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S U M M A R Y
Essential to understanding sea level change and its causes during the last interglacial (LIG)
is the quantification of uncertainties. In order to estimate the uncertainties, we develop a
statistical framework for the comparison of palaeoclimatic sea level index points and GIA
model predictions. For the investigation of uncertainties, as well as to generate better model
predictions, we implement a massive ensemble approach by applying a data assimilation
scheme based on particle filter methods. The different runs are distinguished through varying
ice sheet reconstructions based on oxygen-isotope curves and different parameter selections
within the GIA model. This framework has several advantages over earlier work, such as
the ability to examine either the contribution of individual observations to the results or the
probability of specific input parameters. This exploration of input parameters and data leads to
a larger range of estimates than previously published work. We illustrate how the assumptions
that enter into the statistical analysis, such as the existence of outliers in the observational
database or the initial ice volume history, can introduce large variations to the estimate of the
maximum highstand. Thus, caution is required to avoid overinterpreting results. We conclude
that there are reasonable doubts whether the data sets previously used in statistical analyses
are able to tightly constrain the value of maximum highstand during the LIG.
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1 I N T RO D U C T I O N

The latest IPCC report gives a likely range (66 per cent) for global
mean sea level (GMSL) rise of 0.29–0.98 m by 2100 (Church et al.
2013a). This implies a 33 per cent probability that sea level change
may lie outside this range, which is mainly due to difficulties as-
sessing ice loss from Greenland and Antarctic ice sheets (Church
et al. 2013b; Jevrejeva et al. 2014).

To learn more about the influence of ice sheets on sea level and the
associated uncertainties, analogues from the past are investigated.
By better understanding sea level under changing palaeoclimatic
conditions, conclusions on the possible development of sea level
for the future are drawn (Rohling et al. 2009; Siddall et al. 2009;
Bowen 2010). While the forcings of the past differ from those today
and with them possibly also the physical reasons for sea level change
(Tzedakis et al. 2009; Ganopolski & Robinson 2011), understanding
the response of the system to these changes can build confidence in
physical models used in future projections.

In the past decade, investigations of past sea level change have ex-
perienced further interest due to the increased availability of proxy
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data and sea level indicators. For the Holocene, where salt marshes
and mangroves are key indicators of sea level change, methods
based on age-depth models and transfer functions are widely ap-
plied (Horton et al. 2003; Kemp et al. 2009; Barlow et al. 2014). In
other recent work, Stanford et al. (2011) and Lambeck et al. (2014)
applied Markov Chain Monte Carlo (MCMC) methods to sediment
and coral records after the last glacial maximum (LGM). Using
records covering longer time periods, Medina-Elizalde (2012) used
MCMC methods and sampling strategies to evaluate sea level vari-
ations since 400 kyr BP.

Applying ensemble methods to determine palaeoice sheets was
also recently performed by Briggs et al. (2014). In this case, they
focused on the Antarctic ice sheet and compared GIA model predic-
tions with indicators, such as relative sea level indicators or ground-
ing line retreat data. The varied parameters within this approach
control the physical parametrizations of the ice-sheet model. The
analysis is performed by a model-observation misfit, which was de-
veloped in Briggs & Tarasov (2013). In another instance, a Bayesian
calibration was applied to the North American ice complex (Tarasov
et al. 2012).

The analysis of the relatively more plentiful data of the inter-
glacials, particularly the last interglacial (LIG), allows us to learn
more about the development of global sea level during other pe-
riods where it was close to present-day values. Interpreting these
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data is not as simple as assessing the average over all sites, as the
Earth’s deformation and gravity changes will introduce geographic
and temporal differences to the relative sea level experienced at the
observation locations (Lambeck et al. 2012). These regional vari-
ations can be understood by modelling glacial isostatic adjustment
(GIA), which accounts for deformational and gravitational changes
caused by the changing ice sheets and oceans. The GIA models pro-
vide the connection between a given ice sheet history and estimates
of local sea level change. Dutton & Lambeck (2012) completed an
intensive analysis of coral data while accounting for GIA and found
a global sea level highstand of 5.5–9 m during the LIG compared
to today.

Kopp et al. (2009) introduced a statistical approach, coupling
the outputs from GIA models with sea level indicators, to obtain a
probabilistic assessment of maximum sea level during the LIG. In
this analysis, they used simple GIA models to connect a set of sea
level indicators to a consistent analysis and considered the evolution
of the ice sheets and the Earth’s and ocean’s response to these
changes. To estimate the global eustatic sea level, combinations of
ice sheets derived from random variations along with a randomly
sampled set of Earth model parameters were used to determine
the global covariance of sea level observations. The comparison
with GIA model results was done using a krigging interpolation
of the observational data onto a surface. Thus, the comparison is
effectively done in model space. Afterwards, a Gibbs sampler is
used to estimate the values for sea level and its uncertainties. The
33rd and 66th percentiles of GMSL were estimated as 8.0 and 9.4 m.

In this paper we introduce a different statistical approach, which
particularly differs with regard to the generation of uncertainty es-
timates. In our comparison of the model results and the data, the
stated uncertainties of the data are the primary controlling factor,
compared to the model covariance of the Kopp et al. (2009) study.
The differences between the approaches will be addressed through-
out this paper. Ideally, if the observations are free of outliers, the
uncertainties are not underestimated, and the GIA model predic-
tions, which include the ice sheet history, accurately describe all of
the spatial and temporal variation in sea level, then both approaches
should deliver similar answers. However, we will demonstrate that
this is not the case. To be able to compare the methodologies, we
will use the same data sets as the foundation of our analysis and
explain which statistical assumptions have to be made to get to a
specific result.

One of the largest drivers in the comparison of the data to model
results was the timing and magnitude of the eustatic sea level change.
In order to allow systematic exploration of changes to this quantity
that would best describe the data, we developed a massive ensemble
approach. It includes a data assimilation scheme, which will be
introduced in Section 2. This scheme is driven by a comparison
of the model and data based on Bayesian statistics and further
modifications thereof.

Section 3 examines the impact of different approaches to the
observations, statistics, and GIA modelling on the resulting estimate
of the GMSL highstand during the LIG. The discussion in Section 4
will focus on the advantages and disadvantages of the proposed
methodology, leading to the conclusions in Section 5.

2 T H E O R E T I C A L F R A M E W O R K
A N D DATA

Ideally, the comparison of sea level indicators to predictions of sea
level change would be straight forward if GIA models adequately

represented the response of the Earth and the spatial and temporal
variation of the ice sheets was well known. Unfortunately, data to
constrain the detailed Earth response and ice sheet history is very
limited, and the sea level indicators themselves are a large frac-
tion of these constraints. Thus, one approach to understanding the
general behaviour of the system is to use an ensemble approach,
where a very large number of ‘simple’ models sample the possible
Earth response, ice sheet history and both of their uncertainties. A
simple model approach allows much simpler access to the basic
processes of the physical system than complex models. This has
led in climate science to a hierarchy of models, with different tasks
for different types of models (Shackley et al. 1998; Petersen 2000).
The statistical evaluation of simple models plays a very important
role, as it is necessary to interpret the representativeness of the sim-
plified model for the physical system (Zwiers & Von Storch 2004).
As a consequence, approaches based on simple models are good
candidates for the application of massive ensembles. The analy-
sis of these simple models relies heavily on the chosen statistical
framework and the ability to generate a large number of predictions
of the sea level variations, sampling a very wide range of model
parameters.

The majority of this section details the statistical framework, as
its approach is new to this problem (Section 2.2). This framework
allows for comparison of the model results to the sea level indicators
and, through extension, data assimilation to estimate the probability
distribution for GMSL. To facilitate comparison with earlier work,
we use the sea level indicator data set of Kopp et al. (2009) (see Sec-
tion 2.1). The sea level predictions will require a sampling of the ice
sheet history (Section 2.3) and a description of the Earth and oceans
response to these changes (i.e. the GIA model, Section 2.4). A sim-
plified illustration of the framework tying the various components
together is given in Section 2.5.

2.1 Observations

We use the data set of Kopp et al. (2009). It includes 108 sea level
indicators at 47 sites that can be divided into two groups. The first is
30 observations from the Red Sea, dated via oxygen isotope correla-
tion, the second is a mix of different indicators, for example, corals,
reef terraces and shoreline deposits. For each observation, the rel-
ative sea level and age is given with a Gaussian uncertainty. The
database also has some additional information available, which we
use in the analysis. We correct each observation with the given linear
tectonic uplift or subsidence rates and their associated Gaussian un-
certainty. For some observations stratigraphic sequence information
is available, which we use in a sampling procedure of the observa-
tions, described in Section 2.2.2. We also use the information on
limiting sea level observations, which are given for 12 indicators.
These indicate that sea level should be higher or lower than a given
height.

2.2 Data assimilation

2.2.1 General principle

Our data assimilation scheme creates a large ensemble of GIA pre-
dictions by sequentially modifying the input parameters of the ice
volume history to create a series of runs with good agreement be-
tween the sea level indicators and the GIA model predictions. Our
approach is based on a modified version of the sequential impor-
tance resampling filter (SIRF; van Leeuwen 2003). Each ensemble
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Figure 1. Sketch of the data assimilation procedure.

member, or run, is a GIA prediction for a specific ice volume his-
tory and Earth model and is evaluated by its fit to the observations
(Section 2.2.2). An illustration of the applied scheme is shown in
Fig. 1 and will be explained stepwise in the following. For a better
understanding, Section 2.5 demonstrates a simplified example of
the data assimilation scheme.

