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Molecular self-assembly, the formation of large structures
by small pieces of matter sticking together according to
simple local interactions, is a ubiquitous phenomenon. A
challenging engineering goal is to design a few molecules
so that large numbers of them can self-assemble into
desired complicated target objects. Indeed, we would like
to understand the ultimate capabilities and limitations of
this bottom-up fabrication process. We look to theoretical
models of algorithmic self-assembly, where small square
tiles stick together according to simple local rules in
order to carry out a crystal growth process. In this
survey, we focus on the use of simulation between
such models to classify and separate their computational
and expressive powers. Roughly speaking, one model
simulates another if they grow the same structures,
via the same dynamical growth processes. Our journey
begins with the result that there is a single intrinsically
universal tile set that, with appropriate initialization
and spatial scaling, simulates any instance of Winfree’s
abstract Tile Assembly Model. This universal tile set
exhibits something stronger than Turing universality: it
captures the geometry and dynamics of any simulated
system in a very direct way. From there we find that there
is no such tile set in the more restrictive non-cooperative
model, proving it weaker than the full Tile Assembly
Model. In the two-handed model, where large structures
can bind together in one step, we encounter an infinite
set of infinite hierarchies of strictly increasing simulation
power. Towards the end of our trip, we find one tile to
rule them all: a single rotatable flipable polygonal tile that
simulates any tile assembly system. We find another tile
that aperiodically tiles the plane (but with small gaps).
These and other recent results show that simulation is
giving rise to a kind of computational complexity theory
for self-assembly. It seems this could be the beginning of
a much longer journey, so directions for future work are
suggested.
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1. Introduction
Molecular self-assembly, the formation of large structures by small pieces of matter sticking
together according to simple local interactions, is a ubiquitous phenomenon in nature. It is also a
phenomenon that we are beginning to learn how to control, or program, by designing molecules
and their local interaction rules. Since Seeman’s pioneering work on assembling two-dimensional
(2D) [1,2] lattices from small artificially synthesized DNA molecules, we have learned how to
self-assemble various kinds of shapes and patterns, such as Rothemund’s nanoscale squares,
tiny maps and smiley faces [3], as well as three-dimensional (3D) lattices [4] and shapes [5]
including spheres and vases [6], and Latin, Arabic and Chinese characters [7]. These structures
are hardcoded in the sense that for each position a unique DNA molecule is synthesized; the
larger the structure the more unique the molecular components we need to design. Thinking
of Seeman’s periodic 2D DNA structures as lattices of tiles, Winfree [8] asked if one could use
smarter molecules that exploit computation to come together in such a way that individual tile
types end up appearing in many different locations in the target shape or pattern. Since then a
number of examples of such algorithmic tile-based structures have been self-assembled, including
regular arrays of tiles [9], fractal structures [10,11], bit-copying systems [12–14] and binary
counters [12,15]. Given these experimental successes, it is imperative to have a theory of self-
assembly to guide this rapidly developing field of nanoscale engineering. Models of algorithmic
self-assembly are capable of Turing universality, and so of an infinite variety of computational
behaviours, but yet distinct enough from existing computational models to present interesting
theoretical challenges.

The abstract Tile Assembly Model, put forward by Winfree [8], is a kind of asynchronous
non-deterministic cellular automaton that models crystal growth processes. Put another way, the
abstract Tile Assembly Model restricts classical square Wang tiling [16] to use a mechanism for
crystal-like growth of a tiling, one tile at a time, starting from a special seed tile. Formally, an
instance of the abstract Tile Assembly Model [8] is called a tile assembly system and is a triple
T = (T, σ , τ ) consisting of a finite set T of square tiles, a seed assembly σ (one or more tiles stuck
together), and a temperature τ ∈ {1, 2, 3, . . .}, as shown in figure 1a. Each side of a square tile has a
glue (or colour) g which in turn has a strength s ∈ {0, 1, 2, . . .}. Growth occurs on the integer plane
and begins from a seed assembly (or a seed tile) placed at the origin, as shown in figure 1b. A
tile sticks to a partially formed assembly if it can be placed next to the assembly in such a way
that enough of its glues match the glues of the adjacent tiles on the assembly and the sum of the
matching glue strengths is at least the temperature. Intuitively, the tile sticks if its binding is sticky
enough to overcome thermal fluctuations in the environment. Growth proceeds one tile at a time,
asynchronously and non-deterministically. In this model, tiles may not overlap nor rotate, and
unlike Wang tiling, adjacent glues (colours) may mismatch in an assembly. The model is capable
of Turing machine simulation [8], and indeed computation via Turing machine simulation can be
used to guide the process of self-assembly [17].

