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Abstract

A fundamental question in biology is how organisms integrate the plethora of environmental cues that they perceive 
to trigger a co-ordinated response. The regulation of protein stability, which is largely mediated by the ubiquitin–pro-
teasome system in eukaryotes, plays a pivotal role in these processes. Due to their sessile lifestyle and the need to 
respond rapidly to a multitude of environmental factors, plants are thought to be especially dependent on proteolysis 
to regulate cellular processes. In this review, we present the complexity of the ubiquitin system in plants, and discuss 
the relevance of the proteolytic and non-proteolytic roles of this system in the regulation and co-ordination of plant 
responses to environmental signals. We also discuss the role of the ubiquitin system as a key regulator of plant signal-
ing pathways. We focus more specifically on the functions of E3 ligases as regulators of the jasmonic acid (JA), sali-
cylic acid (SA), and ethylene hormone signaling pathways that play important roles to mount a co-ordinated response 
to multiple environmental stresses. We also provide examples of new players in this field that appear to integrate 
different cues and signaling pathways.
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Introduction

In order to reproduce successfully, plants must be able to per-
ceive, integrate, and respond to combinations of diverse sig-
nals from their environment. These signals may indicate mild 
variations in the plants environment (e.g. time of day), or 
may be indicative of more severe changes in their conditions 
such as extreme temperature changes, low oxygen availability, 
drought, or the presence of invading pathogens. In recent years, 
a substantial amount of research has made it apparent that the 
regulation of cellular proteostasis via the ubiquitin system in 
plants plays a key role in the integration of environmental cues 
and of downstream signaling pathways, perhaps as a result of 
their sessile lifestyle (Mazzucotelli et al., 2006; Vierstra, 2009; 
Sadanandom et al., 2012; Nagels Durand et al., 2016; Serrano 

et al., 2018). In this review, we discuss how the ubiquitin system 
and its different components function as an elaborate hub to 
integrate different signaling pathways that participate in the 
regulation of plant responses to environmental cues, with an 
emphasis on biotic stresses.

Overview of the ubiquitin system in plants

The ubiquitin system typically involves the covalent attach-
ment of the 76 amino acid polypeptide ubiquitin to the 
ε-amino group of a lysine residue of a substrate protein. 
Ubiquitin is conserved across eukaryotic organisms (Zuin et al., 
2014), with the yeast and human ubiquitins differing by only 
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three amino acids (Ozkaynak et al., 1984). In eukaryotic cells, 
ubiquitin is redundantly encoded by at least three different 
loci: as contiguous repeats of ubiquitin units (polyubiquitin) 
(Sharp and Li, 1987), or as a single ubiquitin moiety transla-
tionally fused to another protein such as ribosomal proteins 
(Finley et al., 1989). In plants (Fig. 1), but not yeast or animals, 
ubiquitin genes are also expressed as translational head-to-
tail fusions with the small ubiquitin-like protein RELATED 
TO UBIQUITIN (RUB) (Callis et  al., 1995). In the model 
plant Arabidopsis thaliana (accession Columbia), 12 genes that 
express functional ubiquitin have been identified. Five of these 
genes encode ubiquitin–ribosomal proteins, five encode poly-
ubiquitins, and two encode ubiquitin–RUB fusion proteins 

(reviewed in Callis, 2014). In order for these fusion proteins 
to be attached to substrate proteins, ubiquitin must first be 
processed. This is achieved through the action of a family of 
hydrolase enzymes termed deubiquitinases (DUBs) (Fig. 1), of 
which there are ~50 in Arabidopsis (Isono and Nagel, 2014). 
Free ubiquitin can then be conjugated to a substrate protein 
via the successive activity of three groups of enzymes: an E1, or 
ubiquitin-activating enzyme (UBA); an E2 ubiquitin-conju-
gating enzyme (UBC); and an E3 ubiquitin ligase. E1 enzymes 
‘activate’ ubiquitin by first catalyzing the adenylation of ubiq-
uitin’s C-terminus and then forming a thioester bond between 
the E1 active site cysteine and the ubiquitin C-terminal car-
boxylate group (Haas et al., 1982). Activated ubiquitin can then 

Fig. 1. The ubiquitin code in plants. Ubiquitin genes encoding protein fusions are processed by deubiquitinating enzymes (DUBs) to produce free 
ubiquitin (Ub). Ubiquitin can then be conjugated to substrates through the action of E1, E2, and E3 enzymes. The conjugated ubiquitin may be further 
ubiquitylated in a number of different ways, resulting in differential substrate fate. Different types of ubiquitin chains have been shown to play a role in 
varying environmental responses.
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be transferred to a cysteine residue of an E2 enzyme (again 
through a thioester bond) before the ubiquitin is covalently 
attached to the substrate protein, typically through the activity 
of a substrate-specific E3 ligase together with an E2 enzyme. 
Many higher plants encode more than one enzyme to carry 
out each of these functions. In Arabidopsis two enzymes have 
been identified that carry out E1 function, UBA1 and UBA2 
(Hatfield et al., 1997), while 37 E2 enzymes are predicted to be 
encoded in the genome (Kraft et al., 2005).

Strikingly, ~1500 genes coding for components of E3 ligases 
have been identified so far in Arabidopsis, in agreement with 
the idea that these enzymes provide the bulk of the substrate 
specificity for the system (Lee and Kim, 2011). The abundance 
of E3 ligase components encoded by the Arabidopsis genome 
is also indicative of the particular importance of the ubiquitin 
system in plants in comparison with other eukaryotes, such as 
humans or yeast, which encode ~600 and 100 E3 ubiquitin 
ligases, respectively (Li et al., 2008; Finley et al., 2012). The E3 
ligases identified in plants can be divided into three groups, de-
pending on the domains that mediate interaction with the E2 
enzyme: (i) HECT (Homology to E6-AP C-Terminus) domain 
E3 ligases; (ii) RING (Really Interesting New Gene) domain 
ligases; or (iii) RING finger-like U-box domain ubiquitin ligases 
(reviewed in Chen and Hellmann, 2013). HECT domain-con-
taining E3 ligases are relatively large (>100 kDa) proteins that 
form a thioester bond between a conserved cysteine residue 
located in the HECT domain and a ubiquitin moiety before 
transfer of the ubiquitin to the substrate (Scheffner et al., 1995; 
Schwarz et al., 1998). In Arabidopsis seven HECT-containing 
ubiquitin–protein ligases (UPLs) have been identified, UPL1–
UPL7, which can be further divided into four subfamilies 
(Downes et al., 2003; Marín, 2013). The RING finger domain 
is a conserved protein–protein interaction domain of 40–60 
amino acids that can interact with an E2 UBC (Freemont et al., 
1991; Lorick et al., 1999; Deshaies and Joazeiro, 2009). These E3 
ligases can be monomeric, whereby the RING finger E3 ligases 
can interact with the substrate and the E2 without additional 
binding partners, or can be multimeric and act as part of an 
E3 ligase complex. Multimeric RING-finger E3 ligases include 
CULLIN-RING ligase (CRL) complexes (Hua and Vierstra, 
2011), which are discussed in more detail below. The U-box 
domain is made up of a sequence of ~70 amino acid residues. It 
has a similar fold to RING finger domains but lacks conserved 
cysteine and histidine residues (Ohi et al., 2003). E3 ligases con-
taining RING-finger domain, and plant U-box (PUB) domains 
have been implicated in a vast amount of processes in plants, 
including stress responses (reviewed in Trujillo, 2018).