To start the process, we choose an Earth model and create a
set of ice histories (size Ns = 100, see Section 2.3.3) that spans
from some time in the past to present day. Given that the Earth’s
response to past and future (relative to the LIG, see Section 2.4)
ice sheet changes affect observations of sea level in the LIG, the

time period (te) must be larger than our period of interest. There-
fore, we start our modelling at the prior interglacial, 214 kyr BP.
The GIA calculations are performed at discrete time points, indi-
cated by the black stars in Fig. 2, with resolution varying between
0.5 kyr during the LIG and 2 kyr in the glaciation phases. The GIA
model predictions are then statistically evaluated on the basis of the
difference between the observations and the linearly interpolated
(in time and space) model results. Thus, a probability is assigned
to each GIA model prediction, and therefore to each ice history.
From this set, we identify the Nk = 10 best performing ensemble
members.
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Figure 2. Base modified-δ18O ice volume history (red centre line) and the maximum and minimum ice volume history of the first branching (anomaly
of −24.75 and 24.75 m of eustatic sea level, black outer lines). Also shown are the analysis points (grey vertical lines) and calculations points (black crosses)
over the analysis period.

To allow the ice sheets to adapt to the observations in the next
round (see the box labelled ‘round’ in Fig. 1), a new set of ice sheets
is created (see Section 2.3.3). In contrast to the classical SIRF by
van Leeuwen (2003), a fixed number of runs Nr = 10 is created
from each of the Nk ensemble members. With the choice of Ns =
Nk · Nr, the number of ensemble members calculated for each round
is constant. Each of these new ensemble members shares the same
ice history with its parent up until a given temporal analysis point.
The time span te is divided into Na = 64 analysis points, illustrated
by the vertical lines in Fig. 2, and for each of them a separate round
is calculated in chronological order, starting with the earliest. Their
spacing varies over time to allow a good temporal resolution of ice
sheet changes during the LIG. For times between 170 and 128 kyr
BP and 118 and 70 kyr BP, an analysis point occurs every 2 kyr.
Between 127 and 119 kyr BP, a spacing of 0.5 kyr is used.

2.2.2 Statistical evaluation

The aim of this subsection is to compare the results of a deterministic
model (M, the GIA model) with uncertain observations ( �O , the
sea level indicators) to generate information on the model input
parameters (�η). �η can be the ice volume history, the Earth model
parameters, such as lithospheric thickness or mantle viscosity, or
any other specification defining the outcome of the GIA model
prediction. To achieve this comparison, we use Bayesian statistics
(Bayes 1763), which allows one to include prior knowledge into the
analysis and can be expressed by the basic equation:

p (m|o) = p (o|m) p (m)

p (o)
. (1)

This equation states that the probability p of the model m given the
observation o is equal to the probability of the observation given
the model, weighted by the model to observation ratio of prior
probabilities.

The aim of the following analysis is to determine how probable
each parameter set (�ηi , where the subscript i indicates a particular

parameter set from all those considered) is for a given set of obser-
vations �O . Because the GIA model effectively connects both, this
probability can be expanded as

p
(�ηi | �O) =

∫
j∈J

p
( �f j , �ηi | �O)

d �f j , (2)

where �f j is one of possible solutions of the model. Allowing for the
general case where the model may be non-deterministic, the index
set J represents all possible solutions.

Under the assumption of a deterministic model (see Appendix A
for full derivation), this leads to

p
(

�ηi | �O
)

= p
( �O|M(�ηi

))
p (�ηi )∑

l∈L
p
( �O|M(�ηl

))
p
(�ηl

) , (3)

where the index set L represents all of the investigated parameter
sets. Having rewritten eq. (2) to this simple form allows us to esti-
mate the posterior probability of a parameter set from two factors.
The first factor is the probability of the observations given the model
results (or likelihood), and the second factor is the prior probability
of each parameter set. Their product is normalized by the sum of the
probabilities for all model runs under consideration. The main task
now is to calculate the first term, which connects the observations
to the model runs.

The following assumes that each observation has a Gaussian
uncertainty, as these are provided by the database for most obser-
vational points (handling of non-Gaussian uncertainty associated
with limiting observations will be explained later). Under this as-
sumption, the probability of the observations given the results of
the ensemble runs can be estimated by a multivariate normal distri-
bution. This can be expressed by (Wilks 2011)

p
( �O|M (�ηi )

) =
(√(

2π
)q

det
(
�O

))−1

· exp

(
−1

2

( �O − M(�ηi

))T
�−1

O

( �O − M(�ηi

)))
, (4)
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where �O is the covariance matrix of the observations, and q is the
dimension of the observational vector.

The dependence between the different observations is gener-
ally not known. The only relational information given within the
database is stratigraphic (i.e. relative temporal differences) for
some individual observational locations, which we exploit in Sec-
tion 2.2.2. As a consequence of this lack of additional information,
the only known dependence between the different observational
sites is provided by the model M itself. Intrinsically, we are assum-
ing that the model will account for the spatial correlations between
the observations. Therefore we assume that all of the observations
are independent samples of the sea level change with respect to the
modelled change. This assumption simplifies the covariance matrix
to a diagonal matrix with the observational height uncertainties as
its elements. This leads to the equation

p (�ηi |O) =

∏
j

exp

(
− 1

2

(
O j −M(�ηi ) j

σO, j

)2
)

p (�ηi )

∑
l∈L

∏
j

exp

(
− 1

2

(
O j −M(�ηl ) j

σO, j

)2
)

p (�ηl )
. (5)

Under the given assumptions, this equation states the formally cor-
rect probability.

For our particular data set, this description of the probability
poses problems. The database of LIG sea level indicators is derived
from many different sources, which can lead to inconsistencies,
particularly with regard to the uncertainty estimates. Some of the
observations may also be inaccurate or misinterpreted. In addition,
spatial and temporal correlations due to unmodelled processes, such
as changes to tidal ranges and the environmental habitats, may still
exist. These can introduce structural errors into our analysis. Ad-
dressing these issues is a challenge, and all potential solutions have
advantages and disadvantages. For example, it would be possible
to model the outliers directly and alter the Gaussian probability
curves for the uncertainties. Nevertheless, we do not have any valid
information as to which data points should be treated as outliers
or to what the character of the probability curves might be. As we
use a data assimilation scheme, which depends on a large number
of forward models, it is also not feasible to exclude specific data
points by reiterating the procedure with different sub-samples of
the observations. Thus, we have chosen another means of address-
ing the problem, which is based on an alternate formulation of the
probability.

For this formulation, we first estimate the probability of each
observation separately. Second, we calculate a weighted mean of
all derived probabilities, which includes a weighting factor wj that
allows us to give the different observations a specific weight within
the analysis. This leads to

p (Ok |M (�ηi ))
∣∣∣
k=1:nobs

=

∑
j

w j p
(
O j |M (�ηi )

)
∑

j
w j

. (6)

An advantage of this equation is that outliers have a limited
weight in the calculation of the estimated probability. Expressing it
in a similar form as eq. (5) leads to

p (�ηi |O)U =

∑
j

w j exp

(
− 1

2

(
O j −M(�ηi ) j

σO, j

)2
)

p (�ηi )

∑
l∈L

∑
j

w j exp

(
− 1

2

(
O j −M(�ηl ) j

σO, j

)2
)

p (�ηl )
. (7)

Note that the two eqs (5) and (7) are not equivalent, even when the
weighting factor is ignored.

In the following ensemble experiments, we will replace the mul-
tivariate likelihood p (�ηi |O), expressed in eq. (5) and named the
multivariate approach in the following discussion, with the mean
of the probabilities leading to p (�ηi |O)U , eq. (7) and call this the
univariate approach. It has to be stressed that this replacement rep-
resents a significant modification. We will show the effects of this
modification on a given set of runs in Section 3.2, which will illus-
trate the problems of the multivariate approach with the inclusion
of potential outliers.

For a better understanding of the influence of the age uncertainties
of the observations, we introduce an additional sampling strategy.
Therein, to generate the probability for a model run, the mean over
No = 100 sampled estimates of all observations is taken. For each
observation, a new estimate is generated by independently drawing
the age and the relative sea level from the Gaussian uncertainty
estimates around the original values. For the calculation of the new
relative sea level, the appropriate tectonic uplift or subsidence for
the newly sampled time is taken into account. Where the relative age
between two observations is available, such as data from the Red Sea
or the Netherlands, the sampling is performed in an iterative process.
The oldest observation is sampled from the Gaussian distribution of
the age and the relative sea level, while each succeeding observation
uses the relative age and its uncertainty with respect to the preceding
sample. In addition, the data set contains limiting observations.
For these observations, the probability is set to 1 when the model
predicts a value on the correct side of the limit. Otherwise it is
handled the same as the other observations.

