
Softw Syst Model (2018) 17:1197–1225
https://doi.org/10.1007/s10270-016-0553-x

REGULAR PAPER

Formalised EMFTVM bytecode language for sound verification
of model transformations

Zheng Cheng1 · Rosemary Monahan1 · James F. Power1

Received: 9 December 2015 / Revised: 17 April 2016 / Accepted: 21 July 2016 / Published online: 16 August 2016
© Springer-Verlag Berlin Heidelberg 2016

Abstract Model-driven engineering is an effective
approach for addressing the full life cycle of software devel-
opment. Model transformation is widely acknowledged as
one of its central ingredients. With the increasing complexity
of model transformations, it is urgent to develop verification
tools that prevent incorrect transformations from generating
faulty models. However, the development of sound verifica-
tion tools is a non-trivial task, due to unimplementable or
erroneous execution semantics encoded for the target model
transformation language. In this work, we develop a for-
malisation for the EMFTVM bytecode language by using
the Boogie intermediate verification language. It ensures the
model transformation language has an implementable exe-
cution semantics by reliably prototyping the implementation
of the model transformation language. It also ensures the
absence of erroneous execution semantics encoded for the
target model transformation language by using a translation
validation approach.

Keywords MDE · EMFTVM · Boogie · Model transforma-
tion verification · Intermediate verification language

Communicated by Prof. Alfonso Pierantonio.

B Zheng Cheng
zcheng@cs.nuim.ie

Rosemary Monahan
rosemary@cs.nuim.ie

James F. Power
jpower@cs.nuim.ie

1 Department of Computer Science, Maynooth University,
Maynooth, Co. Kildare, Ireland

1 Introduction

Model-driven engineering (MDE) is an effective approach
for addressing the full life cycle of software development [12]
and can be seen as an evolution from earlier object manage-
ment architecture or component-oriented technology. MDE
focuses on accurately modelling the problem rather than
programming it, which allows the problem to be well com-
prehended before generating an implementation. In addition,
MDE unifies some of the best practices in software architec-
ture, including modelling, meta-data management and model
transformation (MT) technologies. Thus, it allows a user to
model once and to target multiple technology implementa-
tions by using precise MTs.

MT is widely acknowledged as one of the central ingre-
dients of MDE. A MT allows the automatic generation
of a target model from a source model, according to a
transformation specification [41]. Three main paradigms for
developing MTs are the operational, relational and graph-
based approaches [24].

With the complexity of MTs increasing to handle the needs
of industries in areas such as automotive [58], medical data
processing [71] and aviation [10], it is urgent to develop tech-
niques and tools that prevent incorrect MTs from generating
faulty models. The effects of such faulty models could be
unpredictably propagated into subsequent MDE steps, e.g.
code generation, to produce further errors. The correctness
of a MT is typically defined by transformation developers
using contracts. The contracts express the assumptions about
those circumstances when the MT is considered to be cor-
rect. In MDE, contracts are usually expressed in OCL due to
its declarative and logical nature [55].

Dedicated verification tools can be developed to reason
about the correctness of a MT. Typically, such verifiers
require both an encoding of the execution semantics of the

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s10270-016-0553-x&domain=pdf

1198 Z. Cheng et al.

Fig. 1 Overview of our formalisation of EMFTVM bytecode language

MT language and an encoding of the transformation con-
tracts, in a reasoning engine of a chosen logic, e.g. Hoare
logic [34]. Thus, the results obtained from using this reason-
ing engine will imply the correctness of the MT.

Generally, when designing the verifier for a MT language,
the verifier architects face two issues:

– First, if the MT language does not have an implemen-
tation yet, can the architects ensure that the encoded
execution semantics of the transformation language is
implementable?

– Second, if the MT language already has an implementa-
tion, can the architects ensure that the encoded execution
semantics correctly represent the runtime behaviour of
the underlying implementation?

If the answer to both of these questions is no, the soundness
of the MT verification is compromised, i.e. the verification
confirms the correctness of a MT, but the transformation gen-
erates faulty models at runtime, because:

– An unimplementable execution semantics of a MT lan-
guage introduces a “miracle” to program verification. For
example, assume that a MT language L contains an oper-
ator OP that operates on integers, which has an unimple-
mentable execution semantics such asOP(x)=OP(x) + 1.
Using the execution semantics of the OP operator in the
verification would trivially render any MT that is written
in L as verified [26,27,44].

– An execution semantics of a MT language that is incorrect
with respect to the runtime behaviour of the underly-
ing implementation could lead to erroneous conclusions
about the correctness of the MT (see Sect. 2.2 for an
example).

As visualised in Fig. 1, our solution to these issues is
to provide a translational semantics for the bytecode of the
EMF transformation virtual machine (EMFTVM) (Sect. 3).
Specifically, our formalisation of the EMFTVM bytecode
language is encoded in the Boogie intermediate verification
language (IVL) [6]. Our solution contributes in two respects:

– First, it provides a formal documentation of the
EMFTVM bytecode language. Thus, if a MT language
has no implementation yet, our formalisation assists the
verifier architects in designing its implementation cor-
rectly (Sect. 4).

– Second, our formalisation of the EMFTVM bytecode
language provides an interface to Boogie. It allows the
verifier designer to represent the runtime behaviour of
each implementation (if there is one) into Boogie. When
the execution semantics of the corresponding MT has
also been represented in Boogie (facilitated by our for-
malisation of EMF metamodels and OCL encapsulated
in Boogie [19]), soundness between the two can be ver-
ified in the state-of-the-art SMT solver Z3, via Boogie.
This verification is based on each pair of MTs and their
implementations. Our ideas are borrowed from the trans-
lation validation technique used in compiler verification,
i.e. rather than proving that the compiler always produces
target code which correctly implements the source code,
each individual translation is followed by a validation
phase which verifies that the target code produced on
this run correctly implements the given source program
[52].
Therefore, the benefit of our proposal is that, instead of
verifying that the MT is always sound with respect to
its underlying implementation (which is difficult to auto-
mate), we automatically verify the soundness of each pair
of source and target representations (Sect. 5).

123

Formalised EMFTVM bytecode language for sound verification of model transformations 1199

Paper organisation Section 2 introduces the background
knowledge that is required to understand our formalisation
of the EMFTVM bytecode language. Section 3 illustrates our
formalisation of the EMFTVM bytecode language in depth.
Two major usages of this formalisation, reliable prototyp-
ing (Sect. 4) and translation validation (Sect. 5), are then
presented. The feasibility of these two usages of our for-
malisation is shown by implementation and then evaluated
in Sect. 6. Finally, Sect. 7 compares our work with related
research, and Sect. 8 presents our conclusions and proposed
future work. The appendix presents the full formalisation for
the EMFTVM bytecode language.

2 Background

Before diving into the details of our formalisation of the
EMFTVM bytecode language, we give a brief introduction
to the EMFTVM bytecode language (Sect. 2.1). Then, we
motivate the demand of our formalisation of the EMFTVM
bytecode language by giving an concrete example of veri-
fying contracts on MTs (Sect. 2.2). Finally, we provide an
overview of the Boogie intermediate verification language,
which is used to encode our formalisation (Sect. 2.3).

2.1 The EMFTVM bytecode language

EMFTVM is a stack-based virtual machine, which aims at
providing a common execution semantics for the implemen-
tation of rule-based MT languages [69]. It is based on the
Eclipse Modelling Framework (EMF), a framework which
provides several core services that benefit the implementation
of MT languages (e.g. facilities that enable viewing, navi-
gating, editing and persisting of the models) [59]. Moreover,
EMFTVM uses the EMFTVM bytecode language to imple-
ment MTs. Existing MT languages that target the EMFTVM
include ATL, SimpleGT and EMFMigrate [68,69].

The EMFTVM bytecode language contains 50 bytecode
instructions. Apart from the general-purpose instructions for
stack handling and control flow, an important feature of the

EMFTVM language is the model-handling-specific instruc-
tions that are dedicated to EMF model manipulation. For
example, while relational MT languages typically use the
SET/GET instructions of the EMFTVM bytecode language,
graph-based MT languages usually use the ADD, REMOVE
and DELETE instructions to manipulate model elements. In
addition, when the model elements are ordered collections,
an INSERT instruction is used to insert a structural feature’s
value at a specific index.

The EMFTVM bytecode language organises the
EMFTVM instructions into code blocks. Each block con-
tains the executable instructions, local variables and a local
stack to communicate values.

Therefore, the EMFTVM bytecode language provides a
modular and systematic way to execute each MT rule in
stages (e.g. matching, applying), by building a set of code
blocks.

2.2 Verifying contracts on model transformations

In MDE, there is an urgent need to develop verification tools
which will allow users to verify the MT they developed
against specified contracts. These verifiers will ensure the
correctness of the MT and control its complexity.

In this work, our verifier designs are based on Hoare logic.
Thus, verifying that a MT is correct with respect to the given
set of contracts can be represented as a classic Hoare triple,
i.e. assuming the contracts imposed on the source metamodel
(precondition) hold, the safe execution of a MT should guar-
antee that the contracts are fulfilled on the generated target
metamodel (postcondition). In MDE, contracts are usually
expressed in OCL due to its declarative and logical nature.

Example 2.1 In this section, we focus on a trace-based MT
language called ATL [39], to demonstrate how to specify
OCL contracts on MTs. In particular, we use the ER2REL
transformation in ATL as our running example [15]. It trans-
forms models conforming to the entity–relationship (ER)
metamodel (Fig. 2a) into models conforming to the RELa-
tional (REL) metamodel (Fig. 2b). Both the ER schema and

(a) (b)

Fig. 2 Example: an entity–relationship metamodel (left) and a relational metamodel (right)

123

1200 Z. Cheng et al.

1 module ER2REL; create OUT : REL from IN : ER;
2

3 rule S2S {
4 from s: ER!ERSchema
5 to t: REL!RELSchema (name <- s.name, relations <- s.entities, relations <- s.relships})}
6

7 rule E2R {
8 from s: ER!Entity to t: REL!Relation (name <- s.name) }
9

10 rule R2R {
11 from s: ER!Relship to t: REL!Relation (name <- s.name) }
12

13 rule EA2A {
14 from att: ER!ERAttribute, ent: ER!Entity (att.entity = ent)
15 to t: REL!RELAttribute (name <- att.name, isKey <- att.isKey, relation <- ent) }
16 ...

Fig. 3 Example: excerpt of an ATL transformation for ER2REL model transformation

the relational schema have a commonly accepted semantics.
Thus, it is easy to understand their metamodels.

A snippet of the ER2REL transformation in ATL is shown
in Fig. 3. It is defined in a mapping style via a list of ATL
matched rules. The first three rules map, respectively, each
ERSchema element to a RELSchema element (S2S), each
Entity element to a Relation element (E2R) and each Rel-
ship element to a Relation element (R2R). The remaining
three rules are similar to EA2A and generate a RELAttribute
element for each Relation element created in the REL model.

Each ATL matched rule has a from section where the
source elements to be matched in the source model are speci-
fied. An optional OCL constraint may be added as the guard,
and a rule is only applicable if the guard evaluates to true.
Each rule also has a to section which specifies the elements to
be created in the target model. The rule initialises the attribut-
e/association of a generated target element via the binding
operator (<-).

An important aspect for the execution semantics of ATL is
the use of an implicit resolving algorithm during the initiali-
sation of the target element. This algorithm is responsible for
resolving the right-hand side of the binding operator before
assigning to the left- hand side.

For example, in the binding relation <- ent of the EA2A
rule (line 15 of Fig. 3), the resolving algorithm ensures that
ent is resolved to aRelation element that is created by theR2R
rule, and the resolved result will be assigned to the association
relation.

In trace-based MT languages, the key to resolving the
generated target element(s) from the given source element(s)
is to use a data structure called trace. Each trace is created
to link the matched source element with the created target
element on each successful rule application [5].

From our previous experience of verifier development for
ATL [19], we observe that there are many options for encod-

ing the execution semantics of the resolving algorithm. This
is due to the open issues documented by the ATL language
specification [5]. To ensure our proposed execution seman-
tics for the resolving algorithm is implementable, we provide
a systematic approach to reliably prototyping the resolving
algorithm in the EMFTVM bytecode language (Sect. 4). Our
formalisation for the EMFTVM bytecode language is the
foundation for such a systematic approach.

Verifying the correctness of an ER2REL transforma-
tion requires the use of the OCL contract. For example,
as the OCL contracts specified in Fig. 4, the precondi-
tion unique_er_relship_names (imposed on the ER meta-
model) specifies that all instances of ERSchema have
unique names for its relships. The goal is to verify that
the ER2REL transformation guarantees the postcondition
unique_rel_relation_names (i.e. all instances of RELSchema
have unique names for its relations) holds on the REL meta-
model.

The unique_rel_relation_names constraint does not hold
when the ATL transformation is compiled into an ASM
implementation [19]. This is because in this case:

– the multiplicity of the relations association has an upper
bound that is greater than 1 (Fig. 2).

– the relations association is bound twice (line 5 of the
ER2REL transformation in Fig. 3). The execution seman-
tics of the ATL transformation enforces the composition
of the first and second bindings.1

As a result, the relations in each RELSchema element will
be transformed from both the entities and relships of the
ERSchema element. It is not guaranteed that the names of

1 Notice that when the ATL transformation is compiled into an
EMFTVM implementation, the second binding always overwrites the
first binding (Sect. 6.3).

123

Formalised EMFTVM bytecode language for sound verification of model transformations 1201

Fig. 4 Example: contracts for
ER and REL metamodels in
OCL

1 −− relship names are unique in the ER schema
2 context ER!ERSchema inv unique_er_relship_names:
3 ER!ERSchema.allInstances()->forAll(s |
4 s.relships->forAll(r1,r2 | r1<>r2 implies r1.name<>r2.name))
5 −−−
6 −− relation names are unique in RELSchema
7 context REL!RELSchema inv unique_rel_relation_names:
8 REL!RELSchema.allInstances()->forAll(s |
9 s.relations->forAll(r1,r2| r1<>r2 implies r1.name<>r2.name))

Fig. 5 Example: McCarthy-91
function in Boogie 1 procedure McCarthy91 (n: int) returns (r : int) ;

2 ensures 100 < n =⇒ r = n − 10 ;
3 ensures n ≤ 100 =⇒ r = 91 ;
4

5 implementation McCarthy91 (n: int) returns (r : int)
6 { i f (100 < n) {
7 r := n − 10 ;}
8 else {
9 ca l l r := McCarthy91 (n + 11) ;

10 ca l l r := McCarthy91 (r) ; }
11 }

the relships are unique in each ERSchema element, nor that
the names of entities and relships in each ERSchema element
are different. Thus, the verification implies that the ER2REL
transformation is incorrect with respect to the given OCL
contracts.

