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Short-Term Forecasting of Sea Surface Elevation
for Wave Energy Applications: The Autoregressive

Model Revisited
Yerai Peña-Sanchez , Alexis Mérigaud , and John V. Ringwood

Abstract—For wave energy converter control applications, au-
toregressive (AR) models have been proposed as a simple wave
forecasting method, solely based on measured or estimated values
of the past wave elevation (or excitation force) signal. Using offline-
filtered wave time series, AR models can achieve accurate forecasts
several wave periods into the future. In this paper, the AR method
is examined from the broader perspective of linear, Gaussian pro-
cesses. In particular, assuming Gaussian waves and perfect knowl-
edge of the wave spectrum, it is possible to derive a theoretically-
optimal wave elevation predictor. It is shown that, in realistic
situations, AR models can achieve a performance comparable to
the theoretically optimal, spectrum-based predictor, both in simu-
lated wave time series and using actual wave elevation records.

Index Terms—Autoregressive model (AR), filtering, forecasting,
Gaussian process, time series, wave energy.

I. INTRODUCTION

TO MAKE wave energy profitable, wave energy converters
(WECs) must convert the maximum possible amount of

mechanical energy into electricity for a given device cost. To
improve power conversion, a control strategy can be applied to
the WEC, which optimizes the system loading [1]. In proposing
causal WEC controllers [2], [3], some researchers avoid the
need to predict the future wave elevation η, though the optimal
control law is, in general, noncausal [1], [3]–[5], i.e., an optimal
controller requires knowledge of the future η or excitation forces
acting on the device. Although only prediction of sea surface
elevation η is performed in this paper, the strategies introduced
here can be applied, in an analogous mode, to the prediction of
the excitation forces acting on a device.

Sea surface elevation forecasting differs from sea water level
forecasting [6], significant waveheight forecasting [7], or more
generally sea-state forecasting [8]. Sea-state forecasting consists
of predicting wave statistics, for time horizons ranging from 1
to 48 h, as opposed to wave elevation forecasting that predicts
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Fig. 1. Two main methods to forecast free surface elevation. (a) Using distant
measurements. (b) Based on the measurements of a single point.

wave elevation a few seconds into the future. The reader inter-
ested in sea-state forecasting may refer to [8] for a comparison
between methods based on meteorological models, and time-
series-based approaches, for significant waveheight forecasting.
In the literature, two main approaches are found for short-term
wave elevation forecasting [9]. The first method predicts future
η values at the WEC location, based on measurements taken at
one or more points located at a certain distance from the WEC,
as shown in Fig. 1(a). The number of measurement points, re-
quired to obtain an accurate prediction, depends mainly on the
directional spreading of the incoming waves [10]. For a uni-
directional sea-state, a single up-wave measuring point would
lead to a deterministic prediction of η [10]. The second method,
shown in Fig. 1(b), solely uses past measurements at the WEC
location to predict η; that is, considering the measurements of
η as a time series, future values can be predicted as a function
of past values. From a hardware requirement point of view, the
second method is simpler, mainly because it uses only measure-
ments from the WEC itself, whereas the first method requires
more equipment to measure η at different points. However, the
knowledge of up-wave information may improve the prediction,
compared to that achieved by using only past measurements
taken at the WEC location. In this paper, only the approach of
Fig. 1(b) is analyzed.

In the vast majority of cases, within the power production
region of WECs, ocean waves can be described as a Gaussian,
linear process, only excluding shallow water conditions (for
a more detailed discussion, see [11, Ch. 9]). Additionally, for
short periods of time (around 30 min), the process can also
be assumed stationary [11]. Therefore, the use of a prediction
model that exploits the stationary, linear statistical structure of
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sea waves is pertinent. Several linear prediction models can be
found in the literature. In [9], the simple AR model is found to
achieve accurate predictions for the case of low-frequency swell
waves, which are the most energetic waves and, thus, offer the
most potential for wave energy conversion. In [10], a forecasting
strategy is introduced which, assuming perfect knowledge of
the wave spectrum, provides a theoretical upper bound for the
prediction accuracy. An alternative linear prediction model to
AR is the autoregressive moving average model which, for wave
elevation prediction, achieves similar results to AR models [12].

Although the AR model introduced in [9] and the theoret-
ical best predictor introduced in [10] have a different model
structure, and their regression coefficients are identified using
different techniques, both models are consistent with the linear,
stationary assumptions of the ocean waves described and, there-
fore, both should lead to similar results. While the AR predictor
structure uses a unique set of parameters (for the one-step-
ahead prediction), and the multistep ahead prediction is carried
out iteratively, the theoretically-optimal predictor has a different
set of coefficients for each prediction horizon (Thor) and, thus,
directly predicts the multistep ahead wave elevation, with no
need for iteration. In the following, the predictor structure with
a different set of coefficients for each prediction horizon will
be termed direct multistep (DMS). Regarding the identification
method, while the AR model identifies the model coefficients
from wave time series, the DMS prediction strategy introduced
in [10] identifies the parameters using statistical information
contained in the wave spectrum. For the sake of clarity, the dif-
ferent forecasting strategies used in this paper are termed using
the predictor structure as name and the identification method
in the subindex. For example, the forecasting strategy which
has the DMS predictor structure and identifies the parameters
from the wave spectrum is referred to as DMSSp.

