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Abstract Climate and weather variability in the North Atlantic region is determined largely by the
North Atlantic Oscillation (NAO). The potential for skillful seasonal forecasts of the winter NAO using an
ensemble-based dynamical prediction system has only recently been demonstrated. Here we show that the
winter predictability can be significantly improved by refining a dynamical ensemble through subsampling.
We enhance prediction skill of surface temperature, precipitation, and sea level pressure over essential
parts of the Northern Hemisphere by retaining only the ensemble members whose NAO state is close to a
“first guess” NAO prediction based on a statistical analysis of the initial autumn state of the ocean, sea ice,
land, and stratosphere. The correlation coefficient between the reforecasted and observation-based winter
NAO is significantly increased from 0.49 to 0.83 over a reforecast period from 1982 to 2016, and from 0.42
to 0.86 for a forecast period from 2001 to 2017. Our novel approach represents a successful and robust
alternative to further increasing the ensemble size, and potentially can be used in operational seasonal
prediction systems.

Plain Language Summary Predicting Northern Hemisphere winter conditions, which are
controlled largely by fluctuations in the pressure filed over the North Atlantic (North Atlantic Oscillation,
NAO), for the next season is a major challenge. Most state-of-the-art seasonal prediction systems show
a correlation between observed and predicted NAOs of less than 0.30. Our novel approach uses dynamical
links (teleconnections) between the autumn state of sea surface temperature in the North Atlantic, Arctic
sea ice, snow in Eurasia, and stratosphere temperature over the Northern Hemisphere as predictors of the
NAO in the subsequent winter to subsample a dynamical reforecast ensemble. We select only the ensemble
members that consistently reproduce winter NAO states that evolve in accordance with the autumn state
of these predictors. As a result the winter NAO prediction skill increases to a correlation value of 0.83.
Considering these well established NAO teleconnections in our Earth system model leads to an improved
prediction skill of European winter conditions, that is, surface temperature, precipitation, and sea level
pressure. Our results advance seasonal prediction of European weather to a level that is usually limited to
tropical regions and are relevant for a variety of societal sectors, such as global and national economies and
energy and water resources.

1. Introduction

Over the North Atlantic, the North Atlantic Oscillation (NAO) index is the leading mode of winter climate
variability, and variability in the NAO has a widespread impact on changes in temperature and precipita-
tion (Hurrell, 1995; Hurrell et al., 2003; Thompson et al., 2003), marine ecosystems (Drinkwater et al., 2003),
and storm track location (Ulbrich & Christoph, 1999). Positive and negative NAO phases are characterized
by a change in the position of the jet stream, which is in turn associated with a change in the storm tracks.
During a negative NAO phase, the jet stream is located farther south over the European continent; thus,
southern Europe experiences a wetter winter, whereas northern Europe experiences colder and drier weather
(Hurrell et al., 2003). Anomalous persistence or variability in the NAO can have a significant impact on
European weather, including extreme events (Jung et al., 2011; Maidens et al., 2013; Scaife et al., 2008). Such
changes have an impact on society, including the economic sector (Marshall et al., 2001) and insurance
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industry (Pinto et al., 2012), and they also affect renewable energy and water resources (Jerez et al., 2013;
López-Moreno et al., 2007). Therefore, a robust seasonal prediction system that provides a sufficiently accurate
NAO forecast would be beneficial for mitigating the potentially negative impacts of the increased occurrence
of extreme weather conditions. Because of the intrinsic chaotic nature of the ocean-atmosphere system, the
potential use of dynamical seasonal prediction systems to forecast the winter NAO index has not been consid-
ered feasible for a long time, although recent research has shown that the intrinsic predictability of the NAO
may extend to around 20 days (Domeisen et al., 2017).