We now consider what happens if a different execu-
tion semantics for the consecutive bindings to the rela-
tions association is chosen. For example, if a semantics
where the second binding overwrites the first binding, the
unique_er_relship_names constraint holds, since the rela-
tions of each RELSchema element will be resolved from the
entities of the ERSchema element only. However, this ver-
ification will be unsound for the ATL transformation that
compiles into the ASM implementation, because an incor-
rect execution semantics of ATL was used.

How can the correct execution semantics of a MT language
be distinguished from an incorrect one? In our opinion, it
relies on being able to (a) represent the runtime behaviour of
the underlying implementation of the MT language and (b)
verify it against the encoded execution semantics of the same
MT language. This further motivates the need to formalise
the EMFTVM bytecode language and to interface the runtime
behaviour of the target MT language with Boogie.

2.3 Boogie intermediate verification language

Our formalisation of the EMFTVM bytecode language is
encoded in the Boogie intermediate verification language
(IVL). Boogie is a procedure-oriented IVL based on Hoare
logic [6]. Each Boogie program consists of declarations for
types, functions, constants, axioms, expressions, variables,
procedures, or procedure implementations.

Imperative statements (such as assignment, if and while
statements) are provided by Boogie to structure the proce-
dure implementations. First-order logic (FOL) contracts (i.e.
pre-/postconditions expressed by Boogie expressions) are
supported and used for the specification of procedures. A
comprehensive manual has been presented by Leino to give
a full semantics of the Boogie IVL [47].

A Boogie program is verified if its procedure implementa-
tions satisfy their corresponding contracts. This verification
is performed by the Boogie verifier which uses the Z3 theo-
rem prover at its back end [28]. If the program is not verified,
the verifier will represent the result from Z3 as program
traces, to help locate the error in the Boogie program.

Example 2.2 To demonstrate what a Boogie program looks
like, we show the Boogie encoding of the McCarthy 91 func-
tion in Fig. 5 [50]:

– First, the signature of the Boogie procedure specifies that
the McCarthy-91 function takes one input n and one out-
put r, both of type int (line 1).

– Then, the postconditions that establish the relationship
between the input and output are specified by two ensures
clauses (lines 2–3). That is, if the input is greater than 100,
return the input minus 10 as the output; otherwise, always
return 91.

– The procedure implementation uses a Boogie if state-
ment to form a case distinction according to the input
value (lines 5–11). That is, if the input value is greater
than 100, the output is assigned the input minus 10. Oth-
erwise, two recursive calls are invoked sequentially to
compute the output.

123

1202 Z. Cheng et al.

Although the formal proof of McCarthy 91 can be done
manually, the Boogie verifier can verify it automatically by
applying basic principles for verifying recursive calls (e.g.
inlining the contracts of the recursive call).

Using Boogie in verifier design has two advantages. First,
the formalisations can be encapsulated in Boogie as libraries
and then reused in different verifier designs. For example, in
our previous work [19], we have encoded the formalisation
of EMF metamodels (based on the Burstall–Bornat mem-
ory model, see Sect. 3.1 for more detail) and a subset of
OCL (i.e. datatypes such as OCLAny, OCLType, Primitive
and collections, as well as corresponding operations defined
on these datatypes, e.g. iterators) as Boogie libraries. In our
experience, these libraries provide a foundation for the com-
mon compilation process from the EMF metamodels/OCL
expressions to Boogie and thus greatly reduce the complex-
ity of encoding the execution semantics of the target MT
languages. This motivates the usage of Boogie for program
verification in an integral way, taking into account the mod-
ularity and reusability of the verifier design.

Second, existing verifier designs have already established
the usefulness of an IVL for decomposing the complex task of
generating verification tasks for general high-level program-
ming languages into two steps [6,31,46]: a transformation
from the program and its contracts into the program written
in an IVL, and then a transformation from this IVL program
into verification tasks. Thus, the IVL bridges the front-end
high-level programming language with the back-end theo-
rem prover. The benefit is that users can focus on generating
contracts that prescribe what correctness means for the front-
end language in a structural way and can delegate the task of
interacting with theorem provers to the IVL.

At the time of this paper being written, translations into
Boogie exist for several languages, including C# [7], C [25],
Dafny [46], Java [43] and Eiffel [64]. These show its applica-
bility to a range of different programming styles.

3 Formalisation of EMFTVM bytecode language

In this section, we introduce the translational semantics of the
EMFTVM language via a list of translation rules. Each trans-
lation rule encodes the operational semantics of an EMFTVM
instruction in Boogie.

3.1 Basics of our formalisation

The only resource available regarding the EMFTVM byte-
code instructions is the bytecode format for the EMFTVM
virtual machine.2 However, this documentation is imprecise

2 EMFTVM bytecode format. https://wiki.eclipse.org/ATL/EMFTVM.

and leaves many issues open (e.g. whether adding a structural
feature twice on the same model element causes a runtime
exception). This raises the question of how a correct trans-
lation rule, especially for each model handling instruction,
should be encoded in Boogie.

Our strategy is to check the EMFTVM source code for
the operational semantics of each EMFTVM instruction and
then design the translation rule correspondingly.

Data structures of EMFTVM An EMFTVM implemen-
tation contains a list of EMFTVM code blocks. Each block
has a list of local variables, which are encoded as local vari-
ables in Boogie. An operand stack is used by each EMFTVM
block to communicate values for local computations. This is
abstracted as a sequence in Boogie (called stk in our encod-
ing). Source and target elements are globally accessible by
every EMFTVM block, and they are managed by the dis-
joint source and target maps. Both maps are called heap
in our encoding. Their encoding is based on the Burstall–
Bornat memory model that is commonly used to represent
the runtime heap in object-oriented verifier design [13]. This
approach uses an updatable map to organise the relation-
ships between runtime elements of classifiers, which allows
the mapping of memory locations (identified by an element
of a classifier and a structural feature) to values. Such a map
is defined using the following Boogie type:

type ref ;
const unique null: ref ;
type Field α;
type HeapType = <α>[ref , Field α] α;

Boogie types include built-in types such as bool, int and map
type (delimited by the brackets []). User-defined types can
be introduced with type constructors using the keyword type.
Here:

– ref is a nullary type constructor for runtime objects,
– null is a Boogie constant of type ref,
– Field α is a type constructor with one type argument to

type the fields of each runtime object (e.g. a field age can
be typed as Field int in Boogie to indicate that it is a
field of integer),

– The HeapType is a type synonym which abbreviates the
map type that is defined on its right-hand side. Such a
two-dimensional map type is defined in a polymorphic
manner (i.e. parametrised by the bound type identifier α

in the angle brackets 〈〉). It is specified to be the mapping
from memory locations (identified by a runtime object
and a field) to values of type α.

A memory access expression o.f is now seen as the expres-
sion read(heap, o, f). An assignment o.f := x is understood as
the expression update(heap, o, f, x), i.e. changing the value
of the heap at the position given by the element o and the
structural feature f, to the value of x.

123

https://wiki.eclipse.org/ATL/EMFTVM

Formalised EMFTVM bytecode language for sound verification of model transformations 1203

The domain of the heap includes both allocated and unal-
located elements. To distinguish between these elements, we
use a structural feature alloc of type Field bool which is set
to true when an element is allocated. To ensure safe memory
access, certain operations should only operate on the allo-
cated elements (i.e. when read(heap, o, alloc) returns true).

There are several advantages to adopting the Burstall–
Bornat memory model:

– it organises runtime model elements in a single updatable
map, which can be flexibly passed as an argument where
it is needed (e.g. as in the read and update function) [47].

– it allows quantification over fields [47] which is conve-
nient when expressing the frame problem (Sect. 4.3).

– it enhances verifier interoperability as verifiers that are
built using the same IVL and share the same memory
model form a verification ecosystem, allowing informa-
tion to seamlessly flow between them [21].

The full translational semantics of the EMFTVM language
is given in Tables 4, 5 and 6 in the appendix, classified by
the category that each EMFTVM instruction resides in. In
what follows, we pick a representative EMFTVM instruc-
tion from each category and explain the intuition behind its
corresponding translation rule.

3.2 Stack handling instructions

The STORE instruction is one of stack handling instructions.
It has one operand which is a local variable that the instruc-
tion operates on. The stack is expected to be non-empty for
the instruction to succeed, since it assigns the top of the stack
to its operand. After the assignment, the top of the stack is
then removed. Such an operational semantics for the STORE
instruction is encoded by its corresponding translation rule
in Boogie as shown in Fig. 6. In our Boogie encoding, to
make sure the operand of the STORE instruction is declared
before use, we generate a Boogie variable (denoted by [[x]],
and in the same scope of the encoded STORE instruction)
for each local variable of an ASM operation with unique
name and equivalent type. In addition, we use the assert
statement in Boogie to prescribe a check that the current
operand stack is non-empty before executing the STORE
instruction.

STORE x
assert s i z e (s tk) > 0 ;
x := hd(stk) ;
s tk := t l (s tk) ;

Fig. 6 Formalising one of the stack handling instructions: The STORE
instruction in EMFTVM (left) and its translation rule in Boogie (right)

IF n

var cond# : bool ;
assert s i z e (s tk) > 0 ;
cond# := hd(stk) ;
s tk := t l (s tk) ;
i f (cond#) goto n ;

Fig. 7 Formalising one of the control flow instructions: The IF instruc-
tion in EMFTVM (left) and its translation rule in Boogie (right)

3.3 Control flow instructions

The conditional instruction IF is a control instruction, which
formalises a case distinction based on the boolean value that
is popped of the operand stack (Fig. 7). If the popped value
is true, the ASM operation continues at the instruction iden-
tified by the operand of the IF instruction. Otherwise, the
IF instruction reduces to no operation. The translation rule
presented here encodes this operational semantics.

In our Boogie encoding, to make sure the offset of the IF
instruction is valid in its corresponding translation rule, we
insert a fresh Boogie label, denoted by [[n]], at the program
point which corresponds to the offset n of the IF instruction.
Furthermore, a new Boogie variable is introduced for each
IF instruction to hold the boolean value that is popped of
the operand stack. The superscript # that is attached to the
introduced Boogie variable denotes the line number of the
translated IF instruction in an EMFTVM code block. This is
to avoid name collision among introduced Boogie variables.

3.4 Model handling instructions

The ADD instruction is a model handling EMFTVM instruc-
tion. It has one parameter which is the structural feature to be
operated upon (Fig. 8). Before executing the ADD instruc-
tion, the top two elements on the operand stack are a model
element o and the value v (to add to o).

The operational semantics of the ADD instruction forms
a case distinction according to its parameter f. If f is an asso-
ciation and its multiplicity has an upper bound that is greater
than one, then the ADD instruction computes the union of
the value of o.f with v and sets the computation result to o.f.
Otherwise, o.f is checked to determine whether it has been
set to a value. If o.f has already been set to a value, a runtime
exception is thrown. Otherwise, the ADD instruction suc-
cessfully updates o.f to v and marks o.f as being set. Finally,
the top two elements on the operand stack are popped.

The translation rule for the ADD instruction offers no
surprise based on its operational semantics, except for four
points. First, a new Boogie type, setTable, is introduced:

type setTable = <α>[ref , Field α] bool ;
var acc: setTable ;

123

1204 Z. Cheng et al.

Fig. 8 Formalising one of the
model handling instructions:
The ADD instruction in
EMFTVM (left) and its
translation rule in Boogie (right)

ADD f

l e t o = hd(t l (s tk)) , v = hd(stk) in
assert s i z e (s tk) > 1 ∧ o �= null ∧

read (heap , o , a l l o c) ;
i f (i s C o l l e c t i o n (f))

{ heap := update (heap , read (heap , o , f) ,
read (heap , o , f) ∪ v) ;}

else
{ assert ¬ i s s e t (acc , o , f) ;

heap := update (heap , o , f , v) ;
acc := s e t (acc , o , f , true) ; }

s tk := t l (t l (s tk)) ;

This new type prohibits runtime exceptions caused by certain
operations on the structural features. Such an exception could
be caused by adding the same attribute twice for a model
element. Thus, checking whether o.f is set or not becomes
an expression isset(acc, o, f). Marking o.f as set uses the
expression set(acc, o, f, true), and marking it as not set uses
the expression set(acc, o, f, false).

Second, since we use different heaps to represent the
source and target models, the heap that the ADD instruction
operates on is determined by the data type of the second from
top element of the operand stack. This is accomplished by
our Boogie code generator that translates the input EMFTVM
code blocks to their corresponding Boogie code.

Third, [[f]]denotes the corresponding Boogie constant of
the parameter of the ADD instruction. It is of type Field α.
For example, the name of ERSchema in Fig. 2 can be typed
as Field String in our Boogie encoding.

Fourth, an isCollection function (of type Field α →
bool) is encoded while mapping the structural features of
classifiers to Boogie. It is axiomatised so that it returns true
when the given structural feature is an association and its
multiplicity has an upper bound that is greater than one, and
returns false otherwise.

Finally, the full translational semantics of the EMFTVM
language is encapsulated as a Boogie library. We demonstrate
two major usages of this library in the sections that follow.
These are reliable prototyping (RP, Sect. 4) and translation
validation (TV, Sect. 5).

4 Reliable prototyping for model transformation
languages

One major usage of our EMFTVM bytecode language for-
malisation is reliably prototyping the implementations of MT
languages. This is motivated by scenarios such as the tar-
get MT language not having an implementation but having
a well-defined execution semantics. Thus, by ensuring its
execution semantics is implementable in the EMFTVM byte-
code language, we can be confident that the correctness of the
MTs can be soundly verified, using this execution semantics.

Reliable prototyping of the implementation for a target
MT language can be achieved by the following steps:

(RP1) Proposing the execution semantics of the target MT
language and encoding it in Boogie.

(RP2) Understanding our formalised EMFTVM bytecode
language and constructing a candidate implementa-
tion of the MT language using Boogie.