After the activity of the E1, E2, and E3 ligases, a fourth 
enzyme, known as an E4 ligase, may also be involved in the 
elongation of polyubiquitin chains (Koegl et  al., 1999). To 
date, one E4 ligase called MUTANT, SNC1-ENHANCING3 
(MUSE3), homologous to the yeast E4 ligase UBIQUITIN 
FUSION DEGRADATION PROTEIN2 (UFD2), has been 
identified in Arabidopsis (Huang et al., 2014). One identified 
function of this E4 ligase is to catalyze the elongation of poly-
ubiquitin chains targeting plant nucleotide-binding leucine-
rich repeat (NLR) immune receptors for degradation (Huang 
et al., 2014).

Conjugation of a chain of four or more ubiquitins to a sub-
strate protein, particularly using the Lys48 residue of ubiquitin, 
may direct the substrate to the 26S proteasome for proteolysis 
(Thrower et al., 2000). This large (~2.5 MDa) ATP-dependent 
multisubunit protease complex contains various sites that fa-
cilitate the unfolding and release of free ubiquitin, and sub-
sequent degradation of substrates into peptides (Yang et  al., 
2004) (also reviewed in Bedford et al., 2010). Ubiquitylation of 
a substrate is a dynamic process, and ubiquitin can be removed 
through the hydrolytic activity of a DUB enzyme, adding an-
other layer of regulation to the system. DUBs have now been 
implicated in the regulation of a variety of cellular processes 
in plants (reviewed in Isono and Nagel, 2014; March and 
Farrona, 2017). Two DUBs that play a role in stress response 
in Arabidopsis are the ubiquitin proteases (UBPs) UBP12 and 
UBP13. Arabidopsis lines in which UBP12 and UBP13 are 
silenced by transgenic hairpin RNA interference (hpRNAi) 
are impaired in Lys48 deubiquitylation activity and exhibit 
increased resistance to the virulent bacterium Pseudomonas 
syringae pathovar tomato DC3000, suggesting that they act as 
negative regulators of the immune system (Ewan et al., 2011). 
Recently these UBPs were also shown to play a role in jas-
monic acid (JA) signaling, as Jeong et al. (2017) observed that 
UBP12 and UBP13 can remove ubiquitin from a polyubiqui-
tylated species of the master regulator of JA signaling, MYC2, 
in vitro and that overexpression of UBP12 and UBP13 stabi-
lized MYC2, probably through their deubiquitylation activity. 
A  substantial amount of research has been carried out dem-
onstrating the importance of the proteolytic function of the 
ubiquitin system but, in recent years, the significance of the 
non-proteolytic roles of ubiquitylation has also emerged as an 
important factor for the regulation of plant signaling pathways.

The ubiquitin code in plants

To function as a signaling hub, the ubiquitin system must be 
able to integrate and convey large amounts of specific infor-
mation. One way this can be achieved is through the attach-
ment of different types of ubiquitin chains onto a substrate 
(Fig. 1) and the use of the surface area of ubiquitin itself to 
elaborate on the substrate’s fate (Komander and Rape, 2012). 
The most basic form of ubiquitin conjugation is monoubiq-
uitylation, with multi-monoubiquitylation occurring if mul-
tiple lysine residues of a substrate protein are conjugated to 
a single ubiquitin. This modification can target substrates to 
the proteasome in eukaryotes (Braten et  al., 2016), but also 
acts as a non-proteolytic signal that has been implicated in (i) 
the activation of various eukaryotic substrates that mainly in-
clude transcription factors and histones (Kodadek et al., 2006; 
Salghetti et al., 2001); and (ii) the regulation of a variety of bio-
logical processes in plants (Feng and Shen, 2014), including the 
endocytic trafficking and vacuolar turnover of plasma mem-
brane proteins (Barberon et al., 2011; Kasai et al., 2011; Martins 
et al., 2015). In plants, the monoubiquitylation of histone H2B 
by the E3 ligases HISTONE MONOUBIQUITYLATION1 
and 2 (HUB1 and HUB2) has been implicated in some 
aspects of plant immunity. In Arabidopsis, loss of function hub1 
mutants are more susceptible to necrotrophic fungal pathogens 
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(Dhawan et al., 2009), and the tomato orthologs of Arabidopsis 
HUB1/2 have been shown to contribute to disease resistance 
against the necrotrophic fungus Botrytis cinerea (Zhang et  al., 
2015). Another set of experiments conducted by Zou et  al. 
(2014) found that monoubiquitylation of Arabidopsis H2B 
at the locus of the resistance (R) gene SUPPRESSOR OF 
NPR1-1, CONSTITUTIVE1 (SNC1), encoding an NLR 
immune receptor involved in the salicylic acid (SA) defense 
response pathway, was enhanced upon infection by virulent 
P. syringae DC3000 along with activation of SNC1, suggesting 
a direct link between H2B monoubiquitylation and the activa-
tion of plant immune response genes.

After ubiquitin has been conjugated to a lysine residue 
of a substrate protein, the ubiquitin moiety itself can 
also be ubiquitylated on one of its seven lysine residues 
(Lys6/11/27/29/33/48/63) or on its N-terminal methionine 
(Met1), resulting in polyubiquitin chains. These chains can be 
homogenous, whereby ubiquitin is attached to the same pos-
ition on each consecutive ubiquitin molecule, or can be mixed 
with ubiquitin being conjugated at different sites throughout 
the chain. Furthermore, a specific ubiquitin molecule in a chain 
may also be conjugated to two ubiquitins through two differ-
ent lysine residues of the same ubiquitin molecule, resulting in 
branched chains (Komander and Rape, 2012). Proteomic ana-
lysis of the Arabidopsis ubiquitylome conducted by Kim et al. 
(2013) identified six of the seven homogenous lysine chains 
attached to substrates, with the chain types found in an order 
of abundance of Lys48>Lys63>Lys11 followed by lower levels 
of Lys33>Lys6>Lys29. The most abundant type of chain found 
to be attached in this study, Lys48, has been well characterized 
as a proteolytic signal for the conjugated substrate via the ac-
tivity of the 26S proteasome and has been implicated in almost 
all aspects of plant signaling (reviewed in Sadanandom et al., 
2012; Walsh and Sadanandom, 2014), some of which are dis-
cussed in more detail below.

