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Abstract The estimation of problem difficulty is an open issue in genetic pro-

gramming (GP). The goal of this work is to generate models that predict the

expected performance of a GP-based classifier when it is applied to an unseen task.

Classification problems are described using domain-specific features, some of which

are proposed in this work, and these features are given as input to the predictive

models. These models are referred to as predictors of expected performance. We

extend this approach by using an ensemble of specialized predictors (SPEP),

dividing classification problems into groups and choosing the corresponding SPEP.

The proposed predictors are trained using 2D synthetic classification problems with

balanced datasets. The models are then used to predict the performance of the GP

classifier on unseen real-world datasets that are multidimensional and imbalanced.

This work is the first to provide a performance prediction of a GP system on test

data, while previous works focused on predicting training performance. Accurate

predictive models are generated by posing a symbolic regression task and solving it

with GP. These results are achieved by using highly descriptive features and

including a dimensionality reduction stage that simplifies the learning and testing
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process. The proposed approach could be extended to other classification algorithms

and used as the basis of an expert system for algorithm selection.

Keywords Problem difficulty � Prediction of expected performance � Genetic
programming � Supervised learning

1 Introduction

Within the field of evolutionary computation (EC) [6] it is not yet clear if a particular

algorithm will perform well on a specific problem instance. The ‘‘No Free Lunch’’

(NFL) theorem [70] has provided valuable theoretical and conceptual insights,

broadly stating that all search algorithms on average are equivalent when they are

evaluated over all possible problems. On the other hand, the NFL theorem does not

apply to many common domains of genetic programming (GP) [43], a promising

theoretical insight that drives research to develop the best possible GP-based search.

Nevertheless, it is by now evident that most GP-based systems tend to performwell on

some problem instances while failing on others, with little understanding as to why or

when either of those two scenarios will arise [14, 15, 34, 57, 59].

The above issue can be described as the study of problem difficulty, which has

been studied in different ways in EC and GP literature. Some methods focus on

analyzing the properties of a problem’s fitness landscape [27]. This can be done, for

instance, by defining specific classes of functions [20], or by extracting high-level

features [14, 15, 34, 57, 59] or statistical properties [4, 8, 9, 13, 26, 47, 62, 69] of

the fitness landscape. In the case of standard tree-based GP, where search operators

are applied in syntax space, the concept of a fitness landscape is difficult to define

given that there is no clear way of determining a general concept of neighborhood

for GP representations that are usually highly redundant, which limits the usefulness

of such approaches. While some methods have been successfully applied to GP,

these are mostly sampling-based techniques that attempt to infer specific types of

structures within the underlying fitness landscape, such as: neutrality [8, 11, 12, 42,

72], locality [9, 10], ruggedness [62], deception [56], fitness distance correlation

(FDC) [4, 56], fitness clouds [64] and negative slope coefficient (NSC) [66, 67]. In

this work, we refer to such methods as evolvability indicators (EIs), which are

extensively reviewed in [33] and discussed in the following section.

One notable shortcoming of EIs is that they require an extensive sampling of the

search space in order to compute them [2, 46, 65, 68]. This is an important limitation:

if we need to know when a particular problem is easy or difficult for an algorithm to

solve it may just be easier to run the algorithm and observe its behavior and outcome.

Therefore, some researchers have proposed predictive models that take the problem

data (or a description of the data) as input, and produce as output a prediction of

expected performance, we will refer to such methods as predictors of expected

performance (PEPs). Currently, the development of PEPs represents the minority of

research devoted to problem difficulty in GP, with only a few recent works. In

particular, Graff and Poli [14–18] have studied the development of such predictive

models, for symbolic regression, Boolean and time-series problems. While their
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original work mostly focused on synthetic benchmarks [15], more recent contribu-

tions extended their approach to performance prediction in real-world problems [14,

18]. However, in their approach it is necessary to have an extensive knowledge of the

real-world problems in advance. Furthermore, their models are intended to predict the

performance of the best solution found by GP on the training set of data, they did not

address the prediction of performance on unseen test cases.

This paper is an extension of our previous work [57, 59, 60] where PEPs were

first proposed for a GP classifier, making several methodological and experimental

contributions. First, the PEP models are produced using only simple 2D synthetic

datasets that are randomly generated. Second, the PEP models are used to predict

the performance of the GP classifier on the test set of data, while previous works

mostly focused on predicting performance on the training or learning set [14–18].

Third, accurate predictions are obtained on unseen real-world problems that are

multidimensional and contain imbalanced data. On the other hand, previous

works [14–18, 57, 59, 60] used the same type of problems (either synthetic or real)

for both training and testing. Fourth, to increase PEP accuracy this paper presents an

ensemble approach using specialized PEP models called SPEPs. Each SPEP is

trained to predict performance within a specific range of classification error. To do

so, we use a two-tier approach, where each problem is first classified into a specific

group, and then prediction is obtained from the corresponding SPEP which was

trained for that group of problems. Finally, it is reasonable to state that the proposed

approach could be applied to predict the performance of GP on other learning

problems.

The remainder of this paper proceeds as follows. Section 2 reviews related work

and Sect. 3 provides a short survey of GP-based classification. The basic PEP

strategy is outlined and evaluated in Sect. 4. Afterwards, Sect. 5 introduces the

proposed ensemble strategy based on SPEPs and provides experimental results.

Finally, Sect. 7 contains conclusions and future work.

2 Related work

Determining problem difficulty has been an important issue in EC for several

years [35]. From an algorithmic perspective, problem difficulty can be related to the

total runtime (or memory) required to find an optimal solution. Recently, He

et al. [20] took this view one step further, to analytically define broad classes of

fitness functions which allowed them to demonstrate that easy functions define

unimodal fitness landscapes, while hard functions define deceptive landscapes for a

(1 ? 1) ES. However, it is important to remember that the difficulty of a particular

problem depends upon the solution method. Therefore, in what follows we will try

to limit our overview to GP-related research.

2.1 Evolvability indicators

The fitness landscape has dominated the way geneticists think about biological

evolution and has been adopted by the EC community as a way to visualize
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evolution dynamics [71]. Formally, a fitness landscape can be defined as a triplet

(x; v; f ), where x is a set of configurations, v is a notion of neighborhood, distance or

accessibility on x, and f is a fitness function [54]. The local and global structure of

the fitness landscape describes the underlying difficulty of a search. However, in the

case of standard GP [30] the concept of a fitness landscape is not clearly

defined [27]. To overcome this, some works have constructed synthetic problems;

such as the Royal Tree problem [44] or the K-landscapes model [62], where the

goal of the search is defined as a particular tree structure with a specific syntax.

Unfortunately, such models are not realistic since the space of possible programs is

highly redundant [30] in most domains, and the goal is not a particular syntax but a

particular expected output, also known as semantics [36, 63]. Therefore, some

researchers have proposed variants of GP that explicitly account for program

semantics. In semantic space the fitness landscape is clearly defined and unimodal.

This has lead researchers to develop specialized search operators that modify

program syntax while geometrically bounding the semantics of the generated

offspring, this is known as geometric semantic GP (GSGP) [38]. Nevertheless, such

approaches are still problematic since the size of the evolved programs grows

exponentially with every generation, a limitation that is not easily solved [50]. This

work will focus on measures of problem difficulty for standard GP systems [29], but

could be applied to other supervised learning systems including GSGP.

In general, most meta-heuristics work under the assumption that the fitness of a

candidate solution, a point on the fitness landscape, is positively correlated with the

fitness of its (some) neighbors. Such a property can be defined as the evolvability of

a landscape [1, 41]. EIs extract a numerical indicator of a specific property of the

fitness landscape to provide a measure of the evolvability within the landscape.

Malan et al. [33] presents a comprehensive survey of EIs and other forms of fitness

landscape analysis.

Those that have been studied in GP literature include neutrality [8, 26], locality [9,

47], ruggedness [25, 62], fitness distance correlation (FDC) [4, 24, 56], fitness

clouds [69] and the negative slope coefficient (NSC) [64]. While these approaches

can sometimes provide good estimates of problem difficult for GP, they suffer from

two practical limitations. First, for each new problem instance they require a large

amount of data, by sampling the search space or performing several runs. Second, they

cannot estimate the actual quality of the solution found, which can be important if we

want to choose the best algorithm to use for a new problem, and if such a choice must

bemade in real-time. Indeed,Malan et al. [33] point out that a possible way forward is

to build a mapping that can estimate algorithm performance based on a set of

descriptive features of the problem, an approach that would provide a more practical

measure of problem difficulty and allow us to choose the best algorithm for the

specific task. Malan and Engelbrecht [32] attempted to find a link between EIs and

algorithm performance for particle swarm optimization.