Of course individual tiles need not be square: models with triangles [18,19], hexagons [18–21]
and arbitrary polyominos and polygons [19,21–23] have been considered. Yet other models of
self-assembly allow for non-local rules and large-scale interactions. One such model is the two-
handed (or hierarchical) model [24–27] which allows large structures to stick together if enough of
their tiles’ edge colours match. Another is the Nubot model [20] of molecular robotics where large
assemblies of molecules can grow and then move relative to each other in a rigid-body fashion.
Although some self-assembly models can be thought of as generalizations of cellular automata,
or effectivizations of Wang tiling, these models are all quite distinct from each other in terms of
both questions that can be sensibly asked and results that can be obtained.

(a) Introduction to the use of simulation in self-assembly
In this survey, we discuss the relative computational and expressive power of self-assembly
models using simulation as a method to compare these models. Our notion of simulation is
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Figure 1. An instance of the abstract Tile Assembly Model, and an example showing simulation and intrinsic universality. (a) A
tile assembly system T consists of a tile set, seed tile and a temperature τ ∈ N. Coloured glues on the tiles’ sides have a
natural number strength (shown here as 0, 1 or 2 coloured tabs). (b) Growth begins from the seed with tiles sticking to the
growing assembly if the sumof the strengths of thematching glues is at leastτ . (c) An intrinsically universal tile setU. (d)When
initializedwith a seedassembly (that encodesT ) andat temperature 2, the intrinsically universal tile set simulates thedynamics
ofT with each tile placement inT being simulated by the growthof anm × mblock of tiles. Single-tile attachment is denoted
by→and

∗→denotesmultiple tile attachments.Note that both systemshavemanyother growthdynamics that arenot shown.
(Online version in colour.)

specifically designed to capture, in a formal and natural sense, both production (assemblies) and
dynamics (how those assemblies are built) of self-assembly systems. In the past few years quite a
number of results have come to fruition showing that simulation and the related notion of intrinsic
universality can be used to classify the power of self-assembly systems. Simulation provides one
clean theory to unify a wide range of self-assembly models including models that use different
modes of assembly (single-tile versus multi-tile assembly, with or without rotations and/or flips)
and various geometries (square tiles versus polyomino or polygonal tiles with information-
encoding geometries). Some of these results formally show that intrinsic universality is a distinct
notion from computational (Turing) universality while others show infinite hierarchies of tile
assembly systems with increasing simulation power as we move up the hierarchies. Some of
the results mentioned in this survey are summarized in figure 2 which the reader should refer to
throughout the text.

Tile assemblers have borrowed and generalized the powerful idea of intrinsic universality
from the cellular automata community where it has given rise to a rich theory [28–33].1 This short
survey attempts to show that we are beginning to see this in self-assembly too. Tile self-assembly
systems are distributed, asynchronous and non-deterministic. Hence it should not be surprising
that our definition of simulation, and even some techniques used in proofs, use concepts similar
to those seen in concurrency control, database theory and the theory of asynchronous state
transition systems. For example, the definition of simulation is related, although with essential
differences, to some notions of weak bisimulation used in the study of asynchronous distributed
systems [36,37]. In particular, in the simulator system we interpret certain parts of assemblies as
representing empty space in the simulated system, and for a time many tiles can be added to such
regions before that region commits to encoding some specific tile in the simulated system. Hence
the simulator makes ‘hidden’, or ‘internal’, actions as is seen in weak bisimulation. However, our
notion of simulation is not an instance of weak bisimulation.2 Also, it should be noted that before

1This notion has also been studied in the context of Wang tiling [34,35].