Ubiquitin chains linked through Lys63 residues are also 
abundant in plants, though substrates conjugated to Lys63 
chains have not been as extensively characterized. Although 
this modification can target substrates to the proteasome (Saeki 
et al., 2009), it appears to have many proteasome-independent 
roles in eukaryotes, including acting as a signal for lysosome- 
and vacuolar-dependent degradation pathways (Welchman 
et al., 2005; Kirkin et al., 2009). In plants, Lys63 chain conjuga-
tion has been reported to be involved in a number of processes 
(Tomanov et al., 2014; Johnson and Vert, 2016; Romero-Barrios 
and Vert, 2018). These include endocytic sorting (Martins et al., 
2015), DNA repair (Wen et al., 2008; Pan and Schmidt, 2014), 
and plant immunity (Mural et al., 2013). This type of substrate 
modification also plays a role in plant nutritional deficiency 
responses such as iron starvation (Li and Schmidt, 2010). A re-
cently conducted proteomic screen in Arabidopsis using sen-
sor-based affinity purification of Lys63 chain-bound proteins 
identified a number of other nutrient transporters, including 
the phosphate transporter PHOSPHATE TRANSPORTER1 
(PHT1) (Johnson and Vert, 2016). Previous studies have 
reported that one way in which PHT1 is regulated is through 
vacuolar degradation (Bayle et al., 2011; Cardona-Lopez et al., 
2015). The correct endocytic processing of PHT1 is dependent 

on the activity of an adaptor protein APOPTOSIS-LINKED 
GENE 2-INTERACTING PROTEIN X (ALIX), that can 
interact with members of the endosomal sorting complexes 
required for transport III (ESCRT-III) and contains a domain 
that can bind Lys63 polyubiquitin chains in vitro (Cardona-
Lopez et al., 2015; Kalinowska et al., 2015).

Another polyubiquitin chain type that has been implicated 
in plant signaling is through ubiquitin Lys29. Using a cell-
free-based assay system, Wang et al. (2009) found Lys29 to be 
the major site of ubiquitin chain formation in the targeting of 
DELLA proteins for proteasomal degradation. DELLA proteins 
act as central repressors of the gibberellic acid (GA) pathway 
which plays a role in a number of plant environmental responses 
including light, temperature, and water responses (Gupta and 
Chakrabarty, 2013). Other atypical linkages such as Lys6, Lys11, 
and Lys33 have not been well characterized in plants, although 
these linkages have been found to play a role in other eukaryotes 
such as in mammalian mitophagy (Durcan et al., 2014), regula-
tion of cell cycle by the anaphase-promoting complex (APC/C) 
(Durcan et al., 2014), and protein trafficking (Callis, 2014). To 
date, chains that are linked through Lys27 or Met1 have not 
been identified in plant extracts (Kim et al., 2013; Callis, 2014).

In sum, rapid progress is currently being made to uncover the 
functions and protein substrates for ubiquitin chains involving 
lysine residues other than Lys48. Many of these new functions 
highlight the essential and diverse roles of the ubiquitin system 
in the regulation of plant signaling pathways.

CRLs: master regulators of plant hormone 
signaling pathways

In the past two decades, phytohormone signaling pathways, as 
well as their crosstalk, have been established as essential features 
of a co-ordinated response to combined environmental cues 
and stresses. The ubiquitin system, and in particular CRLs, act 
as central regulators of many phytohormone signaling path-
ways. The role of CRLs as signaling hubs largely depends on 
their ability to target for degradation transcriptional repressors 
or activators that act as master regulators of the gene regulatory 
networks downstream of phytohormone signaling.

CRLs are modular E3 ligases

In the Arabidopsis genome, >6% of genes are predicted to 
encode components of the ubiquitin–proteasome system 
(Vierstra, 2009), most of which are E3 ligase components. In 
Arabidopsis, as well as in other plants, CRLs are among the 
largest and most diverse families of E3 ligases. CRLs are mul-
tisubunit E3 ligases composed of a scaffold subunit (Cullin 
or CUL) that brings together the substrate recognition com-
ponent of CRLs and the RING-domain subunit RBX, that 
interacts with the E2. For the purpose of this review, we will 
focus on CUL1-based ligases [CRL1; also known as SKP1/
CUL1/F-box protein (SCF) ligases] and CUL3-based ligases 
(CRL3), because of their predominant and recurrent roles in 
the control of multiple hormone signaling pathways.

CRL1 ligases are composed of four different subunits. Three 
of them (RBX, CUL1, and SKP1 homologs) form the core of 
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the enzyme, while a fourth subunit (an F-box domain protein 
or FBP), interacts with substrate proteins and thus mediates the 
specificity of the complex (Deshaies, 1999). The Arabidopsis 
genome encodes almost 700 FBPs (Gagne et al., 2002), imply-
ing a very large number of CRL1 complexes with different 
substrate specificities. CRL1 ligases are well known for their 
roles in regulating phytohormone signaling pathways, includ-
ing those of auxin, GA, JA, and ethylene (Gray et  al., 1999; 
Xu et al., 2002; Guo and Ecker, 2003; Potuschak et al., 2003; 
Chini et al., 2007; Fu et al., 2004; Thines et al., 2007; Qiao et al., 
2009). CRL3 ligases also rely on an RBX subunit to mediate 
the interaction with an E2 enzyme, but substrate recognition 
is typically mediated by a Bric-a-Brac, Tramtrack and Broad 
Complex/Pox virus and Zinc Finger (BTB/POZ) domain 
protein, of which there are ~80 encoded in the Arabidopsis 
genome (Gingerich et al., 2005; Choi et al., 2014). Other CRLs 
also play important roles in hormone signaling and will be 

briefly discussed below. These include CUL4-based E3 ligases 
(CRL4) which encompass a DAMAGED DNA BINDING 
PROTEIN1 (DDB1) adaptor protein and DWD-domain pro-
teins (Choi et al., 2014).

CRLs are key regulators of hormone signaling 
pathways

 As mentioned above, CRLs are essential to control the activity 
of transcription factors that act as master regulators of different 
phytohormone signaling pathways. In this review, we will focus 
on the SA, JA, and ethylene signaling pathways (Fig.  2). We 
refer the reader to the following excellent reviews for details of 
the role of the ubiquitin system in the regulation of other hor-
mone signaling pathways (Sadanandom et al., 2012; Shabek and 
Zheng, 2014; Stone, 2014; Larrieu and Vernoux, 2015; Lavy 
and Estelle, 2016; Nagels Durand et al., 2016; Yang et al., 2017).

