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Abstract. A new method for testing time series of environmental data for internal inconsistencies is presented.
The method divides the dataset into several disjunct blocks. By means of a comparison of the blocks’ estimated
probability density distributions, each block is compared with the others. In order to judge the differences, four
different measures are used and compared: Kullback-Leibler Divergence, Jensen-Shannon Divergence, Earth
Mover’s Distance and the Root Mean Square. By looking at the resulting patterns, conclusions on possible
inconsistencies in the data can be drawn.

This paper shows some sensitivitiy tests and gives an example for an application to real data. Furthermore, it is
shown, in which cases of errors (shift in mean, shift in variance and rounding), which measure performs best.

1 Introduction

When using data measured from natural systems to draw
conclusions about the observed system, data quality assur-
ance is a very important factor. In this quality assurance pro-
cess not only the metadata, but also the data itself should be
controlled. For this kind of control, there are several generic
methods available, which means that they may be applied to
any data set without detailed knowledge of its specifics.

These generic methods are mostly based on rules de-
scribed byMeek and Hatfield(1994). These rules control
datasets separately for each data point, on whether speci-
fied limits are exceeded (LIM), the number of successive ele-
ments, which are not changing, exceeds a predefined number
(NOC) or whether the rate of change between two successive
data points exceeds a limit (ROC). Those rules were applied
to several datasets with different methods for defining the pa-
rameters of the tests (e.g.Hubbard et al., 2005; Zahumensky,
2007; Jiménez et al., 2010; Durre et al., 2010). For data sets
that are available on a regular basis, like meteorological net-
works, methods like “Complex Quality Control” (CQC), de-
veloped byGandin(1988), homogenization (Peterson et al.,
1998) or Mathes et al.(2008) might be more useful.

When the sources of data are unknown, a more gen-
eral procedure is required. In this paper a newly developed
method for this problem is presented. It is based on the anal-
ysis of the estimated probability density of data, for which
two basic forms are possible. One takes a look at statistical
moments (like mean, standard deviation or percentiles) and
their development within the whole dataset. The other ap-
proach investigates all the distribution information. This is
what will be pursued in this paper.

To avoid any preconditioning of the results, a non-
parametric density estimation shall be the starting point. With
the help of these estimates an evaluation of the two probabil-
ity densities is performed. The assumption used is that two
probability densities, characterizing the data in two time win-
dows, are identical. A strict hypothesis test in the statistical
sense is not performed.

In the next step a distance measure between two densities
is defined. Standard methods like the Kolmogorov-Smirnov
test are very sensitive to sample variability (Owen, 1995).
Therefore, we would like to use more robust measures. These
have to take into account the full structure of the estimated
densities or their integrals, the probability distributions. This
is in contrast to the Kolmogorov-Smirnov test which only
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take into account the difference at one point, namely the
maximum deviation. There are several divergences available
for comparing distributions. Those used in this paper are de-
scribed in Sect.2: Kullback-Leibler (Kullback and Leibler,
1951), Jensen-Shannon (Endres and Schindelin, 2003) and
the Earth Mover’s distance (Rubner et al., 2000). In Sect.3
some sensitivity studies are performed before an application
is shown in Sect.4. The paper ends with a discussion in
Sect.5 and is summarized in Sect.6.

2 Method

The basic methods rely on a division of the dataset into
blocks of blocksizesb and a comparison of every block to
the others. This is carried out by comparing the blocks’ nor-
malized histograms as estimators of the underlying probabil-
ity density, which uses a number of binsnb. These bins are
uniformly distributed between the maximum and minimum
of both blocks.