Only recent studies have demonstrated skillful dynamical seasonal predictions of the winter NAO (Butler et al.,
2016; Müller et al., 2005; O’Reilly et al., 2017; Scaife et al., 2014; Weisheimer et al., 2017) with a prediction skill
of about 0.5–0.6 depending on the period evaluated. These improvements are partially associated with the
improved ability of seasonal prediction systems to simulate the sources of the NAO predictability, and it is
expected that NAO prediction should be further improved by an increase in the ensemble size (Butler et al.,
2016; Scaife et al., 2014). Unlike dynamical systems, existing statistical models depending on a set of predictors
and evaluation period demonstrate a moderate to high (approximately 0.5–0.7) significant skill of winter NAO
prediction (Hall et al., 2017; Wang et al., 2017).

Here we propose an alternative approach in which the NAO predictability is enhanced through ensemble sub-
sampling. Instead of further increasing the ensemble size, we retain or reject individual ensemble members
based on known and well-documented physical links (Smith et al., 2014) between the sea surface tempera-
tures (SSTs) in the North Atlantic (Czaja & Frankignoul, 2002) and to some extent in the North Pacific (Wang
et al., 2017), Arctic sea ice (Strong et al., 2009; Sun et al., 2015), Eurasian snow cover (Cohen & Jones, 2011;
Peings et al., 2013), and stratospheric variability (Butler & Polvani, 2011; Domeisen et al., 2015; Scaife et al.,
2016) in autumn and the state of the NAO in the subsequent winter.

2. Setup and Methods
2.1. MPI-ESM-MR-Based Seasonal Prediction System
The seasonal prediction system (Baehr et al., 2015) is based on the mixed resolution (MR) Coupled Model
Intercomparison Project Phase 5 version of the Max Planck Institute for Meteorology Earth system model, that
is, the MPI-ESM-MR (Giorgetta et al., 2013). The atmospheric part of MPI-ESM-MR (ECHAM6) has an approxi-
mate horizontal resolution of 200 km (1.875∘) and 95 vertical layers up to 0.01 hPa. The ocean component the
Max Planck Institute ocean model (MPIOM) has an approximate horizontal resolution of 40 km (0.4∘) and 40
vertical layers.

For each year within 1982–2016, a 30-member ensemble of reforecasts (hereafter MR-30) is initialized on
1 November from an assimilation experiment where ERA-Interim data (Dee et al., 2011) is assimilated in the
atmospheric model component, and ORA-S4 data (Balmaseda et al., 2013) and National Snow and Ice Data
Center observations (Comiso, 1995) are assimilated in the ocean/sea ice component. Newtonian relaxation
(“nudging”) is used as an assimilation technique in full-field mode throughout the model space. Full-field
nudging is used for vorticity, divergence, temperature, and surface pressure in the atmosphere and tem-
perature, salinity, and sea ice concentration in the ocean. The initial conditions in the ocean are perturbed
using bred vectors with a vertically varying norm (Baehr & Piontek, 2014). In the atmosphere each ensemble
member has a slightly disturbed diffusion coefficient in the uppermost model layer.

2.2. NAO in the MPI-ESM-MR Seasonal Prediction System
The boreal winter (averaged over December, January, and February) NAO index is calculated using an empiri-
cal orthogonal function (EOF) analysis (Barnston & Livezey, 1987) from sea level pressure (SLP) in the Northern
Hemisphere (NH). We calculated the NAO in the region limited according to the latitude range 20∘N to 90∘N
and the longitude range 90∘W to 60∘E (Figure 1). The principal component of the leading EOF of SLP repre-
sents the NAO index (Kutzbach, 1970). The EOF-based December, January, and February NAO is calculated for
the ERA-Interim data and for each of the MR-30 ensemble members. The ensemble mean NAO is calculated
as the average over all ensemble members. Hereafter, we use the ERA-Interim NAO as a reference for com-
parisons with the MR-30 NAO. The NAOMR−30 and NAOERA−Interim indices are normalized by their respective
standard deviations.