Fig. 2. Brief overview of the SA, JA, and ethylene signaling pathways. SA triggers the dissociation of NPR1 oligomers in the cytoplasm and the 
translocation of NPR1 to the nucleus, where it associates with other transcription factors (e.g. TGA transcription factors) and acts as a transcriptional 
co-activator. NPR1 levels in the nucleus are controlled by CRL3NPR3 and CRL3NPR4, depending on SA levels. NPR3/4 were also recently shown to act 
as transcriptional co-repressors of SA-responsive genes in the absence of SA. The negative effect of NPR3/4 depends on their interaction with TGA 
transcription factors. In the absence of JA, MYC2 interacts with the JAZ repressors, which recruit other proteins, resulting in repression of JA response 
genes. Binding of JA-Ile by CRL1COI1 promotes the interaction between COI1 and JAZ, and results in the degradation of the JAZ repressors and the 
activation of MYC2. In the absence of ethylene (abbreviated ET), EIN2 and EIN3 are targeted for degradation by CRL1 ligases. In contrast, in the 
presence of ethylene, EIN2 and EIN3 are stabilized, thus facilitating the activation of ethylene response genes. Ubiquitin is depicted in yellow.
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SA signaling
SA plays key roles in plant immunity and is typically asso-
ciated with plant defense against biotrophic pathogens 
(that feed on living tissue). SA signaling is important for 
the regulation of programmed cell death and for the onset 
of systemic acquired resistance, which leads to a longer 
broad-spectrum immunity (reviewed in Furniss and Spoel, 
2015; Withers and Dong, 2016; Dempsey and Klessig, 
2017). The BTB domain protein NONEXPRESSOR OF 
PR GENES1 (NPR1) acts as a transcriptional co-activa-
tor of SA response genes in conjunction with other tran-
scriptional regulators, such as TGA transcription factors 
(Zhang et al., 1999; Després et al., 2000; Zhou et al., 2000; 
Boyle et al., 2009) (Fig. 2). While NPR1 has the domains 
required to interact with CUL3, it does not appear to 
interact directly with this cullin (Dieterle et  al., 2005; 
Spoel et al., 2009; Fu et al., 2012). Instead, NPR1 stability 
is tightly regulated by CRL3s that comprise the BTB do-
main proteins NPR3 and NPR4, both of which are para-
logs of NPR1 (Fu et al., 2012). Importantly, the untimely 
activation of the SA signaling pathway in the absence of 
SA is prevented through the degradation of NPR1 by the 
CRL3NPR4 ligase, as well as by oligomerization of NPR1 
in the cytosol, which prevents its translocation into the 
nucleus (Fu et  al., 2012). A  recent study by Ding et  al. 
(2018) also shows that, in the absence of SA, NPR3 and 
NPR4 act as transcriptional co-repressors of SA response 
genes. This negative effect of NPR3/4 depends on their 
interaction with TGA transcription factors, presumably on 
the promoter of target genes.

NPR1, NPR3, and NPR4 have been shown to bind SA, 
suggesting that these BTB domain proteins may also act as 
SA receptors (Maier et  al., 2011; Fu et  al., 2012; Wu et  al., 
2012; Ding et  al., 2018), although this is still a matter of 
debate (Kuai et  al., 2015; Dempsey and Klessig, 2017). In 
the case of NPR1, biochemical evidence suggests that SA 
binding might trigger conformational changes of NPR1 
that release its transactivation domain from the autoinhibi-
tory effect of its BTB domain (Wu et al., 2012). It has also 
been proposed that binding of SA to NPR3 and NPR4 
might regulate their interaction with their substrate NPR1 
(Fu et  al., 2012). For example, SA promotes interaction of 
NPR1 with NPR3, resulting in the CRL3NPR3-mediated 
degradation of NPR1 (Fu et al., 2012). Interestingly, NPR1 
turnover is important for the activation of SA response 
genes, indicating that NPR1 is probably regulated through 
an ‘activation by destruction’ mechanism, whereby follow-
ing the initiation of transcription, a transcriptional activator 
becomes inactive (also termed ‘spent’) and is targeted for 
degradation to allow an active, or ‘fresh’, transcription factor 
to bind the promoter elements of target genes to trigger 
additional rounds of transcription (Lipford et al., 2005; Spoel 
et al., 2009; Fu et al., 2012; Geng et al., 2012). In addition to 
the regulation of NPR1, binding of SA to NPR3 and NPR4 
appears to inhibit the NPR3/4-mediated repression of SA 
response genes (Ding et al., 2018). However, it remains un-
clear if the formation of an active CRL3NPR3/4 complex is 
required (Ding et al., 2018).

JA signaling
JA is involved in the regulation of plant defenses against 
pathogens (typically necrotrophic pathogens, which feed on 
dead tissue) and herbivorous insects, as well as to different 
abiotic stresses (Wasternack and Hause, 2013; Kazan, 2015; 
Goossens et  al., 2016). Upon JA perception, the JAZ tran-
scriptional repressors are recognized (bound) by the FBP 
CORONATINE INSENSITIVE1 (COI1) as part of the E3 
ligase CRL1COI1 (Fig. 2). Subsequent ubiquitylation and pro-
teasomal degradation of the JAZ repressors result in the acti-
vation of JA response genes (Chini et al., 2007; Thines et al., 
2007). Importantly, the COI1 subunit acts both as the substrate 
adaptor for the JAZ repressor proteins and as the JA-Ile re-
ceptor, so that interaction with the JAZ proteins is strongly 
enhanced following binding of JA-Ile to COI1 (Katsir et al., 
2008; Melotto et al., 2008; Fonseca et al., 2009; Sheard et al., 
2010). However, interaction of certain JAZ proteins, such as 
JAZ12, with the E3 ligase KEEP ON GOING (KEG), can 
instead protect JAZ12 from its CRL1COI1-mediated ubiquity-
lation (Pauwels et al., 2015), thus highlighting how JAZ pro-
tein interaction with E3 ligases other than CRL1COI1 can in 
fact lead to their stabilization. More recently, An et al. (2017) 
have shown that, at basal JA levels, COI1 also interacts with 
MED25, a subunit of the Mediator complex, on the promoter 
of MYC2 target genes. It has been proposed that binding of 
JA-Ile to COI1 not only promotes interaction of COI1 with 
the JAZ repressors (resulting in their ubiquitylation and deg-
radation), but also triggers enhanced interaction of MED25 
with MYC2 (Chen et al., 2012), resulting in the recruitment 
of polymerase II and the activation of MYC2 target genes 
(An et al., 2017). Furthermore, in agreement with the essen-
tial roles of COI1 both as a receptor and as a regulator of JA 
signaling, the levels of this FBP are tightly regulated in planta. 
COI1 interaction with ASK1 and the functionally redundant 
ASK2 promotes the stabilization of the COI1 protein (Yan 
et al., 2013; Zhou et al., 2013). There is hence a balance be-
tween the levels of COI1 and its incorporation into CRL1COI1 
complexes (Yan et al., 2013). Interestingly though, degradation 
of COI1 appeared to be independent of the CRL1COI1 ligase, 
suggesting that it might be targeted for degradation by an-
other, still unknown, E3 ligase (Yan et al., 2013). In addition to 
CRL1COI1, other E3 ligases participate in the regulation of JA 
signaling. These include KEG (Pauwels et al., 2015), as well as 
RING DOMAIN LIGASE3 (RGLG3) and RGLG4, which 
modulate JA signaling in response to wounding and P. syringae 
DC3000 infection (Zhang et al., 2012).

