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Abstract A mapping is local if it preserves neighbourhood. In Evolutionary

Computation, locality is generally described as the property that neighbouring

genotypes correspond to neighbouring phenotypes. A representation has high

locality if most genotypic neighbours are mapped to phenotypic neighbours.

Locality is seen as a key element in performing effective evolutionary search. It is

believed that a representation that has high locality will perform better in evolu-

tionary search and the contrary is true for a representation that has low locality.

When locality was introduced, it was the genotype-phenotype mapping in bitstring-

based Genetic Algorithms which was of interest; more recently, it has also been

used to study the same mapping in Grammatical Evolution. To our knowledge, there

are few explicit studies of locality in Genetic Programming (GP). The goal of this

paper is to shed some light on locality in GP and use it as an indicator of problem

difficulty. Strictly speaking, in GP the genotype and the phenotype are not distinct.

We attempt to extend the standard quantitative definition of genotype-phenotype

locality to the genotype-fitness mapping by considering three possible definitions.

We consider the effects of these definitions in both continuous- and discrete-valued

fitness functions. We compare three different GP representations (two of them

induced by using different function sets and the other using a slightly different GP

encoding) and six different mutation operators. Results indicate that one definition

of locality is better in predicting performance.
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1 Introduction

The concept of a fitness landscape [69] has dominated the way geneticists think

about biological evolution and has been adopted within the Evolutionary

Computation (EC) community and many others as a way to visualise evolution

dynamics. Over the years, researchers have defined fitness landscapes in slightly

different ways (e.g., [30, 36] and [62]). All of them have in common the use of three

main elements: search space x, neighbourhood mapping v and fitness function f.
More formally, a fitness landscape, as specified in [58], is normally defined as a triplet

(x, v, f): (a) a set x of configurations, (b) a notion v of neighbourhood, distance or

accessibility on x, and finally, (c) a fitness function f.
How an algorithm explores and exploits a landscape is a key element of

evolutionary search. Rothlauf [53, 56] has described and analysed the importance of

locality in performing effective evolutionary search of landscapes. In EC, locality

refers to how well neighbouring genotypes correspond to neighbouring phenotypes,

and is useful as an indicator of problem difficulty. Similarly, the principle of strong

causality states that for successful search, a small change in genotype should result

in a small change in fitness [2]. In other words, the design process of an algorithm

should be guided by the locality principle [50].

In his research, Rothlauf distinguished two forms of locality, low and high. A

representation has high locality if most neighbouring genotypes correspond to

neighbouring phenotypes, that is small genotypic changes result in small phenotypic

changes. On the other hand, a representation has low locality if many neighbouring

genotypes do not correspond to neighbouring phenotypes. It is demonstrated that a

representation of high locality is necessary for efficient evolutionary search. No

threshold between low and high locality is established in Rothlauf’s work, nor

indeed in ours. Instead, we study locality as a relative concept: higher locality is

assumed to lead to improved performance. In Sect. 2 we give quantitative

definitions of locality allowing the relative locality of different representations and

operators to be compared. Also, in Sect. 2, we re-label these two concepts with the

goal to avoid misinterpretations.

In his original studies, Rothlauf used GAs with bitstrings to conduct his

experiments [52] (and more recently he further used the idea of locality to study

Grammatical Evolution at the genotype level [56]). To our knowledge, there are few

explicit studies on locality using the typical Genetic Programming (GP) [33, 46]

representation (i.e., tree-like structures).

The goal of this paper then is to shed some light on the degree of locality present

in GP. That is,

• We extend the notion of genotype-phenotype locality to the genotype-fitness

case. For this purpose we treat two individuals as neighbours in the genotype

space if they are separated by a single mutation operation.
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• We consider three different definitions of locality to study which of them gives

the best difficulty prediction,

• We consider a mutation based GP (six different mutation operators), without

crossover,

• We use three different encodings on five different problems and compare the

results against the three definitions of locality, and

• Finally, we use three different distance measures to study genotypic step-size.

This paper is organised as follows. In the following section, a more detailed

description on locality will be provided. Section 3 presents previous work on

performance prediction. Section 4 presents the experimental setup used to conduct

our experiments. In Sect. 5 we present and discuss our findings. Finally, in Sect. 6

we draw some conclusions and in Sect. 7 we outlined future work.

2 Locality

Understanding how well neighbouring genotypes correspond to neighbouring

phenotypes is a key element in understanding evolutionary search [52, 56]. In the

abstract sense, a mapping has locality if neighbourhood is preserved under that

mapping.1 In EC this generally refers to the mapping from genotype to phenotype.

This is a topic worthy of study because if neighbourhood is not preserved, then the

algorithm’s attempts to exploit the information provided by an individual’s fitness

will be misled when the individual’s neighbours turn out to be very different.

Rothlauf gives a quantitative definition of locality: ‘‘the locality dm of a

representation can be defined as

dm ¼
X

dgðx;yÞ¼dg
min

jdpðx; yÞ � dp
minj

where dp(x, y) is the phenotypic distance between the phenotypes x and y, dg(x, y) is

the genotypic distance between the corresponding genotypes, and dp
min resp. dg

min is

the minimum distance between two (neighbouring) phenotypes, resp. genotypes’’

([52], p. 77; notation changed slightly). Locality is thus seen as a continuous

property rather than a binary one. The point of this definition is that it provides a

single quantity which gives an indication of the behaviour of the genotype-

phenotype mapping and can be compared between different representations.

It should be noticed that while Rothlauf gives a quantitative definition of locality,

as expressed above (dm), this, in fact measures phenotypic divergence. Once a value

is obtained by this measure, then we can talk about high and low locality. Although

Rothlauf does not provide a threshold value to distinguish high and low locality,

nevertheless it is possible to make relative comparisons between representations. As

mentioned in Sect. 1, it is important to avoid confusion on the definitions used in this

paper. So, we have decided to re-label these two terms. That is, when the phenotypic

1 The term locality has also been used in an unrelated context, to refer to the quasi-geographical

distribution of an EC population [8].
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divergence dm is low, we are in presence of locality (Routhlauf originally called it

high-locality). On the other hand, when the phenotypic divergence dm is high, we are

in the presence of ‘‘non-locality’’ (originally called low-locality [52]).

Rothlauf claims that a representation that has locality will be more efficient at

evolutionary search. If a representation has locality (i.e., neighbouring genotypes

correspond to neighbouring phenotypes) then performance is good.

This, however, changes when a representation has non-locality. To explain how

non-locality affects evolution, Rothlauf considered problems in three categories,

taken from the work presented in [30]. These are:

• easy, in which fitness increases as the global optimum approaches,

• difficult, for which there is no correlation between fitness and distance and,

• misleading, in which fitness tends to increase with the distance from the global

optimum.

It should be noticed that Rothlauf used these three categories only to highlight the

implications of the type of locality on these scenarios. To this end, Rothlauf

described the following three scenarios with different types of locality.

If a given problem lies in the first category (i.e., easy), a non-locality representation

will change this situation by making it more difficult and now, the problem will lie in

the second category. This is because non-locality introduces randomness to the search.

This can be explained by the fact that representations with non-locality lead to

uncorrelated fitness landscapes, so it is difficult for heuristics to extract information.

If a problem lies in the second category, a non-locality representation does not

change the difficulty of the problem. There are representations that can convert a

problem from difficult (class two) to easy (class one). However, it is non-trivial to

construct such a representation.

Finally, if the problem lies in the third category, a representation with non-

locality will transform it so that the problem will lie in the second category. That is,

the problem is less difficult because the search has become more random. This is a

mirror image of a problem lying in the first category and using a representation that

has non-locality.