2.2 Performance prediction

PEPs predict the performance of a GP search on an unseen problem instance without

performing the search or sampling the solution space. These models have been
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derived using a machine learning approach [14, 15, 34, 57, 59]. The performance of

GP on a set of problems and a description of those problems are used to pose a

supervised learning task. A promising feature of PEPs is that they are not only

useful for GP, they can also be used to predict the performance of other

algorithms [16, 59].

Graff and Poli [16] proposed linear predictive models based on a sampling of the

fitness landscape, given by

PðtÞ � a0 þ
X

s2S
as � dðs; tÞ; ð1Þ

where PðtÞ is the predicted performance, t is the target functionality, dðs; tÞ is a

distance measure,1 S is the set of all possible program outputs, also known as

semantic space [38], and where each s represents the vector of program outputs

obtained from the set of fitness cases used to define a particular problem, also

known as the semantics of the program [36]. In other words, Graff and Poli [16]

derive PEPs by sampling semantic space S. These models were tested on symbolic

regression and 4-input Boolean problems with promising results.

The second and more recent approach towards building a PEP focuses on the

problem data [14, 17, 18, 34, 57–60] and proceeds as follows. Assume we want to

solve a supervised learning problem p with a GP search, where fitness is given by a

cost function that must be minimized, such as an error measure. Let us define the

performance of the GP algorithm as the associated error of the best solution found

during training when it is evaluated on a particular set of fitness cases T, call this

quantity FTðpÞ. The goal is to predict FTðpÞ, so first we construct a feature vector

b ¼ ðb1; b2; . . .; bNÞ of N distinct features that describe the main properties of p.

Then, a PEP is function K such that

FTðpÞ � KðbÞ: ð2Þ

Notice that the form of K is not a priori restricted in any way. Graff and Poli [17]

use a linear function similar to the one used in their previous work [16]. Using this

approach the feature vector b should be designed specifically for the domain of

p. For example, features designed for symbolic regression and Boolean problems

are proposed in [17], and the results show that the predictive accuracy surpasses that

of the fitness-based models proposed in [16]. However, their work did not scale well

to real-world cases. For instance, in [14, 18] the authors built PEPs to predict

performance on real-world problems, but require information obtained from runs

performed on similar problem instances, models built with simpler synthetic

problems could not be used. It was not trivial to map multidimensional problems to

the proposed feature space since the training problems were much simpler with a

small number of dimensions. It would be impractical to consider all possible

dimensionalities during training. This is an important limitation in building PEPs,

since it is not trivial to have all the possible versions of the same problem. More-

over, in the proposals made by Graff and Poli [14, 17, 18] the models predicted the

1 Such a distance measure is a common fitness function for many application domains of GP, particularly

for symbolic regression problems.
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performance of the GP system on the training set of fitness cases; i.e., T was the

training set. While certainly of importance, performance on the training set may not

be useful if the algorithm overfits the training examples, which happens often in

real-world scenarios.

In previous work [57, 59, 60], we used a similar approach to predict the

performance of a GP-classifier using descriptive features that characterize the

geometry of the data distribution in feature space. The PEPs where built using

quadratic linear models and non-linear GP models, the latter achieving the best

performance on synthetic problems. However, it was not clear how well the PEPs

generalized to unseen problem instances, particularly to real-world problems with

imbalanced datasets and larger feature spaces than those used to train the models, a

similar difficulty pointed out in [14, 18]. The current work extends our previous

contributions by performing the learning process on 2D synthetic problems and

testing on a wide variety of real-world datasets. Moreover, an important

contribution of this work is that the PEP models are used to predict the performance

of the best solution found by GP when it is evaluated on the test set of data. To

achieve improved performance this work also proposes a two-tiered ensemble

approach using specialized PEP models and a preprocessing stage for dimension-

ality reduction.

3 Classification with GP

In machine learning one of the most common tasks is supervised classification [28].

The general task can be stated as follows. Given a pattern x 2 RP assign the correct

class label among C distinct classes x1; . . .;xC, using a training set T of P-

dimensional patterns with a known label. The idea is to build a mapping

gðxÞ :RP ! C, that assigns each pattern x to a corresponding class xi, where g is

derived based on the evidence provided by T . GP has been widely used to address

this problem [40, 53, 57, 73–75]. In general, GP can be applied to classification

following three general approaches:

1. Feature selection and construction [39, 40, 48, 57, 75].

2. Model extraction [3, 55, 61, 73, 74].

3. Learning ensemble classifiers [21, 23, 30].

Feature selection and construction is also known as preprocessing of the problem

data. These approaches use GP to either select the most interesting problem features

or to construct new features that simplify the classification problem. These

techniques are often described as either filter [19, 39, 57, 75] or wrapper

approaches [40, 48, 51]. In the former, feature construction is done independently

of the model used to build the classifier, while in the latter fitness assignment is

based on the performance of a classifier. On the other hand, model extraction with

GP is used to build specific types of classifiers, such as decision trees [55, 61],

classification rules [3, 45] and discriminant functions [74]. Finally, ensemble
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classifiers are used to improve the quality of the classification task by using not only

a single classifier, but a group of them, each one providing a different output [21,

23, 30].

3.1 Probabilistic genetic programming classifier

In this work we derive PEPs for the probabilistic genetic programming classifier

(PGPC) proposed in [75], a feature construction method. PGPC was chosen due to

its simplicity and strong performance on real-world problems [53]; while other GP-

based classifiers could have been used this is left as future work. In PGPC, GP is

used to evolve a mapping gðxÞ :RP ! R that transforms each input pattern x into a

point on the real line. Furthermore, it is assumed that the behavior of g can be

modeled using multiple Gaussian distributions, each corresponding to a single

class [75]. The distribution of each class Nðl; rÞ is derived from the examples

provided for it in set T , by computing the mean l and standard deviation r of the

outputs obtained from g on these patterns. Then, from the distribution N of each

class a fitness measure can be derived using Fisher’s linear discriminant; for a two

class problem it proceeds as follows. After the Gaussian distribution N for each

class are derived, a distance is required. In [75], Zhang and Smart propose a

distance measure between both classes as

d ¼ 2 � jl1 � l2j
r1 þ r2

; ð3Þ

where l1 and l2 are the means of the Gaussian distribution of each class, and r1 and
r2 their standard deviations. When this measure tends to 0, it is the worst case

scenario because the mappings of both classes overlap completely, and when it

tends to 1, it represents the optimal case with maximum separation. To normalize

the above measure, the fitness for an individual mapping g is given by

fd ¼
1

1þ d
: ð4Þ

After executing PGPC, the best individual found determines the parameters for the

Gaussian distribution N i associated to each class. Then, a new test pattern x is

assigned to class i when N i gives the maximum probability; performance is mea-

sured by the total classification error (CE) on test data.

4 PEP: predictor of expected performance

The general goal of this work is to build models that can predict the performance of

a GP-classifier (PGPC) without executing the search or sampling the problem’s

search space. The general proposal is depicted in Fig. 1, where for a given

classification problem we do the following. First, apply a preprocessing step to

simplify the feature extraction process and deal with multidimensional represen-

tations. Second, perform feature extraction to obtain an abstraction of the problem.
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Third, use a PEP model that takes as input the extracted features and produces as

output the predicted classification error (PCE) on the testing set.

Moreover, to derive the PEP models we use a supervised learning methodology,

depicted in Fig. 2. This process takes as input a set of synthetic classification

problems Q and produces as output the PEP model as follows:

1. Compute the average classification error (CEl) on the test data by PGPC for

each p 2 Q.

2. Apply a preprocessing for dimensionality reduction using principal component

analysis (PCA), and take the first m principal components to represent the

problem data.

3. Perform feature extraction on the transformed data using statistical and

complexity measures to build a feature vector b for each p 2 Q.

4. Finally, using the set of feature vector/performance pairs fðbi; CEliÞg
formulate a supervised symbolic regression problem and solve it using GP.

4.1 Synthetic classification problems

A set of synthetic classification problems was generated to learn our PEP models.

Specifically, 500 binary classification problems were generated using Gaussian

mixture models (GMMs) with either unimodal or multimodal classes, with different

amounts of class overlap. All class samples lie within the closed 2-D interval

x; y 2 ½�10; 10�, and 200 sample points were randomly generated for each class.

Fig. 1 Block diagram of the proposed PEP approach. Given a classification problem, the goal is to
predict the performance of a GP classifier on the test data, in this case PGPC

Fig. 2 The methodology used to build the PEP model. Given a setQ of synthetic classification problems:
(1) compute the CEl of PGPC on all problems; (2) apply a preprocessing for dimensionality reduction;
(3) extract the feature vector b from the problem data; and (4) learn the predictive model using GP
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The parameters for the GMM of each class were randomly chosen using a uniform

distribution in the following ranges:

1. Number of Gaussian components: f1; 2; 3g.
2. Median of each Gaussian component for each dimension: ½�3; 3�.
3. Each element of the covariant matrix of each Gaussian component: (0, 2].

