceptual modeling of data-intensive Web applications. IEEE Internet Computing, 2002. 6(4): p. 20-

30.

2362	 Neel Mani et al. / Procedia Computer Science 112 (2017) 2354–2362
 Neel Mani/ Procedia Computer Science 00 (2017) 000–000

17. Moreno, N., et al. Addressing new concerns in model-driven web engineering approaches. in International Conference on Web Information
Systems Engineering. 2008. Springer.

18. Boley, H., S. Tabet, and G. Wagner. Design rationale of RuleML: A markup language for semantic web rules. in Proceedings of the First
International Conference on Semantic Web Working. 2001. CEUR-WS. org.

19. Wagner, G., A. Giurca, and S. Lukichev, A usable interchange format for rich syntax rules integrating OCL, RuleML and SWRL. Proc. of
WSh. Reasoning on the Web, 2006.

20. Horrocks, I., et al., SWRL: A semantic web rule language combining OWL and RuleML. W3C Member submission, 2004. 21: p. 79.
21. Kifer, M. Rule interchange format: The framework. in International Conference on Web Reasoning and Rule Systems. 2008. Springer.
22. Diouf, M., S. Maabout, and K. Musumbu. Merging model driven architecture and Semantic Web for business rules generation. in

International Conference on Web Reasoning and Rule Systems. 2007. Springer.
23. (OMG), O.M.G., Semantics of Business Vocabulary and Business Rules (SBVR). (Version 1.0.).
24. Mani, N. and C. Pahl. Controlled variability management for business process model constraints. in ICSEA 2015, The Tenth International

Conference on Software Engineering Advances. 2015. IARIA XPS Press.
25. Bézivin, J., On the unification power of models. Software & Systems Modeling, 2005. 4(2): p. 171-188.
26. Visser, E., Syntax definition for language prototyping. 1997: Eelco Visser.
27. Acher, M., Managing, multiple feature models: foundations, languages and applications. 2011, Nice.
28. Soltani, S., et al. Automated planning for feature model configuration based on functional and non-functional requirements. in Proceedings of

the 16th International Software Product Line Conference-Volume 1. 2012. ACM.
29. Fowler, M., Domain-specific languages. 2010: Pearson Education.
30. Gupta, G., Language-based software engineering. Science of Computer Programming, 2015. 97: p. 37-40.
31. Pohl, K., et al., Software Product Line Engineering: Foundations, Principles and Techniques. 2005: Springer-Verlag New York, Inc.
32. Lewis, G.A., B.C. Meyers, and K. Wallnau, Workshop on Model-Driven Architecture and Program Generation. 2006, DTIC Document.
33. Engels, G., R. Heckel, and J.M. Küster, Rule-based specification of behavioral consistency based on the UML meta-model, in ≪ UML≫

2001—The Unified Modeling Language. Modeling Languages, Concepts, and Tools. 2001, Springer. p. 272-286.
34. Gonçalves, R.C., D. Batory, and J.L. Sobral, ReFlO: An interactive tool for pipe-and-filter domain specification and program generation.

Software & Systems Modeling, 2016. 15(2): p. 377-395.