According to Rothlauf ([52], p. 73) ‘‘Previous work has indicated that high local-

ity of a representation is necessary for efficient evolutionary search [23–25, 54, 55]

However, it is unclear as to how the locality of a representation influences problem

difficulty, and if high locality representations always aid evolutionary search’’. In

this study, as mentioned previously, we want to corroborate this by using locality as

a tool for prediction of performance. Before doing so, it is necessary to extend the

typical definition of locality from the genotype-phenotype to the genotype-fitness

mapping. This extension is presented in the following section.

2.1 Extending the definition of locality to the genotype-fitness mapping

Some GP variants have distinct genotypes and phenotypes, for example Cartesian

GP [40], linear GP [3], and others. The genotype must be transformed to produce the

program proper. The case of standard, tree-structured GP is different, because the

genotype is the program proper. Depending on one’s viewpoint, one might say that
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the genetic operators work directly on the phenotype, that the genotype-phenotype

mapping is the identity map, or simply that no phenotype exists. In this work, we

have adopted the traditional GP system, where there is no explicit genotype-

phenotype mapping, so we can say that there are no explicit phenotypes distinct

from genotypes. It is common therefore to study instead the behaviour of the

mapping from genotype to fitness [34], and we take this approach here. We will also

regard two individuals as neighbours in the genotype space if they are separated by a

single mutation. That is, a mutation operator defines the neighbourhood of

individuals in the genotype space, adhering to the Jones principle [30] that each

operator induces its own landscape.

We begin by considering again the standard definition of locality. It can be

characterised as ‘‘the sum of surplus distances’’, where a surplus distance is the

actual phenotypic distance between genotypic neighbours less what that distance

‘‘should have been’’. Note in particular Rothlauf’s treatment of neutrality. Where

genotypic neighbours turn out to lead to the same phenotype, the phenotypic

minimum distance dmin is added to the sum dm. This is the same quantity that is

added when neighbouring genotypes diverge slightly (for bitstring phenotypes with

Hamming distance). In other words synonymous redundancy (redundancy of

genotypic neighbours) has the same effect as a small divergence of genotypic

neighbours. Whether neutrality is beneficial in general is a complex question

considered in detail in some previous work [11, 12, 16, 19, 37, 44, 45, 61]; this issue

deserves consideration as we will see. The situation is summarised (for discrete-

valued phenotypic distances) in Table 1. Thus the final quantity is a continuous

measure of the phenotypic divergence and (to a lesser extent) redundancy of

genotypic neighbours.

Before explaining how we have extended the definition of locality, first used in

GAs, to the genotype-fitness mapping in GP, it is important to state clearly some key

elements that we have used in our work.

Firstly, it should be recall that we considered individuals to be genotypic

neighbours if a single mutation can transform one into the other. From this we

consider whether genotypic neighbours turn out to be fitness neighbours. Given this,

it is clear that we need to properly define fitness neighbour.

Recall that locality refers to how well neighbouring genotypes correspond to

neighbouring phenotypes and that a representation that shows to preserving good

neighbourhood is preferred. This intuitively means that a minimum fitness distance

Table 1 Impact of different phenotypic distances in Rothlauf’s definition of genotype-phenotype

locality

Phenotypic distance Contribution to locality-sum

0 Small (non-local)

Almost 1 Zero (local)

[[ 1 Non-zero, potentially large (non-local)

When genotypic neighbours correspond to phenotypes which differ by the amount shown, the contri-

bution to dm is as shown in column 2. Recall that in dm, smaller is better
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is required. For instance, for discrete values a minimum fitness distance can be

regarded as 0 or 1. It should be noticed that it is possible to extend this to continues

values, as described later in this section. Now, based on the discussion presented in

the previous paragraphs regarding how Rothlauf defined locality, the key question is

whether to regard genotypic neighbours whose fitness distances are 0 and 1 to be

instances of neutrality, locality, or non-locality. The three alternative definitions

(summarised in Table 2) are:

• The most straightforward extension of Rothlauf’s definition might regard two

individuals as fitness-neighbours if the difference of their fitness values is 1, and

regard fitness-neutral mutations as non-local. This leads to the following

definition for ‘‘non-locality’’ which we call Def0 (the second column of Table 2).

dm ¼
PN

i¼1 jfdðxi;mðxiÞÞ � fdminj
N

ð1Þ

where fd(xi, m(xi)) = |f(xi) - f(m(xi))| is the fitness distance between a ran-

domly-sampled individual xi and the mutated individual m(xi), fdmin = 1 is the

minimum fitness distance between two individuals, and N is the sample size.

• However, the above definition treats a fitness-neutral mutation as being just as

bad for locality as a mutation causing a fitness divergence of two fitness units

(assuming integer-valued fitness). It might be preferable to redefine the minimum

distance in the fitness space as zero, giving the same locality definition as above

but with fdmin = 0. This, we term Def1 (the third column of Table 2).

• Finally, it might be better to treat only true divergence of fitness as indicating

poor locality. Therefore we might say that fitness divergence occurs only when

the fitness distance between the pair of individuals is 2 or greater: otherwise the

individuals are regarded as neighbours in the fitness space. This leads to the

following definition, which we will call Def2 (the final column of Table 2).

dm ¼
PN

i¼1:fdðxi;mðxiÞÞ� 2 fdðxi;mðxiÞÞ
N

ð2Þ

Since we have no a priori reason to decide which of these three is the best

definition of genotype-fitness locality, we will decide the issue by relating the values

produced by each with performance achieved on extensive EC runs.

Table 2 Descriptive summary of the contribution to dm made by mutations falling into three classes

(fd = 0, fd = 1, and fd [ 1), for each of three possible definitions of locality

Definition Def0 Def1 Def2

Phenotypic distance Contribution

fd = 0 Local Non-local Local

fd = 1 Non-local (small) Local Local

fd [ 1 Non-local (large) Non-local Non-local

Discrete case
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2.2 Generalisation of genotype-fitness locality to continuous-valued fitness

Several aspects of Rothlauf’s definition and the extensions to it given above assume

that phenotypic and fitness distances are discrete-valued. In particular, it is assumed

that a minimum distance exists. For GP problems of continuous-valued fitness, such

as many symbolic regression problems, it is necessary to generalise the above

definitions.

• Under the first definition (Def0), the quantity being calculated is simply the

mean fitness distance. This idea carries over directly to the continuous case.

• Under the second definition (Def1), the idea is that mutations should create

fitness distances of 1: lesser fitness distances are non-local, as are greater ones.

In the continuous case we set up bounds, a and b, and say that mutations should
create fitness distances a\ fd \ b. When fd \ a, we add a - fd to dm,

penalising an overly-neutral mutation; when fd [ b, we add fd - b to dm,

penalising a highly non-local mutation. Each of these conditions reflects a

similar action in the discrete case.

• Under the third definition (Def2), both neutral and small non-zero fitness

distances are regarded as local; only large fitness distances contribute to dm.

Thus, in the continuous case, only when fd [ b do we add a quantity (fd - b) to

dm, penalising mutations of relatively large fitness distances.

Table 3 preserves the same pattern of contributions to dm for continuous-valued

fitness as held for discrete-valued fitness, and gives new, generalised definitions

based on the idea of two threshold values. a is a small value: mutations which alter

fitness by less than a are regarded as essentially fitness-neutral. b is larger:

mutations which alter fitness by more than b are regarded as quite non-local. So,

Table 3 generalises Table 2.

As stated in Sect. 2, Rothlauf’s definition of locality is small for well-behaved

mappings (locality), and large for badly-behaved mappings (non-locality). This

property is inherited by our modifications to the definition.