4. The rotation angle of each covariance matrix: ½0; 2p�.
5. Proportion of samples generated with each Gaussian component: [0, 1].

4.2 PGPC classification error

For each problem p 2 Q we perform 30 runs of PGPC, randomly choosing the

training and testing sets in each run. Then, the mean classification error CEl is

computed by the average of the test performance achieved by the best solutions

found in each run. The parameters of the PGPC system are given in Table 1, a tree-

based GP algorithm with dynamic depth bloat control [50], implemented using

Matlab and the GPLAB toolbox [49]. Figure 3 presents some examples, showing

the problem data, the CEl achieved by PGPC and the standard deviation r over all

runs. The problems are ordered from the lowest CEl (easiest problem, depict in

Fig. 3a) to the highest, CEl (hardest problem, depict in Fig. 3f).

Figure 4 summarizes PGPC performance over all 500 synthetic problems in Q.

Figure 4a plots the CEl for each problem, ordered from the lowest to the highest

error. On the other hand, Fig. 4b shows an histogram of PGPC performance,

Table 1 Parameters for the PGPC algorithm

Parameter Description

Population size 200 Individuals

Generations 200 Generations

Initialization Ramped half-and-half, with six levels of maximum depth

Operator probabilities Crossover pc ¼ 0:8; mutation pl ¼ 0:2

Function set þ;�; �; =; ffiffi;p sin; cos; log; xy; j � j; if
n o

Terminal set x1; . . .; xi; . . .; xPf g where each xi is a dimension of the data patterns x 2 RP

Bloat control Dynamic depth control

Initial dynamic depth 6 Levels

Hard maximum depth 20 Levels

Selection Tournament, size 3

Survival Keep best elitism

Training data 70 %

Testing data 30 %

Runs 30
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quantifying how many problems are solved with a particular CEl. We arbitrarily set

a threshold such that problems in the range 0� CEl� 0:15 are considered ‘‘easy’’

and the rest are considered to be ‘‘hard’’. From this perspective the plot reveals that

randomly generated problems produce a biased distribution, where most problems

are easy to solve. Since we intend to use this set to pose a supervised learning task,

this would induce an unwanted bias. Therefore, we subsample Q to get a more
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Fig. 3 The scatter plots show examples of synthetic classification problems, specifying the CEl and
standard deviation r achieved by PGPC. These ordered from the lowest CEl (easiest depict in Fig. 3a) to
the highest CEl (hardest depict in Fig. 3f). a CEl ¼ 0 r ¼ 0. b CEl ¼ 0:14 r ¼ 0:03. c
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Fig. 4 Performance of PGPC over all 500 synthetic problems in Q; where a shows the CEl for each
problem, ordered from the easiest to the hardest; and b shows the histogram over CEl
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balanced distribution over CEl. The new set consists of 300 problems, and Fig. 5

summarizes PGPC performance over this new set Q0. Notice that the performance

plot for Q0 � Q is similar to the one obtained for Q (see Fig. 5a), but now the

distribution over CEl is flat (Fig. 5b), providing a more balanced learning set.

4.3 Preprocessing

Previous work has found that PEP models can predict GP performance accurately

for small scale synthetic problems [15–17, 34, 57–60], but accuracy degrades for

real-world problems with high dimensional data [14, 18]. This is due to the fact that

feature extraction (the next step in the PEP approach) fails at extracting meaningful

information in high dimensional spaces [14, 18]. To deal with this issue, we apply a

dimensionality reduction preprocessing of the problem data using PCA [5]. We

propose to take the first m principal components to represent the data of each

problem. In particular, we set m ¼ 2 in all experiments reported here. In this way,

all problems are reduced to the same number of dimensions used in the synthetic

training set.

4.4 Feature extraction

The goal of this step is to extract a set of descriptive measures from each problem.

In this work, we use a subset of the features proposed in [52] and [22]. Those works

attempted to develop meta-representations of classification problems. A wider set of

features was previously tested in [57–60], but the present work only uses those

features that showed the highest correlation with CEl. We also propose three new

descriptors based on the Canberra distance; each measure is presented next.

Geometric mean (SD) measures the homogeneity of covariances [37, 52]. This

quantity is related to a test of the hypothesis that all populations have a common

covariance structure; i.e.. to the hypothesis H0 :
P

1 ¼
P

2, which can be tested via

Box’s M test statistic (MTS), that can be re-expressed as
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Fig. 5 Performance of PGPC over all 300 synthetic problems in Q0 � Q; where a shows the CEl for
each problem, ordered from the easiest to the hardest; and b shows the histogram over CEl
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SD ¼ exp
MTS

m
PC

i¼1ðni � 1Þ

( )
ð5Þ

where C is the number of classes, ni is the number of the instances for ith class and

m is the number of dimensions. The SD is strictly greater than unity if the

covariances differ, and is equal to unity if and only if the MTS is zero.

Feature efficiency (FE) measures the amount by which each feature dimension

contributes to the separation of both classes. This measure is computed for the ith

dimension by

FEi ¼ 1� gi
tp

� �
ð6Þ

where gi represent the number of points inside the overlapping region and tp is the

total number of sample points; as seen in Fig. 6a. Finally, we define FE ¼
maxðfFEigÞ with i ¼ ½1;m� for any given problem with m dimensions.

(a) (b)

(c)

Fig. 6 These figures depict the complexity features used to describe each classification problem as
suggested in [22], where a feature efficiency (FE); b class distance ratio (CDR); and c volume of overlap
region (VOR)
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Class distance ratio (CDR) compares the dispersion within the classes to the gap

between the classes [22]. For each data sample, compute the Euclidean distance to

its nearest neighbor within the class (intraclass distance) and nearest-neighbor from

the other class (interclass distance), as shown in Fig. 6b. The CDR is the ratio of the

averages of all intraclass and interclass distances.

Volume of overlap region (VOR) provides an estimate of the amount of overlap

between both classes in feature dimension space [22]. The VOR is computed by

finding, for each dimension, the maximum and minimum value of each class and

then calculating the length of the overlap region. The length obtained from each

dimension is then multiplied to measure the overlapping region, as depicted in

Fig. 6c. The VOR is zero when there is at least one dimension in which the two

classes do not overlap.

Canberra distance (CD) provides a numerical measure of the distance between

pairs of points in a vector space. Suppose a problem has m feature dimensions, we

take a rank statistic of the samples of each class, call it xi for class 1 and yi for class

2, for the ith dimension. This produces two vectors x and y, such that x ¼
ðx1; . . .; xmÞ and y ¼ ðy1; . . .; ymÞ. The CD is given by

CDðx; yÞ ¼ 1

m

Xm

i¼1

xi � yij j
xij j þ yij j : ð7Þ

In this work, we use the CD to describe the distance between both classes using

three rank statistics: (1) CD-1 uses the 1st quartile; (2) CD-2 uses the median; and

(3) CD-3 uses the 3rd quartile.

The set of descriptive measures discussed above helps to minimize the

information about each problem. Now, analyzing the algorithmic complexity (big

O notation) of the measures, these do not represent a significant computational cost.

For instance, the FE, VOR, CD-1, CD-2 and CD-3 features mainly depend on a

sorting process, which can have a complexity of Oðn lognÞ where n is the number of

instances of the problem. Moreover, the SD relies on computing the covariance

matrix of the data which has a complexity of Oðn2Þ. Similarly, to compute the CDR

feature we need to do all pairwise comparisons, which also has a complexity of

Oðn2Þ.
Figure 7 provides a visual description of the descriptive power of each feature.

The figure shows scatter plots where each point corresponds to a single problem

p 2 Q0, the x-axis is a particular feature (SD, FE, CDR, VOR, CD-1, CD-2 and CD-

3) and the y-axis is the associated CEl. The caption of Fig. 7 also gives the

Pearson’s correlation coefficient q. It is evident that all of the chosen features are

correlated with PGPC performance, in particular FE, VOR, CDR, CD-1 and CD-3

show the highest correlation.

4.5 Supervised learning of PEP models

It is now possible to pose a symbolic regression problem using the set

T ¼ fðbi;CEliÞg with i ¼ 1; . . .; jQ0j, where the goal is to evolve a model K that

can predict each CEli using bi as input. Previous works have used several types of
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linear models [17, 34, 57–60], but [57, 59, 60] showed that non-linear models

evolved with GP achieved higher prediction accuracy.