2In particular, our definition allows for simulator assemblies α′, which represent α in the simulated system, to represent
merely a proper subset of the dynamics of α; as long as α′ can be reached by an assembly from which the full set of dynamics
is indeed possible. Weak bisimulation forbids this as there is no way to consistently label the states, or assemblies, of such a
simulator by states in the simulated system.
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Figure 2. Classes of tile assembly systems and their relationship with respect to simulation. There is an arrow from B to A if A
contains Bwith respect to simulation: that is, for each tile assembly systemB ∈ B there is a tile assembly systemAB ∈ A that
simulatesB. Dashed arrows denote containment, solid arrows denote strict containment and a self-loop denotes the existence
of an intrinsically universal tile set for a class and its omission implies that the existence of such a tile set is an open problem.
aTAM: abstract Tile AssemblyModel (growth froma seed assembly by single tile addition in 2D),τ denotes ‘temperature’. 2HAM:
Two-Handed Tile Assembly Model (assemblies of tiles stick together in 2D). A 2HAM temperature hierarchy is shown for some
c ∈ {2, 3, 4, . . .} and, in fact, for each such c the set of temperatures {ci|i ∈ {2, 3, . . .}} gives an infinite hierarchy of classes
of strictly increasing simulation power in the 2HAM. Citations proving the results are given in square brackets. Simulation results
for a number of other models are described in the main text.

the study of intrinsic universality in self-assembly, some previous self-assembly papers [17,38]
made use of notions that can be seen as precursors to the definitions and results discussed here
which perhaps lends weight to the intuition that spatially scaled dynamics-preserving simulation
is a natural way to compare self-assembly systems.

It is important to point out that besides simulation there are a number of other methods to
compare self-assembly models that also lead to interesting results and proof techniques. Examples
include computational power [8,39], efficiency in terms of the number of tile types needed to
build shapes or patterns [40,41] and computational complexity of verification of properties of tile
assembly systems [42]. See other surveys for more details [43,44].

In this informal survey, we forgo formal definitions and proofs, which can be found in the cited
literature.
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2. Simulation and a result: the abstract Tile Assembly Model is intrinsically
universal

Intuitively, one self-assembly model simulates another if they grow the same structures, via the
same dynamical growth processes, possibly with some spatial scaling. In order to be a little more
precise, let S and T be tile assembly systems of the abstract Tile Assembly Model described above.
S is said to simulate T if the following conditions hold: (i) each tile of T is represented by one or
more m × m blocks of tiles in S called supertiles, (ii) the seed assembly of T is represented by the
seed assembly of S (one or more connected m × m supertiles), and (iii) via supertile representation
every sequence of tile placements in the simulated system T has a corresponding sequence of
supertile placements in the simulator system S and vice versa. It is worth pointing out that
although the intuitive idea of one assembly system simulating another is fairly simple, the formal
definition gets a little technical as the filling out of supertiles in the simulator is an asynchronous
and non-deterministic distributed process with many supertiles growing independently and in
parallel in the simulator system. See, for example, [45] for a formal definition.

With our notion of simulation in hand we are ready to describe intrinsic universality. Figure 1d
illustrates the concept. A class of tile assembly systems C is said to be intrinsically universal if there
exists a single set of tiles U that simulates any instance of C. For each such simulation, U should
be appropriately initialized as an instance (i.e. a tile assembly system) of C itself. For example,
the abstract Tile Assembly Model has been shown to be intrinsically universal [46]. Specifically,
this means that there is a single set of tiles U that, when appropriately initialized, is capable of
simulating an arbitrary tile assembly system T . To program such a simulation, tiles from T are
represented as m × m supertiles (built from tiles in U) and the seed assembly of T is represented
as a connected assembly σT of such supertiles. Furthermore, the entire tile assembly system T (a
finite object) is itself encoded in the supertiles of σT of U . Then if we observe all possible growth
dynamics in both T = (T, σ , τ ) and U = (U, σT , 2), we get that both systems produce the same set of
assemblies via the same dynamics where we use a supertile representation function to map from
supertiles over U to tiles from T. It is worth pointing out that in this particular construction [46] the
simulating system is always (merely) at temperature τ = 2 no matter how large the temperature
(τ ≥ 1) of the simulated system is.

This intrinsically universal tile set has the ability to simulate both the geometry and growth
order of any tile assembly system. Modulo spatial rescaling, this universal tile set U represents
the full power and expressivity of the entire abstract Tile Assembly Model.