Overall, the aim of this paper is to revisit the AR forecasting
model by the following statements.

1) Comparing the predictions achieved by the AR model to
those obtained by the DMSSp strategy which, in theory,
yields the best achievable predictions.

2) Comparing two different identification methods for the
AR predictor model. The first one is based on solving a
linear least square (LLS) problem, termed ARLLS. In con-
trast, a second forecasting strategy identifies the AR pa-
rameters through a non-LLSs problem, termed long-range
predictive identification (LRPI) [9], [13] and, therefore,
identified as ARLRPI.

3) Additionally, the idea of using filtered η values for the
prediction is investigated. In some studies [9], [13], it is
shown that, when using an AR model, offline filtering can
improve the forecasting accuracy. However, for real time
operation, since online filters add a delay to the filtered
signal (Tdelay), online filtering may not improve the overall
forecasting accuracy. This paper shows the difference be-
tween the prediction accuracy obtained using online and
offline filtering of η.

A further forecasting strategy is introduced which, while
having the same model structure as the theoretical best pre-
dictor, identifies the parameters from time series by solving

an LLS problem, termed DMSLLS. In summary, four differ-
ent forecasting strategies are compared in this study (DMSSp,
DMSLLS, ARLLS, and ARLRPI). Under ideal conditions, all strate-
gies should perform similarly. However, in real conditions, when
the data available for identification are imperfect, and the sea-
state is not perfectly stationary, the relative performance of the
different strategies may differ. Therefore, the four strategies are
compared using both simulated and real wave data.

The remainder of this paper is organized as follows. In
Section II, the two AR-model-based forecasting strategies,
namely ARLLS and ARLRPI, are introduced, along with the po-
tential use of filtering. Section III describes the DMSSp and
DMSLLS prediction methods. In Section IV, all the methods an-
alyzed in this paper are compared using numerically simulated
wave time series. In Section V, the prediction methods are in-
vestigated using real wave data. Finally, conclusions are drawn
in Section VI.

II. AR MODEL

A. AR Model

The AR model assumes that ηk , the value of η at time instant k,
where k is the discrete time index (t = kTs) and Ts the sampling
time, depends linearly on its own previous values, through the
parameters φi . Therefore, the p-step ahead predicted values of η
(η̂k+p |k ), where p ∈ {1 . . . P} and Thor = PTs, can be expressed
as follows:

η̂k+p |k =
H∑

i=1

φiη̂k+p−i|k (1)

where H is the order of the model and η̂k+p−i|k = ηk+p−i when
k + p − i ≤ k, since the value of ηk+p−i is known and, hence,
there is no need of prediction.

Several methods to determine the optimal order H of an AR
model (e.g., Akaike’s information theoretic criterion [14]) can
be found in the literature. However, such methods are not dis-
cussed in this paper, since the aim is to show how the forecasting
strategies perform for different orders, rather than how the best
order can be obtained for each method.

B. AR Model Identification

Two different approaches for the identification of the φi in
(1) are studied in this paper. The first approach minimizes the
one-step-ahead prediction error. Therefore, given a set of train-
ing data of dimension Ntr, the coefficients are identified by
minimizing the following cost function:

JLLS =
N tr∑

k=H +1

(ηk − η̂k |k−1)2 (2)

which is an LLS problem. Therefore, the AR model based fore-
casting strategy, whose coefficients are identified by minimizing
(2), is termed ARLLS.

For longer prediction horizons, an identification method that
minimizes the p-step ahead prediction error may be more per-
tinent. The coefficients of the ARLRPI forecasting strategy are
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Fig. 2. (a) Section of ηf using Butterworth filters of 3rd, 6th, and 9th orders
with ωc = 1 rad/s and (b) the same section of ηf filtered with a 6th order
Butterworth filter with ωc = 0.85, 1, and 1.15 [rad/s].

identified by minimizing the following multistep ahead cost
function:

JLRPI =
P∑

j=1

N tr∑

k=H +1

(ηk − η̂k |k−j )2 . (3)

Since (3) represents a non-LSSs problem, its minimization is
more complex problem than the minimization of (2). Thus, the
time needed to identify the parameters of ARLRPI is significantly
higher than the one needed for ARLLS.