To prevent a large influence of observational points that are a
large temporal distance from the current time analysis point, the
weighting factor wj in eq. (6) is used. The selection and weighting of
observations is done in three steps. In the first, all observations prior
to the current analysis point get a weighting of 1. The second step
consists of two parts. In the first part, the observations with an age of
maximally 2 kyr in the future get a full weight. For the observations
between 2 and 6 kyr in the future of the analysis point, the weight is
decreased linearly from 1 to 0. In the last step, we ensure that enough
future observations have a weight of 1 within the analysis. Therefore,
independent from the temporal distance to the analysis point, the
first 20 future data points get a full weight. Apart for temporal
sections with a high density of observations, such as those around
125 kyr BP, the consequence of this procedure is that all past and the
next 20 observations have a full weight, while later observations are
not included into the analysis. Furthermore, this technique allows
for the focus on the LIG without neglecting the influence of the near-
future observations on the assimilation procedure. With this current
data set, this weighting choice effectively limits the influence of the
MIS 5a observations on the analysis until the analysis point reaches
about 122 kyr BP.

2.2.3 Dependence of runs

A consequence of the shared ice history in the development of
the ensemble members is the statistical dependence of the runs.
This dependence must be taken into account in the estimation of
the uncertainties. Because the weighting function wj effectively
changes the observations utilized in each round (i.e. calculation of
the ice sheets at the next time analysis point), the prior must be
modified at each analysis point. For this, an iterative algorithm is
used, which estimates the posteriors in a round-based approach.
Our particular choice of algorithm for the recalculation of the prior
has two goals. The first is to distribute sensibly the posterior from
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the previous analysis point of a branched run between itself and
its descendants. The second is to ensure that a run that was not
branched at some past analysis point still has some probability
and may yet be eligible for branching should the changing weight-
ing of the observations at each analysis point increase the run’s
likelihood.

In the first round the probability of the prior is evenly distributed
to each ensemble member and is given by the following equation:

p (�η) = 1

Ns
. (8)

For each subsequent temporal analysis point, we update the priors of
all runs, both those from the former rounds and those newly created
at the current analysis point. In the case where a run is branched in
the current round (n), the new prior of the parent (par) is calculated
by dividing its posterior from the previous round (n − 1) by the
product of its likelihood and the likelihood of all its descendants
(desc), both calculated from the former round (a derivation of this
prior is shown in Appendix B):

p (�ηi )
par
n := Nr +1

√√√√√ p
(�ηi | �O)par

n−1

p
( �O|M(�ηi

))par

n−1
· ∏

j
p
( �O|M(�η j

))desc

n−1

. (9)

This newly calculated prior of the parent is also given to each of the
descendants, which gives none of the newly branched runs or the
parent an advantage. For runs that were not branched at some past
analysis point, the same equation can be used, where the product
of the likelihoods of the decedents is set to one. The final step
recalculates the posteriors for all ensemble members for the current
round by applying eq. (7) before proceeding to the next round.
Beside updating the posterior probabilities, this scheme also allows
us to directly compare ensemble members over several rounds.

In Section 3, the results will be shown in two ways, either with
this prior used in the assimilation procedure or with the uniform
prior defined in Section 3.1. Both priors are based on different
assumptions and thus deliver different results.

2.3 Ice sheet generation

In the last section, �η was defined as the input parameters that define
the model run. These include the ice sheet history, the development
of which is described in this section, and parameters that specify
the Earth model response, described in Section 2.4. The initial
ice histories are constructed in two parts: generation of the ice
volume history and distribution of those ice volume estimates over
specific regions. Finally, we describe the mechanisms for varying
the resulting histories to allow for a better fit to the data during the
assimilation procedure.

Similar to Kopp et al. (2009), the history of ice sheet volume
is generated from scaling a δ18O stack (Lisiecki & Raymo 2005,
LR04). However, we use a more regional approach and develop two
separate scaling mechanisms that allow us to explore the influence
of the timing and variability of the initial ice sheet models (Sec-
tion 2.3.1). To disperse the regional volumes, we use the ICE-5G
(Peltier 2004) as a template (Section 2.3.2). This version has a both
a glaciation and deglaciation phase (e.g. Peltier & Fairbanks 2006),
though only the deglaciation phase is well constrained. Thus, in the
scaling and distribution procedures described below, we only use
the ICE-5G model values from present day to LGM.

2.3.1 Calculation of the amount of global and regional ice

In this analysis, we base our calculations on the two different initial
estimates of the global temporal and spatial ice sheet history, which
are then varied to allow for a better fit to the data. To get a better
understanding on the influence of the variability and timing of the
initial ice sheet histories, two different methods are used to calcu-
late the variations of the ice sheet volumes. Both versions rely on
oxygen-isotope curves, which are a well-established prior for global
sea level change due to changing ice sheets (Shackleton 1987). Nev-
ertheless, there are difficulties with this proxy, in that other effects,
such as temperature, are present in the record, and thus the rela-
tionship between the oxygen-isotope ratio and ice volume is not
constant over time (Shackleton 1987; Waelbroeck et al. 2002). It
has been suggested that the depletion of the oxygen-isotope with
the temperature related effects exist mainly during the interglacial
(Cutler et al. 2003; Elderfield et al. 2012).

Kopp et al. (2009) allowed for this variation in this ratio by
assigning a standard deviation of 10 m, estimated from Bintanja
et al. (2005), as an uncertainty to the ice sheet volumes generated
from the δ18O stack of Lisiecki & Raymo (2005). The two versions
of ice volume histories that we create are also based on the LR04
stack. While one version is just a simple scaling of this curve to
estimate the global ice volume, the other reduces the variability of
this curve by a running mean and further measures.

The first version is more directly comparable to the approach
of Kopp et al. (2009). It is a simple scaling of the LR04 curve so
that the maximum difference in the LR04 values between LGM and
present day produce a change in ice volume equivalent to that of
ICE-5G (Peltier 2004) over the same period:

V ice
i = γ1 · (

δ18 Oi − min(δ18 O j )
) + min

(
vice

k

)
, (10)

where the scaling factor, γ 1, is given by

γ1 = max
(
vice

k

) − min
(
vice

k

)
max(δ18 O j ) − min(δ18 O j )

. (11)

The subscripts i and j are time points of the LR04 curve, and k are
time points from the ICE-5G data set. Both j and k are restricted to
the period between 26 kyr BP and present day. Rather than applying
eq. (10) to the global ice volume, we apply it separately to each
region defined by Kopp et al. (2009), so that vice is the regional time
series of ICE-5G and Vice is the new time series.

As previous studies have suggested that the total volume of ice
during the LIG can be smaller than its present-day value, the scaling
described by eq. (10) would lead to some regions being assigned
negative values of ice volume. For this first version of the ice volume
history, we will preserve the global average. To do this, we redis-
tribute the negative ice volumes from these regions proportionally
to the regions that still have ice cover (e.g. Greenland or Antarctica)
and then set the negative ice volumes to zero.

The results for this version are shown by the black lines in Fig. 3.
For the sake of this plot, the estimates of GMSL are simply derived
by assuming a constant area of the ocean (the only time this as-
sumption is made). As can be seen, using LR04 directly leads to
large, rapid changes in the total ice volume, particularly during the
deglaciation period at 129 kyr BP and at the peak of the deglaciation
at 124 kyr BP. These rapid variations are particularly evident in the
Southern Hemisphere. In addition, the duration of the interglacial,
in this case defined as values below present-day ice volume, is only
4.5 kyr. To understand the influence of this high variability and short
interglacial duration on the estimates of GMSL, especially during

D
ow

nloaded from
 https://academ

ic.oup.com
/gji/article-abstract/206/2/900/2605999 by M

aynooth U
niversity user on 23 January 2020
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Figure 3. Initial regional ice sheet volumes. Shown are the δ18O volumes in black, the modified-δ18O volumes in blue and, for comparison, the ICE-5G ice
sheet volumes in red. The first panel shows the sum (i.e. global total) of all of the regional ice sheet volumes.
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the LIG, a second, smoother version of the initial ice sheet history
is introduced.

The second version, in the following named modified-δ18O, rep-
resents an ice sheet with less high-frequency variability. It will be
used to show the influence of a different base ice sheet within our
analysis. To create this history, we first apply a 10 kyr moving av-
erage to the LR04 stack, which will be represented by an overbar
in the following equations. This modified curve is then scaled to
the regional values of the ICE-5G data set by matching the standard
deviation from 21 kyr BP to present day. In this case, we also assume
the present-day values are known and fixed, which leads to

V ice
i = γ2

(
δ18 Oi − δ18 O0

)
+ vice

0 , (12)

where γ 2 is given by

γ2 = σ
(
vice

j | j=0...21

)
σ

(
(δ18 O j − δ18 O0)| j=0...21

) . (13)

We note that as the long-term mean has been applied to the time
series, using the maximum and minimum between the LGM and
present day as a basis for scaling is not appropriate. Thus, we use
the standard deviation of each time series, which provides a natural
scaling metric. Removing the long-term mean from the smoothed
time series, and then scaling by the standard deviations, however,
may produce very different ranges from maxima to minima in the
time series when compared to the ICE-5G time series. Thus, we
modify the resulting V ice

i further in order to obtain a reasonable
time series. These changes are described further below.

To prevent very small ice sheets during the late Holocene, each
regional ice sheet is only allowed to deviate from zero after its
value of ice volume exceeds 1 per cent of the LGM value. For each
vice time series, we identify the initial time point tl that meets this
condition. The value of the modified ice sheet, Vice, at the tl is then
subtracted from the whole ice history:

V ice
i = V ice

i − V ice
tl

. (14)

For this version, negative values of ice volume are set to zero. Thus,
the ice sheets up to the point tl do not deviate from zero.