To determine the difference between both histograms
( f ,g ∈ Rnb) the following distance measures are used:

Kullback-Leibler Divergence (KLD). KLD is based on the work
described inKullback and Leibler(1951). It is an unsymmetric
function between two histograms and defined byLin (1991) as fol-
lows:

DKL ( f ||g) =
nb∑
i=1

f (xi) · log2
f (xi)
g(xi)

. (1)

It is obvious that a problem occurs wheng(x) = 0 for anyx ∈ [1,nb].
To prevent this, a prior estimationap is introduced for every bin of
both estimated probability densities:

hi =
ai +ap

sb+nb ·ap
(2)

wherehi is the resulting bin of the histogram,ai is the number of
observations in bini andsb is the total number of observations in the
block. To coupleap to the number of observationssb, ap depends on
a small factoraf andsb and is defined by the following equation:

ap =
1

af · sb
. (3)

Jensen-Shannon Divergence (JSD). JSD is a symmetrization
of the KLD and can be defined as follows (Endres and Schindelin,
2003):

DJS( f ||g) =
1
2

DKL

(
f
∥∥∥∥∥1

2
( f +g)

)
+

1
2

DKL

(
g
∥∥∥∥∥1

2
( f +g)

)
. (4)

JSD and KLD are positive definite functionals, but neither the first
nor the second are “real” distance measures because they do not
obey the triangle inequality.

Earth Mover’s Distance (EMD). EMD was developed as a solu-
tion of a transportation problem (Rubner et al., 2000). In contrast to
KLD and JSD it does not rely on a bin-wise ratio. Rather, it figures
out how to transform one histogram to the other. To do this the prob-
ability of every bin is seen as a mass, which has to be transported.

The EMD measures the minimal work that has to be invested for
this task. Important here is that the distance between two bins is
not neglected, but defined asd(i, j) = |i− j|

nb
. For a one-dimensional

histogram this leads to (Rabin et al., 2008):

DEM( f ||g) =
1
nb

nb∑
i=1

|F(xi)−G(xi)| (5)

whereF andG are the cumulative distribution functions off andg.
EMD is a true distance measure being positive definite, symmetric
and obeying the triangle inequality. EMD is a special case of the
more general Wasserstein distance of probability density functions
(Levina and Bickel, 2001).

Root Mean Square (RMS). RMS is only used as a reference in
this paper. The well known definition is given by:

DRMS( f ||g) =
1
nb

 nb∑
i=1

( f (xi)−g(xi))
2


1
2

. (6)

When such a method is used to evaluate a dataset, a typical
resulting plot consists of a two dimensional array. Each entry
is the result of a comparison of two parts of the dataset. On
the diagonal, each part of the dataset is compared to itself
and the value should be zero. This condition is fulfilled by all
of the four distance measures. The rest of the array is filled
with the distances between the histograms of every part to
the others. Also, all but the KLD deliver symmetric arrays.

In the next section sensitivity tests are performed in order
to simulate the influence of the different distance measures
on this method. Because this method delivers only relative
results, it is necessary to define a measure that makes the
different measures comparable. Therefore the dataset will be
separated into two parts. Each part gets a different charac-
teristic. When the blocks are compared to each other it is
now known, which comparison looks at blocks with the same
characteristics and which at blocks with different character-
istics. To determine the difference between blocks of differ-
ences of same and different characteristics the definition of
xsd is introduced as follows:

xsd=
µdiff − µsame

σdiff +σsame
. (7)

µsameandσsameare the mean and standard deviation of those
distances, which compare sections with the same character-
istics of the dataset. The same is valid for the sections with
different characteristics (diff). The distances, which are zero
are neglected in the calculation ofxsd.

It is plausible that higher values forxsd means that the dif-
ferences in the data set are easier to detect than lower ones.

3 Sensitivity tests

In this section some characteristics of the methodology using
simulated observations are discussed and the different dis-
tance measures are compared. For the simulation a sample of
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Figure 1. Influence ofaf on the results measured inxsd, displayed as
shadings of gray, of the KLD (upper figure) and JSD (lower figure)
for different number of binsnb.

2000 realizations of a Gaussian distributed and normalized
(mean zero, variance 1) random variable is used. The sample
is split into two equally large subsamples where the second
sample is subjected to a change. Afterwards, the method is
applied with a blocksizesb = 100 andxsd is calculated. In
this calculation the comparisons with “different characteris-
tics” are represented by the influence of the first (block 1 to
10) on the second half (block 11 to 20). For the comparison
with the “same characteristics” the influence of the second
half on itself is used. The treatment of the second half in the
next section is a rounding on the first digit.