(RP3) Verifying the correctness of the prototype by showing
that the proposed execution semantics is verified by
the candidate implementation of the MT language,
with the possibility of verifying its termination.

The execution semantics of recursive implementations is
one of the main sources of unsoundness in verification [27].
Thus, in what follows, we show how to prototype a recursive
implementation, namely the resolving algorithm of ATL, fol-
lowing steps RP1, RP2 and RP3 listed above.

4.1 RP1: execution semantics of resolving algorithm

In Sect. 2.2, we have introduced the resolving algorithm of
ATL. In this section, we propose its execution semantics as
follows (assume that the binding is expressed with the form
lhs<-resolve(y)):

(S1) If y does not have a corresponding trace that stores y
as its only source element, then y is returned.

(S2) If y does have a corresponding trace that stores y as
its only source element, then the corresponding target
element stored by the trace is returned.3

(S3) If y is of a collection type, then all of the elements in y
are resolved individually, and the resolved results are
put together into a pre-allocated collection col, and col
is returned.

The proposed execution semantics and the language speci-
fication of ATL agree on the behaviour of resolving algorithm
when the input has a corresponding trace that stores itself as
the only source element of the trace (S2) and when the input
value is of a collection type (S3) [5]. In addition to that,

3 When more than one target element is generated by y, then the first
target element generated by y is returned. For example, assuming y is
processed by a rule with the format: rule r{from y : Y to n : N , m :
M}, then the n generated for y will be returned.

123

Formalised EMFTVM bytecode language for sound verification of model transformations 1205

Fig. 9 Example: an implementation of the resolving algorithm in EMFTVM bytecode language (Some of its Boogie encoding is shown in Fig. 10)

we propose execution semantics S1 to cover three boundary
cases where the input does not have a corresponding trace
that stores itself as the only source element of the trace, i.e.
when:

– there is no corresponding ATL rule to match the input
element, or

– the input is one of the generated target elements, or
– where no trace is generated for primitive types.

The proposed execution semanticsS1 is of practical use, since
it is implied by the transformation implementation of ATL
(e.g. ASM [38], EMFTVM [70]). However, we could not
find any document that explicitly illustrates this execution
semantics.

The formalised execution semantics of the resolving algo-
rithm in Boogie follows the same structure, as shown in
Sect. 4.3.

4.2 RP2: implementation of resolving algorithm

A candidate implementation of the resolving algorithm in
EMFTVM is shown in Fig. 9. The implementation is based
on the algorithm originally developed by Jouault et al. [39].
It accepts one model element as its parameter and declares
three local variables to interact with the EMFTVM instruc-
tions for stack handling. Specifically, the local variable self
is referenced to the model element that invokes the resolving
algorithm, value is referenced to the input element, and e is a
temporary variable to store the intermediate resolving result.

123

1206 Z. Cheng et al.

The resolving algorithm first forms a case distinction
according to the multiplicity of the input (lines 0–4). If it is not
a collection datatype (e.g. Set, Sequence, Bag or OrderedSet),
then the implementation checks whether any trace holds the
input value as its source (lines 5–11). If not, the input value
is directly returned. Otherwise, the target value held by the
trace is returned. If the input value is a collection datatype,
a temporary sequence is allocated (lines 18–20). Then, each
element in the input collection is resolved iteratively, and the
resolved result is stored in the allocated sequence (lines 21–
28). After the iteration, such a sequence holds the resolved
results of the input collection and this sequence is returned
as the final result of the resolving algorithm.

The formalisation of the implementation for the resolv-
ing algorithm in Boogie draws on our Boogie library for the
EMFTVM bytecode language (Sect. 3) and follows the same
structure as illustrated in this section. We demonstrate this in
Sect. 4.3.

4.3 RP3: verification of the resolving algorithm

To verify the correctness of the resolving algorithm, we pair
its execution semantics in Boogie with its corresponding
formalised EMFTVM bytecode implementation. We demon-
strate part of the Boogie code for this task in Fig. 10.
Specifically, in the excerpt shown here, lines 16–42 of Fig. 10
correspond to lines 21–27 of Fig. 9. The full Boogie solution
is 217 lines long and can be found in our online repository
[20].

Lines 3–14 accommodate the execution semantics of the
resolving algorithm. For example, lines 5–12 show that when
the input is a collection, its elements are resolved individu-
ally, and the resolved results are put together in a temporarily
allocated collection to be returned (S3).

Moreover, there are two points that should be emphasised
in our formalised execution semantics of the resolving algo-
rithm in Boogie:

– We introduce two functions to assist in the encoding. The
getTarget function returns the corresponding target ele-
ment generated for a sequence of source elements. Its
inverse function getTarget_inverse returns the sequence
of source elements used to generate the given target
element.

– Our Boogie encoding addresses the frame problem (e.g.
lines 13–14). That is, a contract of a Boogie procedure
must not only specify how it affects the transformation
state, but must also manifest what memory locations it
will definitely not modify. The Burstall–Bornat mem-
ory model (Sect. 3.1) helps us to deal with the frame
problem. First, it allows us to quantify over all the attribut-
es/associations and specify the ones that are not affected
by a binding operation. Second, we use separate heaps

to differentiate runtime model elements (e.g. source/-
trace/target/temporary models) and axiomatise them to
be disjoint (an element that is allocated on one heap is
not allocated on another heap). This ensures, for exam-
ple, a modification made on the target heap will not affect
the state of the source heap.

The formalised EMFTVM implementation of the resolv-
ing algorithm resides in lines 16–42 of Fig. 10. Some
explanation is in order. First, a Boogie implementation that
contains loops is difficult to verify because the users can-
not generally predict how many times the loop executes,
or whether it will terminate. The key ingredient to prove
the correctness of a loop is to provide the loop invariant
(using the invariant clause) that is true immediately before
and immediately after each iteration of the loop. The general
loop invariant for the Boogie implementation is automati-
cally generated. This is demonstrated on lines 21–22, i.e. we
ensure that for each of the model elements that have been
iterated upon, they have been resolved. Thus, by the end of
the iteration, all the matched source elements are iterated and
have been resolved, and therefore, the postcondition of the
resolving algorithm can be established (lines 10–12).

Second, we use a variant expression to ensure that
the loop terminates. A default variant expression (automat-
ically generated) for the ITERATE EMFTVM instruction
corresponds to the size of the iterated collection minus
the corresponding loop counter (line 23 of Fig. 10). Since
the counter increases on each iteration and the size of the
processed collection remains unchanged, we can deduce that
there are less elements in the collection to be iterated upon.
In addition, since the loop counter has to be smaller than
the length of the iterated collection (to keep the loop iter-
ating), the variant expression is maintained above a bound
(i.e. a lower bound of zero) so that it does not decrease for-
ever. Note that the decreases clause on line 23 is not actually
supported in Boogie. It is only used to demonstrate the con-
cept of the variant expression. In practice, we record the old
value of the decreases clause when entering the loop. Then,
right after the corresponding counter of the loop increases,
we check that: (a) It is greater than the current value of the
decreases clause, and (b) It is greater or equal to the lower
bound of zero.

Similarly, a variant expression is needed to ensure that
the recursive call in the resolving algorithm terminates (line
2). Generally, variant expressions ensure that the call trace of
the recursive call follows a predefined lexicographical metric
[46]. We enforce the constraint that any call between mutu-
ally recursive calls leads to a strictly smaller metric value. In
doing such a comparison, the input values of recursive calls
are compared. For example, in our case, noticing the recur-
sive call to the resolving algorithm on line 33, we need to
ensure that the length of the input collection is decreasing

123

Formalised EMFTVM bytecode language for sound verification of model transformations 1207

1 procedure r e s o l v e (t h i s : ref , obj : ref) returns (r : ref) ;
2 decreases s i z e (obj) ;
3 modifies tempHeap ;
4 . . .
5 ensures dtype (obj) = c l a s s . array =⇒
6 dtype (r) = c l a s s . array ;
7 ensures dtype (obj) = c l a s s . array =⇒
8 s i z e (Array2Seq (srcHeap , obj)) =
9 s i z e (Array2Seq (tempHeap , r)) ;

10 ensures dtype (obj) = c l a s s . array =⇒
11 (∀ j : int • 0≤j ∧ j<s i z e (Array2Seq (srcHeap , obj)) =⇒
12 i sReso lved (Array2Seq (srcHeap , obj) [j])) ;
13 ensures dtype (obj) �= c l a s s . array ∧ . . .
14 =⇒ (old (tempHeap) = tempHeap) ;
15

16 implementation r e s o l v e (t h i s : ref , obj : ref) returns (r : ref)
17 {
18 . . . / the f o l l ow ing code correspond to l i n e s 21 − 27 shown in Fig .9 /
19 while (i<s i z e (obj))
20 . . .
21 invariant (∀ j : int • 0≤j ∧ j<i =⇒
22 i sReso lved (obj [j])) ;
23 decreases s i z e (obj) − i ;
24 {
25 s tk := Seq#Build (stk , obj [i]) ;
26 / 22 : STORE lv2 /
27 ca l l stk , e := OpCode#Store (s tk) ;
28 / 23 : GETENV /
29 ca l l s tk := OpCode#GetENV(stk) ;
30 / 24 : LOAD lv2 /
31 ca l l s tk := OpCode#Load (stk , e) ;
32 / 25 : INVOKE reso l v e () /
33 ca l l e reso lved := r e s o l v e (th i s , e) ;
34 s tk := stk [. . s i z e (s tk)−2] ++ e reso lved ;
35 assume i sReso lved (e) ;
36 / 26 : INVOKE inc lud ing () /
37 ca l l s tk := Sequence#Inc lud ing (stk) ;
38 / 28 : ENDITERATE /
39 i := i +1;
40 }
41 . . .
42 }

∗

∗

∗

∗

∗

∗

∗

∗

∗

∗

∗

∗∗

Fig. 10 Example: reliable prototyping for the resolving algorithm of ATL (shown in Fig. 9) by encoding both its execution semantics and EMFTVM
implementation in Boogie

with each call. Thus, we can deduce that there are less ele-
ments to be processed each time the resolving algorithm is
recursively called. This property is obviously true for well-
formed models stored in a tree-like persistent layer such as
XMI (which requires input model to be strong containment
[36]).

By encoding the execution semantics of the resolving
algorithm and its corresponding EMFTVM bytecode imple-
mentation into Boogie, we can automatically verify that
our prototype resolving algorithm is correctly implemented.
Thus, we have confidence that the encoded execution seman-

tics of the resolving algorithm is implementable and can be
used to provide a sound verification of the MT. The complex-
ity metrics for verifying the resolving algorithm are defined
and evaluated in Sect. 6.

5 Translation validation for model transformation
languages

When an MT language already has an EMFTVM imple-
mentation, we can use our formalisation for the EMFTVM
bytecode language to represent the runtime behaviour of

123

1208 Z. Cheng et al.

Fig. 11 Example: Pacman metamodel

its EMFTVM implementation. Thus, when we have a pro-
posed execution semantics for the same MT language (e.g.
by reverse engineering the MT language specification), we
can verify that the proposed execution semantics for the MT
language soundly represents the runtime behaviour of its
underlying EMFTVM implementation. The benefit is that
a MT verification that is based on such a translate–validate
execution semantics is sound [19].

We identify the following steps to perform the translate
validation approach for the target MT language:

(TV1) Encoding the execution semantics of the MT lan-
guage into Boogie.

(TV2) Encoding the runtime behaviour of an existing
EMFTVM implementation of the MT language into
Boogie using our EMFTVM formalisation and then
validating that the encoded execution semantics of
the MT language is sound with respect to the runtime
behaviour of its corresponding EMFTVM imple-
mentation in Boogie.

Currently, MT languages that target EMFTVM exist for
ATL and SimpleGT [69]. In this section, to demonstrate the
explicit model deallocation aspect of EMFTVM bytecode
language, we focus on the SimpleGT graph transformation
(GT) language. Before diving into the details of our transla-
tion validation approach, we first give a brief introduction to
the SimpleGT language.

5.1 Overview of the SimpleGT Language

SimpleGT is an experimental GT language based on dou-
ble push-out semantics developed by Wagelaar et al. [69]. A
SimpleGT program is a declarative specification that docu-
ments what the SimpleGT transformation intends to do. It is
expressed in terms of a list of rewrite rules, using OCL for
both its data types and its declarative expressions. Then, the
SimpleGT program is compiled into an EMFTVM imple-
mentation which can be executed.

Example 5.1 We use the Pacman game adapted from [60] to
introduce the SimpleGT language. The game is based on the
Pacman metamodel as shown in Fig. 11. The game consists
of a single Pacman, a ghost and zero or more gems on a
game board (consisting of more than zero grids). Each grid
can hold Pacman, a ghost and a gem at the same time. The
Pacman game is controlled by the GameState, which records
important attributes such as STATE, SCORE and FRAME. It
also contains a list of actions. Each action defines the moves
permitted by either Pacman or the ghost and is executed when
it has the same frame as the GameState.

We have defined the semantics of a Pacman game via
13 GT rules in SimpleGT (a snippet of this transforma-
tion is shown in Fig. 12). We provide 10 rules to move
Pacman and the ghost in different directions (5 rules for
each role), and we ensure that Pacman moves before the
ghost. However, the evaluation (i.e. Kill or Collect rule)
takes place after both of them have moved. Pacman collects
a gem if both the gem and Pacman share the same grid. Pac-
man is killed by the ghost if both of them share the same
grid. Finally, the GameState is updated by the UpdateFrame
rule.

Each rule includes an input pattern (from section), a
correspondence pattern and an output pattern (to section).
The correspondence pattern is implicit and is represented
by the intersection of the input and the output pattern.
Thus, the coarse operational semantics of SimpleGT is that
the difference between the input pattern and the corre-
spondence pattern is deleted, the correspondence pattern is
left unchanged, and the difference between the output pat-
tern and the correspondence pattern is created. SimpleGT
uses explicit negative application conditions (NACs), which
specify input patterns that prevent the rule from matching.
Optionally, the matching operator (“=∼”) can be used to
match the existence of an edge or an attribute value in the
input or output pattern.

