
Journal of Complexity 30 (2014) 634–646

Contents lists available at ScienceDirect

Journal of Complexity

journal homepage: www.elsevier.com/locate/jco

Wang’s B machines are efficiently universal,
as is Hasenjaeger’s small universal
electromechanical toy✩

Turlough Neary a, Damien Woods b, Niall Murphy c,d,∗,
Rainer Glaschick e

a Institute for Neuroinformatics, University of Zürich & ETH Zürich, Switzerland
b California Institute of Technology, Pasadena, CA 91125, USA
c Facultad de Informática, Universidad Politécnica de Madrid & CEI-Moncloa UPM-UCM, Spain
d Microsoft Research, Cambridge, CB1 2FB, UK1

e Paderborn, Germany

a r t i c l e i n f o

Article history:
Received 29 September 2013
Accepted 31 January 2014
Available online 14 February 2014

Keywords:
Polynomial time
Computational complexity
Small universal Turing machines
Wang’s B machine
Non-erasing Turing machines
Models of computation

a b s t r a c t

In the 1960s Gisbert Hasenjaeger built Turing Machines from elec-
tromechanical relays and uniselectors. Recently, Glaschick reverse
engineered the program of one of these machines and found that
it is a universal Turing machine. In fact, its program uses only four
states and two symbols,making it a very small universal Turingma-
chine. (Themachine has three tapes and a number of other features
that are important to keep in mind when comparing it to other
small universal machines.) Hasenjaeger’s machine simulates Hao
Wang’s B machines, which were proved universal by Wang. Un-
fortunately, Wang’s original simulation algorithm suffers from an
exponential slowdown when simulating Turing machines. Hence,
via this simulation, Hasenjaeger’s machine also has an exponen-
tial slowdown when simulating Turing machines. In this work, we
give a new efficient simulation algorithm for Wang’s B machines
by showing that they simulate Turing machines with only a poly-
nomial slowdown. As a second result, we find that Hasenjaeger’s
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machine also efficiently simulates Turing machines in polynomial
time. Thus, Hasenjaeger’smachine is both small and fast. In another
application of our result, we show that Hooper’s small universal
Turing machine simulates Turing machines in polynomial time, an
exponential improvement.

© 2014 Elsevier Inc. All rights reserved.

1. Introduction

In the 1960s Gisbert Hasenjaeger built Turing Machines from electromechanical relays and unis-
electors, but never published details of these machines. Recently, Hasenjaeger’s family donated the
machine shown in Fig. 1 to the Heinz Nixdorf MuseumsForum.2 At the request of theMuseumsForum,
Glaschick reverse engineered the table of behavior for this machine [3,1], and, using Hasenjaeger’s
notes [4], determined themachine’s encoding and operation. It was found that Hasenjaeger’smachine
simulates Wang’s B machines [15].

Wang used a unary encodingwhen proving his Bmachines universal and hence they suffer from an
exponential slowdownwhen simulating Turingmachines. As a result, Hasenjaeger’smachine also suf-
fers from an exponential slowdown. In this work, we show that Wang B machines and Hasenjaeger’s
machine simulate Turingmachineswith polynomial slowdown via the following chain of simulations:

Turing Machine → non-erasing Turing Machine →

Wang B machine → Hasenjaeger’s universal Turing Machine

where A → B denotes that A is simulated by B. With the exception of theWang Bmachine simulation
of non-erasing machines, all of the simulations in the above chain are known to be efficient: non-
erasing Turing machines simulate Turing machines with a polynomial slowdown in time [17], and
Hasenjaeger’s machine simulates Wang B machines in linear time. We complete the chain of efficient
simulations by giving a new simulation algorithm that shows thatWang’s Bmachines simulate Turing
machines with only a polynomial slowdown in the simulated Turing machine’s time. An immediate
consequence of our new algorithm is that Hasenjaeger’s machine also simulates Turing machines in
polynomial time. This adds to the growing body of work [16,11,12] showing that the simplest known
universal models of computation need not suffer from a exponential slowdown.