JA responses are typically divided into two branches, depend-
ing on the identity of the transcription factors involved in the 
regulation of the respective JA-responsive genes. The MYC 
branch of JA signaling (Fig.  2) relies on the activity of the 
functionally redundant basic helix–loop–helix (bHLH) tran-
scription factors MYC2, MYC3, MYC4 (Fernández-Calvo 
et  al., 2011), as well as MYC5 during stamen development 
(Qi et al., 2015), in conjunction with other transcription fac-
tors (Chini et al., 2016). This branch is typically associated with 
response to wounding and defenses against herbivorous insects 
(see Goossens et al., 2017 for a comprehensive review). In the 
absence of JA, the activity of the MYC2/3/4 transcription 
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factors is repressed through their interaction with the JAZ 
repressor proteins (Goossens et al., 2015; F. Zhang et al., 2015). 
Interestingly, the degradation of MYC2 seems to be impor-
tant to maintain the activation of JA-responsive genes, possibly 
through an ‘activation by destruction’ mechanism akin to that 
for NPR1 in SA signaling (Zhai et al., 2013). However, the E3 
ligase responsible for the degradation of MYC2 as part of this 
‘activation by destruction’ mechanism remains to be identified. 
The U-box E3 ligase PUB10 has also been shown to play a role 
in MYC2 degradation, although it is likely that other E3 ligases 
also target MYC2 (Jung et al., 2015). Interestingly, as mentioned 
earlier, the effects of PUB10, and potentially of other E3 ligases, 
may be counteracted by the activity of the deubiquitylating 
enzymes UBP12 and UBP13 (Jeong et al., 2017).

In contrast, the ETHYLENE RESPONSE FACTOR 
(ERF) branch of JA signaling (Fig.  3), which is typically 
involved in plant defense against necrotrophic pathogens, 
is largely dependent on the activity of the ERF transcrip-
tion factors ERF1 and OCTADECANOID-RESPONSIVE 
ARABIDOPSIS APETALA2/ETHYLENE RESPONSE 
FACTOR DOMAIN PROTEIN59 (ORA59) (Berrocal-
Lobo et  al., 2002; Lorenzo et  al., 2003; Pré et  al., 2008). 
Importantly, the regulation of JA-responsive genes of the ERF 
branch also depends on ethylene signaling (Lorenzo et al., 2003; 
Pré et al., 2008), so that this branch integrates signals from both 
the JA and ethylene pathways. As discussed below, the complex 
regulation of MYC2, ERF1, and ORA59 stability is key to the 
crosstalk between these two hormonal pathways.

Ethylene signaling
The gaseous hormone ethylene is often viewed as a modu-
lator of different hormone signaling pathways (Broekgaarden 
et  al., 2015) and has been shown to regulate plant responses 
to both biotic (Broekgaarden et al., 2015) and abiotic stresses 
[e.g. flooding (Sasidharan and Voesenek, 2015) and high sal-
inity (Peng et al., 2014); see also (Lin et al., 2009)]). Ethylene is 
also well known for its functions in the regulation of physio-
logical and developmental processes, including germination, 
senescence, and fruit maturation (see Dubois et al., 2018 for a 
comprehensive review). Two important regulators of ethylene 
signaling are under the control of CRL1s (Fig. 2). The pro-
tein ETHYLENE INSENSITIVE2 (EIN2) plays a central 
role in this process (reviewed in Ju and Chang, 2015) and is 
tightly regulated through different mechanisms involving 
phosphorylation (Qiao et al., 2009, 2012; Ju et al., 2012), pro-
teolytic cleavage (Cooper, 2013; Qiao et al., 2012, 2013) and 
ubiquitin-dependent protein degradation. Specifically, EIN2 
interacts through its C-terminal domain with the FBPs EIN2 
TARGETING PROTEIN1 (ETP1) and ETP2 (Qiao et  al., 
2009). These two FBPs and associated CRL1 complexes are 
required to maintain low levels of EIN2 in the absence of 
ethylene (Qiao et al., 2009), thus preventing the unnecessary 
activation of the ethylene response. In contrast, ethylene pro-
duction results in increased levels of EIN2, which triggers the 
activation of ethylene response genes (Qiao et al., 2009) through 
the activity of the transcription factor EIN3 and related EIN3-
LIKE (EIL) proteins (Chao et  al., 1997; Solano et  al., 1998; 
Chang et al., 2013). In the absence of ethylene, EIN3 and EIL1 

are targeted for degradation by CRL1s comprising the FBPs 
EIN3 BINDING F-BOX PROTEIN1 (EBF1) or EBF2, thus 
limiting induction of the ethylene response pathway in the ab-
sence of signal (Guo and Ecker, 2003; Potuschak et al., 2003; 
Binder et al., 2007). Importantly, EIN3/EIL1 are stabilized in 
the presence of ethylene and this correlates with the protea-
somal degradation of EBF1/2 in an EIN2-dependent manner 
(An et al., 2010). In addition, in the presence of ethylene, EIN2 
prevents translation of EBF1/2 mRNA, thus further contrib-
uting to a rapid accumulation of EIN3 (Li et al., 2015), which 
is essential for a timely response to ethylene. Importantly, EIN3 
also up-regulates the transcription of EBF2, suggesting that 
CRL1EBF2 ligases may play a role in preventing a prolonged 
activation of ethylene response (Potuschak et al., 2003; Konishi 
and Yanagisawa, 2008). In sum, several FBPs and CRL1s are 
key to controlling the outputs of ethylene signaling. The com-
plex regulation of EBF1/2 activity highlights the importance 
of their role in controlling EIN3 levels.

Another interesting feature of the ethylene signaling 
pathway is the co-operation between CRL1- and CRL3-type 
ubiquitin ligases. Indeed, CRL3s comprising the BTB do-
main proteins ETHYLENE OVERPRODUCER1 (ETO1), 
ETO1-LIKE1 (EOL1), and EOL2 appear to mediate the deg-
radation of enzymes involved in ethylene biosynthesis (Wang 
et al., 2004; Yoshida et al., 2005; Christians et al., 2009).

Hormonal crosstalk and the integration 
of environmental signals by the 
ubiquitin system

In this section of the review, we will consider the role that E3 
ligases play in regulating the crosstalk between different hor-
mone pathways, with a focus on the crosstalk between JA and 
other signaling pathways.

JA and ethylene crosstalk

JA and ethylene can act synergistically to regulate genes of the 
ERF branch (see ‘JA signaling’ above). The integration of the 
JA and ethylene pathways is thought to be mediated via (i) the 
JA-dependent stabilization of ERF transcription factors such 
as ORA59 (He et al., 2017), which are important for the regu-
lation of ERF branch JA response genes; (ii) the stabilization 
of EIN3/EIL1 by ethylene; and (iii) the CRL1COI1-dependent 
degradation of the JAZ transcriptional repressors which have 
been shown to interact with and repress EIN3/EIL1 (Zhu 
et al., 2011) (Fig. 3). Hence, the degradation of the JAZ pro-
teins triggered by JA-Ile combined with the stabilization of 
ERF and EIN3/EIL1 provide a suitable framework to explain 
the synergistic interaction between the JA and ethylene signal-
ing pathways, which is relevant in the context of plant defenses 
against necrotrophic pathogens (Berrocal-Lobo et  al., 2002; 
reviewed in Pieterse et  al., 2012). It is also noteworthy that 
the expression of ERF1 is under the control of EIN3 (Solano 
et al., 1998). In addition, the stability of ERF1 is tightly regu-
lated by the E2 conjugating enzyme UBC18 (Cheng et  al., 
2017). The latter appears to target ERF1 for degradation in the 
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dark (Cheng et al., 2017), which plays an important role in the 
regulation of hypocotyl elongation in an ethylene-dependent 
manner (Zhong et al., 2012).