In the following section, we present some previous work related to problem

hardness in EC that inspired our work.

Table 3 Descriptive summary of the contribution to dm made by mutations falling into three classes

(fd \ a, a B fd \b, and fd [ b), for each of three possible definitions of locality

Definition Def0 Def1 Def2

Phenotypic distance Contribution

fd \ a Non-local (very small); local for fd = 0 Non-local Local

a B fd \b Non-local (small) Local Local

b B fd Non-local (large) Non-local Non-local

Continuous case. Note that the pattern of contributions is identical to that of the discrete case
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3 Related work

Landscapes and problem difficulty have been the subject of a good deal of research

in EC in general and GP in particular. Several approaches to investigating problem

difficulty have been proposed. In this section we mention some of them, including

their pros and cons.

3.1 Fitness distance correlation

Jones [30, 31] proposed the fitness distance correlation (fdc) to measure the

difficulty of a problem on the basis of the relationship between fitness and distance

to the goal. The idea behind fdc was to consider fitness functions as heuristic

functions and to interpret their results as indicators of the distance to the nearest

optimum of the search space. fdc is an algebraic measure intended to express the

degree to which the fitness function conveys information about distance to the

optimum.

According to Jones [30, 31] a problem can be classified in one of three classes,

depending on the value of fdc:

1. misleading (fdc C 0.15), in which fitness tends to increase with the distance

from the global optimum;

2. difficult (-0.15 \ fdc \0.15), for which there is no correlation between fitness

and distance; and

3. easy (fdc B -0.15), in which fitness increases as the global optimum

approaches.

The threshold interval [ -0.15, 0.15] was empirically determined by Jones. In

[30, 31], Jones also proposed the use of scatter plots of distance versus fitness when

fdc does not give enough information about the hardness of a problem.

Altenberg [1] argued that predicting the hardness of a problem when using only

fitness and distance in an EC system presents some difficulties. For instance, neither

crossover nor mutation are taken into account when fdc is calculated, unless their

effects are built-in to the measure of genetic distance used. Other works have also

shown some weaknesses in fdc [5, 49]. Both [60] and [41] construct examples which

demonstrate that the fdc can be ‘‘blinded’’ by particular qualities of the search space,

and that it can be misleading. There is, however, a vast amount of work where

Jones’ approach has been successfully used in a wide variety of problems [12, 16,

44, 45]. Of particular interest is the work by Vanneschi and colleagues [62, 65]

which concentrated on the use of fdc in the context of GP. Recent works using fdc
on GP include [11, 12]. This is particularly interesting because it has been shown

that fdc can be applied using tree-like structures providing a suitable tree distance

definition.

3.2 Fitness clouds and negative slope coefficient

Later work by Vanneschi and colleagues attempted to address weaknesses of the fdc
with new approaches. Fitness clouds plots the relationship between the individuals’
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fitness values in a sample and the fitness of (a sample of) their neighbours. The

negative slope coefficient [64, 66] can be calculated even without knowing the

optima’s genotypes and it does not (explicitly) use any distance. In [62, 64],

the authors reported good results on some GP benchmark problems. Successively in

[63] these results have been extended to some real-like applications. Then in [47]

the authors gave a formal model of the fitness proportional negative slope

coefficient and a more rigorous justification of it. Finally, in [67], the authors

pointed out the limitations of this approach.

3.3 Other landscape measures

Several other approaches to studying landscapes and problem difficulty have also

been proposed, generally in a non-GP context, including: other measures of

landscape correlation [68], autocorrelation [39]; epistasis, which measures the

degree of interaction between genes and is a component of deception [20, 21, 41];

monotonicity, which is similar to fdc in that it measures how often fitness improves

despite distance to the optimum increasing [41]; and distance distortion which

relates overall distance in the genotype and phenotype spaces [52]. All of these

measures are to some extent related.

3.4 Further comments on locality

Routhlauf [52] was, perhaps, one of the first researchers that formally introduced the

concept of locality in Evolutionary Computation systems. However, it is fair to say

that other researchers [10, 39] have also studied this concept motivated by the same

idea: small changes at the genotype level should correspond to small changes at the

phenotype level to have locality (originally referred as ‘‘high locality’’ in

Routhlauf’s work [52]).

Similarly, the principle of strong causality [50] states that for successful search, a

small change in genotype should result in a small change in fitness [2, 51]. In other

words, the design process of an algorithm should be guided by the locality principle.

4 Experimental setup

For our analysis, we have used five well-known problems for GP: the Even-n-Parity

(n = {3, 4}) problem (problems that require the combination of several XOR

functions, and are difficult if no bias favorable to their induction is added in any part

of the algorithm), the Artificial Ant Problem [33] (which has been shown to have

multimodal deceptive features [36, Chapter 9]) and Real-Valued Symbolic

Regression problems (with target functions: F1 = x4 ? x3 ? x2 ? x and

F2 = 2sin(x)cos(y)).

The first and second problems are Boolean Even-n-Parity problems (n = {3, 4})

where the goal is to evolve a function that returns true if an even number of the

inputs evaluate to true, and false otherwise. The maximum fitness for this type of

problem is 2n. The terminal set is the set of inputs. In the next section we further
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describe and explain two function sets used in this type of problem to study the

locality present.

The third problem, the Artificial Ant Problem [33, pp. 147–155], consists of

finding a program that can successfully navigate an artificial ant along a path of 89

pellets of food on a 32 9 32 toroidal grid. When the ant encounters a food pellet, its

(raw) fitness increases by one, to a maximum of 89. The problem is in itself

challenging for many reasons. The ant must eat all the food pellets (normally in 600

steps) scattered along a twisted track that has single, double and triple gaps along it.

The terminal set used for this problem is T = {Move, Right, Left}. The function sets

used in this problem are explained in the following section.

The fourth and fifth problem are real-valued symbolic regression problems. The

goal of this type of problem is to find a program whose output is equal to the values

of functions. In this case we used functions F1 = x4 ? x3 ? x2 ? x and

F2 = 2sin(x)2cos(y). Thus, the fitness of an individual in the population reflects

how close the output of an individual comes to the target (F1, F2). It is common to

define the fitness as the sum of absolute errors measured at different values of the

independent variable x, in this case in the range [-1.0,1.0]. In this study we have

measured the errors for x 2 f�1:0;�0:9;�0:8. . .0:8; 0:9; 1:0g. We have defined an

arbitrary threshold of 0.01 to indicate that an individual with a fitness less than the

threshold is regarded as a correct solution, i.e. a ‘‘hit’’. Different threshold values

produce different results when comparing the number of hits.

Note that in all five problems, fitness is maximised.

To study locality we need to have alternative representations with differing

locality and (presumably) differing performance. Therefore, we will use contrasts in

encoding (three encodings: standard GP, alternative function set and a slightly

modified encoding) and in operators (six different mutation operators). The idea

here is that each encoding will give a different value for locality and different

performance, allowing us to compare the predictions of relative performance made

by locality with results of evolutionary runs.

4.1 Alternative function sets

As mentioned previously, we expect to find different performance when using

different function sets. This will allow us to compare the performance predictions

made by locality with actual performance. So, for each of the problems used, we

propose to use an alternative function set.

Let us start with the Even-n-Parity problem. The terminal set used for this

problem is the set of inputs, often called T ¼ fD0;D1; . . .;Dn�1g. The standard

function set is FE3 = {NOT, OR, AND} and we propose an alternative function set

for comparison: FE4 = {AND, OR, NAND, NOR}.

For the Artificial Ant problem, the terminal set used is T = {Move, Right, Left}.