Therefore, in this work we use a tree-based GP, configured with the parameters

given in Table 2. Three versions of the problem are posed, each with a different

terminal set defined as subsets of all extracted features (4F, 5F, 7F) as specified in

Table 3. Set 4F uses the features with the four highest correlation coefficients (FE,

CDR, VOR and CD-1), set 5F uses the features with the five highest correlation

coefficients (SD, FE, CDR, VOR and CD-1), and 7F uses all of the seven features.

The function set is defined as F ¼ þ;�; �; =; ffiffi;p sin; cos; log; xy; j � j; if
n o

. Finally

the fitness function is computed by the root mean squared error (RMSE) between

the predicted CE and the true CEli, given by

f ðKÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn
i¼1ðKðbiÞ � CEliÞ2

n

s

: ð8Þ
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Fig. 7 Scatter plots show the relationship between the CEl (x-axis) and each descriptive feature (y-axis)

for all problems p 2 Q0, where q specifies Pearson’s correlation coefficient. a SD: q ¼ �0:42, b FE:
q ¼ �0:78, c CDR: q ¼ �0:62, d VOR: q ¼ �0:72, e CD-1: q ¼ �0:62, f CD-2: q ¼ �0:03 and g CD-
3: q ¼ �0:61
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4.6 Testing the PEP models

For each version of the symbolic regression problem defined above (with different

feature sets), we performed 100 runs using two different test scenarios: (1) train and

test the PEP models using only synthetic problems; and (2) train with synthetic

problems and test with real-world problems. In the first scenario, we use 70 % of the

problems for training and the rest for testing, generating a random partition of the

set of problemsQ0 for each run. This is the simplest scenario, since both the training

and testing problems are generated in the same manner. In the second scenario, we

test the PEP models trained with synthetic problems and evaluate their predictions

on many real-world datasets, a more challenging scenario since the real-world

problems have high dimensional data, imbalanced classes and different data

distributions.

4.6.1 Testing on synthetic classification problems

Table 4 summarizes the performance of the evolved PEPs, showing the median of

the RMSE of the best solution found in each run for the training and testing sets, as

well as the RMSE and Pearson’s correlation coefficient q of the best solution found.

The table presents three rows of results, one for each feature set (PEP-4F, PEP-5F

and PEP-7F). The numerical results are encouraging, suggesting that the PEP

models can accurately predict PGPC performance. Moreover, there is a very small

difference between training and testing performance, suggesting that the PEP

models are not overfitted.

Table 2 Parameters for the GP used to derive PEP models for PGPC algorithm

Parameter Description

Population size 200 Individuals

Generations 100 Generations

Initialization Ramped half-and-half, with 6 levels of maximum depth

Operator probabilities Crossover pc ¼ 0:8; mutation pl ¼ 0:2

Hard maximum depth 12 Levels

Selection Tournament, size 3

Survival Keep best elitism

Runs 100

Table 3 Three different features sets used as terminal elements for the symbolic regression GP algorithm

Feature vector b

4F FE, CDR, VOR and CD-1

5F SD, FE, CDR, VOR and CD-1

7F SD, FE, CDR, VOR, CD-1, CD-2 and CD-3
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Figure 8 shows plots in three rows, where in each row we plot each feature set

(PEP-4F, PEP-5F and PEP-7F). The plots on the left-hand side column show the

PCE of the best PEP model and the true CEl for all synthetic problems, specifying

the RMSE in the caption. The plots on the right-hand side column show the CEl
and PCE as scatter plots, specifying the Pearson’s correlation coefficient q in the

caption. The evolved PEPs produce accurate predictions with all feature sets.

4.6.2 Testing on real-world classification problems

This section presents the results of testing the best evolved PEPs to predict the

testing error of PGPC on real-world problems. To this end, 22 real-world datasets

are chosen from the University of California Irvine (UCI) machine learning

repository [31], summarized in Table 5. Since our PEPs only consider binary

classification, we use these datasets to build 40 binary classification problems. The

problems are summarized in Table 6, specifying the name of the dataset and the

classes used to define each problem, the number of total samples and the imbalance

percentage of each problem computed as a�b
c

where a and b are respectively the

number of samples in the minority and majority class, and c is the total number of

samples. Notice that the synthetic problems used to train the PEPs are completely

balanced and relatively small problems in terms of number of samples, while the

real-world problems are considerably more varied. In particular, considering class

imbalance Fig. 9 shows an histogram of the number of problems with different

amounts of imbalance percentage.

Before testing the evolved PEP models, we compute the CEl achieved by PGPC

using 30 independent runs. PGPC performance is summarized in Fig. 10, showing:

(a) the CEl for each problem and (b) the histogram over CEl. Figures 11 presents

scatter plots of each descriptive feature (x-axis) and the CEl (y-axis) of each

problem, specifying the corresponding Pearson’s correlation coefficient q in the

caption. The figures show that the best correlated features with CEl are FE and CD-

1, respectively with q values of -0.73 and -0.71. The rest of the features do not

show particularly good correlation values, with SD clearly being the worst.

These results are different to what was observed on the synthetic problems.

While VOR, CDR and CD-3 showed absolute correlation values above 0.6 on

synthetic datasets, they were all below 0.44 on the real-world problems. This

difference was particularly marked for SD, on synthetic problems the correlation

Table 4 Prediction performance of the evolved PEPs applied on the synthetic problems using each

feature set (4F, 5F and 7F, see Table 3)

Median training RMSE Median testing RMSE Best RMSE Best correlation

PEP-4F 0.0320 0.0375 0.0318 0.9634

PEP-5F 0.0317 0.0362 0.0295 0.9688

PEP-7F 0.0326 0.0364 0.0317 0.9636

Performance is given based on the RMSE and Pearson’s correlation coefficient, with bold indicating the

best performance
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Fig. 8 Figures show for synthetic problems, the performance prediction of the best PEP models evolved
with the different feature set, each row belongs to each feature set: PEP-4F (top), PEP-5F (middle) and
PEP-7F (bottom). Plots on the left-hand side column show the PCE of the best solution and the known
CEl. The right-hand side column show scatter plots of the PCE and the CEl. a PEP-4F:
RMSE = 0.0318, b PEP-4F: q ¼ 0:9634, c PEP-5F: RMSE = 0.0295, d PEP-5F: q ¼ 0:9688, e
PEP-7F: RMSE = 0.0317 and f PEP-7F: q ¼ 0:9636
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Table 5 Real-world datasets from the UCI machine learning repository used in this work

No. Problem Classes Dimensions Description

1 Balance scale 3 4 Balance scale weight and distance database

2 Breast cancer

wisconsin

2 8 Original Wisconsin Breast Cancer Database

3 Breast tissue 6 9 Dataset with electrical impedance measurements of

freshly excised tissue samples from the breast

4 Cardiotocography 3 23 Fetal cardiotocograms (CTGs) were automatically

processed and the respective diagnostic features

measured

5 EEG eye state 2 15 All data is from one continuous EEG measurement

with the Emotiv EEG Neuroheadset

6 Fertility 2 10 100 volunteers provide a semen sample analyzed

according to the WHO 2010 criteria

7 Glass 6 10 From USA Forensic Science Service; 6 types of glass

8 Indian liver

patient

2 32 This data set contains 416 liver patient records and

167 non liver patient records

9 Ionosphere 2 32 Classification of radar returns from the ionosphere

10 Iris 3 4 The data set contains 3 classes of 50 instances each,

where each class refers to a type of iris plant

11 Parkinsons 2 22 Oxford Parkinson’s Disease Detection Dataset

12 Pima Indians

diabetes

2 8 From National Institute of Diabetes and Digestive and

Kidney Diseases

13 Retinopathy 2 19 This dataset contains features extracted from the

Messidor image set to predict whether an image

contains signs of diabetic retinopathy or not

14 Red wine 6 11 The goal is to model wine quality based on

physicochemical tests

15 Seed 3 7 The examined group comprised kernels belonging to

three different varieties of wheat

16 Sonarall 2 60 The task is to train a network to discriminate between

sonar signals bounced off a metal cylinder and

those bounced off a roughly cylindrical rock

17 Tae 3 5 The data consist of evaluations of teaching

performance; scores are ‘‘low’’, ‘‘medium’’, or

‘‘high’’