C. Wave Signal Filtering

It is well known that, if a signal is decomposed into one con-
taining the low-frequency content and the other containing the
high-frequency content, the signal with the higher frequencies
is the less predictable one [15]. Since the low-frequency wave
components are the most energetic [16], some studies [9], [13],
lowpass filter η offline before the prediction process. However,
for online filtering, the filtered signal ηf is delayed with respect
to the original signal η [17]. Therefore, if a prediction of Thor

seconds is required, Thor + Tdelay needs to be predicted.
Tdelay depends mostly on the cutoff frequency ωc and the order

of the filter. By way of example, Fig. 2 shows how ηf is delayed
with respect to η for different orders of a Butterworth filter [see
Fig. 2(a)] and different ωc [see Fig. 2(b)]. The simulated η used
in this section is generated from a JONSWAP spectrum [18]
with a peak period TP of 10 s, a significant waveheight HS of
2 m, and a peak enhancement factor γ of 3.3.

For the example shown in Fig. 2(a), η is filtered by using
3rd, 6th, and 9th order Butterworth filters with ωc = 1[rad/s],
corresponding to a Tdelay of, approximately, 2.3, 3.9, and 6.2 s,
respectively. Additionally, Fig. 2(b) illustrates the differences
between η and ηf using a 6th order Butterworth filter with
various ωc. It is clear that the delay added by the filter increases
when the order increases or when ωc decreases, i.e., when more
high-frequency components are filtered out.

Fig. 3. SDF and ACVF for a JONSWAP spectrum with TP = 10 s, HS = 2 m,
and γ = 3.3.

III. BROADER PERSPECTIVE—OCEAN WAVES AS A

GAUSSIAN PROCESS

A. Theoretically Optimal Predictor

Ocean waves can, in most cases, be modeled as a zero-mean
Gaussian process [11]. If a short duration time signal is con-
sidered, with respect to the typical time-length in which the sea
condition changes (typically, 30 min to 3 h), the wave elevation
process can be considered stationary. Finally, the wave elevation
process is also considered to be ergodic, which means that the
statistics of the process, obtained from time series, are equal to
the ensemble statistics [11].

Thus, a stationary, ergodic Gaussian process is fully described
by its mean, η̂ = 0 for the case of ocean waves, and its autoco-
variance function (ACVF), which is defined as follows:

Rηη (τ) = lim
T →∞

1
2T

∫ T

−T

ηtηt+τ dt. (4)

One can notice that Rηη only depends on τ , due to the station-
arity of the process. Additionally, the maximum of Rηη (τ) is
at τ = 0, where Rηη (0) = σ2 , the variance of the process (also
equal to m0 , the zeroth order spectral moment).

The ACVF can be obtained directly from the spectral density
function (SDF), since SDF and ACVF are a Fourier transform
pair, according to the Wiener–Khintchine theorem. Therefore,
the statistical properties of a stationary Gaussian sea are fully
characterized by its ACVF or, equivalently, by its SDF [19]. As
an example, Fig. 3 shows an SDF and the corresponding ACVF
for a JONSWAP spectrum (Hs = 2 m, Tp = 10 s).

Once the statistical properties of ocean waves are well-
defined, and assuming perfect knowledge of the SDF, it is possi-
ble to derive a theoretically optimal predictor, in a mean-square
error sense. First, define the sequences of vectors xk ∈ RH

and yk ∈ RP , which contain, respectively, H past consecutive
measurements and P consecutive forecast samples, as follows:

xk =

⎡

⎢⎢⎢⎢⎣

ηk

ηk−1

...

ηk−H +1

⎤

⎥⎥⎥⎥⎦
and yk =

⎡

⎢⎢⎢⎢⎣

ηk+P

...

ηk+2

ηk+1

⎤

⎥⎥⎥⎥⎦
(5)
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for any positive integer k > H . Let vk ∈ RH +P be a vector
containing xk and yk as follows:

vk =

[
yk

xk

]
. (6)

From the definition of a Gaussian process, vk follows a multi-
variate normal distribution of dimension H + P , characterized
by its mean, μ = 0RH ×P , and its variance-covariance matrix,
Σvv ∈ R(H +P )×(H +P ) , whose components Σvvi j

are defined
as follows:

Σvvi j
= E[ηk+H +1−iηk+H +1−j ] (7)

where ∀i, j ∈ [[1;H + P ]]2 . All the diagonal elements of Σvvi j

are equal to the variance of the process, σ2 . Denoting ri =
Rηη (iΔt), for all i ∈ N, each row of Σvv is a discretized and
time-shifted version of the ACVF, [see (4)] as follows:

Σvv =

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎣

r0 r1 r2 · · · rH +P −1

r1 r0 r1 · · · rH +P −2

r2 r1 r0
...

...
...