The standard function set is FA3 = { If, P2, P3} (see [33] for a full description). In

order to have alternative encodings (with again, as we will see, different

performance and locality characteristics), we now propose an alternative function

set. This is FA4 = {If, P2, P3, P4}. The only difference is the addition of an extra

sequencing function, P4, which runs each of its four subtree arguments in order.
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For the last type of problem, Symbolic Regression, the terminal set is defined by

the variables used in the function (e.g., T = {x}). The standard function set

FS6 = {?, -, *, %, Sin, Cos}, and we propose an alternative function set for

comparison purposes: FS4 = {?, -, *, %}.

4.2 Uniform GP

In our previous work [13, 14], we have studied contrasts between GP encodings

induced by using alternative function sets. However, in GP contrasts also exist

between different encodings, including linear GP [42], graph-based GP [18], and

more. In order to include in our study the distinction between encodings, we use a

contrast between standard tree-structured GP and a slightly different GP encoding

called Uniform GP [17].

Uniform GP, called uniform because all internal nodes are of the same arity, is an

encoding defined by adding ‘dummy’ arguments (i.e., terminals/subtrees) to internal

nodes whose arity is lower than the maximum arity defined in the function set.

These are called dummy arguments because they are not executed when the

individual is evaluated. For this to happen, it is necessary to use special functions

that indicate the use of dummy arguments (these special functions can be seen as

flags that indicate that the subtree beneath these type of functions will not be

executed). Thus, dummy arguments can be seen only in trees that allow those

special functions.

For a better understanding of how this representation works, let us present an

example. Suppose that one is dealing with the traditional Artificial Ant Problem.

That is, the function set is formed by F = {If, P2, P3} where the arities of each

function are 2, 2 and 3, respectively. This function set has a maximum arity of 3. A

typical GP individual is shown in Fig. 1 (left) and a corresponding individual using

Uniform GP is shown on the right of Fig. 1.2 Please, refer to [17] for a detailed

explanation.

To use this representation in our five problems, we defined three function sets:

FE3� ¼ fAND;OR;NOT2g;FA3� ¼ fIf 3;P23;P3g and FS6� ¼ fþ;�; �;%; Sin2;
Cos2g (where % is protected division), for the Even-n-Parity (n = {3, 4}),

Artificial Ant, and Symbolic Regression problems (F1 = x4 ? x3 ? x2 ? x,

F2 = 2sin(x)cos(y)), respectively. NOT2, P23, Sin2, Cos2 allow the addition of

dummy arguments as explained previously (an example can be seen in Fig. 1).

Table 4 shows all the function sets declared for each of the problems used in this

study. Note that those marked with � indicate the use of Uniform GP.

4.3 Mutation operators

As mentioned in Sect. 1, we regard two individuals as neighbours in the genotype

space if they are separated by a single mutation. We used six different mutation

operators in our studies, taken from the specialised literature [46] where one-point

2 Notice that this type of encoding is distinct only when the arities defined in the function set are of

different values. So, if arities are all the same, Uniform GP reduces to standard GP.

Genet Program Evolvable Mach (2011) 12:365–401 375

123



and subtree mutation are the most popular mutations operators used within the GP

community.3 These are:

1. One-Point mutation, also known as node replacement mutation, replaces a node

(leaf or internal) in the individual by a new node chosen randomly among those

of the same arity to ensure that the expression remains valid, taking the arity of

a leaf as zero.

2. Subtree mutation replaces a randomly selected subtree with another randomly

created subtree as proposed in ([33], p. 106).

3. Permutation mutation creates a new individual by selecting randomly an

internal node and then randomly permuting its arguments [33].

4. Hoist mutation creates a new individual. The resulting offspring is a copy of a

randomly chosen subtree of the parent [32].

Fig. 1 A typical GP individual (left) and the same individual with uniform arity 3 (right). Dashed lines
indicate dummy arguments

Table 4 Function sets used on the Even-n-Parity Problem (n = {3, 4}), the Artificial Ant problem and

symbolic regression problems (F1 = x4, ? x3 ? x2 ? x, F2 = 2sin(x)cos(y))

Problem Function sets

Even-n-parity FE3 = {AND, OR, NOT}

FE4 = {AND, OR, NAND, NOR}

FE3� ¼ fAND;OR;NOT2g
Artificial Ant FA3 = {IF, P2, P3}

FA4 = {IF, P2, P3, P4}

FA3� ¼ fIF3;P23;P3g
Symbolic regression FS6 = { ? , - , *, %, Sin, Cos}

FS4 = { ? , - , *, %}

FS6� ¼ fþ;�; �;%; Sin2;Cos2g

FE3� ;FA3� and FS6� refer to the Uniform GP (read text)

3 Notice that Size-fair subtree mutation has two variants.
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5. Size-fair subtree mutation was proposed by Langdon [35] with two variants. For

the first method, the size of the new individual is given by the size s of a subtree

chosen at random within the parent. Size s is then used for creating a new

individual randomly. For the second method, the size of the replacement subree

is chosen uniformly in the range [l/2, 3l/2] (where l is the size of the subtree

being replaced). In his experiments, Langdon showed that the former method

produced far more bloat compared to the second method.

4.4 Sampling and parameters

To have sufficient statistical data, we created 1,250,000 individuals for each of the

six mutation operators described previously. These samplings were created using

the traditional ramped half-and-half initialisation method described in [33] using

depths =[3, 8]. By using this method, we guarantee that we will use trees of different

sizes and shapes.

4.4.1 Comments on the sampling method

This sampling method is only one possibility among many. Another approach that

can be considered is to balance the number of bad individuals (low fitness values)

against good individuals (fitter individuals) by creating a sample for each of the

individuals that will be inserted in the final sampling. That is, one could take the

approach of sampling individuals, take the fitter value(s) and add those into the final

sampling, and repeating this process until the final sampling has been completed.

Another approach that one can use is generating the same number of individuals for

each of the fitness values that can be created, as shown in our previous work [15].

There are some restrictions with this approach. For instance, one should know in

advance all the possible values that the fitness could take. Also, the generation of

individuals with high fitness is very hard to achieve. Other approaches might be

possible and each of these will definitely give different results.

We decided to start with one the simplest possible approaches to generate a

sampling. In future work, we would like to explore the implications of using

different sampling methods.

4.5 Studying locality

To study and examine the locality present, for each data point in the sample data, we

created an offspring via each mutation operator described earlier, as in our locality

definitions (Sect. 2).

To compare the predictions made by locality, we performed runs using the

parameters shown in Table 5 and using the function sets explained previously and

summarised in Table 4. In particular, note that mutation-only GP was used. This is

because in typical EC scenarios including crossover, mutation is relegated to a

‘‘background operator’’ [27]. In such an algorithm, the true neighbourhood of

individuals is largely determined by their mutual accessibility under crossover,
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rather than mutation, and so the typical, mutation-based definition of locality used

here would be misleading.

In the following section we present and describe the results on locality using the

described parameters.

5 Results

5.1 Fitness distance distributions

Let us start our analysis by taking a look at the distributions of fitness distances (fd)

induced by the six mutation operators explained in Sect. 4. In particular, we will focus

our attention on fd = {0, 1} for discrete values (i.e., Even-n-Parity and Artificial Ant).

This situation, however, changes for continuous values which is the case for the

Symbolic Regression problem. Here, as explained in Sect. 2, it is necessary to set

thresholds (denoted with a and b). So, we analyse the frequency of fitness distance

grouped into bins (fd \ a, a\ fd \ b). Figure 2 shows the frequency of each

possible fd between parent-offspring, for the five problems used in this study

(introduced in Sect. 4) and three function sets (see Table 4) for each problem.