The prescription described above can lead to the regional ice
sheets differing considerably from the values ICE-5G, typically re-
sulting in larger volumes. As we do not want to exceed the values of
the ICE-5G ice sheets by too much for the base ice sheet, we apply a
correction to ensure a maximum deviation of up to 2 per cent com-
pared to the ICE-5G ice sheet at the LGM. From the starting point tl

to the maximum value up to 21 kyr BP, a linear anomaly time series
is created, which starts with 0 and ends with the necessary positive
or negative ice volume needed to meet the criteria. Afterwards, this
anomaly time series is constant at the maximum value for the rest
of the reconstruction. In a last step this time series is added to the
modified ice history Vice.

This modified-δ18O ice volume history is also shown Fig. 3 (blue
line). The most notable difference with the δ18O ice volumes is
the missing high frequency variations and a longer interglacial of
8.5 kyr. The procedure also results in some unusual behaviour for
the small ice sheets in the southern hemisphere mid-latitudes. Given
their small volume compared to the other regions, we neglect this
result. The purpose of the second base ice sheet model is to examine
an alternative ice history with less short time scale variability. The
subsequent adjustments to eq. (12) ensure a reasonable time series
after the averaging.

2.3.2 Spatial distribution

The ice volume histories for each of the initial seven regions were
generated in the last section. In order to generate the spatial distribu-
tion of the ice sheets, the ICE-5G data set is used. The construction
is done for each region separately. In a first step, we identify the time
step in ICE-5G data set from 26 kyr BP to present day that has the
ice volume closest to our constructed value. Then this spatial dis-
tribution is scaled proportionally to fit the ice volume given by the
time series. For volumes smaller/larger than those during this period
of ICE-5G, the smallest/largest volume is scaled proportionally. It
must be stated that using this procedure leads to the assumption
that the spatial distributions of the ice sheets during the glaciation
phase are the same as during the deglaciation phase. While this is
a necessary simplification given that this version of ICE-5G is only
well constrained during the deglaciation, it is clearly unlikely.

2.3.3 Variation of ice sheets for the data assimilation

For the data assimilation, variations of the two initial ice histories
have to be generated. The variation is introduced by generating
an anomaly time series, which is added to the global ice volume
time series. These anomalies start at the analysis time and reach a
maximum after a linear development over 0.5 kyr. Afterwards this
time series stays constant until 50 kyr BP. From then on the anomaly
decreases linearly to zero at 10 kyr BP and stays at that value until
present day.

The ensemble members are differentiated by the maximum of
the anomaly. In the first round, with Ns = 100 deviations from the
initial ice history, the anomaly of the members is equally distributed
between −24.75 and 24.75 m. This leads to parallel ice volume time
series during the LIG with a difference of 0.5 m. For the subsequent
rounds the maximum of the anomaly is equally distributed for the
Nr = 10 ensemble members for each of the Nk = 10 seed runs
between −6.75 and 6.75 m. Thus, the parallel ice volume anomalies
in this case have a difference of 1.5 m. These anomalies are then
added to the seed run. Over the course of several analysis points,
several anomalies can be added to the ice sheet time series to form
a given ensemble member. It has to be noted that in the procedure
for generating a modified-δ18O ice history, the setting of negative
ice volumes to zero leads to a different ice volume than the input
ice volume history.

With each of these new time series, we apply the procedure
described in Section 2.3.2 to create the spatial distribution. With
multiple analysis points and anomaly time series, it is possible to
generate different ice sheet configurations.

2.4 GIA model

In addition to the spatial and temporal history of the ice sheets,
GIA predictions also require a model of the Earth’s response to
the changing ice and water loads, as well as a formalism that de-
scribes the self-consistent redistribution of water in the oceans.
In regard to the Earth models, we adopt the common assumption
of a spherically symmetric, self-gravitating, compressible Maxwell
Earth model (Peltier 1974; Mitrovica & Peltier 1992). The newest
generation of GIA models do not necessarily make these assump-
tions (for a review see Steffen & Wu 2011). However, our statistical
approach requires tens of thousands of forward calculations, and
thus we need to rapidly calculate the required GIA predictions of
relative sea level change at the observation locations. For this reason,
we use the standard, and simpler, Earth models.
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Table 1. Lithospheric thickness and viscosity values for the three Earth
models.

Earth Model LT (km) νUM (Pa s) νLM (Pa s)

EM1 71 2 × 1020 10 × 1021

EM2 96 5 × 1020 5 × 1021

EM3 90 VM2a VM2a

aFor comparison, an upper-mantle viscosity of 5 × 1020 Pa s and a lower-
mantle viscosity of 2.5 × 1021 Pa s could be used as a two-layer approxi-
mation of VM2.

In this study, we use three different viscoelastic Earth models, dis-
tinguished on the basis of lithospheric thickness and depth-varying
mantle viscosity. We assume that the lithosphere behaves elasti-
cally, and that the mantle viscosity is constant within two layers
that are separated by a boundary at 670 km depth. The elastic and
density profile throughout Earth’s interior is taken from the Pre-
liminary Reference Earth Model (Dziewonski & Anderson 1981).
Our specific choices for the viscosity and lithospheric thickness are
summarized in Table 1 and were adopted from previous modelling
studies. The first Earth model, E1, is similar to the E1 model used in
Lambeck et al. (2012). For E2, we use parameters similar to those in
Raymo & Mitrovica (2012). The final model, E3, is the VM2 model
(Peltier 1996). Typically, predictions of sea level change in the far-
field of the Late Pleistocene ice sheets are sensitive to the adopted
value of lower-mantle viscosity, and our choices for νLM span a
range of the predicted sea level behaviour at far-field locations. In
general, the three models produce quite different predictions for a
given ice sheet model, and in Section 3.4 we will examine the differ-
ences in the inferred maximum sea level during the LIG calculated
with each.

The GIA modelling also requires a formalism that describes the
redistribution of water in response to the exchange of mass be-
tween the oceans and the ice sheets. In this regard, we implement
the pseudo-spectral sea level algorithm detailed in Kendall et al.
(2005). Their treatment accurately accounts for grounded, marine-
based ice, evolving shorelines, and rotation effects on sea level.
With regard to this last effect, we compute perturbations in the ro-
tation axis using the theory described in Mitrovica et al. (2005).
In addition, the sea level algorithm is constrained, via an itera-
tive scheme, to yield present-day topography that converges to the
observed.

For the statistical analysis it is important to acknowledge that the
GIA model results are non-Markovian. This means that the results
in any time step cannot be created by only knowing the evolution
of parameters to this time point and the state of the model of the
current time step. In particular, future variations in the ice sheet
and Earth response also impact the values of relative sea level at
any time step, because any relative sea level curve is constrained
to pass through zero at present day. It is therefore necessary to
evaluate the full ice histories and not only temporal subsets of
them. Nevertheless, it is reasonable to assume that the sensitivity
of the predictions at a given time progressively decreases as one
considers loading in the distant past. Indeed, most of the varia-
tions, to first order, can be considered Markovian. For this reason,
our analysis of peak relative sea level at the LIG will not con-
sider the loading history prior to the penultimate glacial cycle (see
Section 2.2). Furthermore, this first-order approximation allows us
to apply the particle filter, as it must be based on a Markovian
model.

2.5 Example of the data assimilation scheme

To illustrate the data assimilation scheme, we created a sketched
example, shown in Fig. 4. In this example, we start with two runs
with different anomalies to the global ice volume, which when com-
bined with a base ice volume model would form the basis for the
ice sheets used in the GIA model. These anomalies are shown in
Fig. 4(a) as red and blue lines. Also shown are the observations,
which are locally corrected for GIA. Note that if the local devi-
ations of the observations from the global average were only due
to GIA, and the GIA model perfectly estimated these effects, then
the GIA-corrected observations should agree with the ice volume
anomaly. As a different history of the ice sheets changes the lo-
cal GIA effect, the observations have different values of relative sea
level for the two runs. This is illustrated by using blue crosses for the
observations corrected using the blue anomaly and red crosses for
the observations corrected using the red anomaly. The black vertical
line shows the current analysis time point. Under the assumption
that both runs are the first and only runs in the data assimilation pro-
cedure, both have the same prior. As a consequence, the difference
in the posterior probability is created by the distance to the observa-
tions only. The weighting algorithm takes therein all observations
before the line with a full weighting (represented by the thick black
line above the two anomalies) and afterwards with a partial weight-
ing described in Section 2.2.2 (represented by the thick grey line).
To estimate the probability for each anomaly, 100 iteration of all of
the observations within their 2-D uncertainty structures are drawn,
and for each the probability is estimated with eq. (6). A mean over
all separate 100 probabilities is taken and afterwards used in the
estimation of the posterior. In this visual example, only the best run
is used as a seed for the next round, which in this case is the red
anomaly.