Asmentioned above, the simulation of Turingmachines by non-erasing Turingmachines is already
known to run with a polynomial slowdown [17]. However, to keep our paper self-contained, we give
our own polynomial (cubic) time simulation in Section 2. This is followed by our main result in Sec-
tion 3, where we show that Wang B machines simulate non-erasing Turing machines in linear time.
So from Sections 2 and 3 we get Theorem 1.

Theorem 1. Let M be a deterministic Turing machine with a single binary tape that runs in time t. Then
there is a Wang B machine WM that simulates the computation of M in time O(t3).

In Section 4 we give a formal description of Hasenjaeger’s Turing machine and, for the sake of
completeness, we show that Hasenjaeger’s machine simulates Wang B machines in linear time. So
from Theorem 1 and Section 4 we get that Hasenjaeger’s machine is an efficient polynomial time
simulator of Turing machines:

Theorem 2. Let M be a deterministic Turing machine with a single binary tape that computes in time t.
Hasenjaeger’s universal Turing machine simulates the computation of M in time O(t3).

2 Heinz Nixdorf MuseumsForum, Paderborn, Germany. http://www.hnf.de/.

http://www.hnf.de/


636 T. Neary et al. / Journal of Complexity 30 (2014) 634–646

Fig. 1. Hasenjaeger’s universal electromechanical Turingmachine. The wiring in the control unit encodes a universal program,
that uses only four states and two symbols, for simulatingWang B machines. The program of aWang B machine may be stored
on the program tape. There are two additional tapes which are used for the simulation, a counter tape and a work tape.

In Section 5 we apply Theorem 1 to show that a small universal Turing machine of Hooper’s [5,6]
is efficiently universal by showing that it simulates Turing machines (via Wang B machines) in
polynomial time.

For the remainder of this section we discuss program-size in small universal Turing machines.
Hasenjaeger’s machine has 4 states and 2 symbols, making it a remarkably small universal program.
However, it uses 3 non-erasable tapes, and so making direct comparisons with other Turing machine
models that have small universal programs (but have more or less tapes, tape dimensions, etc.) is not
a straightforward matter. The standard model in the small universal Turing machine world consists
of a single one dimensional tape with one tape head, a deterministic program, and the usual notion of
a blank symbol [12]. Other more general models use larger numbers of tapes, higher tape dimensions,
infinitely repeated blank words instead of a repeated blank symbol, and so on, and these more
general models often have smaller universal programs. In the absence of formal tools, namely tight
program-size overheads for simulations between these models, comparisons between them is at best
challenging. Glaschick is the most recent author to propose a formula to compare such models [2].

As an example of the difficulty of comparing different Turing machine models, consider one of
Priese’s [14] universal machines. Priese’s universal machine has 2 states, 2 symbols, a single 2-
dimensional tape with 2 tape heads, and uses an unconventional technique for ending its computa-
tion.3 However, for standard 2-state, 2-symbol machines it is known that no universal machines exist
as their halting problem is decidable [7,13]. So, by generalizing aspects of the model, Priese found a
machine model whose smallest universal programs have strictly less states and symbols than those of
the standard model. Returning our attention to Hasenjaeger’s model, we note that while his machine
has 3 tapes, the size of his program is still impressive when one considers that 2 tapes are read-only
and the work tape is non-erasing.

For more recent results on small non-erasing Turing machines one can look to the work of
Margenstern [8,9] where he constructs small non-erasing single-tape machines and gives boundaries
between universality and non-universality for various parameters in the model. More on the topic of
small universal Turing machines can be found in the surveys [10,12].

3 Priese’s machine does not end its computation using the standard method of halting on a state-symbol pair that has no
transition rule: instead there is a choice, via the initial input encoding, of ending a computation either by entering a sequence
of 6 repeating configurations or by halting when an attempt is made to move off the edge of the 2D tape.
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2. Non-erasing Turing machines simulate Turing machines in time O(t3)

Definition 3 (Binary TuringMachine).Abinary Turingmachine is a tupleM = (Q , {0, 1}, f , q0, q|Q |−1).
Here Q and {0, 1} are the finite sets of states and tape symbols respectively. 0 is the blank symbol,
q0 ∈ Q is the start state, and q|Q |−1 ∈ Q is the halt state. The transition function f is of the form
f : Q × {0, 1} → {0, 1} × {L, R} × Q and is undefined on {q|Q |−1} × {0, 1}.