Take the PlayerMoveLeft rule of Fig. 12 for example; its
input pattern specifies that:

123

Formalised EMFTVM bytecode language for sound verification of model transformations 1209

1 module Pacman;
2

3 rule PlayerMoveLeft{
4 from
5 s : P!GameState(STATE=~PacMove, record=~rec),rec: P!Record,pac: P!Pacman,
6 grid2: P!Grid,grid1: P!Grid(hasPlayer=~pac, left=~grid2),
7 act : P!Action(DONEBY=~Pacman, FRAME=~rec.FRAME, DIRECTION=~Left)
8 not grid2: P!Grid(hasEnemy=~ghost), ghost: P!Ghost
9 to

10 s : P!GameState(STATE=~GhostMove, record=~rec),rec: P!Record,pac: P!Pacman,
11 grid2: P!Grid(hasPlayer=~pac),grid1: P!Grid(left=~grid2)
12 }
13 ...

Fig. 12 Example: excerpt of a SimpleGT transformation for Pacman model transformation

– The game is in a state s when Pacman should move (line
5), and

– grid1 contains Pacman and has a left grid2 beside it (line
6), and

– grid2 does not have the ghost on it (NAC, line 8), and
– The act action to move left will be performed by Pacman

at the current frame (line 7).

Then, the output pattern of the PlayerMoveLeft rule specifies
that:

– The game is in a state that Ghost should move (line 10),
and

– Pacman moves to the left of grid1 (line 11).

The implicit correspondence graph of thePlayerMoveLeft
rule is calculated. Thus, what must be deleted (i.e. the dif-
ference between the input pattern and the correspondence
pattern) is the value of STATE for game state s, the value of
hasPlayer for grid1, the act and all the values of its structural
features. What must be created (i.e. the difference between
the output pattern and the correspondence pattern) is the value
of STATE for the game state s that becomes GhostMove, and
the value of hasPlayer for grid2 that is set to Pacman.

In addition, unlike GT languages with explicit flow control
(e.g. Henshin [3]), SimpleGT follows an automatic “fall-off”
rule scheduling, i.e. if no match is found for a particular GT
rule, it falls off to match the next rule.

5.2 TV1: execution semantics of SimpleGT

The execution semantics of rule scheduling in SimpleGT
requires that it should be able to match rules with their own
output, i.e. re-matching after each apply4:

4 For simplicity, we do not consider the inheritance of transformation
rules [69].

– Initially, rules are matched to find the source graph pattern
as specified in the from section of the rule (match step).

– Next, the first match is applied, i.e. deleting input ele-
ments, creating output elements and initialising output
elements as specified in the to section of the rule (apply
step).

– After each application, the rule scheduling restarts imme-
diately.

– When all rules have been processed (i.e. there are no more
matches found for any rules), the rule scheduling stops.

The rule scheduling for SimpleGT is executed in auto-
matic recursive mode by the EMFTVM virtual machine,
which is different from the other modes in the EMFTVM
virtual machine (e.g. the declarative aspect of the ATL lan-
guage is executed in automatic single mode) [69]. This rule
scheduling for SimpleGT implies that the source and target
models are the same. Thus, there will be only one heap in
our Boogie encoding.

The semantics of the match step of each SimpleGT rule
consists of two sub-steps:

– The first sub-step performs a structural pattern match-
ing (by applying a search plan strategy [65]), where all
the patterns that match the specified model elements and
their structural relationship (i.e. an edge between model
elements) are found. A subtlety here is that SimpleGT
requires injective matching, i.e. all the model elements
in each matched structural pattern are unique.

– The second sub-step is to iterate on the matched structural
patterns for semantic pattern matching, where a pattern
that satisfies specified semantic constraints is found (i.e.
the constraints on the attributes of model elements given
by the matching operator, and any NACs).

The encoded Boogie contract for the match step has the
following structure:

– It ensures that if the result is an empty sequence, then the
source model does not contain any pattern that passes the
structural and semantic pattern matching.

123

1210 Z. Cheng et al.

1 procedure match PlayerMoveLeft () returns (r e s : Seq ref)
2 ensures r e s=[] =⇒
3 (∀ i : int • 0≤i<s i z e (f indPatterns PlayerMoveLeft (srcHeap))) =⇒ ¬(
4 // s : pacman GameState(STATE=˜PacMove)
5 read (srcHeap , f indPatterns PlayerMoveLeft (srcHeap) [i] [0] ,
6 pacman GameState .STATE) = 3
7 ∧ . . .) ;
8 ensures r e s �= [] =⇒
9 r e s ∈ f indPatterns PlayerMoveLeft (srcHeap)

10 ∧ read (srcHeap , r e s [0] , pacman GameState .STATE) = 3
11 ∧ . . .) ;
12

13 function f indPatterns PlayerMoveLeft () : Seq< Seq<ref> >;
14 . . . // Boogie axioms for the s t ru c tu ra l pat tern matching .

Fig. 13 Example: encoding the execution semantics of the match step for the PlayerMoveLeft rule of Pacman transformation in Boogie

– It ensures that if the result is not an empty sequence,
then the result is a pattern (contains a sequence of source
elements) in the source model that passes the structural
and semantic pattern matching.

Example 5.2 A snippet of the Boogie encoding for thematch
step for the PlayerMoveLeft rule is shown in Fig. 13. The
encoding conforms to the structure of the Boogie contract
for the match step:

– If the result is an empty sequence, then in the source
model, none of the pattern that passes the structural pat-
tern matching (specified by the findPatterns_
PlayerMoveLeft function) satisfies the constraints of
semantics pattern matching (lines 2–7), e.g. the game
is in a state s when Pacman should move (lines 4–6).

– If the result is not an empty sequence, then the result
is a pattern (contains a sequence of source elements) in
the source model that passes the structural and semantic
pattern matching (lines 8–11).

The semantics of the apply step of each SimpleGT rule
is more straightforward than that of the match step. One
caveat here is that SimpleGT is a programming language
with explicit memory deallocation (e.g. delete model ele-
ment). When this occurs, the frame condition, that each
model element allocated before executing the apply step is
still allocated, no longer holds.

The encoded Boogie contract for the apply step has the
following structure:

– It requires that the received pattern passes the structural
and semantic pattern matching of its corresponding Sim-
pleGT rule.

– It guarantees that the structural features of the received
pattern, which are to be accessed by the apply step, are
all set.

– It specifies that the heap for the source model and setTable
will be modified.

– It ensures that each target element is fully applied, i.e.
deleting elements, creating elements and initialising ele-
ments as specified in the corresponding SimpleGT rule.

– It ensures the structural features for the deleted and ini-
tialised model elements are set/unset as specified in the
corresponding SimpleGT rule.

– It addresses the frame problem by ensuring that nothing
else is modified on the source heap, except the specified
application performed on each model element.

– It addresses the frame problem by ensuring that noth-
ing else is modified in the setTable, except the structural
features of the affected model elements.

Notice that we assume the structural features to be
accessed from the received input pattern are all set before
executing the apply step, since it passes the structural and
semantic pattern matching. That is, the source elements’
structural features have been set in order to be accessed.
The NACs are an exception, because SimpleGT could use
NAC to check whether the structural features of specified
source elements are set or not (which means source elements’
structural features do not have to be set to be accessed).
In addition, the state of the setTable needs to be updated
and propagated by the postconditions and the frame condi-
tion.

The Boogie encoding for the apply step of the SimpleGT
rules offers no surprise, as it strictly follows its execution
semantics. Thus, we omit them in this article, and examples
can be found in our online repository [20].

The Boogie contracts for the execution semantics of the
match and apply steps play an important role in verifying
the correctness of a SimpleGT transformation. Thus, the
soundness of our approach depends on the soundness of
these Boogie contracts, i.e. that they correctly represent the
runtime behaviour of their corresponding EMFTVM imple-
mentations. In the next section, we describe our translation

123

Formalised EMFTVM bytecode language for sound verification of model transformations 1211

1 procedure match PlayerMoveLeft () returns (p: Seq ref) ;
2 . . . / Boogie contract for the execut ion semantics of match s tep . /
3

4 / Boogie implementation for the execut ion semantics of match s tep . /
5 implementation match PlayerMoveLeft () returns (p: Seq ref) ;
6 { . . . p:= [] ; i := 0 ;
7 pat t e rns := f indPatterns PlayerMoveLeft () ;
8 while (i<pat te rns . Length) . . . {
9 ca l l matched:=match f i lter PlayerMoveLeft (pat t e rns [i]) ;

10 i f (matched){ p=pat te rns [i] ; break ;}
11 i := i +1;} }
12

13 function f indPatterns PlayerMoveLeft () : Seq< Seq<ref> >;
14 . . . // Boogie axioms for the s t ru c tu ra l pat tern matching .
15

16 procedure match f i lter PlayerMoveLeft (p: Seq ref) returns (r : bool) ;
17 / Boogie contract for the semantic pat tern matching . /
18 ensures r ⇐⇒ (read (srcHeap , p [0] , pacman GameState .STATE) = 3
19 ∧ . . .) ;
20

21 / Boogie implementation for the semantic pat tern matching . /
22 implementation match f i lter PlayerMoveLeft (p: Seq ref) returns (r : bool)
23 { . . . s , rec , pac , gr id2 , gr id1 , act :=p [0] , p [1] , p [2] , p [3] , p [4] , p [5] ;
24 ca l l s tk := i n i t () ; / i n i t l o c a l s tack /
25 ca l l s tk := OpCode#Load (stk , s) ; / load (s : pacman GameState) /
26 ca l l s tk := OpCode#Get (stk , pacman GameState .STATE) ; / get STATE /
27 ca l l s tk := OpCode#Push (stk , 3) ; / push 3 /
28 ca l l b:= Native#MatchOperator () ; / invoke (opName: =˜) / . . . }

∗

∗

∗

∗

∗

∗

∗
∗

∗

∗
∗

∗
∗

∗
∗

∗

∗

∗

Fig. 14 Example: translation validating the soundness of our Boogie encoding for the execution semantics of the match step of the PlayerMoveLeft
rule

validation approach to verify the soundness of our Boogie
encodings for the execution semantics of SimpleGT.

5.3 TV2: translation validation of SimpleGT rules

Each SimpleGT rule is actually compiled into two EMFTVM
code blocks by the EMFTVM compiler, i.e. a match block
(for the match step) and an apply block (for the apply step).
We have developed a code generator to automatically encode
these EMFTVM code blocks into Boogie based on our
EMFTVM formalisation.

In this section, we briefly describe our translation val-
idation approach to verify the soundness of our Boogie
encodings for the execution semantics of SimpleGT, i.e.
that our Boogie encoding for the execution semantics of
SimpleGT soundly represents the corresponding runtime
behaviour given by the EMFTVM implementation.

In order to verify the soundness of our Boogie encoding for
the execution semantics of each SimpleGT rule, we define the
execution semantics of an EMFTVM rule encoded in Boogie
as sound, if the following soundness conditions holds:

(C1) the Boogie contract that represents the execution
semantics of its match step is satisfied by the Boogie
implementation that represents the runtime behaviour
of its match block, and

(C2) the Boogie contract that represents the execution
semantics of its apply step is satisfied by the Boogie
implementation that represents the runtime behaviour
of its apply block.

Each of these conditions forms a verification task that is han-
dled by the Boogie verifier. If none of the verification tasks
generate any errors (from the verifier), we conclude that our
Boogie encoding for the execution semantics of the Sim-
pleGT rules is sound. Otherwise, the trace information from
the Boogie verifier, indicating where the encoding unsound-
ness was detected, will be output. Our evaluation in Sect. 6
confirms that we can automatically verify the soundness
of each SimpleGT specification/EMFTVM implementation
pair.

Example 5.3 We demonstrate our approach on the match
stepof thePlayerMoveLeft rule (Fig. 14). The runtime behav-
iour of its corresponding match block is implemented as a
Boogie implementation (lines 5–12). The implementation
contains two important sub-steps.

The first sub-step performs a structural pattern matching
(line 8), where all the patterns that match the specified model
elements and their structural relationships (i.e. edges between
model elements) are found. Structural pattern matching is pri-
marily implemented in Java instead of EMFTVM. Thus, they
are only axiomatised using Boogie axioms (line 15) and are

123

1212 Z. Cheng et al.

not validated by the translation validation approach. This is a
modular verification strategy, thus initiating the verification
of the implementation for the SimpleGT transformations: we
aim to verify each sub-component of MT language imple-
mentation individually. Consequently, we can clearly state
which parts of the implementation are verified, which brings
us a step closer to fully verify the MT language implemen-
tation.

The second sub-step is to iterate on the matched structural
patterns (lines 9–12) for semantic pattern matching, where a
pattern that satisfies the specified semantic constraint is found
(i.e. the constraint on attributes of model elements given by
the matching operator). The runtime behaviour of seman-
tic pattern matching is given as a Boogie implementation
(lines 22–29) written in terms of the translational semantics
of EMFTVM. It is validated against the Boogie contracts
for semantic pattern matching (lines 17–20) to ensure the
soundness of its encoding.

The verification of the soundness of the Boogie encodings
for the apply step is performed in a similar way to what is
done for the match step.

Finally, we can conclude that the execution semantics of
a SimpleGT specification encoded in Boogie is sound, when
the execution semantics of both match and apply steps of all
the relevant SimpleGT rules encoded in Boogie are sound
(as defined by the soundness conditions C1 and C2).

6 Evaluation of our reliable prototyping and
translation validation approaches

In this section, we give implementation details to perform
our approach (i.e. reliable prototyping and translation val-
idation). We also evaluate the feasibility and performance
of our approach on four case studies. The section concludes
with a discussion of the obtained results and lessons learnt.
We refer to our online repository for the generated Boogie
programs for these case studies [20].

6.1 Implementation

To effectively evaluate our approach, we have implemented
three kinds of code generators to automatically generate Boo-
gie code:

– A code generator for EMF metamodels (EMF2Boogie),
which generates the corresponding Boogie types and con-
stants [21].

– Code generators for model transformation languages
(e.g. ATL2Boogie and SimpleGT2Boogie), which gen-
erate Boogie procedures that represent the execution
semantics of model transformations.

– A code generator for the EMFTVM bytecode language
(EMFTVM2Boogie), which generates Boogie implemen-
tations that represent the runtime behaviour of transfor-
mation implementations.

Our translation validation approach interacts with all three
kinds of code generators. Our reliable prototyping approach
interacts with the third code generator only. Notice that our
case studies (Sect. 6.2) focus on the ATL and SimpleGT lan-
guages. Thus, when applying our translation validation to
other MT languages, a code generator of the second kind
needs to be implemented. We envision that our code genera-
tors for the ATL and SimpleGT languages could provide an
example for implementing such code generators.