2.3. Cross Validation and Results Verification
We apply a cross validation by leaving out every year and 3 years (hereafter leave-one-out and leave-three-out,
respectively) centered on the year left-out for calculation of correlation coefficients over the reforecast period
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Figure 1. Winter (December, January, and February, DJF) North Atlantic Oscillation (NAO). The respective leading empirical orthogonal functions (EOF1) of sea
level pressure (SLP) from the ERA-Interim reanalysis (a) and the MR-30 ensemble (b) calculated over the period from 1982 to 2016. (c) The normalized winter NAO
index calculated from EOF1 for the ERA-Interim reanalysis (black line) and the MR-30 ensemble (red lines). Red dots denote the MR-30 ensemble members.
EOF1 of the reforecast ensemble (MR-30) explains 41% of the SLP variance for the ensemble mean, whereas the EOF1 for the ERA-Interim reanalysis explains
50%. Although the overall patterns and locations of the zero line are consistent between the MR-30 and ERA-Interim, the exact locations of the center of both
the negative and the positive SLP anomalies are shifted slightly westward in the MR-30 compared to ERA-Interim.

from 1982 to 2016. The prediction skill is represented by correlation values between the reforecasted and
reanalyzed time series calculated as mean, minimum, and maximum values from cross validation (indicated in
parentheses). Additionally, root-mean-square error (RMSE) and spread-error ratio are also calculated for every
cross-validation iteration.

Leave-one-out cross validation is applied for correlation analysis between the ensemble mean NAOMR−30 and
the NAOERA−Interim time series over the reforecast period. The mean and range of the cross-validated correlation
coefficient are 0.49 (0.42–0.57). They are significant at the 99% confidence level (Figure 1 and Table S1 in the
supporting information).

Afterward, cross validation is applied in two steps, first, to the correlation analysis between autumn model
parameters used as predictors (see section 3.1) and the winter NAO index (leave-one-out and leave-three-out),
and second, to the NAO time series calculated for each step of cross validation applied to predictors
(leave-one-out). The first step of cross validation is used to discard the impact of the NAO phase on the
robustness of the predictors. In the second step, the NAO time series per left-out year are cross validated
for estimation of the correlation range for the NAO index comparing to ERA-Interim. A bootstrapping test
with 500 samples is applied to every cross-validation iteration for calculation of significance at a given
confidence level.

We also perform a “real” forecast test where we split the reforecast period into a “training period” (1981–2000)
and a real forecast period (2001–2017). For the real forecast we strictly only use the information from
previous years.
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The anomaly correlation coefficient (ACC) represents the prediction skill (Collins, 2002) for selected Earth sys-
tem parameters such as surface temperature, total precipitation, and sea level pressure. The ACC is calculated
for every cross-validation iteration between reforecasted and reanalyzed fields. In the manuscript ACCs only
for the year 2016 left-out in cross validation are shown.

3. Methodology of Subsampling

For any given winter, some members of the MR-30 predict NAO states that are too positive and too negative
(Figure 1c) suggesting that the ensemble spread might be too large. Yet we find that the ensemble spread in
NAOMR−30 of 4.09 (3.73–4.15) hPa is comparable to the standard deviation of 4.66 hPa in NAOERA−Interim. For a
reliable forecast, the ratio between the ensemble standard deviation to the RMSE (spread-error ratio) should
equal 1, while we find a spread-error ratio of 1.16 (1.13–1.26) in NAOMR−30, suggesting that the ensemble
spread is too large compared with the reforecast error (Ho et al., 2013). To improve the spread-error ratio, we
assess whether ensemble members could be retained or rejected by comparing the state of the climate in the
NH in autumn (before the start of the reforecast) and the state of the NAO in the subsequent winter.