We write f as a list of transition rules. Each transition rule is a quintuple (qi, x1, x2,D, qj) with
initial state qi ∈ Q , read symbol x1 ∈ {0, 1}, write symbol x2 ∈ {0, 1}, move direction D ∈ {L, R}, and
next state qj ∈ Q .

Definition 4 (Non-Erasing Turing Machine). A non-erasing Turing machine is a binary Turing machine
where there are no transition rules that overwrite 1 with 0, that is, there is no transition rule of the
form (qj, 1, 0,D, qk), where qj, qk ∈ Q and D ∈ {L, R}.

Lemma 5 (Zykin [17]). Let M be a deterministic single-tape binary Turing machine that runs in time t.
Then there is a deterministic non-erasing Turing machine NM that simulates the computation of M in
time O(t3).

Proof. Wegive a brief overviewof howM is simulated by a deterministic non-erasing Turingmachine
NM with a single tape in time O(t3). An arbitrary tape ofM is encoded forNM as follows. Each symbol
on the tape of M is encoded as three contiguous symbols on the tape of NM . The two rightmost
symbols of each triple encode 0 and 1 as 10 and 01 respectively. The leftmost symbol of the triple is 1
if and only if NM is simulating that M’s tape head is currently reading the symbol encoded by the pair
immediately to its right. To simulate a timestep of M, NM simply makes a new copy of the encoded
tape of M (to the right of the original), by scanning over and back repeatedly. During the copying
process the encoded tape contents are appropriately modified to simulate the transition rule of M.
This involves simulating the tape head movement of M by copying the 1 that encodes the tape head
position of M to the left of the pair of symbols encoding the new read symbol. If we are simulating
a rule where M changes a bit under its tape head, then the encoded read symbol (i.e. the triple) is
appropriately changed by NM as it is being copied. The state-changes of M can be simulated by state-
changes of NM in a straight-forward manner.

Since M runs in time t , it uses at most t tape cells. Thus, NM takes O(t2) steps when copying
the encoding of an arbitrary configuration of M to simulate a single step of M. So t steps of M are
simulated by NM in time O(t3). �

3. Wang B machines

A Wang B machine is a computing machine with a single non-erasing bi-infinite tape that has a
binary alphabet [15]. Unlike a Turing machine, which performs three operations in a single timestep
(write a 1 to its tape, move its tape head, and move program control to a arbitrary location in its
program), a Wang B machine can perform only one operation at each timestep. Also, in a Turing
machine, control flow can jump to an arbitrary program location when reading 0 or 1, but a Wang
B machine performs a control flow jump only upon reading 1.

Definition 6 (Wang B Machine). A Wang B machine is a finite list of instructions W = I0, I1, I2, . . . ,
In−1 where each instruction is of one of the following four forms:

L: move tape head left,
R: move tape head right,
M: mark the current tape cell by writing the symbol 1,
J(x): if the current cell contains the symbol 1 then jump to instruction Ix,

otherwise move to the next instruction.
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Instructions are executed by the machine one at a time, with the computation starting at instruc-
tion I0. A left move or rightmove instruction (Ik ∈ {L, R}) moves the head one cell to the left or right on
the tape. A mark instruction (Ik = M) marks the tape: if a cell is 0 (unmarked) it becomes 1 (marked),
otherwise if a cell is 1 it stays as 1. For a jump instruction, Ik = J(x), where 0 ≤ x ≤ n − 1, if the
current tape cell is 1 then the machine jumps to instruction Ix. Alternatively, when Ik = J(x) and the
current cell is 0 the machine will either move to the next instruction Ik+1 if k < n− 1, or it will halt if
k = n − 1. After each move or mark instruction Ik, the machine either moves to the next instruction
Ik+1 if k < n − 1, or halts if k = n − 1.

3.1. Wang’s B machines simulate non-erasing Turing machines in linear time

Theorem 7. Let N be a deterministic non-erasing Turing machine with a single binary tape that runs in
time t. Then there is a Wang B machine WN that simulates the computation of N in time O(t).

Proof. We begin by giving the program for theWang Bmachine WN followed by the encoding it uses
to simulate N . We then show that WN simulates each transition rule in N in constant time, and so
simulates the computation of N in time O(t).