Template-based model-to-text tools are used to imple-
ment the first two kinds of code generators (e.g. XPand [40],
XTend [11]). Generally, these code generations start by seri-
alising the input into models (using tools provided by the
input language, e.g. the ATL extractor API provided by the
ATL compiler). Then, the models generate the corresponding
Boogie code according to the templates we defined.

The EMFTVM2Boogie code generator is implemented in
Java. This is because in our experience the logic and com-
putations involved in the EMFTVM2Boogie code generator
are more intuitive to express in Java than with the template-
based model-to-text tools. The general idea of implementing
the EMFTVM2Boogie code generator is to read in each
code block of the input EMFTVM implementation. Then,
according to our Boogie library for the formalisation of the
EMFTVM bytecode language (Sect. 3), we generate the cor-
responding Boogie code for each EMFTVM instruction in
each code block. Specifically, our Boogie library for the for-
malisation of the EMFTVM bytecode language consists of:

– A list of Boogie procedures to encapsulate the oper-
ational semantics of EMFTVM instructions, e.g. the
PUSH instruction.

– Code generation knowledge, written in terms of a
comment (for documentation purposes only), for the
EMFTVM instructions whose operational semantics is
not suitable for encapsulation by the Boogie procedure.
In our opinion, those instructions are not suitable to be
encapsulated because their encapsulation will either be
high order (e.g. IF instruction) or will make the code gen-
eration unnecessarily complex (e.g. the ADD instruction
has to manage its frame condition when it is encapsulated
as a Boogie procedure).

In addition to this, the main challenge in developing
EMFTVM2Boogie stems from the fact that each EMFTVM
block is based on a generic operand stack. This would
compromise the precision of our generated Boogie imple-
mentations. For example, a GET name instruction simply

123

Formalised EMFTVM bytecode language for sound verification of model transformations 1213

retrieves the name attribute for the top model element on
the operand stack. However, because we use separate heaps
to represent the input and output models, the type of the
top model element on the operand stack is important for
the EMFTVM2Boogie in generating corresponding Boogie
code. Thus, we also maintain a type stack during the code
generation for each EMFTVM instruction. For example, the
PUSHI instruction has the effect of pushing an integer onto
the type stack, so that its next instruction can look up the type
stack and query its state.

6.2 Evaluation setup

The goal of our evaluation is to quantitatively assess the per-
formance and feasibility of our approach. More specifically,
we aim to answer the following questions:

Q1: Feasibility Are our reliable prototyping and transla-
tion validation approaches feasible to apply to model
transformation languages? If yes, is there any evidence
shown as the outcome of this feasibility?

Q2: Performance Can our reliable prototyping and trans-
lation validation approach be performed in a time-
efficient and automatic manner? If not, what is the
reason for this?

Therefore, we set up 4 case studies to answer these ques-
tions:

– (Resolving) The resolving algorithm that we reliably pro-
totyped, which is crucial to the performance and viability
of common trace-based MT languages.

– Two case studies which demonstrate our translation val-
idation approach for the declarative aspect of the ATL
language (i.e. ATL matched rules with default schedul-
ing against normal/abstract classifiers):

– (ER2REL) The ER2REL transformation that trans-
lates an ER diagram to a relational schema. It is a
modified version of the one originally developed by
Büttner et al. [15]. The modification does not cause
the ATL transformation to behave differently. How-
ever, it contains a feature (i.e. consecutive bindings
in an ATL matched rule) that is not considered in the
previous work.

– (HSM2FSM) The HSM2FSM transformation that
translates a hierarchical state machine to a flat-
tened state machine. This was originally presented
by Baudry et al. [8] to demonstrate the challenges in
MT testing.

– (Pacman) The Pacman transformation that gives the
operational semantics of the Pacman game. This case
study demonstrates our translation validation approach

Table 1 The transformation complexity metrics of our case studies

ER2REL HSM2FSM Pacman

Metamodel metrics (source → target)

No. of classifiers 5 → 3 6 → 6 7 → 7

No. of attributes 6 → 4 2 → 2 6 → 6

No. of associations 6 → 2 5 → 5 13 → 13

Transformation metrics

No. of rules 6 7 13

No. of rule filters 3 5 40

between the SimpleGT language (double push-out seman-
tics with NAC, injective matching, and automatic “fall-
off” rule scheduling).

The evaluation of first and fourth case studies is performed
according to the description given in Sects. 4 and 5, respec-
tively. The evaluation of second and third case studies is
performed as follows:

(TV1) Encoding the execution semantics of the ATL trans-
formation under study into Boogie.

(TV2) Encoding the runtime behaviour of the EMFTVM
implementation of the corresponding case study into
Boogie using our EMFTVM formalisation and then
validating that the encoded execution semantics is
sound with respect to the runtime behaviour of its cor-
responding EMFTVM implementation in Boogie.

We reuse the execution semantics of the ATL transformations
from our previous work, which is specific to ATL transfor-
mations that are compiled to the ASM implementations [19].
Thus, the design of second and third case studies intends to
show that different transformation implementations for the
ATL language agree on the same execution semantics.

As shown in Table 1, we choose 5 metrics, from the met-
rics developed by Vepa et al. and Vignaga, to measure the
transformation complexity of our case studies [66,67]. These
5 metrics do not apply to the first case study (since it is a
transformation algorithm rather than a MT). The first three
metrics in Table 1 measure the quantity of metamodel con-
structs involved in the MTs. The 4th and 5th rows quantify
the complexity of the MT in terms of the number of trans-
formation rules involved and rule filters specified.

Finally, our evaluation uses the Boogie verifier (version
2.2) and Z3 (version 4.3). It is performed on an Intel 3.7 GHz
machine with 8 GB of memory running the Windows operat-
ing system. Our evaluation results are represented in the next
Section.

123

1214 Z. Cheng et al.

Table 2 The verification complexity metrics of our case studies

Resolving ER2REL HSM2FSM Pacman

Results (verified/total) 1 / 1 11 / 12 14 / 14 18 / 26

Veri. time (seconds) 0.004 0.030 0.074 0.159

Boogie (lines of code) 250 1033 1402 5018

Automation? No Yes Yes Yes

Termination? Yes Yes Yes N/A

6.3 Evaluation results

Table 2 measures the verification complexity of the four
case studies. The verification results are recorded in terms
of verified and total generated verification tasks for each
case study.5 Verification times are recorded in seconds. The
lines of Boogie code generated for each case study include
Boogie encodings for the metamodels, the execution seman-
tics of the MT and the corresponding runtime behaviour of
the EMFTVM implementation. “Automation” is measured
by whether human interaction is involved during the verifi-
cation. The “Termination” column shows whether the case
study has terminated.

Q1: Feasibility As shown in Table 2, it is feasible to apply
our reliable prototyping and translation validation approach
to model transformation languages. However, our case study
for reliable prototyping covers just one single feature for
model transformation languages, which is remote from pro-
totyping an entire model transformation language reliably.
Thus, we cannot claim all model transformation features can
be designed using our reliable prototyping approach. This
is related to the expressiveness of our approach, which we
discuss further in Sect. 6.4.

Moreover, as shown in Table 2, not all verification tasks
of the ER2REL transformation have been verified. For one
of the rules in the ER2REL transformation, our transla-
tion validation approach reports that its execution semantics
(applying step) is not sound with respect to the runtime
behaviour of its corresponding EMFTVM implementation.
This is related to the consecutive bindings used in this rule:
our execution semantics interprets them as a composition of
the two bindings (which is verified to be sound with respect
to the runtime behaviour of the ASM implementation [19]).
However, the EMFTVM implementation interprets them as
the second binding overwrites the first binding.

Thus, our evaluation concludes that the ASM and
EMFTVM transformation implementations for the ATL lan-
guage do not agree on the same execution semantics. The
fundamental reason for this runtime behaviour mismatch is
that the semantics of ASM bytecode language is not aligned

5 We count each generated Boogie procedure/implementation pair as a
verification task.

with the EMFTVM bytecode language. For example, the SET
instruction in the ASM bytecode language behaves polymor-
phically according to its argument [19]. However, it behaves
monomorphically to its argument in the EMFTVM bytecode
language (Appendix).

In addition, as shown in Table 2, eight verification tasks of
the Pacman transformation have not been verified. On inves-
tigation, we found that these verification tasks have not failed
because the execution semantics of Pacman transformation
is not sound with respect to the runtime behaviour of its
corresponding EMFTVM implementation. Rather, they fail
because the Pacman transformation contains eight bindings
that potentially could cause runtime exceptions, caught by
the formalisation of ADD instruction in Boogie (Sect. 3.4).

For example, in the output pattern of the PlayerMoveLeft
rule of Fig. 12, the hasPlayer could potentially be added
twice to the grid2 (since we have not checked in the NACs
about whether the hasPlayer of grid2 is set or not) and cause
a runtime exception. However, recall that a well-formed input
model should contain a singlePacman and a ghost (Sect. 5.1).
Therefore, any well- formed input model would not cause
such runtime exception. After we add a precondition to estab-
lish that the inputs of Pacman transformation are well formed,
all the verification tasks are verified.

Thus, our evaluation confirms the feasibility of using our
formalisation of EMFTVM bytecode to check the absence of
runtime exceptions and improve the reliability of developed
model transformations.

Furthermore, we identify two reasons for the compatibility
of the translation validation approach with MT verification.
First, the translation validation approach is inherently effi-
cient. That is, the soundness encoding only needs to be
verified once for each compilation to ensure the encoded
execution semantics of each MT soundly represents the run-
time behaviour of its corresponding implementation. Such
soundly encoded execution semantics of MTs can be reused
in order to verify the correctness of MTs against their speci-
fied contracts, as long as the source MT does not change.

The second reason is due to the features of the target MT
language. Take the ATL language for example:

1. Each ATL rule is written in a declarative style and has
a unified deterministic goal to achieve (i.e. mapping).
Thus, it is easier to abstract the semantics of ATL rules
into FOL expressions than to abstract the semantics of an
imperative program that achieves an arbitrary goal. This
feature greatly reduces the complexity of adapting the
translation validation approach and enables its automa-
tion.

2. We consider ATL matched rules in non-refinement mode,
which are always propagated on an initially empty target
model that is disjoint from the source model. Thus, we are
able to use two separate heaps to organise the source and

123

Formalised EMFTVM bytecode language for sound verification of model transformations 1215

target elements. This ensures, for example, a modification
made on the target heap will not affect the state of the
source heap. Therefore, it yields a simple encoding that
contributes to the automation of the translation validation
approach.

3. For ATL matched rules, any iteration in the bytecode
implementation always interacts with collections. Thus,
we are able to automatically infer suitable invariant and
variant expressions for loops. This feature is gener-
ally not obtainable for general programming languages,
where iteration can loop over a user-defined data struc-
ture, e.g. a linked list.

Q2: Performance As shown in Table 2, we conclude
that both our reliable prototyping and translation valida-
tion approach can be performed in a time-efficient manner.
However, the verification process of the prototyped resolv-
ing algorithm requires guidance from the user. The difficulty
stems from the need to manually construct a proper vari-
ant function (for recursive calls) to prove its termination
(Sect. 4.3). How to automate such tasks is beyond the scope
of this paper, as it would require advanced verification tech-
niques such as abstract interpretation [23], to be adapted in
a MT verification context.

TerminationWhile we can successfully verify the termina-
tion of ER2REL and HSM2FSM transformations, we cannot
verify the termination of Pacman transformations. The main
challenge stems from finding an appropriate variant function
for its rule scheduling. Thus, we plan to investigate other
approaches for verifying termination of the GT language in
the future (e.g. coloured Petri nets [33]).

6.4 Limitations of our approach

The evaluation results strongly demonstrate the feasibility
and performance of our approach. However, our current
approach has some limitations.

6.4.1 Soundness

Soundness prevents false negatives. The soundness of our
approach depends on the consistency of our Boogie library
for the formalisation of the EMFTVM bytecode language.
At the moment, our Boogie library is structural, intuitive
and available for inspection. In addition, we have designed
a regression test suite with test oracles that specifies verifi-
cation scenarios and their expected outcome. The regression
test suite is executed on every modification to our Boogie
library, to ensure the soundness of our approach on each
rebuild.

6.4.2 Completeness

Completeness prevents false positives. The incompleteness
of our approach could be due to known limitations of underly-
ing SMT solvers when working with quantifiers [29,32,47].
Boogie allows triggers (a.k.a matching patterns) to declare
how to instantiate quantifiers, which is crucial to the com-
pleteness and performance of the SMT solver. Leino and
Monahan describe how to use triggers effectively in the
axiomatisation of summation-like comprehensions in Boo-
gie [45], which is the guidance we followed in our approach.
Potential incompleteness could also be due to missing axioms
in our Boogie libraries. For example, our Boogie library for
EMFTVM formalisation encodes only the essential axioms
required to define its meaning. The auxiliary axioms such as
“POP immediately after PUSH instruction would not effect
the operand stack” are not in our encoding. We think it is
better to let the users of our Boogie libraries decide when to
introduce the auxiliary axioms. Consequently, we can main-
tain a set of essential axioms in our Boogie libraries, which
facilitates manual inspection and reduces the possibility of
inconsistent axioms.

6.4.3 Expressiveness

Because of the underlying SMT solver, the expressiveness of
our approach is based on FOL with equality. To ensure this
expressiveness power is useful for our approach in practice,
we need to experiment with more MT languages.

6.4.4 User experience

On verification failure, the trace information from the Boo-
gie verifier, indicating where the contract violation (within
the input Boogie program) was detected, will be output. In
our experience, such information is very useful when debug-
ging the Boogie program by inserting additional assertions
to understand it better, getting closer to the exact issue that
causes the verification failure. However, we admit this is
currently a limitation of our approach, since we are not capa-
ble of reporting useful feedback to a non-Boogie expert on
verification failure. A potential solution is to find a con-
crete counter-example in terms of a transformation scenario
to reproduce the verification failure (e.g. by model finding
[15,73]).

7 Related work

There is a large body of work on the topic of ensuring the
correctness of MTs. These include survey articles [1,17,55].
In this section, we primarily focus on the literature that falls

123

1216 Z. Cheng et al.

within the scope of the formal verification of MTs. We cate-
gorise these articles by the formal method applied.