3. A complexity theory for self-assembly: the abstract Tile Assembly Model
We have seen that the abstract Tile Assembly Model is intrinsically universal: a kind of
completeness for the model with respect to our notion of simulation. The class of all Turing
machines also exhibits a kind of completeness shown via the existence of a universal Turing
machine, although typically using a much weaker notion of simulation than ours that cares
less about capturing the dynamics of the simulated machine.3 Now that we know the abstract

3It turns out that one can have a much tighter notion of simulation for Turing machines inspired by the constant spatial scale
factor simulations discussed in this survey, and furthermore it turns out that Turing machines are intrinsically universal under
this notion. As described in [47], it is possible to have a universal Turing machine that simulates any Turing machine M with
only a constant factor time overhead and a constant factor ‘spatial rescaling’ of tape contents. This universal machine stores
the entire simulated program M (which is of constant size: i.e. independent of the input length) at the simulated tape head
position. Simulating a transition rule involves reading and copying information from the simulated program, and simulating
a move left or right involves moving the entire simulated program one step to the left or right. Each step is simulated in
time independent of the time and space of the simulated machine, and quadratic in the constant-length simulated program.
Intuition compels belief in this being the morally correct notion of intrinsic universality for Turing machines. The construction
is particularly straightforward as the Turing machine model is both sequential and local.
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Tile Assembly Model is intrinsically universal, and that this holds with a fairly strict notion
of simulation, we can attempt to use simulation to tease apart the power of different tile
assembly models. Specifically we ask if natural subclasses of the model can achieve the full
expressive power of the model via spatially scaled dynamics-preserving simulation and/or if
such subclasses can even simulate each other.

(a) Separating the power of cooperative and non-cooperative tile assembly systems
It has been known for some time that the abstract Tile Assembly Model at temperature 2, where
at least some of the tiles are required to match on two or more sides for correct binding, i.e.
cooperative binding, is capable of highly non-trivial behaviour. Turing machine simulation [40],
efficient production of n × n squares and other simple size-n shapes using Θ(log n/ log log n)
tile types [48], efficient production of arbitrary finite connected shapes using a number of
tile types within a logarithmic factor of the Kolmogorov complexity of the shape [17] and
even intrinsic universality [46] (as already discussed) can all be achieved with cooperative, or
temperature 2, growth.

The fact that the (full) abstract Tile Assembly Model is intrinsically universal means that there
is a subclass of the model, namely the class of systems that use the intrinsically universal tile set U,
that is capable of simulating the full model. This suggests an obvious question: can we show that
some subclasses of the model are provably weaker than the full model, by showing that systems
from these subclasses cannot simulate the full model?

The most notorious such subclass is called temperature 1. Despite its esoteric name, it models
a fundamental and ubiquitous form of growth: asynchronous growing and branching tips in
Euclidian space where each new tile is added if it matches on at least one side. Since temperature 1
binding does not require matching glues on multiple sides, it is called non-cooperative binding.
A reasonable analogy is to think of cooperative binding as context sensitive, and non-cooperative
binding as context free. In 2D, it’s like snakes on a plane.

Recently, it has been shown that that the temperature 1 abstract Tile Assembly Model (i.e. non-
cooperative binding) is provably weaker than the full model [45]: in particular, temperature 1
tile assembly is not capable of simulating arbitrary tile assembly systems. In fact, there is a very
simple cooperative tile assembly system, that uses cooperative binding on two sides in merely
one location, that cannot be simulated by any non-cooperative tile assembly system. This is the
first fully general negative result about temperature 1 that does not assume restrictions on the
model nor unproven hypotheses. The proof uses a simple pumping lemma (called the window
movie lemma) for self-assembly that gives a sufficient condition to modify assembly sequences
and swap parts of assemblies. It is used to fool any claimed non-cooperative simulation of
cooperative binding. This lemma has since found use elsewhere and indeed has been generalized
in various ways [49–53]. An interesting aspect of the negative result is that it holds for 3D non-
cooperative systems; they too cannot simulate arbitrary tile assembly systems. This seems quite
shocking, given that 3D non-cooperative systems are Turing-universal [39]! So in particular, 3D
non-cooperative systems can simulate 2D (or 3D) cooperative systems by simulating a Turing
machine that in turn simulates the cooperative system, but this loose style of simulation ends up
destroying the geometry and dynamics of tile assembly by encoding everything as ‘geometry-less’
strings.4 Hence, the negative result in [45] can be interpreted to mean that Turing-universal
algorithmic behaviour in self-assembly does not imply the ability to simulate, in a direct geometric
fashion, arbitrary algorithmic self-assembly processes. Despite this negative result, and a recent
positive result, showing that non-cooperative systems can be programmed to grow assemblies
of size larger than the number of tile types [54], it remains open whether 2D non-cooperative
systems are intrinsically universal for themselves, or capable of Turing machine simulation in an
error-free way.