A branching is shown in Fig. 4(b), which creates two new runs
(red and blue) from the previously selected best run. The previous
anomalies are shown in grey, and the purple line indicates a com-
mon history shared by the red and blue anomalies. While the blue
anomaly shares a value during part of the time history with the
anomaly that was not branched, that does not imply that its distance
to the observations, and with it the probability, is the same. Due to
the different time history, the differences due to the GIA contribu-
tion can be quite large. Unlike in the former round, in this case the
prior plays an important role. For this, the posterior for the runs of
the former round will be estimated with the new weightings for the
observations (the changed thick bar from Fig. 4a to Fig. 4b). In a
next step, the prior for the branched run (the red line in Fig. 4a) is
adapted as explained in Section 2.2.3, which simultaneously esti-
mates the prior for the runs created at the second analysis point from
the branched run. In a third step, posterior for the runs of created
at the new analysis points are estimated. With this, the posteriors of
all four runs are known, and in a next step the run with the highest
posterior is selected as the new seed run. In the example shown in
Fig. 4(b), this would be the blue run. With this selection, the round
is concluded, and the next analysis step is analysed (Fig. 4c). This
round includes a new weighting and the determination of the best
run. All in all the most likely run after all the analysis points is
shown in Fig. 4(d). It has adapted to the observations, which are
shown for this run by the crosses.

3 R E S U LT S

In the following, we demonstrate the application of this statistical
framework to determining the maximum GMSL during the LIG.
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Figure 4. Simplified illustration of the data assimilation scheme, with each panel resenting a further step in the analysis. The red and blue lines represent
different anomalies added to the base global ice volume, the grey lines are anomalies that were not branched, and the purple lines indicated a shared history
between the red and blue anomalies. The green line in the last panel represents the best-fitting anomaly. The plus signs (colours matching the respective
anomaly) represent the GIA-corrected observations in position relative to corresponding anomaly. The vertical lines represent the analysis point. The thick line
above each panel represents the weighing of the observations with black being a full weighting and grey being a partial weighing. The direction of time is the
same as in proceeding figures, with present day on the left and further back in time on the right.

After examining the behaviour of the most probable runs, we cal-
culate the probability density functions (pdfs) and cumulative dis-
tribution functions (cdfs) of the maximum GMSL, illustrating the
effect of the different initial ice histories and the input Earth models
on the results. Most importantly, we are able to demonstrate how
each of the observations contributes to these probabilities to explain
the characteristics of the pdfs.

To describe the probability accurately, we have to calculate the
posterior and incorporate therewith a prior. However, the original

prior used in the assimilation scheme (Section 2.2.3) does not allow
us to vary the assumptions going into the analysis, such as exclud-
ing certain observations, without recalculating the runs. Thus, we
introduce an alternate prior in Section 3.1 that allows us to eval-
uate a set of runs with respect to the observations without taking
the run generating mechanism into account. This alternate prior
also allows us to illustrate the impact of the choice of the prior
on the results, with the alternate and original priors compared in
Section 3.2.
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Figure 5. Global mean sea level curves for all 39 000 runs during the LIG. Shading indicates the posterior of each curve calculated with the uniform prior
with the original, unsampled observations. The darker greys are the most probable.

3.1 GMSL estimate with uniform prior

For each of the three earth models, the data assimilation scheme is
executed using both of the initial ice histories. The determination of
the most probable runs at the analysis points is judged on the poste-
rior of the univariate method described in Section 2.2.2, including
the sampling strategy for the observations. All in all 39 000 (3 Earth
models, 2 initial ice histories, 64 time analysis points plus the initial
set of runs, 100 runs at each point) runs are calculated and analysed.
Fig. 5 shows all the runs during the LIG. The shading of each line
represents the relative probability, calculated with the application
of a uniform prior for all runs at the last time analysis point on the
basis of the original, unsampled observations. This prior gives every
run the same probability, and the resulting posterior is equal to the
likelihood. Thus the more probable runs, those with darker shading,
are closer to all of the observations in terms of uncertainties than
the runs with lighter shading.

The first thing to note in Fig. 5 is the dark band, which peaks near
8 m above present-day sea level. This band has a low variability
during the interglacial. As the six experiments (an experiment being
the 6500 runs associated with a given Earth model and base ice
sheet) can be easily distinguished by their base ice history, we
can identify that these high-probability runs are based upon the
modified-δ18O ice history. While the 19 500 runs generated by
the three experiments based on the unmodified-δ18O ice history are
also shown, identifiable by the variation during the deglaciation near
128 kyr BP and the rapid fluctuations during the interglacial, their
posterior using the uniform prior with the unsampled observations
is noticeably lower.

Within the band of most-probable runs, several notable changes
occur between 128 and 116 kyr BP. The first notable change happens
at around 125 kyr BP, when the dark band splits into several single
recognizable runs. The primary reason for this is the number of
observations. Given the weightings described in Section 2.2.2 and
the requirement that at least twenty future observations are used at
an analysis point when available, new observations come into the
calculation at each time analysis point, changing the character of
the most probable runs. With the large number of observations near
125 kyr BP, those future observations are closer to the current time

analysis point than others, contributing to the splitting of the main
band.

During the period from 125 to 120 kyr BP, the diverging runs
generally indicate an increasing GMSL. In addition, the band of
runs with much lower probability, illustrated by the lighter grey in
the background of the main black runs, is widening. Near 122 kyr
BP, the observations from MIS 5a (those at 74 and 85 kyr BP) enter
into the analysis. The two observations from Barbados indicate a
relatively high sea level at their respective times, while having a
relatively small height uncertainty. As a consequence, they receive
higher weighting and, when included, are main drivers for the data
assimilation procedure. With a small number of sea level observa-
tions, particularly in MIS 5d or MIS 5b, the constraints on the end
of the interglacial are weak, leading to a much broader distribution
of probable runs.

3.2 Maximum during the LIG

The primary goal of the framework is to be able to evaluate the prob-
ability of some prediction from the runs, such as the maximum high-
stand during the LIG. To do this, we use ensemble kernel dressing to
calculate this probability and its uncertainty, applying the technique
of Gaussian mixture modelling (GMM; Schölzel & Hense 2011).
For each run, a normalized Gaussian curve, N (

vp, σrep

)
, is drawn

around the predicted value, vp. These curves have a mean of vp, here
the maximum sea level during the LIG, and a standard deviation,
σ rep, indicative of the range for which the run is representative given
the input parameters. This GIA model uncertainty should account
for the effects on LIG predictions of unsampled uncertainty of the
ice sheets after the LIG, as well as other possible sea level effects,
such as regional steric changes in sea level. We set σ rep = 1 m,
which is slightly larger than one-half of the 1.5 m of the branching
spacing at the analysis points. These curves are summed for each
value of a discretized range v, by weighting the curves with their
probability pi. This leads to

p(v) =
∑

i

piNi

(
vp, σrep

) |v. (15)
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Figure 6. Estimation of the maximum highstand during the LIG. The results are calculated using Gaussian mixture modelling (GMM) based on the posterior
with the application of either the uniform prior or the one used within the data assimilation. The green curve shows the probability density function (pdf) of
the posterior of the prior used within the data assimilation and the black curve shows the corresponding cumulative distribution function (cdf). The red curve
shows the pdf of the posterior of the uniform prior.

As pi we use a posterior, calculated with one of the priors: either
the prior used to create the runs (Section 2.2.3) or the uniform prior
introduced in the last section.

The first example, shown in Fig. 6, uses all of the runs, the full
observational data set and the univariate estimation of the probabil-
ity. We apply both the uniform prior with the sampling algorithm
for the observations and the prior used to perform the data assim-
ilation to obtain two pdfs, which are clearly non-Gaussian, with
two distinct peaks. These peaks result from our use of the two base
ice histories, which will be demonstrated and explored further in
Section 3.3. From these pdfs, the cdfs and the percentiles can be
calculated. We start with the cdf results using the prior of the data
assimilation. The median value is 11.3 m, with the 33rd (likely)
and the 66th percentiles (unlikely) given by 8.1 and 14.2 m. It is
notable that the 10th and 90th percentiles are 6.6 and 15.6 m above
present-day sea level. It is interesting to compare this with the re-
sults using the uniform prior (the cdf is not shown in Fig. 6, but
the results are listed in Table C1, Appendix C). In this case, the
median is 11.2 m, with the percentiles for the likely and the unlikely
values being 8.4 and 14.1 m. The range between the 10th (6.1 m)
and 90th (16.7 m) percentiles increases. The application of the prior
of the data assimilation leads to more pronounced peaks and re-
duces the tail on the upper side. Primarily, we will show the results
using the prior from the data assimilation, as it generally shows
a smaller uncertainty range while having a similarly shaped pdf
compared to the uniform prior. The percentiles for both priors are
shown in Appendix C. We will return to these results in Section 3.3.

The second example illustrates the effect of excluding those ob-
servations that were also dropped by Kopp et al. (2009) during their
analysis. It should be noted that through the assimilation procedure,
these observations will still have had an impact on the results. How-
ever, here we recalculate the posterior without these observations,

altering the runs’ probability. Using the uniform prior, the compar-
ison of the pdfs of the posterior calculated with and without these
seven observations is shown in Fig. 7(a) and shows nearly identical
results, as shown in the difference plot between the two analyses
in Fig. 7(c). The excluded observations have a very low probability
for most runs and do not have any influence on the analysis when
the posterior is calculated using the univariate analysis of eq. (6)
including the sampling algorithm based on the full data set. Thus,
ignoring these observations has no effect.