3.1.1. Encoding
Let ⟨TRqi,σ1⟩ denote a sequence of Wang B machine instructions that encode the transition rule

TRqi,σ1 = (qi, σ1, σ2,D, qj) from N where qi, qj ∈ Q , σ1, σ2 ∈ {0, 1} and D ∈ {R, L}. The sequence of
instructions for WN is

WN = R, J(8), ⟨TRq0,0⟩, ⟨TRq0,1⟩,

R, J(21), ⟨TRq1,0⟩, ⟨TRq1,1⟩,

...

R, J(13i + 8), ⟨TRqi,0⟩, ⟨TRqi,1⟩,

...

R, J(13(|Q | − 2) + 8), ⟨TRq|Q |−2,0⟩⟨TRq|Q |−2,1⟩,M (1)

where |Q | is the number of states in N , and ⟨TRqi,0⟩ and ⟨TRqi,1⟩ are the instruction sequences given
by Eqs. (2) and (3).

We now define Eqs. (2) and (3) which give the sequence of instructions used to simulate each
transition rule.

⟨TRqi,0⟩ =


R,M,M,M,M, J(13j) if TRqi,0 = (qi, 0, 0, R, qj)
L, L, L,M,M, J(13j) if TRqi,0 = (qi, 0, 0, L, qj)
M, R,M,M,M, J(13j) if TRqi,0 = (qi, 0, 1, R, qj)
M, L, L, L,M, J(13j) if TRqi,0 = (qi, 0, 1, L, qj)

(2)

⟨TRqi,1⟩ =


R,M,M,M, J(13j) if TRqi,1 = (qi, 1, 1, R, qj)
L, L, L,M, J(13j) if TRqi,1 = (qi, 1, 1, L, qj).

(3)

(There are only two cases for ⟨TRqi,1⟩ as non-erasing machines never overwrite 1 with 0.)
We encode the symbols 0 and 1 of N as ⟨0⟩ = 10 and ⟨1⟩ = 11 respectively. An arbitrary

configuration of N is given by

qi, w0 w1 . . . wj−1 wj wj+1 . . . wn−1 (4)

where qi is the current state, w0 . . . wn−1 is the tape contents, wk ∈ {0, 1} and the tape head position
is given by an underline. The configuration in Eq. (4) is encoded as the B machine tape

I13i, ⟨w0⟩ ⟨w1⟩ . . . ⟨wj−1⟩wj1wj2 ⟨wj+1⟩ . . . ⟨wn−1⟩ (5)
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where ⟨wk⟩ ∈ {⟨0⟩, ⟨1⟩}, the encoded read symbol wj1wj2 = ⟨wj⟩ is given in bold, and I13i is the next
instruction to be executed and encodes that N is in state qi. Note that I13i is the first instruction in the
sequence I13i, . . . , I13i+12 = R, J(13i+ 8), ⟨TRqi,0⟩, ⟨TRqi,1⟩ that encodes the pair of transition rules for
state qi.

The infinite number of blank tape cells of N each contain the symbol 0, as do the blank tape cells
of WN . Note that, during the simulation, WN may need to simulate the situation where the tape head
of N moves to a blank tape cell. In this case, as described below, the simulator WN will move to the
relevant blank portion of its own tape and convert the symbol pair 00 to 10 = ⟨0⟩.

3.1.2. Simulating transition rules
At the start of each simulated timestep of machine N , our Wang machine WN has a configuration

of the form given in Eq. (5). Each simulated timestep beginswithWN choosingwhich transition rule to
simulate by reading the encoded read symbol and then choosing which sequence (⟨TRqi,0⟩ or ⟨TRqi,1⟩)
to execute.