3.1. Selection of Autumn Predictors
As predictors, we use Earth system parameters for which dynamical links to the NAO are well established and
documented in the literature. We investigate the autumn states of the ocean, sea ice, land surface, and strato-
sphere as preconditions (hereafter predictors PI –PIV) for the subsequent winter NAO. The first predictor is the
SST (PI) in the North Atlantic, which has previously been found to be related to the winter NAO (Bjerknes, 1964;
Czaja & Frankignoul, 2002). SSTs are linked to the NAO through air-sea interaction, which suggests a lagged
response in the atmospheric circulation to the thermal forcing of the upper ocean (Kushnir et al., 2002; Wang
et al., 2004), which would allow the reconstruction of the winter NAO from autumn SSTs in the North Atlantic
(Rodwell et al., 1999; Robertson et al., 2000). The second predictor is the sea ice volume (PII) in the Arctic, which
has an impact on the atmospheric circulation in the following season (Liptak & Strong, 2014) due to changes
in the ocean-atmosphere heat fluxes and wind stress caused by sea ice anomalies. The third predictor is the
snow depth (PIII) in Eurasia in the latitude range 40∘N to 90∘N and longitude range 50∘E to 150∘E. A lagged
snow-atmosphere interaction mechanism may be the link between autumn snow cover over Eurasia and the
NAO in the subsequent winter season (Bojariu & Gimeno, 2003; Cohen et al., 2014). The fourth predictor is
the stratospheric temperature at 100 hPa (PIV). Recent findings (Stockdale et al., 2015) have shown that initial
atmospheric conditions, especially in the stratosphere, exert a stronger influence in seasonal forecasts than
previously thought.

3.2. “First Guess” NAO Prediction for Full Re-Forecast
In our assimilation experiment we conduct a correlation analysis using the leave-one-out cross validation
between the winter NAO and the autumn state of predictors PI –PIV over the reforecast period from 1982 to
2016. Through this correlation analysis, we identify for every predictor the regions where significant correla-
tions with the winter NAO are found, which are also the regions for which teleconnections are well established
in the literature and represented in a “free” model simulation (see Figure 2a and Table S1). For every predic-
tor in any given year and for every left-out year in cross validation, we then average the state of the predictor
over the respective area (Figure 2b) to make a simple first guess prediction of the winter NAO state (NAO(P)).
Taking into account that a typical winter hindcast starts at 1 November, we select October as the last month
before model initialization for comparison with the subsequent winter NAO for SST, snow depth, and strato-
spheric temperature and September for ice volume because the minimum ice cover in the Arctic occurs in
September (Figure S1). We construct four predictors as detrended time series of area-weighted values over
the regions that exhibit a significant positive correlation with the observed NAO time series. In leave-one-out
cross validation the patterns of significant correlation between predictors and NAO vary and provide a set
of cross-validated first guess values for the following subsampling. Note that the location of these signifi-
cant regions varies from year to year depending on the NAO state. We use all regions computed for each
cross-validation step and apply them to every year in the reforecast period. All predictors are calculated
over the entire period of the assimilation experiment from 1982 to 2016 and normalized by their respec-
tive standard deviations. In our assimilation experiment, the mean and range (indicated in parentheses) of
the leave-one-out cross-validated correlation values between the four predictors and the winter NAO index
are 0.58 (0.48–0.63) for SST, 0.51 (0.47–0.58) for sea ice volume, 0.71 (0.61–0.74) for snow depth, and 0.55
(0.44–0.58) for stratospheric temperature (Figures S1a–S1d).
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Figure 2. Schematic representation of the subsampling method for the MR-30 dynamical reforecast (a, b) and construction of the subsampled ensemble
MR-Sub of the winter North Atlantic Oscillation (NAO) (d). (a) A correlation analysis (in cross-validation mode) based on the assimilation experiment between
the winter (December, January, and February, DJF) NAO index and four autumn predictors: (PI) SST, (PII) sea ice volume, (PIII ) snow depth, and (PIV) stratospheric
temperature. (b) Autumn predictors PI –PIV are defined as time series of a detrended mean over the region with a significant positive correlation at the 95%
confidence level. For every autumn-winter pair, the autumn predictors project the “first guess” state of the NAO in the subsequent winter: NAO(PI –PIV) = PI –PIV.
In (c) the dynamical seasonal prediction system provides an ensemble of the reforecast winter NAO(D) indicated by gray four-cell blocks. Each cell represents one
of the four predictors (from left to right): SST, sea ice volume, snow depth, and stratospheric temperature. An orange-filled cell indicates that the respective
ensemble member is selected for the new MR-Sub ensemble by one or more of the four predictors. For the period from 1982 to 2016 (d) the correlations at the
99% confidence level between the MR-30 (gray line), the MR-Sub ensemble mean NAO (red line), and the ERA-Interim NAO (black line) are 0.49 and 0.86,
respectively. Here an example for the year 2016 left-out in cross validation is shown.