For the first and second problem, Even-n-Parity (n = {3, 4}) problems, we can

see on the fitness distance distribution (first and second row of Fig. 2) that

regardless of the encoding used a high number of mutations are fitness neutral (i.e.,

fd = 0). There are, however, some variations worth mentioning. For instance, FE3

and FE3� (see Table 4 for a description of them) produce the largest number of

neutral mutations for all six mutation operators used4 compared with FE4. If we

further analyse this fitness neutrality in each of the function sets, we can see that

one-point mutation produces the largest number of neutral (fd = 0) mutations

compared to the other mutation operators (excluding permutation mutation for this

particular problem for the reasons explained previously). On the other hand, we can

see that FE4 produces the largest number of (fd = 1) mutations compared to FE3 and

FE3� .

Table 5 Parameters used to

conduct our experiments

Notice that we used different

combinations of population sizes

along with number of

generations

Selection Tournament (size 7)

Initial population Ramped half and half (depth 3 to 8)

Population size 200, 250, 500

Generations 125, 100, 50 (25,000 divided by

population size)

Runs 100

Mutations One point, subtree, permutation,

hoist size-fair & size-fair range

Mutation rate One single mutation per individual

Termination Maximum number of generations

4 Notice that when using the permutation mutation operator and using FE3 and FE4 on the Even-n-Parity

problem, the fd is always 0 because all of the operators in these function sets are symmetric.
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Fig. 2 Distribution of fitness distance values on the Even-3, Even-4, the Artificial Ant, and two symbolic
regression problems (F1 and F2) from top to bottom using six mutation operators, with standard function
set (left), alternative function set (centre) and a function set for Uniform GP (right)
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For the third problem, the Artificial Ant, fitness differences of up to 89 are

possible, but larger values are rare and their frequency decreases roughly linearly.

Therefore, we have omitted values above 8 to make the important values easier to

visualise (see middle of Fig. 2). Again, we can see that regardless of the encoding

used, a high number of mutations are fitness neutral, where the largest number of

occurrences of fd = 0 is when using the encoding FA3* and subtree mutation. For the

case of fd = 1, the situation is less clear. Here, using any of the three encodings (i.e.,

FA3, FA4, FA3*) seems to produce more or less the same number of occurrences.

For the last two problems, Symbolic Regression (F1 and F2) functions, it is no

longer possible to use the same approach as before because of the nature of the

problem (continuous-valued fitness). So, as mentioned previously, we analyse the

frequency of fitness distances grouped into bins. For this particular problem and for

the threshold values that we have used for our studies, it is not clear what encoding

(induced by FS6, FS4 and FS6� ) produces the largest number of occurrences for

fd \ a and a\ fd \ b. In the following section we further discuss this and clarify

the type of locality present in this problem.

Finally, it should be noticed that Uniform GP (introduced in Sect. 4) was

originally proposed to add neutrality in the search space, as explained in [17]. So,

we can see that in almost all cases, this type of encoding produced a larger number

of neutral mutations compared to the other two alternative function sets (see third

column of Fig. 2).

It is clear that while fitness distance distributions can give us an idea of the type

of locality induced by each mutation operator and encoding, the plots shown in

Fig. 2 cannot really tell us which operator and encoding gives the best locality.

Thus, to better understand this, one should really take a look at the quantitative

measures introduced formally in Sect. 2. This will be discussed in the next section.

5.2 Quantitative measures and performance

As mentioned previously (see Sect. 2), Rothlauf [52] distinguished two forms of

locality: high and low locality. In a nutshell, Rothlauf claimed that a representation

with high locality is more likely to perform effective evolutionary search compared

to a representation with low locality. However, his numerical definition, and the

extensions we have proposed for it, give smaller values for higher locality. To avoid

confusion, as we mentioned previously, we refer to high and low locality as locality

and non-locality, respectively.

We have seen in the previous paragraphs an overall picture of the fitness distance

distributions induced by different encodings on the five problems analysed in this

paper. As mentioned previously, to better understand the effects of locality on

performance, a quantitative analysis is necessary. To achieve this, we performed

extensive empirical experimentation (100� 45� 6 runs in total)5. Details of the

parameters used to conduct our runs are shown in Table 5. Because of the

5 100 independent runs, 45 different settings (i.e., three different combinations of population sizes and

number of generations, five different problems and three different function sets for each of the five

problems—3 9 5 9 3), and 6 different mutation operators.
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dimensions of all the information gathered during our experiments (details of these

results can be seen in ‘‘Appendix’’ from Table 9, 10, 11, 12, 13, 14, 15, 16, 17 and

18), we have decided to process this information to help the reader to better

understand our findings.

Let us start with the number of correct predictions of locality on performance on

the five problems and six different mutation operators used in this study. This is

shown in Table 6. Using the data shown from Tables 9, 10, 11, 12, 13, 14, 15, 16, 17

and 18, this table was built by comparing the best locality (recall that the lower the

value for locality, the better) versus performance (measured in terms of best average

fitness per run) over three different settings (i.e., different population sizes and

number of generations). Thus, a perfect prediction will be 3, where the representation

with the best locality value under a particular definition turns out to give the best

performance over all three population size/number of generations settings. We have

grouped the three definitions (denoted by Def0, Def1 and Def2—see caption of

Table 6 for a description of them) for each of the five problems used in this study.

So, let us focus our attention on the Even-3-Parity problem. The results shown in

Table 6 indicate that Def0 was able to correctly predict 2 (out of 3) when using

Table 6 Number of correct predictions of good locality on performance (measured as mean best fitness

over 100 runs), for the Even-n-Parity (n = {3, 4}), Artificial Ant and two Symbolic Regression problems

(F1, F2) and using six different mutation operators

One Point Subtree Permut. Hoist Size Fair Size Fair* Total

Even-3-Parity

Def0 0 0 - 2 2 2 6

Def1 3 3 - 1 1 1 9

Def2 0 0 - 0 0 0 0

Even-4-Parity

Def0 1 1 - 1 0 1 4

Def1 1 1 - 3 3 3 11

Def2 0 1 - 0 0 0 1

Artificial Ant

Def0 0 0 3 0 3 3 9

Def1 0 0 3 0 3 3 9

Def2 0 0 3 0 3 3 9

Symbolic regression F1

Def0 2 2 0 0 0 0 4

Def1 0 0 0 3 3 3 9

Def2 2 2 0 0 0 0 4

Symbolic regression F2

Def0 1 1 2 1 1 0 6

Def1 3 1 2 1 1 1 9

Def2 1 1 1 1 1 1 6

The three different definitions of locality are denoted by Def0, Def1 and Def2. Table 2 shows the locality

definitions for discrete-valued fitness (e.g., Even-n-Parity and Artificial Ant). Table 3 shows the locality

definitions for continuous-values fitness (e.g., Symbolic regression)
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Hoist, Size Fair mutation and its variant. Def1 was able to correctly predict

performance when using One-Point and Subtree mutation on the three different

settings (i.e., population sizes and number of generations) and was able to predict

performance only once when using Hoist, Size Fair mutation and its variant. On the

other hand, Def2 was unable to predict performance of any of the mutation operators

used for the Even-3-Parity problem. When we focus our attention on the overall

prediction versus performance for each of the definitions of locality (shown at the

bottom of Table 6), we can see that the definition of locality that most frequently

predicted performance correctly on the Even-3-Parity problem is Def1 with 9 correct

predictions. It is important to mention that the lack of values for the Permutation

operator for this particular problem is due to the nature of both the operator and the

problem in itself. That is, recalling how the permutation operator works (described

in detail in Sect. 4), we can see that this operator will not have any impact after

being applied to an individual because the binary operators AND and OR are

insensitive to the ordering of their arguments.