3.1 Influence of af

In the definition of KLD and JSD the valueaf is used to in-
corporate the amplitude of the prior for each bin. In Fig.1
the results forxsd are calculated for 100 different randomly
drawn vectors and the mean is shown for 200 differentnb and
eleven differentaf , which are distributed on an logarithmic
scale.

Principally, better values are achieved for a higher num-
ber of bins. It is also better to use higheraf values, what is

Figure 2. Results of the regime shift sensitivity test, with artifi-
cially included shifts in the mean. The shift is measured in terms of
the standard deviation and shown on the x-axis. The curves shows
the average and their respective uncertainties of the measurexsd in
Eq. (7) for 100 randomly generated data sets (without shift normally
distributed with expectation mean=0, sd=1) for the four different
measures.

equivalent to a lower priorap for each bin. For values higher
thanaf = 100 no further significant difference is detectable in
comparison to higher values. That is why this value is cho-
sen for the next tests with the KLD and the JSD. As a next
step,xsd have to be chosen, whereby two sections with dif-
ferent characteristics are clearly distinguishable. This can be
defined, whenxsd exceeding 1. In Sects.3.2 and3.3 xsd= 1
is also used as a detection limit of inconsistencies within a
dataset. The condition ofxsd exceeds 1 is also used here to
determine the number of binsnb of the histograms. It is ful-
filled at approximatelynb = 65, which is used throughout the
remainder of the paper.

3.2 Shift in mean

As a second sensitivity test a detection of a regime shift is
used. Unlike before the second half of the tested dataset is
not rounded, but a factor ofysd standard deviations is added.
This ysd is now selected in the range of 0 to 5 and the eval-
uation is carried out like before. The mean results for 100
vectors and their standard deviation withnb = 65 are shown
in Fig.2. Here, the results measured inxsd are plotted against
the added value measured in standard deviationsysd. The de-
tection limit chosen before is indicated by a line atxsd= 1.
Since KLD is asymmetric it delivers different results, if the
ingoing histograms are transposed. Therefore, only the better
result of the KLD is shown.

The best detection result is achieved by the EMD. This
distance measure is highly sensitive for low values ofysd and
reaches the detection limit at aboutysd≈ 0.4. The three other
distance measures are less sensitive and reach their detec-
tion limit at about twice the value of the EMDysd≈ 0.9. For
higher values ofysd, the JSD measure detects shifts slightly
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Figure 3. Results of the regime shift sensitivity test, with artificially
included shifts in the variance. The shift is measured in terms of
the standard deviation and shown on the x-axis. The curves shows
the average and their respective uncertainties of the measurexsd in
Eq. (7) for 100 randomly generated data sets (without shift normally
distributed with expectation mean=0, sd=1) for the four different
measures.

better than the KLD. RMS proves to be worst in detecting the
shifts.

Increasing the number of binsnb deteriorates these results
except for EMD (not shown).

3.3 Shift in variance

Like before the second half of the dataset is manipulated, but
now theysd is not added but multiplied increasing the vari-
ance. The results are shown in Fig.3 and are constructed
as specified in Sect.3.2. Once again EMD delivers the best
results, by reaching the detection limit with the smallest de-
viation of ysd= 1.5. The next is the KLD, where the better
of the both possibilities to calculate this measure reach the
detection limit at aroundysd= 2.0. The RMS follows with
ysd= 2.1 and the worst results are delivered by the JSD with
reaching the detection limit at aroundysd= 2.5. At this point
it is necessary to mention briefly that the asymmetry property
of the KLD plays a huge role in this test. While the differ-
ences of choosingDKL ( f ||g) or DKL (g|| f ) can be neglected
when a change in the mean occur, in the case of a variance
shift, the detection limit of the inferior was not reached under
ysd= 5.0.

4 Application

As an example a time series measured by the German Na-
tional Meteorological Service DWD is used (available from
http://www.dwd.de/klimadaten). This time series shows the
daily maximum wind data from Lindenberg/Germany (sta-
tion id: 10393/52◦21′ N/14◦12′ E, elev. 98 m), consisting of
twenty years (1991–2010) of data.