4Or as Paul W.K. Rothemund has put it, 3D non-cooperative systems can dream about tile assembly, but cannot actually do
tile assembly.
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It was also shown that in 3D there is a (cube) tile set that non-cooperatively simulates all 2D
non-cooperative systems [45].

(b) Separating the power of cooperative tile assembly systems
Besides the abstract Tile Assembly Model being intrinsically universal, it is also known that
a restricted sub-model, called the locally consistent Tile Assembly Model, is intrinsically
universal [55]. A locally consistent tile assembly system is one where tiles bind without
mismatches, and with binding strength of exactly 2. This sub-model is quite expressive: the
standard methods to simulate Turing machines with tile assembly systems are locally consistent,
as are many systems that have been implemented in the laboratory to date with DNA [10–15].
This begs the question: are locally consistent systems capable of simulating the full model? Recent
work by Becker & Meunier [49] shows that the answer is ‘no’. In particular, their results show that
any class of tile assembly systems that has no mismatches, or disallows excess binding strength,
cannot simulate the abstract Tile Assembly Model.5

The result tells us that at least some of the tricky aspects of the intrinsic universality simulation
in [46] are required. In particular, in that simulation binding mismatches occur in numerous places
(often as a mechanism to decide which of the competing parts of an m × m simulator supertile will
‘win’ a competition to decide which simulated tile the supertile encodes). The fact that systems
without mismatches cannot simulate those with mismatches [49] tells us that this aspect of the
simulation is required. One of the key innovations in [49] is to generalize the window movie
lemma (a pumping lemma) from [45] so that it can be applied in significantly more complicated
settings. It will be interesting to see if this generalized ‘bisimulation lemma’ finds use elsewhere.
Finally, Becker & Meunier [49] show that 3D mismatch-free tile assembly systems are intrinsically
universal and leaves open the question for 2D mismatch-free systems.

It remains as future work to further characterize the power of interesting subclasses of the
abstract Tile Assembly Model, and in particular, to separate such subclasses. Work in this direction
will enable us to understand exactly which of the model’s features are required for specific kinds
of global behaviour.

4. A complexity theory for self-assembly: comparing models of self-assembly
What about other models of self-assembly besides the abstract Tile Assembly Model?

(a) Two-hands
It has been shown that the two-handed, or hierarchical, model of self-assembly (where large
assemblies of tiles may come together in a single step) is not intrinsically universal [27].
Specifically there is no tile set that, in the two-handed model, can simulate all two-handed systems
for all temperatures. However, the same paper shows that for each temperature τ ∈ {2, 3, 4, . . .}
there is a tile set Uτ that is intrinsically universal for the class of two-handed systems that work
at temperature τ . Also, there is an infinite hierarchy of classes of such systems with each level
strictly more powerful (can assemble more complicated shapes) than the one below. In fact there
are an infinite set of such hierarchies, as described in the caption of figure 2. These results give a
formalization of the intuition that multiple long range interactions are more powerful than fewer
long range interactions in the two-handed model.

By combining results from [25,46], we get that there is a tile set for the two-handed model
that (at temperature 2) simulates any tile assembly system T of the abstract Tile Assembly
Model. Specifically, T is simulated using the intrinsically universal tile set U from [46] (which

5Moreover, Becker & Meunier [49] show that mismatch-free systems and systems without excess binding strength cannot
simulate each other.
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runs at temperature 2) which in turn is simulated at temperature 2 using the two-handed
construction in [25].