The same trend can be observed for the second problem, the Even-4-Parity.

That is, Def1 was able to predict correctly 11 out of 15 (recall that a perfect prediction

is 3 for each mutation operator – in this particular case only 5 mutation operators

because permutation cannot be applied for this problem as explained in the previous

paragraph). For Def0 and Def2 the overall prediction was 4 and 1, respectively. This

agrees with the results on the Even-3-Parity problem, as described previously.

Now, let us turn our attention to the third problem, the Artificial Ant problem.

Here, the three definitions of locality (formally introduced and described in Sect. 2)

show the same behaviour, so none of the definitions is better or worse than the others.

For the fourth problem Symbolic Regression problem F1, definitions Def0 and

Def2 correctly predicted the performance in 2 out of 3 cases for One-Point and

Subtree mutation. On the other hand, Def1 had a perfect prediction on performance

for Hoist, Size Fair mutation and its variant. Again, when we focus our attention on

the overall prediction versus performance for each of the definitions on locality, we

can clearly see that the definition of locality that most frequently correctly predicted

performance is a\ fdmin \ b (denoted by Def1) with 9 correct predictions.

Finally, for the last problem (Symbolic Regression problem F2), we continue

seeing the same trend. That is, Def1 gives the best prediction with 9, compared to

the predictions done by Def0 and Def2 with 6 for these two definitions.

So far, we have examined how many of the ‘‘best’’ locality made a good

prediction. In other words, locality should correspond with the best performance

(measured in terms of the average of the best fitness per generation). As mentioned

previously, we have condensed this information in Table 6 (details can be found

from Table 9 to 18 shown in ‘‘Appendix’’) and, as discussed in the previous

paragraphs, we can clearly see that overall, the best definition of locality in terms of

performance prediction is when using Def1 (see Sect. 2 for a formal definition of it).

Of course, there are other ways to interpret all the data gathered during our

experiments (shown in Tables 9, 10, 11, 12, 13, 14, 15, 16, 17 and 18). So, to

corroborate these initial findings, we have analysed all locality values (shown in

Tables 9, 11, 13, 15 and 17) and compared their values against performance (shown

in Tables 10, 12, 14, 16 and 18) over all the six mutation operators used in this study
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(see Sect. 4 for a description of each of them). We have condensed this information

in a way to highlight what definition of locality is the best focusing on function sets

used for each problem and the three definitions of locality used in this study. This

data is shown in Table 7.

As mentioned before, we have obtained this data (Table 7) by comparing each

value of locality versus performance. To better understand this, let us focus our

attention on the Even-3-Parity problem (predictions made by locality are shown in

Table 9 and performance is shown in Table 10).

We have obtained this data by comparing each prediction made by locality versus

performance, focusing our attention on each of the definition of locality and each of

the function sets used. For instance, let us focus our attention on the predictions

done by Def0 on the Even-3-Parity (shown in Table 9), using One-Point mutation

and FE3. We can see that the quantitative measure is 0.1125 and the other two values

for FE4 and FE3* are 0.1727 and 0.1059, respectively. This means, that the best

locality is when using FE3* (recall that the lower the value of locality, the better).

Table 7 Number of correct predictions of all locality values on performance (measured as mean best

fitness over 100 runs), for the Even-n-Parity (n = {3, 4}), Artificial Ant and two Symbolic Regression

problems (F1, F2)

FE3, FA3, FS6 FE4, FA4, FS4 FE3� ;FA3� ;FS6� Total

Even-3-Parity

Def0 7 0 2 9

Def1 3 9 3 15

Def2 3 0 3 6

Even-4-Parity

Def0 8 2 0 10

Def1 5 7 11 23

Def2 6 2 1 9

Artificial Ant

Def0 7 12 9 28

Def1 7 12 9 28

Def2 7 12 9 28

Symbolic Regression F1

Def0 6 4 12 22

Def1 10 16 12 38

Def2 5 0 4 9

Symbolic Regression F2

Def0 3 3 7 13

Def1 10 2 4 16

Def2 4 2 5 11

The three different definitions of locality are denoted by Def0, Def1 and Def2. Table 2 shows the locality

definitions for discrete-valued fitness (e.g., Even-n-Parity and Artificial Ant). Table 3 shows the locality

definitions for continuous-values fitness (e.g., Symbolic Regression). FE3, FA3, FS6 uses standard GP,

FE4, FA4, FS4 uses an alternative function set and FE3� ;FA3� ;FS6� uses Uniform GP for the Even-n-Parity,

Artificial Ant and Symbolic Regression problems, respectively
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The locality value for FE3 is the second best, which means that performance when

using One-Point mutation and FE3 should be the second best performance,

regardless of the population size and number of generations used. When we check

this, we can observe that in none of the cases, this was true. We continue doing the

same for the rest of the mutation operators. At the end, we sum all the values (it is

clear that we can have up to 18 correct predictions). Finally, to summarise these

values we count the number of correct predictions for all the function sets (per row

for each of the problems used). These values are shown in the last row of Table 7.

This data (Table 7) simply confirms our previous findings, the best definition of

locality (three definition formally introduced in Sect. 2) on the five problems

examined in this paper is Def1.

5.2.1 Correlating quantitative measures and performance

We can perform another form of analysis on the same data (Tables 9, 10, 11, 12, 13,

14, 15, 16, 17 and 18), again relating the results of evolutionary runs with those of

locality calculations. Here, we calculate the correlation between the mean best

fitness values achieved on the various problems, using the various encodings and

operators, and the corresponding locality values. If locality values are functioning as

predictors of performance, then a correlation between the two should exist. For each

problem and each locality-definition, then, we arrange all locality values by function

set and mutation. We do the same for performance values, with all population size/

number of generations settings grouped together. We then calculate the Pearson’s

correlation between these two data-sets.

The results are shown in Table 8. For the Even-n-Parity problems, all three

definitions of locality are shown to give values uncorrelated with fitness values

(correlations are not statistically significant, p [ 0.05. Therefore, none of our

definitions of locality makes useful predictions on these problems.

In the case of the Artificial Ant, all three definitions of locality are shown to give

values which are strongly negatively correlated (p \ 0.0001) with performance.

That is, lower (better) values of locality are associated with higher (better)

performance. Thus, all three definitions are making good predictions. This matches

with our initial findings shown in Tables 6 and 7. Also, this is evidence in favour of

locality as a measure of problem difficulty, though no new evidence is found in

favour of one definition over the others on this problem.

Finally, in the case of the Symbolic Regression problems, lower values of fitness are

better, so a positive correlation indicates good predictions. Def1 gives a good result

(high positive correlation, p \ 0.001); Def0 gives a misleading result (a negative

Table 8 Correlation values

Problem def. Even-3 Even-4 Artificial Ant F1 F2

Def0 -0.16 (9 ) 0.11 (9 ) -0.73 (U) -0.34 (9 ) -0.36 (9 )

Def1 0.19 (9 ) 0.13 (9 ) -0.74 (U) 0.47 (U) 0.34 (U)

Def2 0.01 (9 ) -0.02 (9 ) -0.74 (U) 0.05 (9 ) 0.11 (9 )
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correlation), and Def2’s correlation does not give us information. Thus, we find some

evidence in favour of Def1. This agrees with the results reported in Tables 6 and 7.