. . . r1

rH +P −1 rH +P −1 · · · r1 r0

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (8)

Splitting Σvv into past-measurement and forecasting blocks

Σvv =

[
Σyy Σyx

Σxy Σxx

]
(9)

where Σyy ∈ RP ×P , Σxx ∈ RH×H , Σyx ∈ RP ×H , and Σxy ∈
RH×P are defined as follows:

Σyy =

⎡

⎢⎢⎣

r0 · · · rP −1

...
. . .

...

rP −1 · · · r0

⎤

⎥⎥⎦

Σxx =

⎡

⎢⎢⎣

r0 · · · rH−1

...
. . .

...

rH−1 · · · r0

⎤

⎥⎥⎦

Σyx = ΣT
xy =

⎡

⎢⎢⎣

rH · · · rH +P −1

...
. . .

...

r1 · · · rH

⎤

⎥⎥⎦.

(10)

The conditional distribution of y and x, yk |xk , is a multivari-
ate Gaussian process [20]. Using μx = 0RH and μy = 0RP , the
mean μyk |xk

and variance Σyk |xk
are given as follows:

μyk |xk
= ΣyxΣ−1

xxxk

Σyk |xk
= Σyy − ΣyxΣ−1

xxΣxy . (11)

The best predictor of y is given by μyk |xk
as

ŷk = μyk |xk
= ΣyxΣ−1

xxxk (12)

and the corresponding mean-square prediction error value, for
each p, is given by the diagonal terms of Σyk |xk

.

Explicitly, the set of optimal parameters θ, which gives the
best linear combination of the measurements of the vector xk ,
is obtained by solving the following system of linear equations:

θ = ΣyxΣ−1
xx . (13)

Unlike the AR model shown in (1), (12) has a set of H pa-
rameters for each prediction horizon p. Therefore, this predictor
structure, which directly predicts the p-step-ahead values, with
no need of iteration, is defined as follows:

η̂k+p |k =
H∑

i=1

θp,iηk−i . (14)

As outlined in Section I, the predictor structure of (14) is
termed DMS. The forecasting strategy which combines the
DMS structure and the identification method which derives the
forecasting coefficients using wave statistical information, as in
(13), is referred to as DMSSp.

Given the Gaussian nature of the wave process, DMSSp can
be considered as an upper bound for the prediction accuracy of
any linear or nonlinear forecasting method which predict η by
any function of the same set of previous values, provided that
system (13) can be accurately solved.

B. Identifying a Direct Multistep Model Using Time Series

The DMSSp forecasting strategy can be implemented pro-
vided that spectral estimates are available. However, it is also
possible to identify the parameters for a forecasting strategy
with the DMS predictor structure introduced in (14) without
using the wave spectrum, but rather using previous values of η.
The identification of such a forecasting strategy is carried out
by minimizing a separate cost function for each p defined as

JDMSLLS(p) =
N tr∑

k=H +1

(ηk+p − η̂k+p |k )2 (15)

which describes p separate LLS problems. To this end, the fore-
casting strategy which has the DMS predictor structure of (14)
and whose parameters are identified by solving the p different
LLS problems shown in (15) is termed DMSLLS.

Note that the coefficients for the one-step-ahead prediction
of the DMSLLS strategy coincide with those identified for the
ARLLS forecasting strategy. Consequently, both strategies will
lead to the same one-step-ahead prediction accuracy. Addi-
tionally, in theory, if the parameters of the DMSLLS strategy
are identified using a sufficiently long data set, and provided
that system (13) is accurately solved to obtain the DMSSp

parameters, both approaches should result in the same set of
parameters θp,i .

IV. NUMERICAL SIMULATION RESULTS

A. Performance Metrics

The metric used to describe the prediction accuracy, for each
prediction horizon, is the goodness of fit (GoF). The p-step
ahead GoF (GoF(p)) measures the quadratic error between the
real value, ηk+p , and the predicted value, η̂k+p |k , and is formally
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expressed as follows:

GoF(p) = 1 −

√√√√
∑N

k=1

(
ηk+p − η̂k+p |k

)2
∑N

k=1 (ηk+p)
2 (16)

where N is the number of points used to evaluate the GoF.
Additionally, a multistep performance index (MSPI) is in-

troduced, which takes into account all the prediction horizons
considered between, say, 1 and P . Therefore, the MSPI provides
an overview of the performance achieved by a given forecasting
strategy for all time horizons at once. The MSPI is expressed as
follows:

MSPI = 1 − 1
σ2P

P∑

i=1

(
1
N

N∑

k=1

(ηk+i − η̂k+i|k )2

)
. (17)

Some authors use correlation as a performance metric to quan-
tify the accuracy of their forecasting strategies [21]. However,
since correlation only represents the phase difference between
two signals, the amplitude differences are not reflected in the
obtained correlation measure and is therefore not used in the
current study.