The JA and ethylene pathways can also act antagonistically 
through the mutual repression of MYC2/3/4 and EIN3/EIL1 
(Song et al., 2014; Zhang et al., 2014) (Fig. 3). Indeed, the MYC2 
and EIN3 proteins have been shown to interact and repress 
each other (Song et al., 2014; Zhang et al., 2014). In addition, 
MYC2 can directly induce the expression of EBF1, which 
can target EIN3 for degradation (Zhang et al., 2014). Hence 
protein–protein interactions and the regulation of CRL1EBF1 
activity by MYC2 both contribute to the antagonistic effects 
of JA and ethylene, and also provide some explanation for the 

antagonistic effects of the ERF and MYC branches of JA sign-
aling in mediating responses to necrotrophic pathogens and 
herbivorous insects or wounding, respectively.

JA and SA crosstalk

SA and JA are classically considered as mutually antagonistic 
(reviewed in detail in Pieterse et al., 2012). For example, the 
expression of two JA-responsive genes, PDF1.2 and VSP2, 
which are targets of the ERF and MYC branches, respect-
ively, is repressed in the presence of SA. Furthermore, the nega-
tive regulation of JA signaling by SA requires the activity of 
cytosolic NPR1 (Spoel et al., 2003; Leon-Reyes et al., 2009). 

Fig. 3. Schematic representation of the crosstalk between the JA, ethylene, and SA signaling pathways. In the absence of ethylene and JA, the JAZ 
proteins interact with EIN3 and MYC2, thus preventing the activation of JA (from both the MYC and the ERF branch) and ethylene response genes. 
In the presence of JA and ethylene, EIN3 is stabilized and the degradation of the JAZ repressors results in the expression of ERF1 and ORA59 in an 
EIN3-dependent manner. These two ERF transcription factors (abbreviated ERFs) then up-regulate JA response genes of the ERF branch. EIN3 also 
interacts with MYC2 and represses its activity, thus antagonizing the MYC branch. SA has an antagonistic effect on JA signaling, which is mediated 
through different mechanisms involving cytosolic NPR1, as well as other proteins such as TGA and WRKY transcription factors or the glutaredoxin 
GRX480 (Ndamukong et al., 2007). In particular, ORA59 expression is repressed by TGA transcription factors, and the ORA59 protein is also targeted 
for degradation through a mechanism that requires EIN3/EIL1. However, SA can also trigger the activation of JA-responsive genes in the context of 
P. maculicola AvrRpt2-triggered ETI, through the NPR3- and NPR4-dependent degradation of the JAZ repressors in the presence of SA. Ubiquitin is 
depicted in yellow.
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Additional studies have shown that the repression of PDF1.2 
upon SA treatment correlated with a reduced accumulation of 
the ORA59 protein (a positive regulator of the ERF branch), 
possibly through its ubiquitin-mediated degradation (Van der 
Does et  al., 2013). Interestingly, the degradation of ORA59 
upon SA treatment appears to require the EIN3/EIL1 tran-
scriptional regulators, which are essential for the regulation of 
ethylene-response genes and the ERF branch (He et al., 2017).

However, the SA and JA pathways do not always antagonize 
each other (Schenk et al., 2000; van Wees et al., 2000; Mur et al., 
2006). Liu et al. (2016) have recently shown that in the pres-
ence of a strain of P. syringae pathovar maculicola that codes for 
the effector protease AvrRpt2, the onset of effector-triggered 
immunity (ETI) involved the induction of JA biosynthesis in 
an SA-dependent manner. The SA-mediated induction of JA 
response genes depends on the activity of NPR3 and NPR4, 
but does not require the activity of the CRL1COI1 E3 ligase 
(Liu et al., 2016). In fact, in this particular context (i.e. RPS2-
mediated ETI in response to AvrRpt2 activity), binding of SA 
to NPR3 and NPR4 promotes the interaction of these two 
BTB-domain proteins with several JAZ proteins. In the case of 
JAZ1 specifically, NPR3 and NPR4 can target this repressor 
of JA response genes for degradation. Hence, it appears that 
JAZ protein degradation can be mediated by both CRL1COI1 
and CRL3NPR3/4 depending on the physiological context. This 
example also illustrates how two types of CRLs that are typ-
ically associated with antagonistic pathways may converge in 
function to degrade JAZ proteins.

Regulation of JA signaling by far-red light

Light quality (e.g. shade) plays an important role in how plants 
allocate resources between growth and JA-mediated defenses 
against pathogen or herbivores (Moreno et al., 2009; Cerrudo 
et al., 2012). The regulation of MYC2 stability is key to this 
light-dependent resource allocation process. Indeed, MYC2, 
MYC3, and MYC4 are stabilized in the presence of JA, 
through a mechanism that requires the activity of CRL1COI1 
(Chico et  al., 2014), thus promoting herbivore defenses. In 
contrast, far-red (FR) light triggers the proteasome-dependent 
degradation of MYC2/3/4 through a mechanism that neces-
sitates, directly or indirectly, the activity of CONSTITUTIVE 
PHOTOMORPHOGENIC1 (COP1) as part of a CRL4 E3 
ligase complex (Zhang et al., 2008). Concomitantly with the 
degradation of MYC2 in FR light, the JAZ repressors are also 
stabilized, thus further enhancing the repression of JA signaling. 
This destabilization of MYC2 and stabilization of JAZ proteins 
in FR light correlate with an increased susceptibility to necro-
trophic pathogens such as the fungus B. cinerea (Cerrudo et al., 
2012; Chico et al., 2014). Hence, light quality is an important 
regulator of JA signaling, and the crosstalk between CRL4- 
and CRL1-mediated protein degradation in the regulation of 
JA signaling is important in co-ordinating resource allocation 
between growth and defense. However, while the notion that 
there is a continuous balance to be found between allocat-
ing resources for defense or for growth prevails, there is also 
mounting evidence that this growth versus defense trade-off 
is not simply due to a competition for resources, but may in 

fact be an emerging property of the gene regulatory networks 
orchestrated by JA signaling (Campos et al., 2016). This inter-
esting paradigm shift stems from the observation that plants 
mutant for five of the JAZ repressors and for the phytochrome B 
(phyB) photoreceptor (mutant denoted jazQ phyB) retain the 
increased insect resistance of the jazQ quintuple mutant with 
few negative effects on growth (Campos et al., 2016).

New players in the field

Over the past few decades, research focused on the expanding 
field of the plant ubiquitin system revealed novel E3 ligases and 
pathways that are central to the regulation and co-ordination 
of plant responses to environmental cues. In this section of the 
review, we focus on two new players, which are likely to play a 
more prominent role in the coming years. These two examples 
were chosen because the substrates and molecular mechanisms 
have been dissected in some detail, and also because they regu-
late signaling pathways that are activated by different environ-
mental signals.