Based on a leave-one-out cross-validated correlation analysis between the four predictors and the winter NAO
in our assimilation experiment, we assume that the autumn states of the ocean, sea ice, land surface, and
stratosphere may serve as predictors of the winter NAO. Therefore, we use a linear relationship between the
normalized predictor values PI –PIV and the normalized winter NAO(PI –PIV): NAO(PI –PIV) = PI –PIV.

We confirm the robustness of our approach by applying leave-three-out (centered on the year that is left-out)
cross validation. The results (see Table S1) show a stable level of correlation for all predictors comparing
leave-one-out and leave-three-out cross-validation. We also find similar levels of correlation between autumn
predictors and winter NAO in a “free” uninitialized historical Coupled Model Intercomparison Project Phase 5
MPI-ESM-MR simulation (see Table S1).

3.3. First Guess NAO Prediction in Real Forecast
For a real forecast test we use a period from 2001 to 2017. For each forecast year, we derive the patterns for
the predictors from all previous years starting from 1981. For example, the autumn predictors calculated over
the period from 1981 to 2000 (training period) are used for the winter NAO forecast for 2001, a training period
from 1981 to 2001 is used for the winter NAO forecast for 2002 and so on.
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The patterns for the predictors estimated over only 20 years depend highly on the occurrence of long-lived
or extreme positive or negative NAO phases in the preceding period. Therefore, we perform an additional
perturbation of the predictors’ variability by leaving 1 year out over the training period. We combine all sig-
nificant regions for each predictor into one region, using only the points, where at least half of the years show
significant correlation for the respective training period.

3.4. Implementation of Subsampling to the MR-30 Ensemble
We use a subsampling approach to calculate a new MR-Sub ensemble mean of the winter NAO, which is iden-
tical for the reforecast and for the real forecast test. From the full MR-30 ensemble we select the ensemble
members in the dynamical reforecast ensemble whose NAO state in winter is closest to our first guess NAO
prediction. For every predictor in any given year and for every left-out year(s) in cross validation, we individu-
ally select from the total 30 ensemble members the 10 members with the smallest difference between our first
guess NAO prediction and the reforecasted NAO state in the respective ensemble member (Figure 2c). The
four 10-member subsets (one per predictor) are then combined into one large ensemble (hereafter MR-Sub).
Because each particular ensemble member can be selected by more than one predictor, duplicate entries are
removed from the MR-Sub ensemble (Figure 2d). Therefore, the maximum size of the new subensemble can
be 30 members (the full ensemble), and the minimum size is 10 members (if all predictors select the same
ensemble members). This subsampling approach is applied to every autumn-winter pair over the period of
the reforecast from 1982 to 2016 in leave-one-out and leave-three-out cross validation. Computed for every
predictor’s cross-validation step time series of the NAO are cross validated as well. The real forecast test is
conducted from 2001 to 2017.

4. Results of the Subsampling Implementation
4.1. Reforecast From 1982 to 2016
As a result, over the reforecast period from 1982 to 2016, the MR-Sub shows a high cross-validated mean
correlation coefficient calculated with the NAOERA−Interim of 0.83 (0.77–0.87) at the 99% significance level.
Prediction skill varies due to change of location of significant regions for each predictor in every predictors’
cross-validation step (see supporting information Table S1). Moreover, the computed NAO time series also
demonstrate a stable correlation level of 0.84 (0.79–0.87) in leave-one-out cross-validation (see supporting
information Table S1 and Figure S5). The size of MR-Sub varies from 10 to 30 members over the period of
the simulation. Test studies that include a fixed number of the 10 “best” selected ensemble members for
each year and all 40 selected members, including those selected by more than one predictor (not shown),
do not indicate a notable impact on our results and conclusions. The increase in the number of selected
ensemble members demonstrates an increase of mean cross-validated correlation between NAOMR−Sub and
NAOERA−Interim from 0.83 (0.77–0.87) for 10 members to 0.86 (0.79–0.89) for 15 members and a decrease to
0.75 (0.71–0.78) for 25 members.