The two performance metrics used in this paper, GoF and
MSPI, are based on the root-mean-square error between actual
and predicted values of η. Therefore, they statistically measure
the magnitude of the difference between actual and predicted
η values, instead of measuring only the difference in amplitude
or phase, giving a more realistic measure of the prediction error.

B. Wave Simulation

The simulated wave time series of this paper are generated
from a JONSWAP spectrum with HS = 2 m, TP = 10 s, and
γ = 3.3. The simulated data sets are 30 min long with a sampling
time of TS = 1 s. Both the identification of the parameters and
the prediction are carried out using a complete 30-min data
set (Ntr = 1800 points). The data set used for identification is
different from the data set where the prediction is performed.

If the spectrum of a stationary process is zero for some
nonzero frequency interval (band-limited spectrum), the process
is predictable (or deterministic) [22], which means that, for any
ε > 0, there exists a linear predictor whose one-step-ahead pre-
diction error is less than ε. For such a process, the prediction
error could be made arbitrarily small by increasing the order
of the predictor [22]. This is clearly not a reasonable assump-
tion for ocean waves recorded at a single location. Furthermore,
any realistic wave elevation measurement or estimation method
would carry some level of measurement noise. In view of those
considerations, it is reasonable to assume that the process, as
recorded by a measurement device, would present some degree
of unpredictability.

Simulated JONSWAP spectral values are zero to machine ac-
curacy for low frequencies (see Fig. 3), and should therefore be
predictable (i.e., the one-step-ahead prediction error should tend
to zero when increasing the predictor order). To make simula-
tions more realistic, an arbitrarily small white-noise component
(1e−10) is added to the SDF used to generate η. Note that, when
spectra are computed from real wave data, no such modification

Fig. 4. GoF of the prediction achieved by DMSLLS using different orders.

Fig. 5. MSPI obtained by the different forecasting methods using simulated
wave data.

is necessary, because the recorded low-frequency spectral con-
tent is nonzero. Finally, the case where the simulated spectrum
is band-limited is briefly commented in Section IV-E.

C. Comparison of Different Forecasting Strategies

The ARLLS, ARLRPI, and DMSLLS strategies require con-
sistent identification of their prediction coefficients, using a
sufficiently large learning data set (Ntr data points). Typically,
regardless of the method, it is found that, to obtain accurate iden-
tification of the forecasting coefficients, the length of the training
data should be 15 times the order of the model (Ntr ≈ 15H)
(in other words, using more learning data points does not bring
any significant improvement to the prediction accuracy).

Unsurprisingly, for all the prediction methods analyzed, the
achieved GoF increases with the model order, up to a given
order, beyond which the GoF does not improve significantly.
For example, Fig. 4 shows the GoF achieved by DMSLLS with
orders from 10 to 200. For the chosen wave spectrum, the GoF
achieved by DMSLLS does not significantly improve for orders
larger than 80. In particular, it is shown that the GoF achieved by
a DMSLLS of order H = 110, and a DMSLLS of order H = 200,
is almost identical.

The order, beyond which the GoF improvement is not sig-
nificant, is similar for all the strategies analyzed, as can be
seen in Fig. 5, where the MSPI of the different strategies is
illustrated. One can notice that the DMSSp and DMSLLS strate-
gies perform identically below H ≈ 80, and outperform the two
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Fig. 6. GoF of the prediction using the different forecasting strategies with
(a) H = 50, and (b) H = 150.

AR-model-based strategies. Moreover, for H > 110, the
DMSLLS, ARLLS, and ARLRPI strategies achieve the same pre-
diction accuracy, whereas the DMSSp strategy performs slightly
better than the other three.

In Fig. 6, the comparison between the forecasting strategies
is further exemplified, in terms of GoF. Fig. 6(a) shows that,
for H = 50, the DMSSp, and DMSLLS strategies perform identi-
cally and outperform, as shown before in Fig. 5, the ARLLS and
ARLRPI strategies, which achieve the same GoF. Note that the
difference between the DMS and AR predictors increases with
Thor, due to the error accumulated by the iterations required by
AR models to obtain the p-step-ahead forecast. Additionally,
Fig. 6(b) shows that, for H = 150, all strategies perform quasi-
identically, although the DMSSp strategy is slightly more accu-
rate. It should also be noted that, the ARLRPI strategy achieves
almost the same results as the ARLLS, while requiring signifi-
cantly more time for the identification (for example, for H = 50,
solving the LRPI nonlinear problem is typically around 20 times
slower than solving the LLS problem of ARLLS, and the relative
difference increases with the order).