5.3 Genotypic and fitness distance distributions

In previous sections we have seen that each mutation operator leads to a

characteristic distribution of fitness distances for each problem and each encoding:

indeed, it is these distributions which are intended to be summarised by our locality

measures. We now give a partial explanation of how the differences between these

distributions arise. Recall that our definition of genetic neighbourhood is based on

mutation operators: two individuals are neighbours if one can be transformed into

the other by a single mutation. Simply, the fitness distance between neighbours

arises partly from the effect of the operator (how different are the individuals in

genetic space?) and partly from the effect of the genotype-fitness mapping (to what

extent does the mapping allow similar individuals to diverge?). Studying the first of

these two effects is the goal of this section.

Previous work has studied ‘‘the amount of variation generated in the genotype’’

by an operator application, and the effect of this variation on phenotypic variation

[28]. This concept is here termed the genotypic step-size. It can be quantified by

applying a distance function to the original and mutated individual [28].

In many EC applications, it is useful to choose a distance function which is

coherent with the operator, i.e. that reflects the ‘‘remoteness’’ of individuals via

applications of an operator. Distances have been described which reflect the number

of operator applications required to produce one individual from another [6, 43, 62,

65] or the probability of producing one individual from another in a single step [26].

Such an approach turns out not to be useful for the current experiment. If a

genotypic distance coherent with the operator is used to measure genotypic step-

size, then by definition every pair of neighbours (which differ by a single operator

application) will turn out to be at a minimum distance from each other. If we try to

compare the genotypic step-sizes of two different operators, for each using a

distance coherent with the operator, we will discover that every operator gives pairs

of neighbours which are always at the minimum distance from the original, and so

we will get a ‘‘null’’ result: every operator achieves the same genotypic step-size.

Instead, it is necessary to distinguish between the ideas of ‘‘remoteness’’ and

‘‘dissimilarity’’. Dissimilarity is a general-purpose concept, unrelated to the process

of transforming individuals using operators. In the next section we therefore

introduce three general-purpose ways to quantify dissimilarity of GP trees. No claim

is made that these three are the ‘‘best’’ ways to quantify dissimilarity. However, by

using three different and general-purpose functions, and showing that they do not

contradict each other, arguments concerning the size of the change caused by

different mutation operators can be convincingly supported.

5.3.1 Tree distance measures for GP

There are at least three natural approaches to comparing tree structures, based

respectively on minimal editing operations (tree-edit distance), alignment of similar
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structures (tree-alignment distance) and normalised compression distance. Each of

these has been studied extensively outside the field of EC [4, 29, 57, 59], and used by

EC researchers also [6, 7, 9, 22, 43, 60, 65]. We describe them in more detail next.

5.3.1.1 Tree-edit distance Tree-edit distance is integer-valued and reflective of a

very intuitive notion of the distance between a pair of trees, based on the number of

edits required to transform one into the other. Three types of edits are allowed:

insertion, deletion, and substitution. This distance measure was studied outside EC,

with algorithms given by [57, 59]. It was proposed for use in GP by [43], and is

notable partly because it is closely aligned with a mutation operator defined in the

same paper.

5.3.1.2 Tree-alignment distance Tree-alignment distance is a good general-

purpose, continuous-valued measure which reflects the fact that the roots of

syntactic trees tend to be more important than their lower levels. This measure,

proposed for use in GP by Vanneschi and colleagues [6, 60, 62, 65], is based on that

proposed by [29] via [9].

Formally, the distance between trees T1 and T2 with roots R1 and R2, respectively,

is defined as follows:

distðT1; T2; kÞ ¼ dðR1; R2Þ þ k
Xm

i¼1

dist childiðR1Þ; childiðR2Þ;
k

2

� �
ð3Þ

where d(R1,R2) = (|c(R1) - c(R2)|)z and childi(Y) is the ith of the m possible

children of a node Y, if i \ m, or the empty tree otherwise. Note that c evaluated on

the root of an empty tree is 0 by convention. The parameter k is used to give

different weights to nodes belonging to different levels in the tree and z 2 N is a

parameter of the distance. The depth-weighting is well-motivated, in that GP trees’

roots tend to be more important than their lowest levels. Code for this calculation is

available in Galván’s Ph.D. thesis [11]. This distance is notable partly because, for

k = 1 (i.e. without depth-weighting) and for a particular function/terminal set (the

Royal Tree set [48]), the distance is coherent with a specially-constructed pair of

mutation operators. The configuration we use in this paper does use depth-

weighting, and we are not using the Royal Tree function/terminal set, and so our

tree-alignment distance is not coherent with any operator. As demonstrated by

Vanneschi and colleagues, it is still useful as a general-purpose distance function.

5.3.1.3 Normalised compression distance The so-called ‘‘universal similarity

metric’’ is a theoretical measure of similarity between any two data structures (for

example strings), defined in terms of Kolmogorov complexity [38]. This is defined as

the length of the shortest program which creates the given string. Informally, two

strings are very similar if the Kolmogorov complexity of their concatenation is close

to the complexity of just one of them. This idea was made practical by [4]: they

approximated the (uncomputable) Kolmogorov complexity of a string by the length

of its compressed version, as calculated by off-the-shelf compression software. The

‘‘normalised compression distance’’ or NCD is defined as follows:
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dðx; yÞ ¼ CðxyÞ �minðCðxÞ;CðyÞÞ
maxðCðxÞ;CðyÞÞ

where x and y are two strings, xy is their concatenation, and the function C gives the

length of the compressed version of its argument.

The NCD has been used as a distance measure for trees in fields other than EC [4]

and has been used for linear structures within EC [22], and GP has been used to

approximate Kolmogorov complexity [7]. However, to the authors’ knowledge the

NCD has not yet been used to measure distance between GP trees. It can be applied

to trees simply by encoding them as strings in prefix format. For fixed node arities,

this encoding is injective, i.e. distinct trees will give distinct prefix strings. It has the

advantage that a single mutation in a large tree will lead to a smaller distance than a

single mutation in a small tree. On the other hand, mutations near the root have the

same weight as deeper ones. It shares this disadvantage with, for example, tree edit

distance. Such distances are general-purpose, in that they are intended for general

trees, not only the syntactic trees as used in standard GP.

5.3.2 Analysis on fitness distance and tree distance measures

In Figs. 3, 4 and 5 we present the most representative results on the distribution of

fitness distances and three measures (presented in the previous paragraphs) of

genotypic distances between individuals which are separated in genetic space by a

single mutation. To save space we present only a small selection of results from the

various problems and encodings.

Consider first the Artificial Ant problem. Figure 3 shows the fitness and

genotypic distance distributions created by the various operators for the FA4

encoding. Although all mutation operators can create very large outliers in fitness

distance, it is clear that the normal range of fitness distances created by the Hoist,

Size-Fair, and Size-Fair Range mutations is larger than that of the other operators,

One-Point, Subtree, and Permutation. A similar pattern holds in the three measures

of genetic distance in the same figure. If anything, the difference between operators

is stronger in genetic distance than in fitness distance: this shows that although

genotypic step-size is a factor in the fitness distance distributions summarised by the

three definitions of locality, it is not the only factor. The discrepancy between

genotypic step-size distributions and fitness distance distributions is caused by the

behaviour of the genotype-fitness mapping.

Similar remarks apply to the Symbolic Regression problem, as illustrated in

Fig. 4, where we consider only the FS6 encoding. Again we see relatively larger

values for fitness distance, created by the Hoist, Size-Fair, and Size-Fair Range

mutations, being reflected in the three genetic distance measures. Note that Subtree

mutation is also shown here to also create larger distances than Permutation, and

again this is partly reflected in the genetic distances. However, again, genetic

distances are not perfect reflections of fitness distances. Genotypic step-size only

partially explains the distribution of fitness distance. The discrepancy between

genotypic step-size and fitness distance is caused by the behaviour of the genotype-

fitness mapping.
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Contrast this finally with Fig. 5, again showing the Symbolic Regression

problem, this time with the FS4 encoding. Similar patterns in the distances created

by the mutations are seen again. The difference is that often much larger outliers are

created with the FS4 encoding than FS6. This is notable in both fitness distances and

genetic distances. It may that the greater likelihood of mutations involving the

discontinuous protected division operator causes this effect.