18 Vertebral-column

2C

2 6 Biomedical data set built by Dr. Henrique da Mota

19 Vertebral-column

3C

3 6 Biomedical data set built by Dr. Henrique da Mota

20 White wine 6 11 The goal is to model wine quality based on

physicochemical tests

21 Wine 3 13 Using chemical analysis determine the origin of

wines

22 Zoo 7 3 Artificial, 7 classes of animals
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Table 6 The 40 real-world

binary classification problems

based on the UCI datasets

No. Problem Classes Instances Imbalance %

1 Balance scale 1–3 576 0

2 Breast cancer wisconsin 1–2 699 31

3 Breast tissue 1–2 36 17

4 Breast tissue 1–3 39 8

5 Breast tissue 1–4 37 14

6 Breast tissue 2–3 33 9

7 Breast tissue 2–4 31 3

8 Breast tissue 3–4 34 6

9 Cardiotocography 1–2 1950 70

10 Cardiotocography 1–3 1831 81

11 Cardiotocography 2–3 471 26

12 EEG eye state 1–2 8388 17

13 Fertility 1–2 100 76

14 Glass 1–2 146 4

15 Glass 1–6 99 41

16 Glass 2–6 105 45

17 Indian liver patient 1–2 579 43

18 Ionosphere 1–2 351 28

19 Iris 1–2 100 0

20 Iris 1–3 100 0

21 Iris 2–3 100 0

22 Parkinsons 1–2 195 51

23 Pima indians diabetes 1–2 768 30

24 Red wine 5–6 1319 3

25 Retinopathy 1–2 1151 6

26 Seeds 1–2 140 0

27 Seeds 1–3 140 0

28 Seeds 2–3 140 0

29 Sonarall 1–2 208 7

30 Tae 1–2 99 1

31 Tae 1–3 101 3

32 Tae 2–3 102 2

33 Vertebral column 2C 1–2 310 35

34 Vertebral column 3C 1–2 210 43

35 Vertebral column 3C 1–3 160 25

36 Vertebral column 3C 2–3 250 20

37 White wine 5–6 3655 20

38 Wine 1–2 130 9

39 Wine 1–3 107 10

40 Zoo 1–2 61 34
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coefficient was -0.42 but on real-world problems it is 0.09. In fact, only FE and

CD-1 showed a good correlation on both sets.

Table 7 summarizes the performance of the evolved PEPs applied on the real-

world problems, showing the median of the RMSE of the best solution found, as

well as the RMSE and Pearson’s correlation coefficient q of the best solution. The

table presents three rows of results, one for each feature set (PEP-4F, PEP-5F and

PEP-7F). In this case, the best performance is achieved by PEP-4F, which was

unexpected. However, if we contrast the results with those achieved on the set of

synthetic problems, shown in Table 4, a performance drop-off is evident, based on

both median and best performance.

Figure 12 shows three rows of plots, one for each feature set (PEP-4F, PEP-5F

and PEP-7F). The figures on the left-hand side column show the PCE of the best

PEP model and the true CEl for all real-world problems, specifying the RMSE. The
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Fig. 9 Histogram of imbalance percentage for the 40 real-world classification problems
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Fig. 10 Performance of PGPC on the 40 real-world classification problems; where a shows the CEl for
each problem; and b shows the histogram over CEl
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figures on the right-hand side column show the CEl and PCE as scatter plots,

specifying the Pearson’s correlation coefficient q. Again, these figures reveal that

the evolved PEP models provide less accurate prediction on real-world problems.

0 0.1 0.2 0.3 0.4 0.5
0

10

20

30

40

50

Classification Error

G
eo

m
et

ri
c 

M
ea

n
 

0 0.1 0.2 0.3 0.4 0.5
0

0.2

0.4

0.6

0.8

1

Classification Error

F
ea

tu
re

 E
ff

ic
ie

n
cy

 

0 0.1 0.2 0.3 0.4 0.5
0

50

100

150

Classification Error

C
la

ss
 D

is
ta

n
ce

 R
at

io

0 0.1 0.2 0.3 0.4 0.5
0

0.2

0.4

0.6

0.8

1

Classification Error

V
o

lu
m

e 
o

f 
O

ve
rl

ap
 R

eg
io

n

0 0.1 0.2 0.3 0.4 0.5
0

0.2

0.4

0.6

0.8

1

Classification Error

C
an

b
er

ra
 D

is
ta

n
ce

 −
 1

Q

0 0.1 0.2 0.3 0.4 0.5
0

0.2

0.4

0.6

0.8

1

Classification Error

C
an

b
er

ra
 D

is
ta

n
ce

 −
 2

Q

0 0.1 0.2 0.3 0.4 0.5
0

0.2

0.4

0.6

0.8

1

Classification Error

C
an

b
er

ra
 D

is
ta

n
ce

 −
 3

Q

(a) (b)

(d) (e)

(f) (g)

(c)

Fig. 11 Scatter plots show for the real-world problems the relationship between the CEl (x-axis) and
each descriptive feature (y-axis). a SD: q ¼ 0:09, b FE: q ¼ �0:73, c CDR: q ¼ �0:40, d VOR:
q ¼ 0:43, e CD-1: q ¼ �0:71, f CD-2: q ¼ �0:46 and g CD-3: q ¼ �0:30

Table 7 Prediction performance of the evolved PEPs applied on the real-world problems using each

feature set (4F, 5F and 7F, see Table 3)

Median RMSE Best RMSE Best correlation

PEP-4F 0.1522 0.0828 0.8634

PEP-5F 0.1583 0.0929 0.8823

PEP-7F 0.1676 0.0930 0.8046

Performance is given based on the RMSE and Pearson’s correlation coefficient, with bold indicating the

best performance
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Fig. 12 Figures show for real-world problems, the performance prediction of the best PEP models
evolved with the different feature set, each row belongs to each feature set: PEP-4F (top), PEP-5F
(middle) and PEP-7F (bottom). Plots on the left-hand side column shows the PCE of the best solution and
the known CEl. The right-hand side column shows scatter plots of the PCE and the CEl. a PEP-4F:
RMSE = 0.0828, b PEP-4F: q = 0.8634, c PEP-5F: RMSE = 0.0929, d PEP-5F: RMSE = 0.8823,
e PEP-7F: RMSE = 0.0930 and f PEP-7F: RMSE = 0.8046
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5 SPEP: specialist predictors of expected performance

The above results are encouraging, but for a real-world application even small

improvements in the quality of the predictions could have non-negligible effects.

Therefore, in this section we propose an ensemble approach using several PEP

models, each one referred to as an SPEP. We propose an ensemble approach for two

main reasons. First, previous works suggest that ensemble-based modeling can

improve performance in a variety of scenarios [7, 76]. Second, an ensemble

approach allows us to obtain two types of predictions, a numerical prediction of

expected performance and a categorical or fuzzy prediction based on the chosen

ensemble component used to compute the final prediction. The proposal is depicted

in Fig. 13, an extension of the basic PEP approach shown in Fig. 1. However, in the

SPEP approach before computing the PCE for a given problem, each problem is

classified into a specific group using its corresponding feature vector b. Each group

is associated to a particular SPEP in the ensemble, hence if a problem is classified

into the ith group then the ith SPEP is used to compute the predicted PGPC

performance on the test set.

To implement this approach, several design choices must be specified. First, how

to define a meaningful grouping of problems. Second, train SPEPs that are

specialized for each group in order to build the ensemble. Third, chose the correct

SPEP for a particular problem by determining its group membership. Each of these

issues are discussed next.

5.1 Grouping problems based on PGPC performance and training SPEPs

The proposal is to group problems based on the performance of PGPC given by

CEl. This can be seem as a categorical prediction, where problems are grouped into

general groups of different difficulty; e.g. easy and hard problems. In particular, we

propose two different groupings based on CEl, using either two or three groups as

shown in Fig. 14. The groups were chosen in such a way that the number of

(synthetic) problems in each group would be approximately the same, in this way

posing a balanced classification task for the SPEP approach. Figure 14 shows the

Fig. 13 Block diagram shows the proposed SPEP approach. The proposed approach is an extension of
the basic PEP approach of Fig. 1, with the additional ensemble approach, where problems are first
classified into prespecified groups and based on this a corresponding specialized morel (SPEP) is chosen
to compute the PCE of PGPC on the test set
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ranges of PGPC performance for each group and the number of synthetic problems

(Fig. 14a) and real-world problems (Fig. 14b) that fall within each group. The plots

on the top divide the problems into two groups, while the plots on the bottom divide

the problems into three. Finally, for clarity, since the two group division requires

two SPEPs, we refer to a solution for this task as an Ensemble-2, while a solution for

the three group task is referred to as an Ensemble-3.

For each group an SPEP is trained using the same strategy described in the

previous section for PEPs. Except that instead of using all of the synthetic problems,

each SPEP is trained using the subset of synthetic problems from the corresponding

group, as depicted in Fig. 14. Since we are interested in presenting the best possible

prediction of PGPC performance on real-world problems, we must select the best

predictive models. Therefore, the testing phase is performed using two subsets of

the real-world problems, one for validation and other for testing.

5.2 SPEP selection

As depicted in Fig. 13, in order to choose an SPEP we must first classify each

problem to its corresponding group. This is a straightforward classification task,

solved using each problem’s feature vector b as the decision variables. Several

classification algorithms are tested [5], namely:

1. Euclidean distance classifier (EDC).

2. Mahalanobis distance classifier (MDC).

3. Naive Bayes classifier (NBC).

4. Support vector machine (SVM), with Gaussian radial basis function kernel and

a default scaling factor of 1.