(b) The one polygon
Demaine et al. [21] take the existence of an intrinsically universal tile set for the abstract Tile
Assembly Model [46] as merely the first in a sequence of simulations that routes from square tiles,
to the intrinsically universal tile set, to hexagons (with strength < τ , or weak, glues) to a single
polygon that is translatable, rotatable and flipable. Their fixed-sized polygon, when appropriately
seeded, simulates any tile assembly system from the abstract Tile Assembly Model. This polygon,
the one, captures the power of the entire abstract Tile Assembly Model: to simulate a tile assembly
system T one simply puts together a seed assembly of polygons that encodes T and just lets
it go! Likewise, Turing machines can be simulated with this single tile. It is also shown [21]
that with translation only (i.e. no rotation), such results are not possible with a small (size ≤ 3)
seed (although with larger seeds a single translation-only polyomino simulates the space–time
diagram of a one-dimensional (1D) cellular automaton). In the simpler setting of Wang plane
tiling it is shown [21] how to take any tile set T (on the square or hexagonal lattice) and ‘compile’
it using a very simple procedure to get a single regular polygon that simulates exactly the tilings
of T, except with tiny gaps between the polygons. In particular, if one starts with any aperiodic
square or hexagon tile set, that tile set can be complied to a single regular polygonal tile, all of
who’s tilings are aperiodic, with tiny gaps between the polygons.

(c) Signal tiles, negative glues, polyominos
Of course, one can imagine reasonable self-assembly models that are quite different from those
already discussed. For a number of such models simulation has been used as a method to
compare their power. These include the experimentally motivated [56] Signal-Passing [57], and
Active [58], Tile Assembly Models with tiles that have molecular (DNA) wires on their surface.
Essentially there is a use-once circuit sitting on the assembly itself! The circuit’s wires make use
of Yurke et al.’s [59] beautiful toehold-mediated DNA strand displacement mechanism. Recently,
Hendricks et al. [60] have shown that in the two-handed Tile Assembly Model there is a single
3D tile set that can simulate any 2D signal-passing tile assembly system (that does not have
tile detachment). Their result shows that a constant number of planes (in the third dimension)
is sufficient to handle wire crossings and asynchronous signal passing. A number of results on
simulation using the (closely related) Active Tile Assembly Model can be found in Karpenko
[58], including simulation of the temperature 2 abstract Tile Assembly Model with a spatial scale
factor of 2, and simulation of cellular automata.

Recent work [50] shows that the abstract Tile Assembly Model and a non-cooperative version
of it with both square or domino (or duple) tiles have incomparable power with respect
to simulation. Both models exhibit systems that cannot be simulated by the other! Another
paper [61] shows that negative glues (glues that repel each other) on square and domino tiles can
be used, at temperature 1, to simulate the temperature 2 abstract Tile Assembly Model, and that
the former model is actually more powerful than the latter. The same paper points out that the
landscape of self-assembly simulation power versus computational simulation power is rather
subtle in the sense that there are a number of classes of computationally universal systems that
are unable to simulate the (algorithmic and geometric) process of self-assembly.

Fekete et al. [22] define scale-free (or scale factor 1) simulation and show that polyominoes
which are ‘3-position limited’, meaning they have only three perimeter locations where glues
can be placed, can be simulated by the temperature 1 abstract Tile Assembly Model. (Same for
4-position limited polyominoes where those positions have a restriction called ‘uniquely paired’.)
Appropriate future negative results on the temperature 1 abstract Tile Assembly Model will apply
to these models. This result can be thought of as a self-assembly analogue to the computational
complexity notion that a problem is likely to have an efficient algorithm if we can place it in a
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class of problems that are all strongly conjectured to have efficient algorithms, but for which we
cannot prove it.

As mentioned above, the abstract Tile Assembly Model can be thought of as an asynchronous
and non-deterministic cellular automaton (CA) that has the notion of a crystal growth frontier.
Hendricks & Patitz [62] formally relate the abstract Tile Assembly Model and CA: they give a
single CA that simulates any tile assembly system, as well as a single-tile set that simulates any
non-deterministic CA with a finite initial configuration. The methods of updating configurations
in both models are quite different (CA are infinite, synchronous and deterministic, while tile
assembly is finite, asynchronous and non-deterministic) and so their constructions need to handle
this. Jonoska & Karpenko [63] show that 1D CA can be simulated by the Active abstract Tile
Assembly Model (mentioned above) at temperature 1 by storing the time–space history in a
large assembly. Further work shows that 1D and 2D CA are simulated in this active model, but
where (by using the feature of tile detachment) the entire space–time history does not need to
be stored [58,64]. Together these pieces of work open the possibility of further comparing and
contrasting the CA and tile assembly models.