7.1 Simulation, model checking and model finding

Simulation approaches require that a mathematical model be
developed. This mathematical model represents the key char-
acteristics of the MT (e.g. source and target metamodels, the
behaviour of the MT specification). Next, a simulation tool
is used to simulate the mathematical model against a partic-
ular input (which is developed from a given source model).
Depending on the chosen tool, certain correctness properties
can be expressed as contracts and can then be verified for the
input.

For example, coloured Petri nets have been used to sim-
ulate Query/View/Transform (QVT) MTs. Thus, a coloured
Petri net engine can be used to check contracts such as termi-
nation [33,72]. Similarly, Troya and Vallecillo use rewriting
logic to simulate ATL MT in the Maude system [63]. Their
system allows a reachability analysis of the ATL. Syriani and
Vangheluwe propose an input-driven simulation approach
using the Discrete EVent system Specification (DEVS) for-
malism [60].

Similarly to simulation approaches, model checking and
model finding approaches require that a mathematical model
be developed (from the metamodels and the MT specifica-
tion). However, no particular input is needed when the model
checking/finding is executing.

A subtle difference between the model checking and
model finding approaches is in the way that they use the
developed mathematical model [35]. The former starts with
a mathematical model described by the user and discovers
whether the contracts asserted by the user are valid on the
mathematical model. The later finds mathematical models
which form counter-examples to the contracts made by the
user.

Lúcio et al. develop an off-the-shelf model checker for the
DSLTrans language. Their model checker allows the user
to check the syntactic correctness (encoded in algebra) of
the generated target models [48,49]. The key to develop-
ing the model checker is the expressiveness reduction of
the DSLTrans language, i.e. any constructs that might imply
unbounded recursion or non-determinism are avoided. Thus,
the state space of DSLTrans MTs is always finite.

Anastasakis et al. [2] have designed the UML2Alloy tool
to perform model finding. The novelty of their work is the
use of Alloy, which is a verification language for SAT-based
model finding [37]. Anastasakis et al. use Alloy as an IVL
to ease (i) the encoding of MOF metamodels (enriched with
syntactic correctness contracts expressed in OCL) and MTs
to Alloy; (ii) the generation of SAT formulas from Alloy.
Jackson et al. [36] have designed the Formula framework,
which is based on the Z3 SMT solver [28]. Their main con-

tribution is the systematic encoding of MOF metamodels
and MT specifications using algebraic data types. The con-
tracts are written in FOL. Consequently, they can use their
framework to find models that witness violations of syntactic
correctness in the given MT specification.

7.2 Theorem proving

Theorem-proving approaches formalises both the MT speci-
fication and its contracts into formulas. Verification consists
of applying deduction rules (of an appropriate logic) to incre-
mentally build the proof.

Combemale et al.[22] present a pen-and-paper bisimula-
tion proof to show that the ATL MT generates a Petri net
model that preserves the observational operational seman-
tics of an xSPEM model. Calegari et al. [16] encode the ATL
MT and its metamodels into inductive types. The contracts
for semantic correctness are given by OCL expressions and
are translated into logical predicates. As a result, they can use
the Coq proof assistant to interactively verify that the MT is
able to produce target models that satisfy the given contracts.

Inspired by the proof-as-program methodology, there is
a line of research which develops the concept of proof-as-
model-transformation methodology [18,42,53,54]. This is
the opposite of traditional theorem-proving approaches. At
its simplest, the idea is to represent the metamodels as terms.
Then, each MT specification and its contracts are encoded
together as an ∀∃ type. Next, type theory (for the lambda
calculus) can be regarded as a proof system to verify the
encoded ∀∃ type. Finally, a program can be extracted from
the proof.

Similar to the proof-as-model-transformation methodol-
ogy, the UML-RSDS (Reactive System Development Sup-
port of UML) is a tool set for developing correct MTs by
construction [42]. It uses a combination of UML and OCL
to create a MT design, instead of using types. UML use
case diagrams and activity diagrams are used to graphically
create a MT specification. The specification is optionally con-
strained by OCL contracts on source and target metamodels.
Then, the MT specification is verified against its contracts
by translating both into abstract machine notations in B or
as input for the Z3 SMT solver for theorem proving. Finally,
the verified MT design can be synthesised to an executable
transformation implementation (such as a Java program or
an ATL transformation).

Asztalos et al. [4] use category theory to describe graph
rewriting systems. This approach is implemented in the
VMTS verification framework, but it is not targeted to a
specific graph rewriting-based MT language. Schätz [57]
presents an approach to verify the structural contracts of GT.
The transformation rules are given as a textual description
based on a relational calculus. The formalisations of model,
metamodel and transformation rules are based on declara-

123

Formalised EMFTVM bytecode language for sound verification of model transformations 1217

tive relations in a Prolog style and target the Isabelle/HOL
theorem prover.

Büttner et al. [15] automate the process of theorem proving
by a novel use of SMT solvers. The built-in background the-
ories of SMT solvers give enhanced expressiveness to handle
constraints over an infinite domain. Specifically, Büttner et al.
translate a declarative subset of the ATL and OCL contracts
(for semantic correctness) directly into FOL formulas. The
formulas represent the execution semantics of the ATL trans-
formation specification and are sent to the Z3 SMT solver to
be discharged. The result implies the partial correctness of
an ATL transformation in terms of the given OCL contracts.

7.3 Discussion

All of the approaches that we have just described rely on
encoding the execution semantics of the MT language. How-
ever, existing approaches do not verify that the encoded
execution semantics soundly represents the runtime behav-
iour provided by the implementation. Therefore, an unsound
encoding will yield unsound results after verification, i.e.
it will lead to erroneous conclusions about the correct-
ness of the MT. In a MT verification survey by Rahim
and Whittle, this problem is characterised as ensuring the
semantics preservation relationship between a declarative
specification and its operational implementation, which is
an under-researched area in MDE [55].

Therefore, we address this challenge by a novel usage
of the translation validation approach [52], to verify that
this execution semantics soundly represents the runtime
behaviour of its corresponding EMFTVM implementation.
It thus makes our approach complementary to the existing
approaches.

Translation validation is one of the techniques used in
compiler verification. Instead of formally proving the com-
pilation is correct over all legal input programs, the primary
assumption of translation validation is that the validator (i.e.
the tool to perform translation validation) has limited knowl-
edge of the compilation implementation. Hence, a variety
of methods for translation validation arise [52,61,62]. Com-
pared to these methods, our translation validation approach
mainly differs in the representation of source and target code,
and the definition of a correct compilation. That is, we specifi-
cally interest in verifying that the execution semantics of the
source MT produced on this run is sound with respect to
the runtime behaviour of its corresponding transformation
implementation.

We developed our approach in Boogie IVL. The two most
widely used IVLs are Boogie [6] and Why3 [30]. Both of
them are based on FOL with polymorphic types and have
mature implementations to parse, type-check and analyse
programs. We concentrate on Boogie in this research, but
we believe all results can be reproduced in Why3.

8 Conclusions and future work

In this paper, we present a formalisation for the EMFTVM
bytecode language. Our formalisation is modularised in the
Boogie IVL as a library for reuse. It assists the modeller in
developing the MT implementation correctly (reliable proto-
typing) and prohibits unimplementable execution semantics
for the MT language from being introduced into a sound
verification pipeline. It also enables a translation validation
approach to ensure the encoded execution semantics cor-
rectly represents the runtime behaviour of the underlying
MT language implementation. Our evaluation is performed
on the resolving algorithm (crucial to the performance and
viability of trace-based MT languages), ATL (one of the most
widely used MT languages in industry and academia) and
SimpleGT (an experimental GT language). The evaluation
strongly demonstrates the feasibility of our approach.

In the future, we plan to prototype the EMFTVM imple-
mentation for a new scalable MT language that is dedicated
to very large models. We believe an existing approach that is
based on map-reduce could provide guidance for this task [9].
One of our foci is then to use our approach to reliably proto-
type our EMFTVM implementation and ensure it is verified
against the proposed execution semantics for such a scal-
able MT language. In addition, we also anticipate the need
to enrich the EMFTVM bytecode language for efficient dis-
tributed model manipulation.

Our current evaluation is designed to show the feasibility
and performance of our approach. We plan to learn from the
state of the art that applies mutation testing techniques to
model transformations (e.g. [14,51,56]) to further evaluate
the completeness of our approach.

Finally, we believe that the idea of automating the trans-
lation validation approach by language reduction could be
adapted to other programming languages. The challenge is
to find a balance between the level of automation needed
and the degree of language reduction. This is a challenge we
would like to investigate in the near future.

Acknowledgements Zheng Cheng is funded by the Doctoral Teaching
scholarship and John & Pat Hume scholarship from Maynooth Univer-
sity and the MONDO (EU ICT-611125) Project. We thank the reviewers
for their feedback to improve the representation of this submission.

Appendix:The translational semantics ofEMFTVM
bytecode language

In this section, we illustrate the translational semantics of the
EMFTVM bytecode language in more detail. Overall, 42 out
of 48 instructions are encoded by our formalisation for the
EMFTVM bytecode language. The 6 EMFTVM instructions
that are not encoded are omitted because of some technical

123

1218 Z. Cheng et al.

limitations of our approach (e.g. transitive closure cannot be
described in FOL [36]).

Some of the conventions we use are:

– In general, we draw on the let..in expression to improve
the readability of our formalisation. However, this is not
a standard syntax in Boogie.

– We use the superscript # to denote the line number of an
EMFTVM instruction. This superscript is attached to the
declared Boogie variables to avoid name collision.

– We also use the notation of [[S]]to represent the transfor-
mation from the EMFTVM construct S to its correspond-
ing Boogie code.

In addition to our general encoding convention, the auxil-
iary notations used by our formalisation for stack, collection,
heap, method invocation and metamodel are explained in
Table 3.

Table 3 Auxiliary notations
used by the translational
semantics of EMFTVM
bytecode language

Auxiliary notation Comment

Stack

e ::l Return the concatenation of the element e to the sequence l

l[low..upper] Return the subsequence of l from index lower to upper

hd(l: Sequence) Return the first element of the given sequence, which requires the
input sequence is not an empty sequence

tl(l: Sequence) Return the rest of the input sequence that excluding the first element,
which requires the input sequence is not an empty sequence

tk(l: Sequence, n: int) Return a new sequence which takes the first n elements from the input
sequence

dp(l: Sequence, n: int) Return a new sequence which drops the first n elements from the input
sequence

size(l: Sequence) Return the size of the given sequence

Collection

hasNext(c: Collection) Return true if the passed-in collection has more elements to iterate

next(c: Collection) Return the next element of the collection in the iteration

isCollection(f: Field α) Return true when the given structure feature is an association and its
multiplicity has an upper bound that is greater than one, and return
false otherwise

c1 ∪ c2 Return a new collection that appends the collection c2 to the collection
c1

c1 - c2 Return a new collection such that every element of c2 are removed
from the collection c1

Heap

read(h: heap, o: ref, f: Field α) Return the value of the heap h at the position given by the element o
and the structural feature f

update(h: heap, o: ref, f:
Field α, v: α)

Change the value of the heap h at the position given by the element o
and the structural feature f, to the value of v

dtype(o: ref) Return the classifier of the input element

Table 3 continued
Auxiliary notation Comment

Method Invocation

reflect(sig:String) Return the method with the given signature name

invoke(mtd: Method,
args: Sequence)

Return the invocation result of the input method on the given
arguments

Metamodel

resolve(mm: String, cl: String) Return the corresponding classifier resolved from the input metamodel
and classifier name

toRef(cl: String) Return an unique Boogie constant of type ref for the input classifier
name

123

Formalised EMFTVM bytecode language for sound verification of model transformations 1219

Table 4 Translational semantics for EMFTVM stack handling instructions

EMFTVM instruction (S) Corresponding Boogie statements ([[S]])

PUSH c stk := [[c]] :: stk;
PUSHT stk := true :: stk;
PUSHF stk := false :: stk;
POP

assert size(stk) > 0;
stk := tl(stk);

STORE x
assert size(stk) > 0;
[[x]] := hd(stk);
stk := tl(stk);

LOAD x stk := [[x]] :: stk;
SWAP

assert size(stk) > 1;
stk := hd(tl(stk)) :: hd(stk) :: tl(tl(stk));

SWAP_X1
assert size(stk) > 2;
stk := hd(tl(tl(stk))) :: hd(stk) :: hd(tl(stk)) :: tl(tl(tl(stk)));

DUP
assert size(stk) > 0;
stk := hd(stk) :: stk;

DUP_x1
assert size(stk) > 1;
stk := hd(stk) :: hd(tl(stk)) :: hd(stk) :: tl(tl(stk));

NOT
assert size(stk) > 0;
stk := (¬(hd(stk))) :: tl(stk);

AND Stmt
assert size(stk) > 0;
[[Stmt]]
stk := (hd(tl(stk)) ∧ hd(stk)) :: tl(tl(stk));

OR Stmt
assert size(stk) > 0;
[[Stmt]]
stk := (hd(tl(stk)) ∨ hd(stk)) :: tl(tl(stk));

XOR
assert size(stk) > 1;
stk := ((hd(stk) ∨ hd(tl(stk))) ∧ ¬(hd(stk) ∧ hd(tl(stk)))) :: tl(tl(stk));

IMPLIES Stmt
assert size(stk) > 0;
[[Stmt]]
stk := (¬(hd(tl(stk))) ∨ hd(stk)) :: tl(tl(stk));

ISNULL
assert size(stk) > 0;
stk := (hd(stk)=null) :: tl(stk);

GET_CB Stmt LABEL: [[Stmt]]

GET_TRANS currently not supported

The full translational semantics of the EMFTVM language
is given in Tables 4, 5 and 6, classified by the category that
each EMFTVM instruction resides in.

In general, our formalisation for the EMFTVM bytecode
language is based on two main data structures (Sect. 3.1):
the operand stack stk and the global memory model heap.
We further introduce an access table acc to prohibit runtime
exceptions caused by certain operations on the structural fea-
tures (Sect. 3.4). Thus, checking whether o.f is set or not
becomes an expression isset(acc, o, f). Marking o.f as set or
not uses the expression set(acc, o, f, v).