As an illustration of why the altering of the probability from
the multivariate to the univariate analysis reduces the impact of
outliers, and to illustrate that these observations could have large
impact on the results, we repeat the analysis of the runs with the
multivariate approach. The results are shown in Figs 7(b) and (d),
with those of the reduced data set more notably different to those
of the full data set. However, the notable difference from Fig. 7(a)
is the shift of the second peak associated with the δ18O ice history
to substantially higher values, which is common to both data sets.
This is a result of the sampling procedure described in Section 2.2.2.
Some of the observations have very large temporal uncertainties,
which effectively means that they could occur either during the
interglacial, or during the deglaciation or glaciation on either side.
This introduces a potentially large range of differences from the
GIA model prediction. Given that multivariate analysis can assign
more probability to runs matching these shifted data points, and
results based on the δ18O ice history are more susceptible to these
changes (described further in the next section), the end result is a
much higher, and unreasonable, estimate of the highstand.

In the end, the univariate approach for a given observational data
set distributes the probabilities over many runs. In contrast, the
multivariate approach assigns most of the probability to a very few
runs. This sensitivity and the low number of runs that have any
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(a) (b)

(c) (d)

Figure 7. Estimation of the highstand during the LIG using the univariate and multivariate methods for calculating the probability showing the impact of
outliers. (a) Comparison for the univariate method between the GMM results with the uniform prior for the full data set (red solid) and the reduced data set
(black dashed), which does not include the observations excluded in Kopp et al. (2009). (b) The same comparison for the multivariate method. (c) Difference
of the full data set minus reduced data set for the univariate results in (a). (d) Difference of the multivariate results in (b).

probability lead us to the decision to use the univariate approach
within the data assimilation procedure. Indeed, if we were to use
the multivariate approach, it typically would not be appropriate
to select 10 runs with the highest probability for the branching
procedure.

3.3 Influence of the initial ice history

A third example demonstrates the influence of the initial ice history
by applying the univariate approach with the sampled observations
separately on the two groups of runs based upon the δ18O and the
modified-δ18O ice histories. The comparison of the results of these
two analyses is shown in Fig. 8. Both pdfs are nearly Gaussian, and
the median highstand of the modified-δ18O ice history is 7.5 m,
around one-half as much as that of the δ18O ice history. Both un-
certainty ranges are similar, with an inter quartile range (IQR) of
around 1.5 m. The distinct results for the two different base ice
models demonstrate that the differences in the these base models
leads to the distinct peaks in Section 3.2. Clearly, the variability and
character of the initial ice model history can have a large impact on
the results. As the probabilities related to the each base ice model
separate, it is likely that the variability introduced in the assimila-
tion scheme is insufficient to completely characterize the pdfs and
cdfs associated with the maximum highstand during the LIG. For
our purposes, we will refer to the results from each base ice sheet
separately.

A number of reasons could lead to the higher median in the
runs based upon the δ18O ice history. With regard to the median
values, the large spikes in GMSL coupled with the relatively short

interglacial could lead to higher values, as the history is adjusted
upwards to accommodate data at the ends of the interglacial. We
discuss this further in Section 3.5. Additionally, small changes in an
observation’s age can cause a large drop or rise in the probability of a
specific run, as this is only influenced by the difference between the
observation’s value of relative sea level and the associated prediction
from the GIA model run. In the case of the modified-δ18O ice
history, the smaller variability and longer interglacial results implies
that changes the sample’s age will cause less variability of the
probabilities within the sampling algorithm.

3.4 Influence of the Earth model

The Earth model parameters are another component of �η that could
introduce variation into the resulting pdf. To demonstrate the effect
of this set of variables, the pdfs are recalculated separating the runs
for each of the three different Earth models. As we have seen in
the last section, changing the base ice history introduces the largest
variability. Therefore, we will look at the variation between the Earth
models separately for the two different base ice histories. The results
are shown in Fig. 9. All of the individual curves are nearly Gaussian.
For the δ18O ice history results, the medians of the highstands are
15.0 m for the E3 model and 14.5 m and 14.6 m for the other two
models. The other percentiles exhibit similar differences across the
models. In the case of the modified-δ18O ice history the median of
the highstand for Earth model E1 is 6.7 m, for E2 7.7 m and for
E3 8.4 m. The IQR for all of the results is near 1.4 m. There are
relatively small variation of the pdfs that utilized the different Earth
models. Compared with the much larger differences introduced by

D
ow

nloaded from
 https://academ

ic.oup.com
/gji/article-abstract/206/2/900/2605999 by M

aynooth U
niversity user on 23 January 2020



Estimating the sea level highstand during the LIG 913

(a)

(b)

Figure 8. Estimation of the highstand for the LIG for the two different initial ice histories. (a) pdf of the runs using either the δ18O (red solid line) or the
modified-δ18O (black dashed line) ice history. (b) The difference (δ18O pdf minus modified-δ18O pdf) is scaled down by 33 per cent for graphical purposes.

the initial ice sheet histories, this justifies the primary focus on
adapting the ice sheet history to better fit the data.

3.5 Analysis of individual observations

One of the major advantages of our methodology compared with
that of Kopp et al. (2009) is the ability to examine the contribution
of individual observations to a GIA model prediction, such as the
maximum highstand. This ability also allows us to better under-
stand the behaviour of the pdfs in Fig. 8. To demonstrate this, we
show the probabilities of the LIG highstand for each observation,
using the two different initial ice histories and a fixed Earth model,
E1. The results for this analysis are shown in Fig. 10 for the δ18O
ice history and in Fig. 11 for the modified-δ18O history.

Both figures are constructed in the same way. On the x-axis the
observations are sorted in chronological order, which leads to a non-
linear temporal axis. Note that the large number of observations at
125 kyr BP leads to the number being repeated twice on the figure.
The y-axis is nonlinear as well and shows the maximum sea level
during the LIG for each run. Thus, each row of the plot represents
one run, sorted by the maximum highstand, and each column rep-
resents one observation. The colours indicate the probability of the
run using the uniform prior given the unsampled observations from
the database. In the case of the univariate approach, the mean of
one row is proportional to the probability of the specific run for the

observations; in case of the multivariate approach, it is the product.
It should be noted that these results are for the original, unsam-
pled observations. Thus, taking the sum would not reproduce the
corresponding result in Fig. 9, which does include the sampling.

In general, each observation has a band of high probability for
several runs, with the probability decreasing towards runs with
higher or lower maximum sea level. Nevertheless, this band of high
probability is not always continuous in the direction of height. The
reason for this is that each run takes a different path. For example,
while two runs may have a similar value of the maximum highstand,
that maximum may occur at different times. Thus, distance of an
individual observation to the prediction of the two runs may be quite
different. Other observations can be identified with a large band of a
very high probability for all runs above or below a certain threshold.
These are associated with the limiting observations in the database.

Both plots show that no runs have a high probability for all ob-
servations. Consequently, each observation contributes probability
to different estimates of GMSL during the LIG in this framework.
Both plots show a large number of runs (a wide band on the y-
axis), with a small range of highstand values. This band exhibits
discontinuities in probability at its borders in the columns for the
individual observations. This set is the runs with the darker lines
in Fig. 5. These runs share a common history that had the high-
stand prior to their eventual separation. Therefore, they are ordered
near to each other. The results using the δ18O ice history, Fig. 10,
show three different periods of the behaviour of the observations.
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(a)

(c)

(b)

(d)

Figure 9. Estimation of the highstand for the LIG for the three different Earth models. (a) Maximum GMSL for E1 (red solid line), E2 (black dashed line)
and E3 (blue dotted line) for the runs based on the δ18O ice history. (b) Same as a, but based on the modified-δ18O ice history. (c) and (d) show the scaled
differences between the curves: E2–E3 (black solid line), E3–E1 (blue dashed line), E1–E2 (red dotted line).

For the early observations, up to 125 kyr BP, there are large jumps
between the most probable values of GMSL. While observations
from the Red Sea indicate a low highstand, observations from the
Netherlands and Bahamas indicate an extremely high value. This
can be seen by the low highstand values associated with the Red
Sea data in the bottom part of the plot and the higher values for the
other observations at the top part. The next period covers the main
timespan of the LIG between 117 and 125 kyr BP. During this time,
most observations indicate a relatively stable maximum sea level.
While outliers are still contributing to both high and low values, they
are neither as prevalent nor systematic as before. Beginning around
123 kyr BP, we see that the band with nearly identical highstand val-
ues shows greater probability variability for some observation. In
these cases, the history that these runs follow after their maximum
alters their probability as additional observations enter the analysis.
Only a small number of runs show larger values of probability for
observations after 117 kyr BP. Due to the high sea level values from
indicators in Barbados, the data assimilation scheme has to adapt
the initial ice histories massively in order to obtain similar predic-
tions. Thus, many of the runs that were generated in the rounds
prior to the inclusion of this data exhibit no probability with these
observations.

On average, the results using the modified-δ18O ice history,
Fig. 11, have a lower value for the maximum GMSL. In the first
period, up to 125 kyr BP, the runs are consistently further away from
the Red Sea data and therefore show high probabilities for runs with
extreme low highstand. Unlike the last plot, the probability within
the large band of similar highstands show a longer time span with
nearly constant probabilities for these runs for the Red Sea data.
This can be explained by the lower variability of the base ice his-

tory. If a run generates a higher sea level closer to the end of the
interglacial, it is likely the higher value will be a new maximum
value for the highstand. Thus, this run would likely be sorted to
a higher position on the y-axis. Observations from Barbados after
117 kyr BP indicate an extremely high highstand. In this case the
data assimilation scheme is not capable of bringing the main runs
from the LIG period in line with these observations. It does try,
however, and results can be seen in the drift towards higher values
at the end of the LIG, as seen in Fig. 5.