5. K-Nearest Neighbor (KNN), using K ¼ 5 neighbors.

6. Treebagger Classifier (TBC), using three trees.

7. Probabilistic Genetic Programming Classifier (PGPC), parameters on Table 1.

Moreover, the classification task is posed using different subsets of the features in b
as previously described in Table 3. We apply all classifiers using all subsets of

features on both the two-group and three-group classification tasks.

(a) (b)

Fig. 14 The proposed groupings of classification problems used with the SPEP approach, showing the
ranges of PGPC performance and the number of problems in each group
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As done for the SPEP models, in all cases the complete set of synthetic problems

Q0 is used to train the classifiers. The testing phase is performed with two sets, 10 %

of the real-world problems are used as a validation set while the remaining 90 % of

real-world problems are used for testing. After performing 100 independent runs,

the best solution is chosen based on its validation set performance, and methods are

compared based on the performance on the testing set. If several solutions achieve

the best validation set performance, than the final solution used in the ensemble is

randomly chosen.

5.3 Evaluation of SPEP ensembles

This section presents the performance of the evolved SPEP models, and the

performance of the complete ensembles, using both the true problem groups (an

oracle approach, where the correct SPEP is always chosen) and the predicted group

by the best classifier (a more realistic testing scenario).

5.3.1 Ensemble-2 solutions

To visualize the underlying difficulty of choosing the correct SPEP for a given

problem (i.e., determining the group to which it belongs to) Fig. 15 presents a

parallel coordinate plot dividing the problems into two groups, where each

coordinate is given by a feature in b. Plots are shown for synthetic (Fig. 15a) and

real-world problems (Fig. 15b). The plots on the left show a single line for each

problem, while the plots on the right show the median values for each group. For

clarity in the parallel plots, the features SD and CDR were rescaled to values

between [0, 1].

Table 8 summarizes the performance of the best SPEP models used to build the

Ensemble-2 solution. The first columns specifies the feature subset used from b. The
second column specifies the evaluated SPEP, SPEP-1 was trained with synthetic

problems from the first group while SPEP-2 was trained with problems from the

second group. The training RMSE is given in column 3. Every SPEP was tested on

real-world problems from both groups, to illustrate the performance difference and

specialization of each model; this is specified in the forth column. The final column

gives the testing RMSE on each group.

The results show that the SPEP models are specialized to their groups, achieving

error values below 0.1 when tested using problems from their groups, while

performing worse when tested on problems from the other group. In general,

performance on testing set is good, particularly if we compare with the results

achieved by the PEP models from the preceding section. Finally, performance is

similar for all feature sets when considering testing performance, with the best

performance on Group 1 achieved by using the set 4F and the best performance on

Group 2 with set 5F.

The results in Table 8 represent the best possible performance if the correct

problem group is chosen, but also confirm that if the correct group is not chosen

than prediction accuracy can decline. Table 9 summarizes the performance of all of
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Fig. 15 Parallel coordinate plots dividing the problems into two groups, where each coordinate is given
by a feature in b. Plots are shown for synthetic (a) and real-world problems (b). The plots on the left show
a single line for each problem, while the plots on the right show the median values for each group

Table 8 RMSE of the best

evolved SPEP models, using

different feature sets (first

column)

Performance is given based on

training and testing set.

Moreover, each SPEP-

i corresponds to the ith problem

group but is tested on both

problem groups, as specified in

the fourth column. Bold

indicates the best performance

on each group

SPEP Training Testing group Testing

4F SPEP-1 0.0201 1 0.0315

2 0.2470

SPEP-2 0.0341 1 0.1445

2 0.0919

5F SPEP-1 0.0195 1 0.0380

2 0.1819

SPEP-2 0.0380 1 0.1119

2 0.0832

7F SPEP-1 0.0212 1 0.0469

2 0.2096

SPEP-2 0.0332 1 0.1586

2 0.1014
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the tested classifiers for the two-group case, showing the median classification error

achieved on the training and testing sets. On these tests, PGPC achieves the best

performance based on test error.

Table 10 shows the performance of the best classifier obtained from each method

and chosen based on the validation set. In this table performance is given using all

real-world problems. Again, PGPC clearly outperforms all other variants, with the

best performance achieved using feature set 7F with a classification error of 0.0250.

It is now possible to evaluate the performance of the complete Ensemble-2

solutions, using the best evolved SPEPs and the best classifier. These results are

summarized in Table 11, specifying the RMSE and Pearson’s correlation coefficient

when evaluated on the synthetic and real-world problem sets. These tests show that

the Ensemble-2 solutions can achieve low predictive error and a high correlation

with the true PGPC performance, for both synthetic and real-world problems. In

particular, using feature set 5F correlation on synthetic problems is close to unity,

while performance on the real-world problems show the lowest error and

approximately 0.9 correlation.

Focusing on the real-world problems, Fig. 16 summarizes the performance of the

Ensemble-2 predictors using each feature set (each row of the figure). The column

on the left-hand side shows plots of the ground truth CEl of each problem

Table 9 Performance on the SPEP selection problem for all tested classifiers, showing the median

classification error from 100 independent runs

Algorithm EDC MDC NBC SVM KNN TBC PGPC

4F

Training 0.1533 0.0567 0.0200 0.0233 0.0133 0.0067 0.0100

Testing 0.2500 0.1389 0.1111 0.1111 0.1389 0.1111 0.0833

5F

Training 0.1533 0.0567 0.0200 0.0200 0.0200 0.0067 0.0100

Testing 0.2778 0.1389 0.1389 0.1389 0.1667 0.1389 0.1111

7F

Training 0.1533 0.0467 0.0200 0.0033 0.0200 0.0067 0.0100

Testing 0.2778 0.1389 0.1389 0.2500 0.1667 0.1111 0.0972

The performance is given on the training and testing sets

Bold text indicates the best performance on each feature set

Table 10 Performance on the SPEP selection problem for all tested classifiers, showing the classification

error of the best solution found, evaluated over all real-world problems, with bold indicating the best

performance on each feature set

Feature set EDC MDC NBC SVM KNN TBC PGPC

4F 0.2500 0.1250 0.1000 0.1000 0.1250 0.1250 0.0500

5F 0.2750 0.1250 0.1250 0.1250 0.1500 0.1250 0.1000

7F 0.2750 0.1250 0.1250 0.2500 0.1500 0.1250 0.0250
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(triangles) and the Ensemble-2 PCE. These plots show three types of PCE: (1)

correctly classified problems for which the appropriate SPEP was selected (CC-

PCE); (2) misclassified problems for which an incorrect SPEP was selected (MC-

PCE); and (3) for the misclassified problems the oracle SPEP prediction (O-PCE),

which is the PCE produced by the correct SPEP. The column on the right-hand side

of Fig. 16 presents scatter plots of the true CEl and the PCE, using the same

notation.

These plots provide a graphical confirmation of the quality of the performance

prediction. It is important to highlight the impact of a misclassified problem, shown

as a black circle, compared to the prediction on the same problem if the correct

SPEP had been chosen (O-PCE). For all problems for which the correct SPEP was

chosen the PCE is highly correlated with the ground truth with only marginal

differences in most cases.

5.3.2 Ensemble-3 solutions

Figure 17 presents a parallel coordinate plot dividing the problems into three

groups, where each coordinate is given by a feature in b. Plots are shown for

synthetic (Fig. 17a) and real-world problems (Fig. 17b). The plots on the left show a

single line for each problem, while the plots on the right show the median values for

each group. For clarity, features SD and CDR were rescaled to values between

[0, 1].

Table 12 summarizes the performance of the best SPEP models used to build the

Ensemble-3 solution. The first column, from left to right, specifies the feature subset

used from b. The second column specifies the evaluated SPEP, SPEP-1 was trained

with synthetic problems from the first group, SPEP-2 with problems from the

second group and SPEP-3 with problems from the third group. The third column

shows the training RMSE, the fourth column shows the testing group and the final

columns shows the testing RMSE.