KEG: regulation of hormone signaling and plant 
defenses against pathogens

In recent years, KEG has been shown to play important roles 
in abscisic acid (ABA) signaling, which is essential in the regu-
lation of plant responses to a wide range of abiotic stresses (e.g. 
drought and osmotic stress) and biotic interactions (reviewed 
in Stone, 2014; Lievens et al., 2017; Yang et al., 2017; Jurkiewicz 
and Batoko, 2018). In addition, KEG contributes to the cross-
talk between ABA and JA, as well as the regulation of plant 
immunity (Fig. 4).

KEG is a RING E3 ligase that has a unique domain archi-
tecture, comprising a kinase domain, as well as ankyrin and 
‘HECT and RCC1-like’ (HERC2-like) repeats (Stone et al., 
2006). The HERC2-like repeats regulate KEG’s subcellu-
lar localization to the trans-Golgi network/early endosome 
vesicles, as well as its dimerization (Gu and Innes, 2011). 
KEG was initially identified as an E3 ligase that targets for 
degradation the transcription factor ABA INSENSITIVE5 
(ABI5), a positive regulator of ABA response genes that 
plays important roles in ABA-mediated growth arrest fol-
lowing germination (Lopez-Molina et al., 2001). More spe-
cifically, KEG targets ABI5 for degradation in the absence 
of ABA (Fig.  4), presumably to prevent the untimely ac-
tivity of ABI5 and allow seedling development (Stone et al., 
2006; Liu and Stone, 2010, 2013). In response to ABA treat-
ment, KEG’s abundance decreases through a mechanism that 
appears to involve its auto-ubiquitylation (Liu and Stone, 
2010) (Fig. 4), thus contributing to ABI5 accumulation and 
the activation of ABA response genes. Interestingly, in the 
presence of ABA, ABI5 may be targeted for degradation by 
CRL4-type E3 ligases, such as those encompassing the DWD 
proteins ABA-HYPERSENSITIVE DCAF1 (ABD1) and 
DWD-HYPERSENSITIVE TO ABA1 (DWA1), DWA2, 
and DWA3. Indeed, mutant plants for the latter accumulate 
higher levels of ABI5 in the presence of ABA (Lee et  al., 
2010, 2011; Seo et al., 2014)
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In addition to ABI5, in vitro experiments indicate that the 
ABRE BINDING FACTOR1 (ABF1) and ABF3 transcrip-
tion factors, which are related to ABI5 and play a role in ABA 
signaling, could also be targets of KEG, although their degrad-
ation is thought also to be mediated by other, still unknown, 
E3 ligase(s) (Chen et  al., 2013). In normal growth condi-
tions, KEG also targets for degradation the CALCINEURIN 
B-LIKE INTERACTING PROTEIN KINASE26 (CIPK26), 
which can phosphorylate ABI5 in vitro (Lyzenga et al., 2013). 
Interestingly, CIPK26 can also phosphorylate KEG in vitro, 
which could promote its auto-ubiquitylation and degradation 
(Lyzenga et al., 2017). Lyzenga et al. (2017) therefore propose 
a model in which KEG and CIPK26 reciprocally regulate 
each other and positions both CIPK26 and KEG as import-
ant regulators of ABA signaling. Furthermore, KEG interacts 
in the cytoplasm with JAZ12. Surprisingly, though, based on 
both molecular and biochemical data, KEG does not appear 
to target JAZ12 for degradation, but instead protects it from 
CRL1COI1-mediated ubiquitylation (Pauwels et  al., 2015) 
(Fig. 4). This study therefore highlights the role of KEG in the 
crosstalk between the JA and ABA signaling pathways.

In addition to its roles in the regulation of hormone signaling, 
an allele of KEG (keg-4) that harbors a mutation in its HERC2-
like repeats was identified in a genetic suppressor screen of the 
enhanced pathogen resistance of plants mutant for the Ser/
Thr protein kinase ENHANCED DISEASE RESISTANCE1 
(EDR1) (Frye and Innes, 1998; Wawrzynska et al., 2008; Hiruma 
and Takano, 2011). KEG was then shown to interact with EDR1 
(Wawrzynska et  al., 2008; Gu and Innes, 2011). More specific-
ally, interaction of EDR1 with KEG facilitates the localization 

of EDR1 to the trans-Golgi network/early endosome vesicles 
through a mechanism that requires the HERC2-like repeats of 
KEG (Fig. 4). Additional experiments established that KEG plays 
a more general role in protein trafficking (Gu and Innes, 2012). 
Interestingly, this function probably depends both on its HERC2-
like repeats and the presence of the RING domain, although the 
role of protein ubiquitylation or KEG’s substrates in this process 
has not yet been clearly established.

The N-end rule pathway: sensor and integrator of 
environmental cues

In recent years, the ubiquitin-dependent N-end rule pathway 
has emerged as an important signaling hub that senses and 
modulates plant responses to several environmental cues and 
stresses of both abiotic and biotic origins (Fig. 5). The N-end 
rule pathway targets proteins for degradation based on the 
identity of a protein’s N-terminal residue, or some of its modi-
fications (e.g. N-terminal acetylation or cysteine oxidation). 
This protein degradation pathway is present in all eukaryotes 
examined so far, and is widely studied in mammals and in yeast 
(for comprehensive reviews on the topic, see Varshavsky, 2011; 
Tasaki et al., 2012; Lee et al., 2016), but its relevance in plants 
has only been uncovered in more recent years (reviewed in 
Gibbs et al., 2016; Dissmeyer et al., 2017, 2018). Besides its roles 
in plant development and in the regulation of physiological 
processes (Graciet et al., 2009; Holman et al., 2009; Dong et al., 
2017; Zhang et  al., 2018), several recent studies position the 
N-end rule as a key pathway for the regulation of diverse sign-
aling pathways.