The SDF used for the simulation is not predictable (as
explained in Section IV-B), and the logarithm of its spec-
trum is integrable (Paley–Wiener condition [22]). Thus, the
Kolmogorov–Szego’s mean square error formula [22] can
provide the theoretical lowest one-step-ahead prediction error,
which would be obtained by increasing the predictor order to
infinity, as follows:

ε2
∞ = exp

{
2
∫ π

0
log SDF(ω)dω

}
. (18)

Fig. 7. One-step-ahead prediction of the different forecasting strategies, for
different orders, and the theoretical best one-step-ahead prediction associated
to the SDF.

The one-step-ahead GoF corresponding to the Kolmogorov–
Szego’s (GoFKS) mean square error formula [see (18)] can be
derived as follows:

GoFKS = 1 −
√

ε2∞
σ2 . (19)

Thus, by using (19), it is possible to compare the GoFKS,
related to the SDF used in this paper (see Fig. 3), to the one-
step-ahead GoF obtained by the DMSSp, DMSLLS, ARLLS, and
ARLRPI strategies. As shown in Fig. 7, the four strategies achieve
almost identical one-step-ahead GoF (identical for the case of
ARLLS and DMSLLS). In fact, the difference between the GoFKS

related to the SDF and the one-step-ahead GoF achieved by
the DMSSp, DMSLLS, ARLLS, and ARLRPI strategies decreases
asymptotically when the order increases.

In this section, identification and prediction are performed
on different data sets, randomly generated from the same wave
spectrum (see Fig. 3). Thus, both data sets share identical statis-
tical properties, characterized by the wave spectrum. Therefore,
the use of higher order models always results in a more accu-
rate prediction, because more statistical information from the
spectrum can be taken into account. However, real sea wave
conditions, characterized by the wave spectrum, vary in time.
Therefore, the forecasting strategies may be subject to some
additional errors, because the wave condition evolves, between
the period where the coefficients are identified, and the pe-
riod over which the models are used to perform prediction. In
particular, high-order models may be more affected by the in-
herent nonstationarity of ocean waves. However, as explained in
Section V, for the DMSSp strategy, the error related to the evolv-
ing wave condition can be assessed by the correct computation
of the SDF. Overall, the impact of changing meteorological
conditions is assessed in Section V, by using real wave data.

D. Use of Filtering in AR Model Prediction

As mentioned in Section II-C, low-frequency signals are more
predictable than high-frequency signals. By way of example,
Fig. 8(a) shows the GoF achieved by the ARLLS strategy, for
the prediction of filtered wave signals, ηf , using offline Butter-
worth filters of various orders (see Section II-C). The prediction
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Fig. 8. GoF of the prediction computed with ARLLS of H = 100 using η
filtered (a) offline and (b) online with a Butterworth filter of different orders.

achieved is significantly more accurate than the one achieved
on nonfiltered η.

However, note that any realizable, online filter is necessarily
causal, and therefore consists of some (usually linear) function
of the previous measurements. Therefore, given the considera-
tions presented in Section III-A, any predictor, based on online-
filtered measurements, is also suboptimal with respect to DMSSp

(provided that the same set of previous measurements is used,
and that DMSSp avoids numerical inaccuracies). In view of the
results shown in Section IV-C, showing the performance of the
DMSSp strategy, it should not be possible to obtain results as
favorable as in Fig. 8(a), when using an online filter.

As an illustration, Fig. 8(b) shows the performance of the
ARLLS forecasting strategy when using ηf , with the filtering
carried out online. In Fig. 8(b), the GoF of the prediction, using
ηf , drops below the performance of the prediction using nonfil-
tered η, which is due to the combination of two effects: first, the
predicted η is compared to the actual (nonfiltered) wave eleva-
tion; second, as explained in Section II-C, the delay introduced
by the filter must be taken into account.

The results shown in this section clearly illustrate how real-
time filtering fails to improve the prediction of the nonfiltered
wave signal. Although only Butterworth filters have been used
here, the online implementation of any other filter would always
lead to a prediction which is less accurate than that achieved us-
ing the nonfiltered signal directly. Indeed, the use of a filter,
combined with an AR model, simply results in some other func-
tion of the past values, which is then necessarily suboptimal with
respect to DMSSp using the same set of past measurements.

Fig. 9. One-step-ahead GoF of the prediction achieved by DMSLLS using
different orders, when using wave data generated from a band-limited spectrum
(solid blue) or from a nonband-limited spectrum (dashed red).

Fig. 10. MSPI obtained by the different forecasting methods using simulated
wave data generated from a predictable spectrum.

However, the above-mentioned considerations do not discard
the idea of online filtering within the scope of real-time mea-
surement or estimation of the wave elevation, especially in the
presence of measurement noise.

E. Use of a Predictable Spectrum

The use of a band-limited simulated spectrum deserve some
brief discussion. Here, as opposed to the previous sections, no
white-noise component is added to the JONSWAP SDF, and
therefore the process is band-limited—to machine accuracy.
Fig. 9 shows the one-step-ahead prediction obtained by DMSLLS

of different orders, using wave data generated from both the
noisy and band-limited JONSWAP spectra. It can be seen that,
while for the nonpredictable spectrum the maximum one-step-
ahead GoF is achieved with an order of H ≈ 60, for a band-
limited spectrum the one-step-ahead GoF continues increasing
up to an order of H ≈ 250.