From Eq. (5), each simulated timestep begins with the tape head over the leftmost symbol of the
encoded read symbol (⟨0⟩ = 10 or ⟨1⟩ = 11). So, immediately after we execute the first instruction
(which is I13i = R) the tape head is over the rightmost symbol of ⟨0⟩ or ⟨1⟩ and the program control is
at instruction I13i+1 = J(13i+8). If we are reading ⟨0⟩ = 10, then the rightmost symbol is a 0 and so no
jump occurs on J(13i+8). Thismeans that controlmoves to instruction I13i+2, the leftmost instruction
in ⟨TRqi,0⟩. Alternatively, if we are reading ⟨1⟩ = 11, then the rightmost symbol is a 1 and J(13i+8)will
jump to instruction I13i+8, sending control to the leftmost instruction of ⟨TRqi,1⟩. (To see this, use Eq. (1)
to count the number of instructions that precede ⟨TRqi,1⟩, which gives 13i+ 8, specifically 13 instruc-
tions for each state qj where j < i and a further 8 instructions for the sequence R, J(13i+ 8), ⟨TRqi,0⟩.)

We now explain how the sequences in Eqs. (2) and (3) simulate the transition rules of N .
Case 1. Read symbol of N is 1. As described at the beginning of Section 3.1.2, the simulation of each
timestep begins with the execution of R, J(13i + 8). When the read symbol of N is 1, and the pair of
instructions R, J(13i + 8) have executed, we have the following tape contents for WN

⟨w0⟩ ⟨w1⟩ . . . ⟨wj−2⟩ 10 11 ⟨wj+1⟩ . . . ⟨wn−1⟩. (6)

(For illustration purposes, we assume that in N the symbol to the left of the read symbol is a 0, which
is encoded as ⟨0⟩ = 10 in Eq. (6).)

As described at the beginning of Section 3.1.2, when the read symbol of N is 1 the execution of
R, J(13i+ 8) is followed by the execution of the sequence ⟨TRqi,1⟩. If we are simulating (qi, 1, 1, L, qj),
then from Eq. (3) the instruction sequence ⟨TRqi,1⟩ = L, L, L,M, J(13j) is applied to the tape in Eq. (6)
to give

⟨w0⟩ ⟨w1⟩ . . . ⟨wj−2⟩ 10 11 ⟨wj+1⟩ . . . ⟨wn−1⟩. (7)

The tape in Eq. (7) is of the form in Eq. (5), hence the tape configuration is ready for the simulation of
the next timestep. The jump instruction J(13j) sent the program control of WN to the first instruction
of the sequence of instructions that encodes state qj. This is verified by counting the number of
instructions to the left of R, J(13j + 8), ⟨TRqj,0⟩, ⟨TRqj,1⟩ using the same technique as above. So, the
simulation of the transition rule (qi, 1, 1, L, qj) is complete.

To generalize this example to all possible cases for simulating a rule of the form (qi, 1, 1, L, qj) we
need only consider the encoded symbol (from N ) immediately to the left of the encoded read symbol
(in our analysis i, j are already arbitrary). If the encoded symbol to the left of the tape head in Eq. (6)
was ⟨1⟩ = 11 instead of ⟨0⟩ = 10, then it is verified in the same straightforward manner. If we are
simulating the situation where N is at the left end of its tape (the tape is blank to the left: all 0s) and
so contains the pair 00 immediately to the left of the encoded read symbol in Eq. (6). This 00 pair is
changed to ⟨0⟩ = 10 by theM instruction that immediately proceeds the J(13j) instruction, correctly
providing the symbol pair 10 that encodes the 0 as ⟨0⟩ = 10 for the next simulated timestep. Also, the
1 printed by thisM instruction allows instruction J(13j) to jump the program control to the encoding
of the next state qj.

The case of simulating (qi, 1, 1, R, qj) is verified by applying the sequence ⟨TRqi,1⟩ = R,M,M,M,
J(13j) from Eq. (3) to the tape in Eq. (6). This analysis is similar to the previous example and so we
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omit the details. We simply note that after the first of the three M instructions is executed, the tape
cell will always contain a 1 and so the second and thirdM instructions do not change the tape. (These
extraM instructions are used for padding so that each encoded state has exactly 13 instructions.)

Case 2. Read symbol of N is 0. As described at the beginning of Section 3.1.2, the simulation of each
timestep begins with the execution of R, J(13i + 8). When the read symbol of N is 0, and the pair of
instructions R, J(13i + 8) have been executed, we have the following tape contents for WN .