In addition to the discussion of our formalisation for the
EMFTVM bytecode language in Sect. 3, we explain six addi-
tional points:

1. In Table 4, the operational semantics of the GET_CB
instruction is to push the code blockStmt onto the operand
stack. It usually works with the INVOKE_CB_S instruc-
tion (Table 5), whose operational semantics is to execute
the code block that is on top of the operand stack. Thus,
in the translation rule for the GET_CB instruction, we
introduce a fresh label (denoted by LABEL) to identify
the translated EMFTVM code block, which is referred by
the translation rule for the INVOKE_CB_S instruction.

2. In Table 5, to make sure the offset of the GOTO, IF and
IFN instructions is valid in their corresponding transla-
tion rules, we insert a fresh Boogie label, denoted by [[n]],
at the program point which corresponds to the offset n of
these instructions (Sect. 3.3).

3. In Table 5, the operational semantics of the RETURN
instruction is to return to the caller code block that

123

1220 Z. Cheng et al.

Table 5 Translational semantics for EMFTVM control flow instructions

EMFTVM Instruction (S) Corresponding Boogie Statements ([[S]])

GOTO n goto [[n]];
RETURN goto END;

IF n

var cond# : bool;
assert size(stk) > 0;
cond# := hd(stk);
stk := tl(stk);
if (cond#) goto [[n]];

IFN n

var cond# : bool;
assert size(stk) > 0;
cond# := hd(stk);
stk := tl(stk);
if (¬cond#) goto [[n]];

IFTE Stmt1 Stmt2

var cond# : bool;
assert size(stk) > 0;
cond# := hd(stk);
stk := tl(stk);
if (cond#) [[Stmt1]] else [[Stmt2]]

ITER Stmt ENDITER

var col# : Seq ref;
assert size(stk) > 0;
col# := hd(stk);
stk := tl(stk);
while (hasNext(col#))
{stk := next(col#) :: stk;
[[Stmt]]}

INVOKE sig n

let args = tk(stk, n) in
var result# : T;
assert size(stk) ≥ n;
call result# := invoke(reflect([[sig]]), args);
stk := result# :: dp(stk, n);

INVOKE_STATIC sig n

let args = tk(stk, n) in
var result# : T;
assert size(stk) ≥ n;
call result# := invoke(reflect([sig]), toRef(hd(args)) :: tl(args));
stk := result# :: dp(stk, n);

INVOKE_CB Stmt n

let args = tk(stk, n) in
varstk# : Seqα;
assert size(stk) ≥ n;
stk# := stk;
stk := args;
[[Stmt]]
END:
stk := hd(stk) :: dp(stk#, n);

INVOKE_CB_S n

let args = tk(stk, n) in
var stk# : Seq α;
assert size(stk) ≥ n;
stk# := stk;
stk := args;
goto LABEL;
END :
stk := hd(stk) :: dp(stk#, n);

INVOKE_SUPER currently not supported

INVOKE_ALL_CBS currently not supported

123

Formalised EMFTVM bytecode language for sound verification of model transformations 1221

invokes the current code block. Thus, during the Boogie
code generation, we insert a fresh Boogie label after each
code block invocation, denoted by END as shown in the
translation rules of the INVOKE_CB and INVOKE_CB_S
instructions (Table 5). Thus, our translation rule for the
RETURN instruction simply goes to the END label and
thus has the effect of returning the execution to the caller
code block.

4. In Table 6, theOCLType#allInstance function used by the
translation rule for the ALLINST instruction comes from
our Boogie library for OCL [19]. It returns a sequence of
the currently allocated elements on the given heap whose
classifier is as specified by the input classifier name.

5. In Table 6, the default, referred by the translation rule for
the REMOVE instruction, is a shorthand to represent the
default value of EMF types in Boogie, e.g. the default
value for boolean type is false, for integer type is 0, for

Table 6 Translational semantics for EMFTVM model handling instructions

EMFTVM Instruction (S) Corresponding Boogie Statements ([[S]])

NEW mm let cl = hd(stk) in
let clazz = resolve([[mm]], cl) in
varr# : ref;
assert size(stk) > 0;
havoc r#;
assume r# �= null ∧ ¬read(heap, r#, alloc) ∧ dtype(r#) = clazz;
heap := update(heap, r#, alloc,true);
stk := r# :: tl(stk);

NEW_S let mm = hd(stk), cl = hd(tl(stk)) in
let clazz = resolve(mm, cl) in
var r# : ref;
assert size(stk) > 1;
havoc r#;
assume r# �= null ∧ ¬ read(heap, r#, alloc) ∧ dtype(r#) = clazz;
heap := update(heap, r#, alloc,true);
stk := r# :: tl(tl(stk));

GET f let o = hd(stk) in
assert size(stk) > 0 ∧ o �= null ∧ read(heap, o, alloc);
stk := read(heap, o, [f]) :: tl(stk);

SET f
let o = hd(tl(stk)), v = hd(stk) in
assert size(stk) > 1 ∧ o �= null ∧ read(heap, o, alloc);
heap := update(heap, o, [[f]], v);
stk := tl(tl(stk));

GET_STATIC f let cl = hd(stk) in
assert size(stk) > 0;
stk := read(heap, toRef(cl), [[f]]) :: tl(stk);

SET_STATIC f
let cl = hd(tl(stk)), v = hd(stk) in
assert size(stk) > 1;
heap := update(heap, toRef(cl), [[f]], v);
stk := tl(tl(stk));

FINDTYPE mm cl stk := resolve([[mm]], [[cl]]) :: stk;
FINDTYPE_S let mm = hd(stk), cl = hd(tl(stk)) in

assert size(stk) > 1;
stk := resolve(mm, cl) :: tl(tl(stk));

ALLINST let cl = hd(stk) in
var col# : Seq ref;
assert size(stk) > 0;
col# := OCLType#allInstance(heap, cl);
stk := col# :: tl(stk);

ALLINST_IN let cl = hd(tl(stk)), hp=hd(stk) in
var col# : Seq ref;
assert size(stk) > 1;
col# := OCLType#allInstance(hp, cl);
stk := col# :: tl(tl(stk));

123

1222 Z. Cheng et al.

Table 6 continued

EMFTVM instruction (S) Corresponding Boogie statements ([[S]])

DELETE let o = hd(stk) in
var heap# : HeapType;
heap# := heap;
assert size(stk) > 0;
assert o �= null ∧ read(heap, o, alloc);
havoc heap;
assume (∀r: ref, f: Field α •

r �= null ∧ read(heap#, r, alloc) ∧ r �= o ⇒
read(heap, r, f) = read(heap#, r, f));

assume (∀r: ref, f: Field α •
r �= null ∧ ¬read(heap#, r, alloc) ⇒
read(heap, r, f) = read(heap#, r, f));

assume (∀f: Field α •
f �= alloc ⇒
read(heap, o, f) = read(heap#, o, f));

assume¬read(heap, o, alloc);
stk := tl(stk);

ADD f
let o = hd(tl(stk)), v = hd(stk) in
assert size(stk) > 1 ∧ o �= null ∧ read(heap, o, alloc);
if (isCollection([[f]]))
{ heap := update(heap, read(heap, o, [[f]]), read(heap, o, [[f]]) ∪ v); }
else
{assert ¬isset(acc, o, [f]);

heap := update(heap, o, [f], v);
acc := set(acc, o, [f],true); }

stk := tl(tl(stk));
REMOVE f

let o = hd(tl(stk)), v = hd(stk) in
assert size(stk) > 1 ∧ o �= null ∧ read(heap, o, alloc);
if (isCollection([[f]]))
{ heap := update(heap, read(heap, o, [[f]]), read(heap, o, [[f]])- v); }
else
{ if(read(heap, o, [[f]]) = v)

{ assert isset(acc, o, [[f]]);
heap := update(heap, o, [[f]], default);
acc := set(acc, o, [[f]],false); } }

stk := tl(tl(stk));
INSERT f

let o = hd(tl(tl(stk))), v = hd(tl(stk)), i = hd(stk) in
assert size(stk) > 2 ∧ o �= null ∧ read(heap, o, alloc);
if (isCollection([[f]]))
{ assert − 1 ≤ i ∧ i < size(read(heap, o, [[f]]));

heap := update(heap, o, [[f]], read(heap, o, [[f]])[0..i-1] :: v ::
read(heap, o, [[f]])[i + 1..size(read(heap, o, [[f]]))-1]); }

else
{assert ¬ isset(acc, o, [[f]]);
heap := update(heap, o, [[f]], v);
acc := set(acc, o, [[f]], true); }

stk := tl(tl(tl(stk)));
GETENV stk := ExecEnv :: stk;
GETENVTYPE stk := dtype(ExecEnv) :: stk;
MATCH currently not supported

MATCH_S currently not supported

GET_SUPER currently not supported

123

Formalised EMFTVM bytecode language for sound verification of model transformations 1223

string type is an empty sequence and for any other types
is null.

6. In Table 6, the ExecEnv, referred by the translation rule
for the GETENV and GETENVTYPE instructions, is a
Boogie constant of type ref that represents the execution
environment of EMFTVM. Currently, our formalisation
for the EMFTVM bytecode language does not provide
axioms to encode its semantics. This technical limitation
requires more thorough examination for the source code
of EMFTVM, which we are currently working on. This
leads to the absence of the translation rule for EMFTVM
instructions such as MATCH and MATCH_S, since these
instructions require static information from the execution
environment of EMFTVM.

References

1. Amrani, M., Lucio, L., Selim, G., Combemale, B., Dingel, J.,
Vangheluwe, H., Le Traon, Y., Cordy, J.R.: A tridimensional
approach for studying the formal verification of model transfor-
mations. In: 5th International Conference on Software Testing,
Verification and Validation. pp. 921–928. IEEE, Washington, DC,
USA (2012)

2. Anastasakis, K., Bordbar, B., Küster., J.M.: Analysis of model
transformations via Alloy. In: 4th Workshop on Model-Driven
Engineering, Verification and Validation. pp. 47–56. Nashville, TN,
USA (2007)

3. Arendt, T., Biermann, E., Jurack, S., Krause, C., Taentzer, G.: Hen-
shin: advanced concepts and tools for in-place EMF model trans-
formations. In: 13th International Conference on Model Driven
Engineering Languages and Systems, pp. 121–135. Springer, Oslo,
Norway (2010)

4. Asztalos, M., Lengyel, L., Levendovszky, T.: Formal specifica-
tion and analysis of functional properties of graph rewriting-based
model transformation. Softw. Test. Verif. Reliab. 23(5), 405–435
(2013)

5. ATLAS Group: Specification of the ATL virtual machine. Tech.
rep., Lina & INRIA Nantes (2005)

6. Barnett, M., Chang, B.Y.E., DeLine, R., Jacobs, B., Leino, K.R.M.:
Boogie: a modular reusable verifier for object-oriented programs.
In: 4th International Conference on Formal Methods for Compo-
nents and Objects, pp. 364–387. Springer, Amsterdam, Netherlands
(2006)

7. Barnett, M., Leino, K.R.M., Schulte, W.: The Spec# programming
system: an overview. In: 1st International Workshop on Construc-
tion and Analysis of Safe, Secure, and Interoperable Smart Devices,
pp. 49–69. Springer, Marseille, France (2005)

8. Baudry, B., Ghosh, S., Fleurey, F., France, R., Le Traon, Y., Mottu,
J.M.: Barriers to systematic model transformation testing. Com-
mun. ACM 53(6), 139–143 (2010)

9. Benelellam, A., Gomez-Llana, A., Tisi, M., Cabot, J.: Distributed
model-to-model transformation with ATL on MapReduce. In: 8th
International Conference on Software Language Engineering, pp.
37–48. ACM, Pittsburg, USA (2015)

10. Berry, G.: Synchronous design and verification of critical embed-
ded systems using SCADE and Esterel. In: 12th International
Workshop on Formal Methods for Industrial Critical Systems, pp.
2–2. Springer, Berlin, Germany (2008)

11. Bettini, L.: Implementing Domain-Specific Languages with Xtext
and Xtend. Packt Publishing, Birmingham (2013)

12. Bock, C., Cook, S., Rivett, P., Rutt, T., Seidewitz, E., Selic, B.,
Tolbert, D.: OMG Unified Modeling Language (ver. 2.5). Tech.
Rep. formal/2015-03-01 (2015)

13. Bornat, R.: Proving pointer programs in Hoare logic. In: Interna-
tional Conference on Mathematics of Program Construction, pp.
102–126. Springer, Ponte de Lima, Portugal (2000)

14. Burgueño, L., Troya, J., Wimmer, M., Vallecillo, A.: Static fault
localization in model transformations. IEEE Trans. Softw. Eng.
41(5), 490–506 (2015)

15. Büttner, F., Egea, M., Cabot, J., Gogolla, M.: Verification of ATL
transformations using transformation models and model finders.
In: 14th International Conference on Formal Engineering Methods,
pp. 198–213. Springer, Kyoto, Japan (2012)

16. Calegari, D., Luna, C., Szasz, N., Tasistro, Á.: A type-theoretic
framework for certified model transformations. In: 13th Brazilian
Symposium on Formal Methods, pp. 112–127. Springer, Natal,
Brazil (2011)

17. Calegari, D., Szasz, N.: Verification of model transformations: a
survey of the state-of-the-art. Electron. Notes in Theor. Comput.
Sci. 292, 5–25 (2013)

18. Chan, K.: Formal proofs for QoS-oriented transformations. In:
10th International Conference Workshops on Enterprise Distrib-
uted Object Computing, pp. 41–41. IEEE, Hong Kong, China
(2006)

19. Cheng, Z., Monahan, R., Power, J.F.: A sound execution semantics
for ATL via translation validation. In: 8th International Conference
on Model Transformation, pp. 133–148. Springer, L’Aquila, Italy
(2015)

20. Cheng, Z., Monahan, R., Power, J.F.: Online repository for for-
malised EMFTVM bytecode language. https://github.com/veriatl/
Compiler.Emftvm2Boogie (2016)

21. Cheng, Z.: Formal Verification of Relational Model Transforma-
tions Using an Intermediate Verification Language. Ph.D. thesis,
Maynooth University (2016)

22. Combemale, B., Crégut, X., Garoche, P., Thirioux, X.: Essay on
semantics definition in MDE—an instrumented approach for model
verification. J. Softw. 4(9), 943–958 (2009)