Fig. 4. Overview of KEG’s roles in the regulation of hormone signaling and of plant defenses. In the absence of ABA, KEG targets ABI5, ABF1, and ABF3 
for degradation, thus inhibiting ABA response. In the presence of ABA, KEG is degraded, possibly as a result of its auto-ubiquitylation. In vitro, KEG is 
also phosphorylated by CIPK26, which could enhance its auto-ubiquitylation activity (inset). In addition, KEG interacts with JAZ12, thus preventing its 
degradation by CRL1COI1 and contributing to the repression of JA response genes. Finally, KEG retains EDR1 at the trans-Golgi network/early endosome 
vesicles (represented in dark gray), which is important for the regulation of plant defenses against pathogens. Ubiquitin is depicted in yellow.
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The first roles of the N-end rule pathway in the regulation of 
plant responses to environmental cues were shown to be linked 
to both oxygen (O2) and nitric oxide (NO) sensing and signal-
ing (Gibbs et  al., 2011, 2014, 2015; Licausi et  al., 2011; Abbas 
et  al., 2015). N-end rule function in this process depends on 
the degradation of a set of transcription factors that belong to 
the group VII of ERFs (noted ERF-VII), including RELATED 
TO APETALA2.2 (RAP2.2), RAP2.3, RAP2.12, HYPOXIA 
RESPONSIVE ERF1 (HRE1), and HRE2. These ERF-VII 
transcription factors start with the sequence Met-Cys, but the 
initial methionine is cleaved by methionine aminopeptidases, 
thus exposing the second cysteine residue at the N-terminus. 
Under normal oxygen conditions, this N-terminal cysteine is 
oxidized into cysteine sulfinic acid by the action of PLANT 
CYSTEINE OXIDASES (PCOs) (Weits et al., 2014; White et al., 
2017), which is sufficient to target these transcription factors for 
degradation through the N-end rule pathway (Fig. 5). Although 
not all steps have been biochemically dissected in detail, genetic 
analysis, as well as the monitoring of protein stability in different 
mutant backgrounds for the N-end rule pathway indicate that the 
N-terminal oxidized cysteine results in the conjugation of argin-
ine by arginine transferases to the N-terminus of these ERF-VII 
transcription factors. This is followed by their recognition by the 
RING-domain E3 ligase PROTEOLYSIS6 (PRT6), which tar-
gets them for proteasomal degradation (Gibbs et al., 2011; Licausi 
et  al., 2011). In contrast, under low oxygen conditions, which 
may arise during germination in the soil (e.g. Abbas et al., 2015), 
as well as upon waterlogging or flooding (reviewed in Voesenek 
and Bailey-Serres, 2015; Loreti et al., 2016), the N-terminal cyst-
eine residue of the ERF-VII transcription factors remains unoxi-
dized, leading to stabilization of these transcription factors and 
the regulation of their target genes (Gibbs et  al., 2011; Licausi 
et al., 2011; Gasch et al., 2016). In addition, the recent analysis of 
prt6 mutant Arabidopsis and barley plants in response to a range 
of abiotic stresses, including high salinity, drought, and heat, shows 

that the N-end rule pathway plays a broader role in co-ordinating 
plant responses to a wide range of environmental cues and stresses 
(Vicente et al., 2017). However, the molecular mechanisms have 
not yet been elucidated in detail.

Recent studies have also highlighted the role of the N-end 
rule pathway in the regulation of plant responses to biotic 
stresses. Gravot et al. (2016) observed a link between the ac-
tivity of the above-mentioned ERF-VII transcription factors, 
their N-end rule-dependent degradation, and infection by 
the protist Plasmodiophora brassicae. Indeed, hypoxia-responsive 
genes, many of which are thought to be under the control 
of the ERF-VII transcription factors (Gasch et al., 2016), are 
induced at early stages of infection by P. brassicae. Interestingly, 
Arabidopsis plants mutant for arginine transferases or PRT6 
are known to accumulate the ERF-VIIs and are more suscep-
tible to this pathogen. Altogether, these observations point to a 
role of the ERF-VIIs and their N-end rule degradation in the 
regulation of root responses to P. brassicae.

Furthermore, a pathogen susceptibility screen on different 
mutants of the N-end rule pathway revealed its role as a positive 
regulator of plant defenses against pathogens (de Marchi et al., 
2016). Indeed, several enzymatic components of this pathway, 
including the two RING-domain E3 ligases PRT6 and PRT1, 
and the above-mentioned arginine transferases were shown to 
be important for the regulation of plant defenses against fungal 
and bacterial pathogens with different lifestyles (de Marchi 
et al., 2016). Furthermore, it was observed that the regulation 
(i.e. activation and repression) of genes involved in plant de-
fense against a strain of P.  syringae pathovar tomato DC3000 
that expresses the effector protein AvrRpm1 is dampened in 
plants mutant for the arginine transferases or for PRT6. These 
results suggest that the increased susceptibility to pathogens 
could be due to a reduced amplitude of the defense response in 
these mutants (de Marchi et al., 2016). Interestingly, de Marchi 
et  al. (2016) also established that phytohormone signaling 

Fig. 5. Simplified overview of the N-end rule pathway and its functions in the integration of signaling pathways. The N-end rule pathway of protein 
degradation targets proteins for degradation based on the identity of their N-terminal residues (indicated here using single-letter abbreviations for amino 
acids). Recognition of N-end rule substrates by E3 ligases such as PRT6 may require different enzymatic modifications of the N-terminal residue, such as, 
for example, cysteine oxidation by PCO enzymes, or conjugation of arginine by so-called arginine transferases. Different components of the N-end rule 
pathway have been shown to play important roles in plant adaptation to different abiotic and biotic stresses and also in the regulation of the JA and ABA 
hormone signaling pathways. Note that this figure does not provide a complete overview of the N-end rule pathway, but focuses on components whose 
functions have been dissected in more detail in plants. Ubiquitin is depicted in yellow. O2, oxygen; NO, nitric oxide; C*, oxidized cysteine.
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pathways such as that of JA could be regulated by the N-end 
rule pathway, thus adding to the known roles of this pathway in 
the regulation of ABA signaling (Holman et al., 2009; Vicente 
et al., 2017; Zhang et al., 2018).

Conclusion

Our understanding of the roles played by the ubiquitin 
system as a signaling hub has greatly progressed in the last 
two decades. Much of the knowledge that has been gained 
has led to a detailed understanding of how the ubiquitin 
system, and in particular E3 ligases, regulate signaling path-
ways that are involved in the response to a specific stress 
or signal. This knowledge now serves as a foundation, as 
the community shifts from studying plant responses to in-
dividual stresses, to understanding how plants sense and in-
tegrate combined environmental signals and stresses. Both 
proteolytic and non-proteolytic roles of the ubiquitin 
system are already emerging as essential in this context. 
Areas that are likely to develop quickly in the coming years 
include the study of ubiquitin chains involving lysine resi-
dues other than Lys48, as well as the identification of pro-
tein substrates that may be targeted for degradation by E3 
ligases. The latter has so far proven difficult because (i) of the 
weak and dynamic nature of the interactions between an E3 
ligase and its cognate substrates; and (ii) these substrates are 
targeted for degradation and hence might not accumulate 
to detectable levels in vivo. In addition, exposure of a deg-
radation signal, which is essential for substrate recognition 
by an E3 ligase, also typically involves one or several post-
translational modification(s) of the substrate (e.g. phosphor-
ylation, protease cleavage, etc.). These modifications and 
the recognition of the substrate by an E3 ligase might only 
occur upon a particular signal, within a short time frame 
after signal detection, or in a specific cell type. Hence, iden-
tifying E3 ligase substrates might require a detailed know-
ledge of where and when E3 ligase activity is required. The 
potential need to focus on specific cell types and hence the 
limited amount of tissue or cells that can be used for sub-
strate identification using proteomics approaches might also 
hamper the detection of E3 ligase substrates. Nevertheless, 
recent advances in proteomics and in the strategies used to 
tag and affinity purify ubiquitylated proteins with different 
ubiquitin chains will continue to facilitate this task greatly 
in the future (Harper and Tan, 2012; O’Connor et  al., 
2015; Tan et al., 2013; Zhuang et al., 2013; Iconomou and 
Saunders, 2016). Finally, the study of the ubiquitin system 
and its role as a signaling hub needs to be viewed in the 
context of crop improvement and the need to maintain crop 
yields in a sustainable manner, and has a high potential for 
the development of applications of agricultural interest.
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