Additionally, Fig. 10 shows the MSPI obtained by the
different strategies, to show how their prediction accuracies are
affected by the use of a simulated band-limited spectrum. The
prediction accuracy achieved by the DMSLLS strategy continue
to increase up to orders larger than H ≈ 400. Additionally,
one can notice that the DMSSp strategy does not achieve
accuracies as good as the other three strategies while, when
using a nonpredictable spectrum, it is always the most accurate.
The reason is that, when using a nonpredictable spectrum, the
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Fig. 11. MSPI obtained by DMSSp, DMSLLS, and ARLLS for real wave data.

result obtained from (13), although theoretically consistent
with the assumption of stationary Gaussian waves, may be
subject to numerical inaccuracies for large orders H; indeed,
since the process is predictable, for large orders the covariance
matrix in (13) is close to singular.

The simulated results obtained from a nonpredictable (noisy)
spectrum depend, to some extent, on the level of white noise
added to the JONSWAP formulation. However, as will be seen
in Section V, the results obtained using real data are relatively
similar to those obtained from the nonpredictable spectrum, in
the sense that the prediction accuracies do not increase beyond
orders in the region of 50–100 (consider, for example, Figs. 5
and 11). Therefore, in the opinion of the authors, the spectra used
for simulations should be nonpredictable, to avoid unreasonably
optimistic results.

V. RESULTS USING REAL WAVE DATA

The data used in this section are from Belmullet, Ireland,
and have been provided by the Irish Marine Institute, Galway,
Ireland.1 Wave elevation time series have been recorded using
a Datawell Waverider, Heerhugowaard, The Netherlands, [23]
data buoy, and each data set is 30-min long, recorded at a 1.28 Hz
sampling frequency. The results shown in this section are for
December 2010.

In the remainder of this paper, for the sake of clarity, the
results from the ARLRPI strategy are not shown, because they are
identical to ARLLS, while requiring a computationally expensive
identification procedure.

To derive the DMSSp parameters, it is important to use an ap-
propriate procedure for wave SDF estimation. Assume, first, that
the sea is purely stationary, i.e., that the wave spectrum does not
evolve over time. Next, consider a 30-min wave signal window.
This 30-min signal carries some statistical characteristics of the
underlying wave spectrum, but also has some inherent random-
ness; in other words, even if the wave spectrum is stationary, two
consecutive 30-min records will never be the same. Therefore,
in theory, to obtain a perfect estimate of the spectrum, an infinite
record would be necessary. However, if only a 30-min data set is
available, applying signal processing techniques, such as win-
dowing and smoothing, can help to separate the effects of the

1https://www.marine.ie

Fig. 12. GoF of the prediction using DMSSp, DMSLLS, and ARLLS of
H = 50.

short-term variability from the statistical information specific to
the underlying spectrum [24].

For real sea records, it can be considered that the underlying
wave spectrum slowly evolves over time, but such an underly-
ing, slowly evolving spectrum must still be distinguished from
the effect of short-term randomness. To compute the half-hourly
SDF, the procedure retained is that used in [23]. Each 30-min
data set is divided into l-second overlapping sections, with each
section multiplied by a Tukey windowing function, before ap-
plying a fast Fourier transform to obtain an SDF estimate. Then,
the half-hourly SDF is computed as the average of the SDFs
of all sections. The resulting SDF is smoother when reduc-
ing l (and consequently increasing the number of overlapping
sections). However, a smaller l also implies a lower frequency
resolution for the SDF (Δf = 1/l). For this case, it has been
found that l = 5 min gives the best estimate of the underlying
wave spectrum.

The DMSSp parameters are derived from the SDF computed
in the half-hourly data set, previous to the half-hourly data set
where the parameters are used to predict η, so that, overall,
only past information is used to forecast η. Similarly, for the
strategies whose identification is based on a time series of η, the
parameters are identified in the half-hourly data set previous to
that used for wave prediction.

As shown in Figs. 11 and 12, the ARLLS, DMSSp, and DMSLLS

strategies achieve very similar prediction accuracies. In partic-
ular, Fig. 11 indicates that, for an order of 50, the three methods
perform almost identically, as further confirmed in Fig. 12.

For the strategies whereby the identification is based on time
series (ARLLS and DMSLLS), there is an order H beyond which
the model seems to “overlearn” statistical information due to the
short-term randomness (as opposed to the underlying spectrum),
thus marginally decreasing the prediction accuracy. As far as
DMSSp is concerned, since the effect of short-term randomness
is mitigated by the appropriate SDF computation methodology,
the prediction accuracy does not decrease once the maximum
accuracy is achieved, as shown in Fig. 11.