23. Cousot, P., Cousot, R.: Abstract interpretation: a unified lattice
model for static analysis of programs by construction or approxi-
mation of fixpoints. In: 4th ACM SIGACT-SIGPLAN Symposium
on Principles of Programming Languages, pp. 238–252. ACM, Los
Angeles, California (1977)

24. Czarnecki, K., Helsen, S.: Feature-based survey of model transfor-
mation approaches. IBM Syst. J. 45(3), 621–645 (2006)

25. Dahlweid, M., Moskal, M., Santen, T., Tobies, S., Schulte, W.:
VCC: Contract-based modular verification of concurrent C. In: 31st
International Conference on Software Engineering, pp. 429–430.
IEEE, Vancouver, British Columbia (2009)

26. Darvas, Á., Leino, K.R.M.: Practical reasoning about invocations
and implementations of pure methods. In: 10th International Con-
ference on Fundamental Approaches to Software Engineering, pp.
336–351. Springer, Braga, Portugal (2007)

27. Darvas, Á., Müller, P.: Reasoning about method calls in interface
specifications. J. Object Technol. 5(5), 59–85 (2006)

28. de Moura, L., Bjørner, N.: Z3: An efficient SMT solver. In:
14th International Conference on Tools and Algorithms for the
Construction and Analysis of Systems, pp. 337–340. Springer,
Budapest, Hungary (2008)

29. Detlefs, D., Nelson, G., Saxe, J.B.: Simplify: a theorem prover for
program checking. J. ACM 52(3), 365–473 (2005)

30. Filliâtre, J.C., Paskevich, A.: Why3— where programs meet
provers. In: 22nd European Symposium on Programming, pp. 125–
128. Springer, Rome, Italy (2013)

31. Filliâtre, J.C.: Why: A multi-language multi-prover verification
tool. Tech. rep., Université Paris Sud (2003)

123

https://github.com/veriatl/Compiler.Emftvm2Boogie
https://github.com/veriatl/Compiler.Emftvm2Boogie

1224 Z. Cheng et al.

32. Ge, Y., Barrett, C., Tinelli, C.: Solving quantified verification condi-
tions using satisfiability modulo theories. Ann. Math. Artif. Intell.
55(1–2), 101–122 (2009)

33. Guerra, E., de Lara, J.: Colouring: execution, debug and analysis of
QVT-relations transformations through coloured Petri nets. Softw.
Syst. Model. 13(4), 1447–1472 (2014)

34. Hoare, C.A.R.: An axiomatic basis for computer programming.
Commun. ACM 12(10), 576–580 (1969)

35. Huth, M., Ryan, M.: Logic in Computer Science: Modelling and
Reasoning About Systems. Cambridge University Press, Cam-
bridge (2004)

36. Jackson, E.K., Levendovszky, T., Balasubramanian, D.: Reason-
ing about metamodeling with formal specifications and automatic
proofs. In: 14th International Conference on Model Driven Engi-
neering Languages and Systems, pp. 653–667. Springer, Welling-
ton, New Zealand (2011)

37. Jackson, D.: Alloy: a lightweight object modelling notation. ACM
Trans. Softw. Eng. Methodol. 11(2), 256–290 (2002)

38. Jouault, F.: The resolve algorithm implemented in the ASM
language. http://git.eclipse.org/c/mmt/org.eclipse.atl.git/tree/dsls/
ATL/Compiler/ATL.acg (2007)

39. Jouault, F., Allilaire, F., Bézivin, J., Kurtev, I.: ATL: a model trans-
formation tool. Sci. Comput. Program. 72(1–2), 31–39 (2008)

40. Klatt, B.: Xpand: a closer look at the model2text transformation
language. http://bar54.de/benjamin.klatt-xpand.pdf (2007)

41. Kleppe, A.G., Warmer, J., Bast, W.: MDA Explained: The Model
Driven Architecture: Practice and Promise. Addison-Wesley Long-
man, Boston (2003)

42. Lano, K., Clark, T., Kolahdouz-Rahimi, S.: A framework for model
transformation verification. Formal Aspects Comput. 27(1), 193–
235 (2014)

43. Lehner, H., Müller, P.: Formal translation of bytecode into Boo-
giePL. In: 2nd Workshop on Bytecode Semantics, Verification,
Analysis and Transformation, pp. 35–50. Elsevier, Budapest, Hun-
gary (2007)

44. Leino, K.R.M., Middelkoop, R.: Proving consistency of pure
methods and model fields. In: 12th International Conference on
Fundamental Approaches to Software Engineering, pp. 231–245.
Springer, York, UK (2009)

45. Leino, K.R.M., Monahan, R.: Reasoning about comprehensions
with first-order SMT solvers. In: 24th Annual ACM Symposium
on Applied Computing, pp. 615–622. ACM, Hawaii, USA (2009)

46. Leino, K.R.M.: Dafny: An automatic program verifier for func-
tional correctness. In: 16th International Conference on Logic for
Programming, Artificial Intelligence, and Reasoning, pp. 348–370.
Springer, Dakar, Senegal (2010)

47. Leino, K.R.M.: This is Boogie 2. http://research.microsoft.com/
en-us/um/people/leino/papers/krml178.pdf. Microsoft Research,
Redmond, USA (2008)

48. Lúcio, L., Barroca, B., Amaral, V.: A technique for automatic vali-
dation of model transformations. In: 13th International Conference
on Model Driven Engineering Languages and Systems, pp. 136–
150. Springer, Oslo, Norway (2010)

49. Lúcio, L., Vangheluwe, H.: Model transformations to verify model
transformations. In: 2nd Workshop on Verification of Model Trans-
formations. Budapest, Hungary (2013)

50. Manna, Z., McCarthy, J.: Properties of programs and partial func-
tion logic. Mach. Intell. 5, 27–38 (1969)

51. Mottu, J., Baudry, B., Traon, Y.L.: Mutation analysis testing for
model transformations. In: 2nd European Conference on Model
Driven Architecture-Foundations and Applications. pp. 376–390.
Springer, Bilbao, Spain (2006)

52. Pnueli, A., Siegel, M., Singerman, E.: Translation validation. In: 4th
International Conference on Tools and Algorithms for Construc-
tion and Analysis of Systems, pp. 151–166. Springer, London, UK
(1998)

53. Poernomo, I., Terrell, J.: Correct-by-construction model transfor-
mations from partially ordered specifications in Coq. In: 12th
International Conference on Formal Engineering Methods, pp. 56–
73. Springer, Shanghai, China (2010)

54. Poernomo, I.: Proofs-as-model-transformations. In: 1st Inter-
national Conference on Model Transformation, pp. 214–228.
Springer, Zürich, Switzerland (2008)

55. Rahim, L.A., Whittle, J.: A survey of approaches for verifying
model transformations. Softw. Syst. Model. 14(2), 1003–1028
(2015)

56. Sahin, D., Kessentini, M., Wimmer, M., Deb, K.: Model trans-
formation testing: a bi-level search-based software engineering
approach. J. Softw. Evol. Process 27(11), 821–837 (2015)

57. Schätz, B.: Verification of model transformations. In: 9th Interna-
tional Workshop on Graph Transformation and Visual Modeling
Techniques, pp. 130–142. EASST, Paphos, Cyprus (2010)

58. Selim, G., Wang, S., Cordy, J., Dingel, J.: Model transformations
for migrating legacy models: an industrial case study. In: 8th Euro-
pean Conference on Modelling Foundations and Applications, pp.
90–101. Springer, Lyngby, Denmark (2012)

59. Steinberg, D., Budinsky, F., Merks, E., Paternostro, M.: EMF:
eclipse modeling framework, 2nd edn. Pearson Education, Lon-
don (2008)

60. Syriani, E., Vangheluwe, H.: A modular timed graph transforma-
tion language for simulation-based design. Softw. Syst. Model.
12(2), 387–414 (2013)

61. Tristan, J., Govereau, P., Morrisett, G.: Evaluating value-graph
translation validation for LLVM. In: 32nd ACM SIGPLAN Con-
ference on Programming Language Design and Implementation,
pp. 295–305. ACM, San Jose, USA (2011)

62. Tristan, J., Leroy, X.: A simple, verified validator for software
pipelining. In: 37th ACM Symposium on Principles of Program-
ming Languages, pp. 83–92. ACM, Madrid, Spain (2010)

63. Troya, J., Vallecillo, A.: A rewriting logic semantics for ATL. J.
Object Technol. 10(5), 1–29 (2011)

64. Tschannen, J., Furia, C.A., Nordio, M., Meyer, B.: Verifying Eif-
fel programs with Boogie. In: Computing Research Repository
abs/1106.4700 (2011)

65. Varró, G., Varró, D., Friedl, K.: Adaptive graph pattern matching
for model transformations using model-sensitive search plans. In:
1st International Workshop on Graph and Model Transformations,
pp. 191–205. Elsevier, Brighton, United Kingdom (2006)

66. Vépa, É., Bézivin, J., Brunelière, H., Jouault, F.: Measuring model
repositories. In: Summary of the 2006 Model Size Metrics Work-
shop. Springer, Genoa, Italy (2006)

67. Vignaga, A.: Metrics for measuring ATL model transformations.
Tech. rep., Universidad de Chile (2009)

68. Wagelaar, D., Iovino, L., Ruscio, D.D., Pierantonio, A.: Transla-
tional semantics of a co-evolution specific language with the EMF
transformation virtual machine. In: 5th International Conference
on Model Transformation, pp. 192–207. Springer, Prague, Czech
Republic (2012)

69. Wagelaar, D., Tisi, M., Cabot, J., Jouault, F.: Towards a gen-
eral composition semantics for rule-based model transformation.
In: 14th International Conference on Model Driven Engineering
Languages and Systems, pp. 623–637. Springer, Wellington, New
Zealand (2011)

70. Wagelaar, D.: The resolve algorithm implemented in the
EMFTVM language. http://git.eclipse.org/c/mmt/org.eclipse.
atl.git/tree/plugins/org.eclipse.m2m.atl.emftvm/src/org/eclipse/
m2m/atl/emftvm/util/OCLOperations.java (2011)

71. Wagelaar, D.: Using ATL/EMFTVM for import/export of med-
ical data. In: 2nd Software Development Automation Conference.
Amsterdam, Netherlands (2014)

72. Wimmer, M., Kappel, G., Kusel, A., Retschitzegger, W., Schoen-
boeck, J., Schwinger, W.: Right or wrong? Verification of model

123

http://git.eclipse.org/c/mmt/org.eclipse.atl.git/tree/dsls/ATL/Compiler/ATL.acg
http://git.eclipse.org/c/mmt/org.eclipse.atl.git/tree/dsls/ATL/Compiler/ATL.acg
http://bar54.de/benjamin.klatt-xpand.pdf
http://research.microsoft.com/en-us/um/people/leino/papers/krml178.pdf
http://research.microsoft.com/en-us/um/people/leino/papers/krml178.pdf
http://git.eclipse.org/c/mmt/org.eclipse.atl.git/tree/plugins/org.eclipse.m2m.atl.emftvm/src/org/eclipse/m2m/atl/emftvm/util/OCLOperations.java
http://git.eclipse.org/c/mmt/org.eclipse.atl.git/tree/plugins/org.eclipse.m2m.atl.emftvm/src/org/eclipse/m2m/atl/emftvm/util/OCLOperations.java
http://git.eclipse.org/c/mmt/org.eclipse.atl.git/tree/plugins/org.eclipse.m2m.atl.emftvm/src/org/eclipse/m2m/atl/emftvm/util/OCLOperations.java

Formalised EMFTVM bytecode language for sound verification of model transformations 1225

transformations using colored Petri nets. In: 9th OOPSLA Work-
shop on Domain-Specific Modeling, pp. 101–106. Helsinki School
of Economics, Orlando, USA (2009)

73. Wu, H., Monahan, R., Power, J.: Exploiting attributed type graphs
to generate metamodel instances using an SMT solver. In: 7th
International Symposium on Theoretical Aspects of Software Engi-
neering, pp. 175–182. IEEE, Birmingham, UK (2013)

Zheng Cheng [BSc, Beijing
University of Civil Engineering
and Architecture, 2007; MSc,
Maynooth University, 2011; PhD.,
Maynooth University, 2016] is
a postdoctoral researcher at
AtlanMod Team (INRIA, Mines
Nantes, LINA), France. His
research interests lie in model-
driven engineering, model trans-
formation and deductive pro-
gram verification.

RosemaryMonahan [BSc, Uni-
versity College Dublin, 1995;
PhD., Dublin City University,
2010] is a lecturer in the Depart-
ment of Computer Science at
Maynooth University, Ireland,
since 1999. Her research is con-
cerned with the development of
reliable software systems and
is focused on the verification
of object-oriented programs and
the use of automatic verification
tools.

James F. Power [BSc, Univer-
sity College Dublin, 1990; PhD.,
Dublin City University, 1995] is
a lecturer in Computer Science
at Maynooth University, Ireland.
His research interests include
program analysis and transfor-
mation, software verification and
reverse engineering.

123

	Formalised EMFTVM bytecode language for sound verification of model transformations
	Abstract
	1 Introduction
	2 Background
	2.1 The EMFTVM bytecode language
	2.2 Verifying contracts on model transformations
	2.3 Boogie intermediate verification language

	3 Formalisation of EMFTVM bytecode language
	3.1 Basics of our formalisation
	3.2 Stack handling instructions
	3.3 Control flow instructions
	3.4 Model handling instructions

	4 Reliable prototyping for model transformation languages
	4.1 RP1: execution semantics of resolving algorithm
	4.2 RP2: implementation of resolving algorithm
	4.3 RP3: verification of the resolving algorithm

	5 Translation validation for model transformation languages
	5.1 Overview of the SimpleGT Language
	5.2 TV1: execution semantics of SimpleGT
	5.3 TV2: translation validation of SimpleGT rules

	6 Evaluation of our reliable prototyping and translation validation approaches
	6.1 Implementation
	6.2 Evaluation setup
	6.3 Evaluation results
	6.4 Limitations of our approach
	6.4.1 Soundness
	6.4.2 Completeness
	6.4.3 Expressiveness
	6.4.4 User experience

	7 Related work
	7.1 Simulation, model checking and model finding
	7.2 Theorem proving
	7.3 Discussion

	8 Conclusions and future work
	Acknowledgements
	Appendix: The translational semantics of EMFTVM bytecode language
	References