This comparison of Figs 10 and 11 is able to explain the differ-
ences in the pdfs of the high highstands seen in Fig. 8. The large
band of similar highstands is systematically higher in Fig. 10 than
in Fig. 11, resulting from the different timing of the initial ice his-
tories at the start and end of the interglacial. The modified-δ18O ice
history has an earlier end to the deglaciation and a later onset of
glaciation than the δ18O ice history. Given the shape of GMSL from
the δ18O ice history, on average the ice history must have less ice,
that is, a higher sea level, in order to extend the interglacial over this
period.

3.6 Analysis of individual runs

To demonstrate a further capability of this data assimilation scheme,
we examine two runs directly and compare them to the observations.
We chose these two runs based upon them having the highest prob-
ability for each base ice history after applying the prior from the
data assimilation scheme, with the result in Fig. 12 based upon the
δ18O ice history and that in Fig. 13 based upon the modified-δ18O
ice history. Therefore, they are representative of the runs associated
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Figure 10. Analysis of observations for the δ18O initial ice history and the E1 Earth model. Each run is represented by one row and each column represents
one observation. The rows are sorted by the maximum highstand of each run, and the columns are sorted by the age estimate of the observation. Note that the
resulting axes are nonlinear. The colours indicate the probability each run gets assigned by the associated observation.

Figure 11. Analysis of observations for the modified-δ18O initial ice history and the E1 Earth model. Description of the plot is the same as Fig. 10.
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Figure 12. Most probable run (red) of those based on the δ18O ice history using the data-assimilation prior. The boxes indicate the one standard deviation
uncertainty, and the blue observations are the Red Sea data.

Figure 13. Most probable run (red) of those based on the modified-δ18O ice history using the data-assimilation prior. The boxes indicate the one standard
deviation uncertainty, and the blue observations are the Red Sea data.

with the two peaks within Fig. 8. Shown are the sea level curve
and relative to this the GIA- and uplift-corrected observations with
their associated one standard deviation uncertainties in time and
elevation.

Fig. 12, associated with the δ18O ice history, shows that in the
deglaciation phase, the GMSL curve follows the Red Sea observa-
tions. It also demonstrates that several observations indicate much
higher sea levels at the very early stage of the interglacial. Between
118 and 126 kyr BP we see a large area of the plot with a very dark
shade of grey where the uncertainties of the observations overlap.
This area covers the a range of GMSL from 4 to 13 m. There are
also some observations indicating much higher sea levels than is
optimized by the data assimilation scheme. Those instances where
the uncertainty range for the observations extend to the top plot are
mainly due to observations that are limiting values. At the end of
the interglacial the sea level curve stops following the Red Sea data.
This feature can be connected with the attempt of the assimilation

scheme to generate GMSL results need to describe the observations
at 74 and 85 kyr BP.

In Fig. 13, associated with the modified-δ18O ice sheet, we see a
much flatter sea level curve. At the start of the interglacial, the sea
level curve is further away from the Red Sea observations than in
the last plot but is closer to the other observations. From 122 kyr
BP a second rise in GMSL can be seen. In this case, as with the
previous result, the most probable run deviates from the Red Sea
data at this time.

Much care must be taken in interpreting these plots, as changes
to GMSL curve would result in changes to the GIA contribution.
Thus, there is not a direct correspondence to between changes to
the GMSL curve and the relative positions of the observations. The
main outcome of these two plots is that the Red Sea data, which
forms 30 of the 107 observations within the data set, is obviously
not in line with the other observations in timing of the LIG. It also
shows that the uncertainties generated by the statistical methods
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might underestimate the real uncertainty, as systematic problems
within the observational data set are not adequately represented in
the model.

4 D I S C U S S I O N

The analysis shows that the value for the maximum highstand during
the LIG and its uncertainty depend highly on the statistical approach
used to compare the GIA models to the sea level data, and on the
related assumptions used in the analysis. That is especially true for
inhomogeneous observational data with large uncertainties that are
currently available.

Our results illustrate the sensitivity to the input models and statis-
tical assumptions. In some cases, we obtain similar estimates of the
maximum GMSL during the LIG to that of Kopp et al. (2009). For
example, using the modified-δ18O ice history with the univariate
approach, we obtain a median estimate of 7.5 m, with a 1.1 m range
between the 33rd and 66th percentiles. This compares to a range
of 1.4 m (8.0–9.4 m) in Kopp et al. (2009). However, this result
was highly dependent upon the base ice model. Using the δ18O ice
history result in a much higher median (14.7 m). These results are
pushed even higher using the more rigorous (and correct) multi-
variate approach, which is particularly affected by our assumption
that there were no outliers or no structural uncertainties. The clear
separation of the two base ice model results suggests that our as-
similation procedure failed to completely characterize the pdfs and
cdfs of the associated with the maximum highstand during the LIG.
Nevertheless, it does highlight that these input models can have a
large impact on the estimates, suggesting that the range of possible
maximum highstand values during the LIG based on this data set
may be greater than suggested by Kopp et al. (2009).

The primary advantage of our approach is the possibility to con-
nect the results with the input parameters of each ensemble run.
With this knowledge it is possible to analyse the sources of uncer-
tainty. This has been shown for varying observations (Section 3.2),
different initial ice histories (Section 3.3) and different Earth mod-
els (Section 3.4). Furthermore, by having the opportunity to sep-
arately examine the contribution of each observation, as is shown
in Sections 3.5 and 3.6, a very detailed analysis can be performed.
Generalizing, every input parameter used to create the ensemble
runs can be analysed on the basis of any possible combination of
the observations.

The statistical framework from this study in its simplest form
allows one to compare two different ice histories and classify their
performance given a set of observations and their associated uncer-
tainties. In the case where initial set of input parameters generated
runs with a consistently good fit to the observations, the framework
could be used to determine the ice sheet model configuration during
the LIG and Earth model parameters given the sea level indicators.
Nevertheless, this set of observations does not show a consistent
picture of the ice sheet volume during the LIG, even allowing for
GIA effects. This inconsistency in the observations is especially
evident in the results of Section 3.5, where the framework allows
us to illustrate the influence of each observation. In particular, there
are obvious problems relating the early and late observations of this
data set with the timing of δ18O-derived ice volume history as it was
demonstrated in Sections 3.6.

In general there are three options to explain the discrepancies
with the observations. The first is that the GIA model predictions,
in connection with the ice sheets driven by the LR04 curve, do
not adequately represent the spatial and temporal variability of the

physical system. This would not be a surprise, given that a simple
model approach is used. (Note the further discussion below with
regard to ice sheet models, both with regard to the simultaneous
variation of the different ice sheets and to the simplified spatial
distribution highlighted in Section 2.3.2.) For example, the limited
number of Earth models utilized in the GIA modelling may have
contributed to upward drift in the GMSL observed in the runs
towards the end of the LIG (Fig. 5). While the three models cover
a range of behaviours possible given a variation of Earth model
parameters, a very specific set of Earth models and ice sheet changes
is needed to match near present-day sea level during MIS 5a in
western Atlantic (Potter & Lambeck 2003). In addition, other spatial
correlations may exist in the data, such as those introduced by
changing tidal ranges and environmental habitats. However, there
would need to be a further investigation into the actual causes and
the consequences. Particular issues that would need to be explored
are the timing of the LR04 curve, its relationship with global ice
volume, and the discrepancies between the observations in West
Australia and Barbados. Recently Lin et al. (2014) reported spatial
variations in δ18O time series with regard to the timing of the LIG,
which may allow in future a different approach to connect them
to ice sheet changes. It should be noted here that the Earth model
parameters only had a small influence on the results. However,
their importance may increase if the agreement between the initial
GIA model predictions and the observations were closer. Problems
relating the validity to use a benthic oxygen-isotope ratio at all as
a basis for reconstruction of ice sheets were already mentioned in
Section 2.3.1.

The second option would be that the observations, or their in-
terpretation, are not sufficient to describe (i.e. sample) the system
represented by the GIA model. In particular, the variety of obser-
vations in the database can lead to inhomogeneity in the uncer-
tainties, which has a large influence on the results. When the un-
certainties are underestimated, the associated observations receive
a higher weight within the analysis. If the underestimated uncer-
tainty is associated with an outlier, it can drive the assimilation
scheme to an incorrect result. This issue is relevant for our results,
in that since the data set was published by Kopp et al. (2009),
the timing of the most important subset of the data set, the Red
Sea data, was revised in Grant et al. (2012). The influence of this
modified timing on the results, as well as additional observations
compiled since then (e.g. Dutton & Lambeck 2012), needs further
investigation.

The third possibility is driven by the statistical analysis method
and explicitly by the assumptions made within it. We demonstrated
that a simple assumption, whether outliers exist within the data
set or not (e.g. Fig. 7), has a considerable influence on the re-
sult. An outlier-free observational data set cannot be assumed given
the results of the analysis on individual observations in Section 3.5.
Identifying and reducing the influence of outliers is the aim of every
statistical analysis of this kind. By analysing the potential outliers,
the statistical framework can also be used in the sense of a quality as-
surance for the observational data set. Furthermore, our analysis has
not accounted for several potential structural uncertainties, which
might lead to different results. Among them are the correlation of
observations over several sites, apart from those given by the GIA
model, and non-linear tectonic movements. Non-Gaussian distribu-
tion of uncertainties were only partially included by the sampling
algorithm and the special treatment of the limiting observations.
Those and other structural uncertainties are generally not yet well
defined by the underlying science. With additional information on
the model and the observations, the statistical approach could be
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tailored to the problem and might lead to a better representation of
the uncertainties.