All four predictors PI –PIV contribute to the improved representation of the winter NAO in MR-Sub (Figures 2d
and S2). Therefore, correlation for MR-Sub is higher than for any single predictor-based first guess NAO(P),
with a maximum of mean cross-validated correlation coefficient of 0.75 (0.65–0.78) for PIII and a minimum
of 0.5 (0.47–0.57) for PII, compared with the NAOERA−Interim (Figure S1 and Table S1). The mean and range
of cross-validated spread-error ratio and RMSE of the NAOMR−Sub relative to the NAOERA−Interim are reduced
to 1.01 (0.98–1.07) and 2.90 (2.79–2.94) hPa, respectively, compared with the values of 1.16 (1.13–1.26)
and 4.09 (3.73–4.15) hPa for the full ensemble MR-30. We confirm the robustness of predictors by the
same level of correlation with the NAO in leave-three-out cross validation (see section 2 and Table S1 for
more details).

For the subsampled ensemble the correlation between NAOMR−Sub and NAOERA−Interim has the same value of
0.83 for both leave-one-out and leave-three-out cross validations (Table S1). Uncertainty in terms of RMSE
increases to 3.06 hPa for leave-three-out compared to 2.90 hPa for leave-one-out cross validation. The sub-
sampled ensemble became underdispersed (spread-error ratio < 1) in leave-three-out cross validation, most
likely because of an insufficient spread of the initial ensemble which is considerably shorted by removing of
3 years centered on the year that is left-out.

In contrast to the first guess NAO prediction and possible other statistical approaches, ensemble subsampling
allows us to build a new subsampled ensemble mean for any simulated field from once selected ensem-
ble members with a reasonable representation of NAO teleconnections. For surface temperature, we find
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Figure 3. Improvement of the prediction of the selected Earth system parameters due to more accurate prediction of the winter NAO. Anomaly correlation
coefficient (ACC) calculated for the MR-30 (left column) and MR-Sub (middle column), and differences (right column) relative to the ERA-Interim reanalysis for
surface temperature (a–c), total precipitation (d–f ), and sea level pressure (g–i). Regions that are significant at the 95% confidence level are indicated by
stippling on the maps. Here an example for the year 2016 left-out in cross validation is shown.
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Figure 4. “Real” forecast test of the winter North Atlantic Oscillation (NAO) for the period from 2001 to 2017.
The forecasted winter NAO values are calculated separately for each year and then merged into a single time series.
The correlations between the MR-30 (gray line), the MR-Sub ensemble mean NAO (red line), and the ERA-Interim NAO
(black line) are 0.42 and 0.86, respectively (significant at the 99% confidence level). Similar to Figure 2 each cell in
gray four-cell blocks represents one of the four predictors. Ten ensemble members for each predictor are used in
subsampling. DJF = December, January, and February.

a significant increase of prediction skill (ACC relative to ERA-Interim) in MR-Sub compared to MR-30 over Eura-
sia, the Scandinavian Peninsula, and northern Europe (Figures 3a–3c). The ACC for surface temperature from
MR-Sub is now significant in Eurasia. The ACC for total precipitation (Figures 3d–3f ) in northern and southern
Europe shows an increase in MR-Sub. For the sea level pressure, we find a significant increase in the ACC, par-
ticularly in the polar regions between 60∘N and 90∘N and the longitude range from 30∘W to 130∘E. The max-
imum ACC for SLP in MR-Sub is located over the Barents Sea (Figures 3g–3i). The ACC for the Mediterranean
region is increased to approximately 0.5. A small decrease in the ACC for SLP and surface temperature occurs in
Eurasia south of 45∘N and in North America. The ACC for SLP in the North Atlantic slightly decreases between
50∘N–60∘N and 30∘W–0∘E. All predictors contribute to an increase of the ACC, demonstrating the added
value compared to the ACC calculated for the full MR-30 ensemble (Figure S2).