⟨w0⟩ ⟨w1⟩ . . . ⟨wj−1⟩ 10 11 ⟨wj+2⟩ . . . ⟨wn−1⟩. (8)

(For illustration purposes, we assume that inN the symbol to the right of the read symbol is a 1, which
is encoded as ⟨1⟩ = 11 as in Eq. (8).)

As described at the beginning of Section 3.1.2, when the read symbol of N is 0 the execution of
R, J(13i+ 8) is followed by the execution of the sequence ⟨TRqi,0⟩. If we are simulating (qi, 0, 1, R, qj),
then from Eq. (2) the sequence ⟨TRqi,0⟩ = M, R,M,M,M, J(13j) is applied to the tape in Eq. (8) to give

⟨w0⟩ ⟨w1⟩ . . . ⟨wj−1⟩ 11 11 ⟨wj+2⟩ . . . ⟨wn−1⟩. (9)

The first M instruction changed ⟨0⟩ = 10 to ⟨1⟩ = 11 simulating the printing of the write symbol by
N . The tape in Eq. (9) is of the form found in Eq. (5) and is ready for the simulation of the next transition
rule to begin. The jump instruction J(13j) sends the programcontrol ofWN to the instruction sequence
of the program that encodes state qj. This is verified using the same technique as in the previous case.
So, the simulation of (qi, 0, 1, R, qj) is complete.

To generalize this example to all possible cases for simulating a rule of the form (qi, 0, 1, R, qj),
we need only consider the encoded symbol (from N ) immediately to the right of the encoded read
symbol (in our analysis i, j are already arbitrary). If the encoded symbol to the right of the tape head in
Eq. (8) was ⟨1⟩ = 10 instead of ⟨1⟩ = 11, then it is verified in the same straightforward manner. If we
are simulating the situationwhereN is at the right end of its tape (the tape is blank to the right: all 0s)
and so contains the pair 00 immediately to the right of the encoded read symbol in Eq. (8). This 00 pair
is changed to ⟨0⟩ = 10 by the second M in the sequence M, R,M,M,M, J(13j) which provides the
symbol pair 10 = ⟨0⟩ that correctly encodes a 0 for the next simulated timestep. Also, the 1 printed by
this M instruction allows instruction J(13j) to jump the program control to the encoding of the next
state qj. As with the previous case, the extraM instructions are added for padding.

The other cases for simulating N reading a 0 are verified by applying the appropriate sequences
from Eq. (2) to the tape in Eq. (8). The details are similar to the previous example and are omitted.

3.1.3. Halting and time complexity
When N enters its halt state, defined to be state q|Q |−1 in Definition 3, then WN executes the jump

instruction J(13(|Q | − 1)) and jumps to the rightmost instruction in Eq. (1), an M instruction. Note
that in order to jump to thisM instructionwemust have read a 1 on the tape, and so thisM instruction
does not change the tape. After executing thisM instruction, WN is at the end of its list of instructions
and so it halts.

From Eqs. (1)–(3), exactly 13 instructions are used to encode the pair of transition rules for each
state qi of N . Furthermore, from the above algorithm, the simulation of one of these transition rules
involves the execution of at most 8 instructions (at most 8 timesteps). Thus WN simulates t steps of
an arbitrary non-erasing Turing machine N in time O(t). �

4. Hasenjaeger’s electromechanical universal Turing machine

We begin this section by briefly describing the electromechanical device constructed by Hasen-
jaeger [4], which implements a multi-tape Turing machine. As mentioned in Section 1, Glaschick [2]
reverse engineered the physical wiring of Hasenjaeger’s electromechanical machine to find the Tur-
ing machine program left by the previous programmer, presumably Hasenjaeger, and with the help
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of Hasenjaeger’s notes saw that it simulates Wang B machines. For completeness we include a proof
that this program (wiring) for Hasenjaeger’s machine simulates Wang B machines in linear time.4

First we briefly describe Hasenjaeger’s electromechanical machine, which is shown in Fig. 1.

• The control unit is constructed from 16 electromechanical relays which encode the main program
(also called the state table) of the Hasenjaegermachine. This unit is limited to 4 states and operates
on three tapes.

• The program tape (P) is a device consisting of 20 switches, 18 of which are connected, and together
represent a cyclic, bi-directional, read-only binary tape with 18 cells. (This short tape can be used
to store a simulated program.)