As previously, the tests are performed with all four differ-
ent divergence measures. The parameters are set tonb = 65
andsb = 365. The latter choice serves to eliminate seasonal
effects. This prevents a bias of taking into account a sea-
son more often than an other into one block. The results are
shown in Fig.4.

Especially KLD (Fig.4a) and JSD (Fig.4b) show a pat-
tern of higher values in the years 1991, 1999 and 2000. RMS
(Fig. 4c) also delivers such an indication, but in the result
produced with the EMD (Fig.4d) no evidence of these spe-
cial time periods can be found.

A reason for these higher values are demonstrated for the
period 1999 and 2000. In Fig.4e displaying the time se-
ries for the period July 1998 till July 2000. Obviously, at
1 December 1998 there was a change in the recording pro-
cedure initiated with the data stored only to the nearest inte-
ger. This period ends at the beginning of April 2001, when
another change in the recording procedure has occurred. The
same rounding of the data can be found in the dataset up
to 1 June 1992, which explains the high values in 1991.
This shows that EMD is apparently insensitive to this type
of change in data in contrast to the remaining measures. The
reason will be discussed in the next section.

5 Discussion

The method for testing data quality presented in this paper
offers a simple way to detect potential errors and discrep-
ancies to data users. We propose to use a set of measures
derived from estimated probability densities (histograms).
These have been tested on artificial data with the tests show-
ing a clear advantage in most situations of the EMD, which
is a distance measure for probability densities.

It is shown that different measures of these changes react
differently to distinct types of these changes. For example,
the EMD is much more sensitive to potential regime shifts
or changes in the variance of the data than KLD, JSD and
RMS. This is rooted in the definition of EMD as a solution
of the minimal work for the transportation problem. The fo-
cus is set on the distance, when the probability of one bin
is “transported” to another. KLD, JSD and RMS are simply
comparing the difference between the bins, without looking
at the range. The same argumentation holds for the better re-
sults of KLD and JSD in rounding problems. Because the
range is so small between the bins with different probabil-
ities, the difference in value matters more than the distance
between the bins.

The regime and variance shifts are a common phenomenon
in observational data sets. Therefore, a number of tests are
available for these kinds of potential errors (Ducŕe-Robitaille
et al., 2003). In contrast, rounding problems are mostly ne-
glected, although they deliver a good indication for changes
in measurement techniques. The presented method with the
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Figure 4. Analysis of the maximum wind at Lindenberg station between 1991 and 2010 with the four different measures (panela–d). Also
shown in panel(e) is the relevant section in the data between July 1998 and July 2001, where KLD, JSD and RMS show higher values.

KLD or JSD as a measure delivers a good test for such
changes.

Tests on internal consistency are an important part of a
data quality assurance workflow. If it is known what type of
data is under review, simple rules can be applied to high-
light the problematic parts of a dataset. Examples are the
ROC and NOC rules byMeek and Hatfield(1994). Others
can be found in the framework of a complex quality assur-
ance (Gandin, 1988; Graybeal et al., 2004) or homogeniza-
tion (Peterson et al., 1998).

If there is no prior information on the data that is actually
checked, the task will become more complicate. Of course,
normalized limits can be checked (Hubbard et al., 2005).

All these tests only validate one value to check against one
or more recently measured values of the same measurement

or measurement type. The approach presented here is differ-
ent, because it evaluates complete datasets.

An additional advantage is the flexibility of choosing the
blocks within a dataset. This enables the possibility to per-
form these checks on two or more dimensional data like
model outputs.

6 Conclusions

In this paper a new method for data quality assurance is pre-
sented. It divides the dataset to be tested into disjunct blocks,
before each block is compared to the others. This works by
a comparison of the blocks’ estimated probability density.
In order to determine the differences, four different distance
measures are applied. While the Earth Mover’s Distance

www.adv-sci-res.net/8/99/2012/ Adv. Sci. Res., 8, 99–104, 2012
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delivers good results for detection of regime and variance
shifts in data, the Kullback-Leibler and Jensen-Shannon Di-
vergences are best at rounding problems.
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