Note that the overall improvement (with only small local degradation) of the reforecast presents the same
regional distribution as the theoretically “perfect” NAO reforecast, which was conducted in reference to the
observed NAO. For this hypothetical analysis, we select from the MR-30 the 10 members that best resemble
the observed winter NAO. This analysis represents the level of theoretically achievable reforecast skill, with
the correlation coefficient between this “perfect” ensemble and the ERA-Interim data for the winter NAO at
0.97 (Figure S3). However, more importantly, the ACC analysis exhibits the level of improvement that can be
expected from a “perfect” NAO forecast because an increase in the ACC for surface temperature, total precipi-
tation, and SLP has an equivalent but much more pronounced structure compared with that from the MR-Sub
ensemble (Figures 3 and S4). In addition, a pronounced decrease in the ACC also occurs in Eurasia for SLP and
total precipitation and in North America for SLP and surface temperature. Therefore, the increased ACC for
temperature, total precipitation, and SLP that is observed in MR-Sub is representative of the improvement
that can be expected from an improved NAO reforecast.

4.2. Real Forecast Test From 2001 to 2017
Similar to the reforecast, we compute the winter NAO forecast as a real forecast test for the period from 2001
to 2017. During this period the MR-30 ensemble mean exhibits a lower prediction skill for the NAO than for the
full period (0.42 and 0.49, respectively). However, when applying subsampling based on predictors calculated
using all previous years for each real forecast year, the prediction skill increases from 0.42 to 0.86 (Figure 4).
The increase in skill can be attributed to the correction of the NAO phases due to subsampling for example
for 2005, 2013, or 2015. The RMSE of the real forecast NAOMR−Sub relative to the NAOERA−Interim is reduced to
3.06 hPa compared with the values of 4.09 hPa for the full ensemble MR-30.
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5. Summary and Conclusions

In summary, we find enhanced seasonal prediction skill of the boreal winter through a combination of a
dynamical forecast ensemble and a proper statistical method, and a refinement of a dynamical ensemble
due to subsampling. The reforecast skill expressed by the cross-validated correlation between observed and
reforecasted winter NAO is significantly improved from 0.49 (0.42–0.57) to 0.83 (0.77–0.87), when the con-
nections between the autumn state of the ocean, sea ice, land, and stratosphere and the subsequent winter
NAO are considered. For the real forecast test from 2001 to 2017 the prediction skill of the winter NAO is
increased from 0.42 for the full ensemble mean to 0.86 for the subsampled ensemble mean. As a result of a
better representation of the winter NAO, the prediction skill for the winter surface temperature, total precipi-
tation, and SLP is improved for considerable parts of the NH. The robustness of our approach is confirmed by
using leave-one-out and leave-three-out cross validation in the correlation analysis (see Table S1).

The presented subsampling approach makes use of a simple statistical prediction though fully maintaining
the advantage of a dynamical model. We find that a large ensemble is needed for subsampling in order to have
an ensemble spread which is comparable to observed variability. Since entire ensemble members are rejected
or included in the analysis, the remaining fields are dynamically self-consistent in space and time and can
be analyzed for any desired variable the dynamical model provides. Since only observations from the initial
state are taken into account for the selection of the dynamical ensemble members, the presented approach is
potentially applicable to current operational prediction systems. In our study, the selection of ensemble mem-
bers is tailored to the NAO. Provided that a physical mechanism that links the initial state and the forecasted
variable can be formulated as a first guess prediction, our subsampling of a dynamical ensemble prediction
can be formulated for any variable, index, region, or time scale.
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