• The counter tape (C) consists of two selector switches that represent a bi-directional, cyclic, read-
only tape with 18 cells. It represents a tape where all cells contain a 1 except for a single cell that
contains a 0.

• The work tape (W ) is a bi-directional non-erasable ‘‘infinite’’ tape.5

Hasenjaeger’s electromechanical device, as wired, is an instance of a Turing machine. However,
exactly what kind of Turing machine is a matter of opinion: there are a number of reasonable
generalizations of this single device (machine instance) to get a general model of computation, here
we give one. Formally, we write the tuple (Q , f , qs) to denote an instance of a three-tape Turing
machine of the following form. The three tapes are bi-directional and are denoted P , C and W . Each
tape has alphabet {0, 1} and blank symbol 0. Tapes P and C are read-only, while W is non-erasing
(i.e. 1s cannot be overwritten with 0s). To give an instance of such a machine, we would assign values
to the tuple (Q , f , qs), where Q is a set of states, f is a transition function (or transition table), of the
form f : Q × {0, 1} × {0, 1} × {0, 1} → {L, R, _} × {L, R, _} × {L, R, _, 1} × Q , and qs ∈ Q is the start
state.

The machine works as follows. In state q ∈ Q , the machine reads a symbol from each of the tapes
P , C , andW and, as dictated by f , for each tape does one of three things: move left (L), move right (R),
do nothing (_). However, for the tapeW it has an additional fourth option of marking (M) the tape cell
with the symbol 1.

Nowwe formally specify Hasenjaeger’s machineH = (Q , f , qs) as an instance of the abovemodel.
H has four states Q = {q1, q2, q3, q4} and the start state is qs = q1. The function f is given as a list
of transition rules in Table 1. This table of behavior is derived from the wiring of the electromagnetic
relays of Hasenjaeger’s device.

Lemma 8. Let W be a Wang B machine that runs in time t. The multitape Turing machine H , defined
above, simulates the computation of W in time O(t).

Proof. We begin by giving the encoding used by the program W , followed by a description of how
the program simulates each of the four Wang B machine instructions as well as halting. We finish by
giving the time analysis for this simulation.
Encoding. The four Wang B machine instructions M , R, L and J(x) are encoded as binary words as fol-
lows: ⟨M⟩ = 1, ⟨R⟩ = 01, ⟨L⟩ = 001, and ⟨J(x)⟩ = 0000y1 (the value y ∈ {0, 1, 2, . . .} will be defined
later). The Wang B machine program W = I0, I1, . . . , In−1 is encoded as a single binary word via
Eq. (10).

⟨W⟩ = ⟨I0⟩⟨I1⟩⟨I2⟩ . . . ⟨In−2⟩⟨In−1⟩⟨J(n)⟩. (10)

The word ⟨W⟩ ∈ {0, 1}∗ is placed on H ’s circular program tape P . The C tape is defined to have
length n+2, with n+1 of these cells containing the symbol 1, and the single remaining cell containing
the symbol 0. The W tape has the same tape contents as that of the Wang B machine it simulates. At
the beginning of a simulated computation step the tape head of P is over the leftmost symbol of the

4 Note that the machine can be re-programmed by re-wiring.
5 It is expected that the recent precipitous decline in the production of 35 mm film and paper punch tape will negatively

impact the computing power of Hasenjaeger’s machine.
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Table 1
The program f for Hasenjaeger’s universal machine H that simulates Wang’s B
machines. The ∗ symbol denotes that the read symbol can be 0 or 1. The rule
numbers on the left are not part of the program.

Rule number Q P C W P C W Q ′

1 q1 1 ∗ 0 R – 1 q1
2 q1 1 ∗ 1 R – – q1
3 q1 0 ∗ ∗ R – – q2
4 q2 1 0 ∗ R – R q1
5 q2 0 0 ∗ R R – q2
6 q2 1 1 ∗ R L L q1
7 q2 0 1 ∗ R L – q3
8 q3 0 ∗ 0 R – – q3
9 q3 1 ∗ 0 R – – q1

10 q3 0 ∗ 1 R R – q3
11 q3 1 ∗ 1 L R – q4
12 q4 0 1 ∗ L – – q4
13 q4 1 1 ∗ L L – q4
14 q4 ∗ 0 ∗ R – – q1

encoded instruction it is simulating, C ’s tape head is over its single 0 symbol, and the tape head ofW
has the same location as the tape head of the Wang B machine it simulates.