Again, the results show that the SPEP models are specialized to their respective

groups. Performance on the testing set is better than the simple PEP models, but

worse than the Ensemble-2 solution presented before. All feature sets produce

similar performance on testing set problems, with the best performance on Group 1

Table 11 Ensemble-2 prediction accuracy using each feature set (4F, 5F and 7F), using the best evolved

SPEPs and the best classifiers with each feature set

Feature set Synthetic Real-world

RMSE Correlation RMSE Correlation

4F 0.0284 0.9709 0.0818 0.8717

5F 0.0302 0.9984 0.0736 0.8981

7F 0.0276 0.9728 0.0897 0.8514

Performance is given based on the RMSE and Pearson’s correlation coefficient when evaluated on the

synthetic and real-world problem sets; with bold indicating the best performance on real-world problems
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Fig. 16 Performance prediction of the best Ensemble-2 solutions for each feature set: 4F (top), 5F
(middle) and 7F (bottom). The left-hand side column of plots show the ground truth CEl of each problem
(triangles) and the corresponding PCE (circles). The right-hand side column shows scatter plots between
the CEl and the corresponding PCE. The PCE is presented in three different cases: the PCE of a correctly
classified problem (CC-PCE, circle); the PCE of a misclassified problem (MC-PCE, dark circle); and the
oracle PCE of a misclassified problem using the correct SPEP (O-PCE, circle with a cross). a 4F: RMSE
= 0.0818, b 4F: q ¼ 0:8717, c 5F: RMSE = 0.0736, d 5F: q ¼ 0:8981, e 7F: RMSE = 0.0897 and f 7F:
q ¼ 0:8514
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and Group 2 achieved by using set 4F, and the best performance on Group 3 with set

5F.

The results summarized in Table 12 represent the best possible performance if

the correct problem group is chosen, but also confirm that if the correct group is not

chosen than prediction accuracy can decline. Table 13 summarizes the performance

of all of the tested classifiers for the three-group case, showing the median

classification error achieved on the training and testing sets. On these tests, TBC

achieves the best median performance. Table 14 focuses on the performance of the

best classifier evaluated over all real-world problems. Again, TBC outperforms all

other variants, with the best performance achieved using feature set 5F with a

classification error of 0.1750.

It is now possible to evaluate the performance of the complete Ensemble-3

solutions, using the best evolved SPEPs and the best classifier. These results are

summarized in Table 15, specifying the RMSE and Pearson’s correlation coefficient

when evaluated on the synthetic (training) and real-world (validation and testing)

problem sets. These tests show that the Ensemble-3 solutions can achieve low

predictive error and a high correlation with the true PGPC performance, for both
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Fig. 17 Parallel coordinate plots dividing the problems into three groups, where each coordinate is given
by a feature in b. Plots are shown for synthetic (a) and real-world problems (b). The plots on the left show
a single line for each problem, while the plots on the right show the median values for each group
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synthetic and real-world problems. In all feature sets the correlation on synthetic

problems is above 0.97, while the best performance on the real-world problems is

achieved using set 5F based on RMSE and set 7F based on correlation.

Focusing on the real-world problems, Fig. 18 summarizes the performance of the

Ensemble-3 predictors using each feature set (each row of the figure). These plots

illustrate the performance of the achieved prediction. As in the Ensemble-2 case, it

is important to highlight the impact of misclassified problems (shown as a black

circle) compared to the prediction on the same problem if the correct SPEP had been

chosen (O-PCE). In this case we can see more misclassifications. The reason is

evident in Fig. 17, since Group 2 and Group 3 are not so easily differentiated.

However, the impact of the misclassified problems is not as large as it is for the

Table 12 RMSE of the best

evolved SPEP models, using

different feature sets (first

column)

Performance is given based on

training and testing set.

Moreover, each SPEP-

i corresponds to the ith problem

group but is tested on all

problem groups, as specified in

column 4

Bold text indicates best

performance on each group

SPEP Training Testing group Testing

4F

SPEP3-1 0.0201 1 0.0315

2 0.1312

3 0.2767

SPEP3-2 0.0303 1 0.1883

2 0.0302

3 0.1459

SPEP3-3 0.0264 1 0.3955

2 0.1349

3 0.0532

5F

SPEP3-1 0.0195 1 0.0380

2 0.2076

3 0.1602

SPEP3-2 0.0313 1 0.0931

2 0.0380

3 0.1245

SPEP3-3 0.0294 1 0.2691

2 0.1250

3 0.0525

7F

SPEP3-1 0.0212 1 0.0469

2 0.1723

3 0.2391

SPEP3-2 0.0285 1 0.1096

2 0.0352

3 0.1719

SPEP3-3 0.0277 1 0.1339

2 0.1133

3 0.0531
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Ensemble-2 solution, given the comparatively similar RMSE of both the Ensemble-

3 and the Ensemble-2 solutions.

6 Discussion

This work presents three approaches towards solving the performance prediction

problem using the general PEP approach: a single PEP, an Ensemble-2 solution (2

SPEPs) and an Ensemble-3 solution (3 SPEPs). Table 16 presents a comparison of

Table 13 Performance on the SPEP selection problem for all tested classifiers, showing the median

classification error from 100 independent runs

Algorithm EDC MDC NBC SVM KNN TBC PGPC

4F

Training 0.2533 0.1967 0.0833 0.1067 0.0467 0.0167 0.0633

Testing 0.4722 0.3056 0.3889 0.3611 0.3056 0.2778 0.3611

5F

Training 0.2500 0.1933 0.0833 0.1033 0.0533 0.0200 0.0667

Testing 0.5000 0.3056 0.4167 0.3611 0.3333 0.3056 0.3333

7F

Training 0.2467 0.1867 0.0800 0.0533 0.0567 0.0167 0.0667

Testing 0.5000 0.3056 0.3889 0.4444 0.3333 0.3333 0.3333

The performance is given on the training and testing sets, with bold indicating the best performance on

each feature set

Table 14 Performance on the SPEP selection problem for all tested classifiers, showing the classification

error of the best solution found, evaluated over all real-world problems, with bold indicating the best

performance on each feature set

Feature set EDC MDC NBC SVM KNN TBC PGPC

4F 0.4750 0.3000 0.4000 0.3500 0.3000 0.2250 0.2500

5F 0.5000 0.3000 0.4250 0.3500 0.3250 0.1750 0.2500

7F 0.5000 0.3000 0.3750 0.4500 0.3250 0.2500 0.3000

Table 15 Ensemble-3 prediction accuracy using each feature set (4F, 5F and 7F), using the best evolved

SPEPs and the best classifiers with each feature set

Feature set Synthetic Real-world

RMSE Correlation RMSE Correlation

4F 0.0288 0.9704 0.0808 0.8685

5F 0.0300 0.9687 0.0775 0.8707

7F 0.0285 0.9714 0.0786 0.8736

Performance is given based on the RMSE and Pearson’s correlation coefficient when evaluated on the

synthetic and real-world problem sets; with bold indicating the best performance on real-world problems
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Fig. 18 Performance prediction of the best Ensemble-3 solutions for each feature set: 4F (top), 5F
(middle) and 7F (bottom). The left-hand side column of plots show the ground truth CEl of each problem
(triangles) and the corresponding PCE (circles). The right-hand side column show scatter plots between
the CEl and the corresponding PCE. The PCE is presented in three different cases: the PCE of a correctly
classified problem (CC-PCE, circle); the PCE of a misclassified problem (MC-PCE, dark circle); and the
oracle PCE of a misclassified problem using the correct SPEP (O-PCE, circle with a cross). a 4F: RMSE
= 0.0808, b 4F: q ¼ 0:8685, c 5F: RMSE = 0.0775, d 5F: q ¼ 0:8707, e 7F: RMSE = 0.0786 and f 7F:
q ¼ 0:8736
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the best results of each solution evaluated on the real-world test cases. While all

solutions achieve comparable results, it is clear that the Ensemble-2 solution

achieves the lowest RMSE and the highest correlation, particularly when using set

5F. These results provide two important insights. First, that the ensemble approach

is justified in this domain, with both ensembles outperforming the single PEP

models. Second, that grouping the problem into useful subsets based on

performance can be solved using two broad categories, what might be considered

as easy and difficult problems. However, differentiating problems further becomes

difficult given the underlying distribution of problems within feature space, as

shown in Fig. 17 and confirmed by the lower performance of the Ensemble-3

solution.

Before concluding let us discuss some additional observations, starting with the

relative importance of each feature used to predict performance. Since all PEPs and

SPEPs where generated using symbolic regression with GP, we use statistics over

the GP runs to measure the importance of each feature. Figure 19 shows two plots

that quantify the frequency of feature use when the models were evolved using the

complete feature set (7F) over 100 independent runs. Figure 19a is a bar plot where

the frequency is given by summing the number of times that each feature appeared

as a terminal element in the best symbolic regression solutions from each run.

Figure 19b plots the median of the number of times that each feature appears in the

best solution from each run. In this plot each line corresponds to either a single PEP

or a particular SPEP from each ensemble; for instance, for the Ensemble-2 solutions

there are two SPEPs labeled as Ensemble-2-1 and Ensemble-2-2, and similarly for

the Ensemble-3 models. Notice that in this plot the lines for SPEP Ensemble-2-1

and SPEP Ensemble-3-1 overlap since they correspond to the same problem group.