5. Conclusion and future work
The results cited in this survey show that simulation between self-assembly models can be used
as a method to classify their relative power. It is worth pointing out that our notion of simulation
seems to strike a nice balance between being loose enough so that we can find intrinsically
universal systems of various kinds but restricted enough that negative results separating the
power of various systems can actually be shown. As figure 2 shows, we are beginning to see a
kind of complexity theory for self-assembly. Indeed gaps in the figure (i.e. missing solid arrows
and missing models) suggest a variety of open questions.

It is an open question whether or not the hexagonal Tile Assembly Model [21], various
polygonal tile assembly models [19,21], the Nubot model [20] and Signal-Passing Tile Assembly
Model [60,63] are intrinsically universal. And independent of whether or not these models turn
out to be intrinsically universal, we suggest that simulation can be used to tease apart their
computational and expressive power, as well as the power of subclasses of these models. For
example, Gilbert et al. [19] investigate the computational power of various kinds of polygonal tile
assembly systems, showing that regular polygon tiles with more than six sides simulate Turing
machines. What is the relationship between tile geometry and simulation power? Do more sides
give strictly more simulation power?

A desirable feature of a simulator is not only that it simulates all possible dynamics of some
simulated system, but that this is done in a probabilistically fair manner. Probabilities come into
play when we think about the assembly process as a continuous time Markov process where tile
placement is a random event (chosen uniformly from the set of possible placements) that occurs
after an amount of time that is also a random variable, and in particular when we consider the
number of tiles and order of their placement to assemble a given structure. Is there an intrinsically
universal tile set that simulates a wide class of systems in a probabilistically fair manner? Here,
the probability of seeing a given dynamics or assembly in a simulator should be close to that of the
simulated system, where ‘close’ means, say, within a factor proportional to the spatial scaling. In
particular, can the intrinsically universal simulations in [46,55] be improved to have this property?

Does there exist a tile set U for the abstract Tile Assembly Model, such that for any
(adversarially chosen) seed assembly σ , at temperature 2, this tile assembly system simulates
some tile assembly system T ? Moreover, U should be able to simulate all such members T of some
non-trivial class S. U is a tile set that can do one thing and nothing else: simulate tile assembly
systems from the class S. This question about U is inspired by the factor simulation question in
CA [29], although it differs in the details.

Many algorithmic tile assembly systems use cooperative self-assembly to simulate Turing
machines in a ‘zig-zag’ fashion, as do a number of experimentally implemented systems
[12–14,65]. Can the negative result of [45] be extended to show 2D temperature 1 abstract Tile
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Assembly Model systems do not simulate zig-zag tile assembly systems? This would be a non-
trivial extension as the negative result in [45] holds for the 3D temperature 1 model, which
can indeed simulate zig-zag systems, and would show that no deterministic 2D temperature 1
system can simulate Turing machines in the ‘usual way’. Furthermore, Fekete et al. [22] show
that a certain, rather general, class of ‘geometric bit-reading gadgets’ cannot be built in the 2D
temperature 1 model, which gives some evidence that the standard method of simulating Turing
machines in the abstract Tile Assembly Model is impossible in 2D at temperature 1.

There are a number of future research directions for the two-handed model. One open
question [27] asks whether or not temperature τ two-handed systems can simulate temperature
τ − 1 two-handed systems. (We know that in this model temperature τ systems cannot simulate
temperature τ + 1 systems and that temperature τ systems can simulate temperature τ ′ systems
where τ/τ ′ ∈ N [27]. Also, it is conjectured that temperature τ systems cannot simulate all
temperature τ − 1 systems [27], even though they seem, at least naively, to have sufficient
cooperative capabilities. Hendricks et al. [66] show progress on this question by proving that for
certain simulators the answer depends on the exact notion of simulation used.) Another direction
involves finding which aspects of the model (e.g. mismatches, excess binding strength, geometric
blocking) are required for intrinsic universality at a given temperature, in order to tease apart and
better understand the intricacies of this very powerful, but natural, model.

Of course, there are many other ways to compare the power of self-assembly models; for details
see for example two other surveys on the theory of algorithmic tile assembly [43,44]. Researchers
have looked at shape and pattern building, tile complexity, time complexity, determinism versus
non-determinism and randomized (coin-flipping) algorithms in self-assembly. It remains as
important future work to find relationships between these notions on the one hand, and intrinsic
universality and simulation on the other hand. Can ideas from intrinsic universality be used to
answer questions about these notions?
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