A significant difference between predicting simulated or real
waves using a forecasting strategy identified using previous val-
ues of η (ARLLS and DMSLLS) is that, compared to the simulated
waves case, the choice of the order of the model H can have
a greater impact on the prediction performance for the case
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Fig. 13. Three different half-hourly SDFs (upper graphs), and the GoF
achieved by DMSSp and the theoretical best GoF (bottom graphs).

where real waves are used. In particular, for simulated waves,
the performance is similar for any chosen order higher than the
“optimal” order (Hopt) which, in this case, as shown in Fig. 5, is
Hopt ≈ 80. However, when using real waves, the performance
decreases if the chosen H is greater than the “optimal” order
which, in this case, as shown in Fig. 11, is Hopt ≈ 40.

Overall, one can notice that the predictions obtained using
real data are significantly less accurate than those achieved using
simulated data, which may be due to several reasons.

1) The sea-state is nonstationary, which implies that the sta-
tistical characterization, learned in one given data set by
any model is, in general, not the same in the next data set.

2) The SDFs of real wave data have significantly more high-
frequency content than idealized sea-states, such as JON-
SWAP spectrum (see the difference between the SDF of
Fig. 3 and the SDFs of Fig. 13).

3) Finally, real wave data may be subject to measurement
noise which, like the previous point, influences the fre-
quency content of the signal.

To assess the relative importance of the above factors in the
predictor performances, the following comparison is made (see
bottom graphs of Fig. 13): The red dashed curve shows the em-
pirical GoF achieved by DMSSp, identified using the SDF from
the previous half-hourly data set, while the blue solid curve is
the theoretical best GoF, associated with the SDF of the data set
where the prediction is carried out [using (12)]. In other words,
the blue curve indicates how the optimal predictor would per-
form, assuming perfect knowledge of the underlying spectrum.
It can be appreciated that the difference between the two GoFs is
minimal, thus suggesting that the difference, between simulated
and actual prediction performances, is mainly because real wave
spectra have more high-frequency content, rather than resulting
from the nonstationarity of wave conditions.

Although the data used is from a single location, the results
obtained in the different actual sea states confirm the conclusions
obtained for the simulated wave data, where all the strategies
perform similarly.

VI. DISCUSSION AND CONCLUSION

Overall, it is well-known that stationary AR models and
stationary, discrete-time Gaussian processes are two appro-
priate alternative descriptions for nondeterministic, stationary,
discrete-time linear processes; for any Gaussian linear process,
there exists an AR(p) process such that the difference in the
two ACVFs can be made arbitrarily small for all lags [25]. In
fact, identifying a suitable AR model (either ARLLS or ARLRPI),
or adopting the perspective of a Gaussian vector (DMSSp or
DMSLLS), implicitly assume the same underlying linear statis-
tical properties. Therefore, under the assumption of stationary,
Gaussian waves, and good identification, the various methods
studied in this paper should perform similarly. The results shown
in this paper, both from simulated and real wave data sets, indeed
confirm that all approaches have almost identical accuracies.

The methods examined in this paper rely on the linearity of
the wave process (which is a reasonable assumption within the
power production region of WECs), and thus do not cover the
cases where a Gaussian wave field cannot be assumed, which
essentially correspond to shallow-water waves (with marked
peak-to-trough asymmetry) or extreme sea states.

In particular, the results obtained by the DMSSp strategy can
reliably be considered as an upper bound for the achievable
prediction accuracy (since the method is free of numerical is-
sues). Therefore, if their parameters are correctly identified, the
DMSLLS, ARLLS, and ARLRPI strategies yield results close to the
best achievable prediction. From this point of view, all strategies
studied here seem to be interesting candidate tools for short-term
wave forecasting. However, the ARLLS strategy is particularly
simple, and does not seem to be significantly outperformed by
DMSSp.

Nevertheless, even the best achievable predictions remain
relatively inaccurate, with a GoF lower than 50% for one wave
period ahead in the favourable case of simulated data, and 20%
in real sea-states. Such values are in contrast with the results
of [9] and [13] (of the order of 90%–100% accuracy more than
one wave period ahead), suggesting that the accuracies obtained
from data filtered offline are unreasonably optimistic. Based on
simple numerical examples, this paper shows that the use of
online-filtered wave elevation values for the prediction always
leads to inferior results than using the nonfiltered wave elevation.

Therefore, more accurate predictions may require the use
of several measurement points in the vicinity of the WEC
(such as, measurement buoys, other WECs, or remote sens-
ing techniques). The DMSSp strategy can be readily extended
to such cases [10]. Similarly, autoregressive exogenous input
models can provide an interesting extension of the AR model
structure [13].
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