Figure 19 reveals some interesting facts of how the symbolic regression system

performs feature selection. As shown in Fig. 9, the features with higher correlation

to PGPC performance are FE, VOR, CDR and CD-1, in that order. However, if we

consider all evolved models (Fig. 19a) FE is not the most widely used feature, the

evolved models consistently select VOR and CDR at a higher frequency. On the

other hand, the less correlated features SD, CD-2 and CD-3 are indeed used less by

GP.

If we consider feature frequency in finer detail by comparing the frequency in the

PEP models with the frequency in each SPEP, some interesting trends appear, as

shown in Fig. 17b. In this case it is clear that some features are better predictors of

PGPC performance on particular problem groups. For instance, CDR and VOR are

Table 16 A comparison of each predictor approach; where bold indicates best performance

PEP SPEP Ensemble-2 SPEP Ensemble-3

RMSE Correlation RMSE Correlation RMSE Correlation

4F 0.0828 0.8634 0.0818 0.8717 0.0808 0.8685

5F 0.0929 0.8823 0.0736 0.8981 0.0775 0.8707

7F 0.0930 0.8046 0.0897 0.8514 0.0786 0.8736
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the most used by the PEP models. On the other hand, FE is used with a higher

frequency when predicting performance on easier problems (Ensemble-2-1,

Ensemble-3-1) than for the hardest problems (Ensemble-3-3). This is also the case

for CDR and slightly for CD-2. Conversely, while CD-3 is rarely used in PEP

models, it appears to be very useful in predicting performance on the most difficult

problems (Ensemble-3-3) and the easiest (Ensemble-2-1 and Ensemble-3-1)

problems.

It is also instructive to determine if the dimensionality reduction applied as

preprocessing has a negative effect with regards to performance prediction. Our

proposal is to use the first two principal components of the data, in order to simplify

the description of the real-world problems. However, it is not clear if the percentage

of the variance described by such few components is enough to properly

characterize the problems. To analyze this, Fig. 20 presents scatter plots of all the

real-world problems p 2 Q0, showing the percentage of the total variance of the data
explained by the first two principal components (x-axis) and the prediction error

(PE) (y-axis) computed as the absolute difference between CEl and PCE. In

particular, Fig. 20a is based on the PEP-4F model while Fig. 20b is based on the

SPEP-2-5F model. The caption of the figure specifies the computed Pearson’s

correlation coefficient q between both measures. Notice that there is no significant

correlation, suggesting that the accuracy of the models does not suffer from the

proposed preprocessing.

Finally, an implicit goal of the PEP and SPEP models is to obtain accurate

performance predictions in a fraction of the time required to obtain those same

estimates by actually performing the GP runs. Pragmatically, one way to validate if

this goal is achieved is to calculate the running time for all problems, based on the

employed PGPC implementation and the complete SPEP process. These exper-

iments were conducted using MATLAB r2013a and the GPLAB toolbox [49]
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Fig. 19 Feature selection by the symbolic regression GP used to evolve all PEP and SPEP models,
showing usage frequency over 100 runs: a bar plot of the total number of times that each feature appeared
as a terminal element in the best models; and b median of the number of times that each feature appeared
in each tree. a 4F: RMSE = 0.0808, b 4F: q ¼ 0:8685, c 5F: RMSE = 0.0775, d 5F: q ¼ 0:8707, e 7F:
RMSE = 0.0786 and f 7F: q ¼ 0:8736. a7F and b 7F
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running on a PC with Ubuntu 12.04 LTS using an Intel RXeon(R) CPU E3-1270 v3

@ 3.50 GHz 9 8 processor with 15.6 GB of RAM. In these tests, the minimum

amount of time required to compute CEl (30 runs of PGPC) was 3360.96 seconds,

while the maximum amount of time required to compute the PCE (running the SPEP

process) was 11.22 seconds. These results clearly show that PEP and SPEP models

can be used in real-world scenarios to obtain both accurate and efficient estimations

of GP performance.2

7 Conclusions

This work presents three main contributions. First, extensions of the PEP approach

originally proposed in [57, 59, 60], by adding new descriptive measures and testing

the PEP models built with synthetic classification problems over a more challenging

scenario, performance prediction on real-world classification problems with

different dimensions and class imbalance. To achieve the latter we included a

preprocessing step for dimensionally reduction, something that previous proposals

lacked. Second, the proposed models predict the performance of the GP classifier

when they are evaluated on the test set of fitness cases, while previous works

focused on predicting training performance. For real-world scenarios, predicting the

test performance of a learning algorithm is more relevant since overfitting can

appear on difficult problem instances. Third, this work presents a new proposal

using an ensemble of SPEPs, where the problems are separated into groups and

0 20 40 60 80 100
0

0.05

0.1

0.15

0.2

0.25

0.3

Percentage of the total variance

P
re

d
ic

ti
o

n
 E

rr
o

r

0 20 40 60 80 100
0

0.05

0.1

0.15

0.2

0.25

0.3

Percentage of the total variance

P
re

d
ic

ti
o

n
 E

rr
o

r

(a) (b)

Fig. 20 Scatter plots show the relationship between the percentage of the total variance explained by two

principal components (x-axis) and the prediction error (y-axis), for all problems p 2 Q0, where the
prediction error is the absolute difference between the CEl and PCE, figure on the left show the PEP-4F
model and figure on the right SPEP-2-5F, where q specifies Pearson’s correlation coefficient. a PEP-4F:
q ¼ �0:16 and b SPEP-2-5F: q ¼ �0:08

2 It is important to state that our PGPC and SPEP implementations were not implemented in any optimal

way, and that running times with other implementations might be substantially different. Nonetheless, we

believe that these results give a sufficiently accurate estimate of the possible usefulness of our proposed

methodology.
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specialized models were built for each group, improving the prediction accuracy on

unseen real-world problems.

The main conclusions derived from this work are the following. First, the

proposed dimensionality reduction was successful, it allowed the system to learn the

predictive models using simple 2D synthetic problems and apply them on real-world

problems with considerably more dimensions. Second, the evolved PEP and SPEP

models were able to accurately predict PGPC performance on imbalanced datasets,

without the need of using imbalanced data during the training phase. Third, the new

descriptive measures proposed in this work (CD-1, CD-2, CD-3) complemented the

problem descriptors used in previous works to help improve predictive accuracy.

Some of the proposed descriptors (CD-1) were among the most correlated with

PGPC performance; their usefulness was confirmed when analyzing the feature

selection performed by GP. However, it’s important to note that all descriptors were

used in most evolved PEPs, even if some descriptors exhibited very small amounts

of correlation with PGPC performance. Finally, our ensemble proposal provides two

general perspectives of the prediction task: categorical and numerical prediction.

Where, a categorical prediction is used to select specific SPEPs, while the numerical

prediction is given by the chosen SPEP. While not explored in this work, the

categorical prediction might be sufficient for some applications, such as in fuzzy

inference systems.

Finally, possibles future work derived from this research includes the following.

The problem descriptors used in this work produced good results, but defining the

optimal set of descriptors is still an open question. We will also use this

methodology for many classifiers, deriving one PEP for each classifier, thus

allowing us to create an expert system for classifier selection. Another possibility is

to use the PEPs within a wrapper approach, where the PEP model could be used as a

surrogate fitness function for GP-based classifiers. Moreover, these methodologies

could be extended to predict the performance of a GP-based symbolic regression

system, building PEP models using a set of descriptive measures that can

characterize symbolic regression problems accurately. To do so, a proper

dimensionality reduction step must be developed.

Acknowledgments This research was supported by CONACYT Basic Science Research Project No.
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42. R. Poli, E. Galván-López, The effects of constant and bit-wise neutrality on problem hardness, fitness

distance correlation and phenotypic mutation rates. IEEE Trans. Evol. Comput. 16(2), 279–300
(2012)

43. R. Poli, M. Graff, N.F. McPhee, Free lunches for function and program induction, in Proceedings of

the tenth ACM SIGEVO workshop on foundations of genetic algorithms, FOGA ’09 (ACM, New

York, 2009), pp. 183–194

44. B. Punch, D. Zongker, E. Goodman, Advances in genetic programming, in The Royal Tree Problem,

a Benchmark for Single and Multiple Population Genetic Programming (MIT Press, Cambridge,

1996), pp. 299–316

45. C. Qing-Shan, G.G. De-fu, W. Li-Jun, C. Huo-Wang, A modified genetic programming for behavior

scoring problem, in IEEE Symposium on Computational Intelligence and Data Mining, 2007. CIDM,

2007 (2007), pp. 535–539

46. R. Quick, V. Rayward-Smith, G. Smith, Fitness distance correlation and ridge functions, in Parallel

Problem Solving from Nature PPSN V, vol. 1498, Lecture Notes in Computer Science, ed. by A.
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