6 Conclusions

It has been argued that locality is a key element in performing effective evolutionary

search of landscapes [53]. According to Rothlauf [53], a representation that has high

locality is necessary for efficient evolutionary search. The opposite is true when a

representation has low locality. To avoid confusion on these terms, we have referred

them as locality and non-locality, respectively.

In this work, we have extended the original genotype-phenotype definition of

locality (formally introduced and explained in Sect. 2) to the genotype-fitness

mapping, considering three different scenarios of fitness neighbourhood.

For this purpose, we have used five problems that include discrete- and

continuous-valued ones (both necessary for the understanding of locality in EC). We

used three different encodings (two of them induced by the use of alternative

function sets and the other by modifying slightly the GP encoding as explained in

Sect. 4) for each of theses problems and analysed the locality present under each

encoding.
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From the five problems that we have analysed, and using the three different

definitions of neighbourhood denoted by Def0, Def1 and Def2 (see Sects. 2.1 and

2.2), we have seen that the correct prediction was obtained more often when
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neighbourhood was defined with Def1 which correspond to the definition given by

Rothlauf in his original genotype-phenotype mapping studies using bitstrings [53].

To test these quantitative measures of locality, we performed 100 independent

runs for all three different encodings, 6 different operators, and three different

combinations of population sizes and number of generations. In almost all of them,

we have confirmed the prediction made by locality. It is, however, fair to say that

none of the locality definitions presented in Sect. 2 was able to predict performance

all the time (e.g., different mutation operators, population sizes, generations and

more). One can argue that for any performance prediction approach, there is always

a counter example, as shown in various works (e.g., [30, 67]).

7 Future work

We have made an effort to shed some light on locality in Genetic Programming. For

this purpose, we started our analysis by using by using only mutations. This has

helped us to better understand how locality influences evolutionary search. A natural

step to take from here is by considering the use of crossover.

Also, to compare the predictions made by locality against performance, we used

one of the most popular sampling methods by considering the use of the ramped

half-and-half method. As mentioned previously, this approach has some limitations,

so it would be interesting to explore other sampling methods (some of them were

detailed in Sect. 4).
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Appendix

Tables 9, 11, 13, 15 and 17 show the results on locality and Tables 10, 12, 14, 16

and 18 show the performance (measured in terms of average of the best fitness

Table 9 Locality on the Even-3-Parity Problem using three function sets (FE3 = {AND, OR, NOT},

FE4 = {AND, OR, NAND, NOR} and FE3� ¼ fAND;OR;NOT2g), six mutations, and three locality

definitions. Lower is better

Mutation operators fdmin = 0 fdmin = 1 Cond. (fdmin = 1)

FE3 FE4 FE3� FE3 FE4 FE3� FE3 FE4 FE3�

One point 0.1125 0.1727 0.1059 0.9057 0.8699 0.9145 0.0091 0.0213 0.0102

Subtree 0.1599 0.1638 0.1026 0.8562 0.8541 0.9064 0.0081 0.0089 0.0045

Permutation 0 0 0.0154 1 1 0.9859 0 0 0.0006

Hoist 0.1902 0.2497 0.1932 0.8376 0.7936 0.8304 0.0139 0.0217 0.0118

Size fair 0.2046 0.2710 0.2063 0.8173 0.7707 0.8150 0.0109 0.0209 0.0106

Size fair* 0.1993 0.2641 0.2017 0.8207 0.7742 0.8179 0.0100 0.0191 0.0098
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Table 11 Locality on the Even-4-Parity Problem using three function sets (FE3 = {AND, OR,

NOT}, FE4 = {AND, OR, NAND, NOR} and FE3� ¼ fAND;OR;NOT2g), six mutations, and three

locality definitions. Lower is better

Mutation operators fdmin = 0 fdmin = 1 Cond. (fdmin = 1)

FE3 FE4 FE3� FE3 FE4 FE3� FE3 FE4 FE3�

One point 0.8623 0.1308 0.0629 0.9297 0.9027 0.9505 0.0080 0.0167 0.0067

Subtree 0.1307 0.1326 0.0664 0.8809 0.8816 0.9388 0.0058 0.0071 0.0026

Permutation 0 0 0.0109 1 1 0.9900 0 0 0.0005

Hoist 0.1526 0.2121 0.1365 0.8686 0.8304 0.8801 0.0106 0.0213 0.0083

Size fair 0.1618 0.2216 0.1413 0.8554 0.8179 0.8737 0.0086 0.0197 0.0075

Size fair* 0.1590 0.2166 0.1396 0.8579 0.8216 0.8748 0.0084 0.0191 0.0072

Table 12 Performance (measured in terms of average of the best fitness values over all runs) of a

mutation-based GP on the Even-4-Parity problem

Mutation operators P = 500, G = 50 P = 250, G = 100 P = 200, G = 125

FE3 FE4 FE3� FE3 FE4 FE3� FE3 FE4 FE3�

One point 11.89 14.35 (29) 12.16 11.35 13.66 (25) 11.66 10.88 13.40 (17) 11.29

Subtree 12.43 14.12 (15) 12.35 12.59 13.18 (11) 11.65 12.23 13.28 (9) 11.03

Permutation 9.90 8.91 9.89 9.90 9.90 8.91 8.91 8.91 8.91

Hoist 9.90 8.95 8.91 9.89 9.89 8.91 8.91 8.91 8.91

Size fair 9.90 8.95 8.92 9.89 9.89 8.91 8.90 8.90 8.90

Size fair* 9.90 8.93 8.91 9.88 9.89 8.91 8.90 8.89 8.90

Numbers within parentheses indicate number of runs able to find the global optimum. Higher is better.

Values out of 32

Table 13 Locality on the Artificial Ant Problem using three function sets (FA3 = {IF, PROG2,

PROG3}, FA4 = {IF, PROG2, PROG3, PROG4} and FA3� ¼ fIF3;PROG23;PROG3g), six mutations,

and three locality definitions. Lower is better

Mutation operators fdmin = 0 fdmin = 1 Cond. (fdmin = 1)

FA3 FA4 FA3� FA3 FA4 FA3� FA3 FA4 FA3�

One point 1.8209 2.0572 1.0045 2.0674 2.2104 1.5639 1.4442 1.6338 0.7841

Subtree 2.0631 2.2584 0.9619 2.1980 2.3319 1.5299 1.6306 1.7951 0.7459

Permutation 1.1468 1.2881 0.9440 1.6234 1.6808 1.5020 0.8851 0.9844 0.7229

Hoist 4.0950 4.7628 4.2617 3.8720 4.7628 3.9515 3.4835 4.4549 3.6066

Size fair 4.5438 5.5208 4.5167 4.0931 4.9515 4.0606 3.8185 4.7361 3.7887

Size fair* 4.5350 5.5323 4.5051 4.0869 4.9645 4.0548 3.8109 4.7486 3.7799
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values over all runs) for the Even-3, Even-4, Artificial Ant and two Symbolic

Regression problems (F1 and F2), respectively.
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13. E. Galván-Lopéz, J. McDermott, M. O’Neill, A. Brabazon, in CEC 2010: Proceedings of the 12th
Annual Congress on Evolutionary Computation. Defining locality in genetic programming to predict

performance, Barcelona, Spain (IEEC Press, July 2010)
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