There are several limitations of our analysis that could be im-
proved in future studies. Currently, we assume that the different ice
sheet volumes vary simultaneously, or at least to the extent allowed
by the construction process in the case of the modified-δ18O ice his-
tory. To address this limitation within the data assimilation scheme
would require different scenarios for the ice sheets at every analysis
point, substantially increasing the required computational time. In
addition, we have used only one ice sheet history as the basis for
the spatial reconstruction. It is possible that problems for certain
regions might multiply within the data assimilation scheme. Such
a scenario may arise if the observational data set consists only of
observations from a single region for a longer time span. Currently,
a given ice sheet history from LGM to present day is used as the
basis for the earlier reconstructions, causing a similar distribution
during both the glaciation and deglaciation for a given ice volume.
Ideally, one would use online coupled ice models or reconstructed
ice sheets directly from that time span. An example for such an
analysis is de Boer et al. (2013), who modelled δ18O and eustatic
sea level over 1 million years. Nevertheless, both the computational
costs and the availability are a major problem in its realization. Un-
certainty about the validity of results would also exist due to the
possibility that individual sea level indicators are being used both to
create the ice sheets and to constrain the statistical analysis, which
would lead to a potential circular argumentation (Tebaldi & Knutti
2007). In general it has to be assumed that taking only a small subset
of potential Earth models, using only LR04 and ICE-5G in the ice
sheet reconstruction, and the synchronized changes on both hemi-
sphere leads to an underestimation of the uncertainties. Even by
using the data assimilation scheme and the different parameter set-
tings, the real combination of ice sheets and Earth model parameters
is not likely to have been tested. Furthermore, due to the sparseness
of the data and the selection process at the analysis points in the
data assimilation, it is hardly possible to perform a proper statistical
verification of the results.

Our results imply that the observational data set is too small and
inhomogeneous to make a definitive statement on the sea level dur-
ing the LIG. This conclusion is not necessarily in disagreement with
Kopp et al. (2009). Our median estimated with the modified-δ18O
ice history and their central value are similar, but we demonstrate a
greater range of results is possible, depending upon the input mod-
els and statistical assumptions. Given that the data sets used by both
analyses are the same, the difference in the uncertainty estimates
originates from the different statistical methods and assumptions
applied. We have demonstrated that the results can be very sensi-
tive to the assumptions, e.g. the existence of outliers, as well as
the initial input parameters, e.g. the initial ice volume history. The
observational data set is not large enough nor consistent enough to
rectify the discrepancies between the different statistical analysis.

5 C O N C LU S I O N S

We start with a general Bayesian approach to calibrate simple mod-
els to observations. To address problems with outliers (large dif-
ferences between the observations and the GIA model predictions),
we deviate from this approach to a more ad-hoc data assimilation
scheme based on particle filters. By applying the procedure to the
data sets used by Kopp et al. (2009), we can obtain similar results
for the median estimate of maximum GMSL during the LIG, but
only with a particular set assumptions. Our results are very sen-

sitive to the analysis assumptions, such as the initial ice history
or the existence of outliers. This data set of sea level indicators
and their uncertainties does not show a consistent picture for the
sea level highstand during the LIG, when it is assumed that the
LR04-derived ice volume history and the GIA modelling produce
reasonable predictions. These results suggest that additional data, as
well as consistent and realistic assessments of the uncertainties, are
necessary to generate better estimates of sea level variations during
the LIG.

The next step will be the usage of additional sea level indicators,
with a more consistent uncertainty assessments, and different ice
sheet scenarios to explore the sources of the uncertainties. An aim
will be to identify which component of the analysis, for example,
the observations, the statistical approach or the ice sheet and Earth
model parameters, is responsible for the large range of results.
The statistical framework presented here is generally applicable for
comparison of model predictions to observations. Thus, it could be
widely applied in other studies.
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S U P P O RT I N G I N F O R M AT I O N

Additional Supporting Information may be found in the online ver-
sion of this paper:

Figure S1. Analysis of observations for the δ18O initial ice history
and the E1 Earth model. Each run is represented by one row and
each column represents one observation. The rows are sorted by the
maximum highstand of each run, and the columns are sorted by the
number of the entry in the database of Kopp et al. (2009). Note that
the resulting axes are nonlinear. The colours indicate the probability
each run gets assigned by the associated observation.
Figure S2. Analysis of observations for the modified-δ18O initial
ice history and the E1 Earth model. Description of the plot is the
same as Fig. S1.
(http://gji.oxfordjournals.org/lookup/suppl/doi:10.1093/gji/
ggw174/-/DC1).

Please note: Oxford University Press is not responsible for the con-
tent or functionality of any supporting materials supplied by the
authors. Any queries (other than missing material) should be di-
rected to the corresponding author for the paper.
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A P P E N D I X A : D E R I VAT I O N O F B A S I C
E Q UAT I O N

The expanded probability on the right hand side of eq. (2) can be
rewritten using the Bayesian eq. (1) (Campbell 2005):

p
( �f j , �ηi | �O) = p

( �O| �f j

)
p
( �f j | �ηi

)
p
(�ηi

)
∑
l∈L

∑
k∈Jl

p
( �O| �f k

)
p
( �f k | �ηl

)
p
(�ηl

) . (A1)

The index set L represents all of the investigated parameter sets,
and Jl is the index set of the model solutions �f k .

Because the GIA model is deterministic, its result, �f , is uniquely
defined by the input parameters �η:

M (�ηi ) = �f i . (A2)

Integrating over all possible model results, this leads to a Kronecker-
Delta function, δ( �f j − M(�ηi )). Inserting it and eq. (A1) into eq. (2),
we obtain

p
(�ηi | �O) =

∫
j∈J

[
p
( �O| �f j

)
δ
( �f j − M(�ηi

))]
d f j

· p
(�ηi

)
∑
l∈L

∑
k∈Jl

p
( �O| �f k

)
p
(�ηl

) . (A3)

After execution of the δ function, this equation reduces to eq. (3).

A P P E N D I X B : D E R I VAT I O N
O F T H E P R I O R

The difficulty in deriving the prior is connecting the former round
(n − 1) with the new round (n) when the seed run is branched with
Nr new runs. For both rounds, eq. (3) is valid for the seed run. Thus,
we evaluate the equation for the former round and solve for the
prior:

p
(�ηi

)n−1 =
p
(�ηi | �O)n−1

[∑
l∈L

p
( �O|M(�ηl

))n−1
p
(�ηl

)n−1
]

p
( �O|M(�ηi

))n−1
.

(B1)

Next, we set the sum to 1, as this is simply a normalization. We also
define the prior of the new round as equal to the prior of the former
round. Given that we want a likelihood that takes into account the
changing fits to sea level at past time points, we set the likelihood
of the parent run in the former round equal with the likelihood of
the parent run and its Nr descendants. We assume that the prior is
distributed equal between the parent and the descendants, we take
the (Nr+1)th root of the posterior divided by the product of the
likelihoods. As a consequence we derive eq. (9).

A P P E N D I X C : M A X I M U M S E A L E V E L
D U R I N G T H E L I G F O R T H E
D I F F E R E N T E X P E R I M E N T S

Table C1. Results of the different analyses.

Experiment Section 10th perc. 33rd perc. 50th perc. 66th perc. 90th perc. IQRa

(m) (m) (m) (m) (m) (m)
very likely likely median unlikely very unlikely

Uniform prior
Full data set 3.2 6.1 8.4 11.2 14.1 16.7 7.3
Reduced data set 3.2 6.1 8.4 11.2 14.1 16.7 7.3
Full data set (mv)b 3.2 7.4 26.6 29.2 33.1 37.2 25.3
Reduced data set (mv)b 3.2 7.5 26.9 29 33 37.1 23.6
δ18O 10.6 13.9 14.6 15.3 17.8 2.5
Modified-δ18O 5.4 7.2 7.9 8.9 13.9 3.5
E1, δ18O 10 13.1 14.6 15.9 19.1 4.6
E2, δ18O 9.9 13.1 14.6 15.9 19.1 4.5
E3, δ18O 9.3 13.1 14.6 16 18.9 4.7
E1, modified-δ18O 3.5 6 7.5 8.9 13.6 4.8
E2, modified-δ18O 4.2 6.9 8.5 11.2 15.3 5.1
E3, modified-δ18O 4.6 7.3 8.8 10.3 14.7 4.7

Original prior
Full data set 3.2 6.6 8.1 11.3 14.2 15.6 7.2
δ18O 3.3 13.5 14.3 14.7 15.2 16.2 1.4
Modified-δ18O 3.3 6 7 7.5 8.1 9.1 1.7
E1, δ18O 3.4 13.3 14.2 14.6 15 15.9 1.3
E2, δ18O 3.4 13.3 14.2 14.5 15 15.9 1.3
E3, δ18O 3.4 13.8 14.6 15 15.5 16.4 1.4
E1, modified-δ18O 3.4 5.4 6.2 6.7 7.1 7.9 1.4
E2, modified-δ18O 3.4 6.4 7.2 7.7 8.1 9 1.4
E3, modified-δ18O 3.4 7.1 7.9 8.4 8.7 9.6 1.3
aInter quartile range.
bMultivariate analysis.
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