To help simplify our explanation, we give partial configurations for H where we display a small
part of each tape surrounding the tape head. For example, the following configuration occurs at the
beginning of a simulated computation step

q1 P = . . . 1 001 . . . C = . . . 101 . . . W = . . . 100 . . . .

Here, H ’s current state is q1 and the position of each of the three tape heads is given by an underline.
Also, in the above example the tape head of P is over the leftmost symbol of an encoded left move
instruction ⟨L⟩ = 001, and the C tape head is at cell C0.
Simulate M instruction. TheWang BmachineM instruction is encoded as ⟨M⟩ = 1 on the P tape. If the
tape head ofW is reading a 0 then we have a configuration of the form

q1 P = . . . 1 1 001 . . . C = . . . 101 . . . W = . . . 100 . . . .

(For the purposes of explanation, we have assumed that there is an encoded L instruction, given by
⟨L⟩ = 001, to the right of ⟨M⟩ = 1 on the P tape.) Rule 1 from Table 1 is applied to the above config-
uration to give

q1 P = . . . 1 1 001 . . . C = . . . 101 . . . W = . . . 110 . . . .

TheM instruction was simulated by printing a 1 to theW tape. Note that the tape head on the P tape
has moved to the leftmost symbol of the next encoded instruction (⟨L⟩ = 001), and the current state
of H is once again q1. So the simulation of theM instruction is complete and H is configured to begin
simulation of the next Wang machine instruction.

In the case where the tape head of W is reading a 1, we simulate the M instruction by executing
rule 2 from Table 1. This is very similar to the previous case above and so we omit the detail.
Simulate R instruction. The Wang B machine right move instruction is encoded as ⟨R⟩ = 01 on the P
tape. If the tape head ofW is reading a 0 then we have a configuration of the form

q1 P = . . . 1 01 001 . . . C = . . . 101 . . . W = . . . 100 . . . .

Rules 3 and 4 from Table 1 are applied to the above configuration to give

q1 P = . . . 1 01 001 . . . C = . . . 101 . . . W = . . . 100 . . . .

The tape head of W was moved one place to the right to simulate the R instruction. Also, the tape
head on the P tape has moved right 2 places to the leftmost symbol of the next encoded instruction
(⟨L⟩ = 001), and the current state of H is once again q1. So the simulation of the R instruction is
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complete and H is configured to begin simulation of the next Wang machine instruction. In the case
where the tape head of W is reading a 1, the computation proceeds in the same manner as above by
executing rules 3 and 4 from Table 1.
Simulate L instruction. The Wang B machine left move instruction is encoded as ⟨L⟩ = 001 on the P
tape. If the tape head ofW is reading a 0 then we have a configuration of the form

q1 P = . . . 1 001 01 . . . C = . . . 101 . . . W = . . . 100 . . . .

Rules 3, 5 and 6 from Table 1 are applied to the above configuration to give

q1 P = . . . 1 001 01 . . . C = . . . 101 . . . W = . . . 100 . . . .

The tape head ofW wasmoved one place to the left to simulate the L instruction. Also, the tape head on
the P tape hasmoved right 3 places to the leftmost symbol of the next encoded instruction (⟨R⟩ = 01),
and the current state of H is once again q1. So the simulation of the L instruction is complete and H
is configured to begin simulation of the next Wang machine instruction. In the case where the tape
head of W is reading a 1, the computation proceeds in the same manner as above by executing rules
3, 5 and 6 from Table 1.
Simulate Ik = J(x) instruction. There are two cases to consider here, which are determined by the value
of read symbol of the simulated Wang B machine.

Case 1.Wang B machine’s read symbol is 0. In this case, H simulates program control for W moving
from instruction Ik to instruction Ik+1. This is simulated bymoving the tapehead to the leftmost symbol
of ⟨Ik+1⟩. Instruction Ik = J(x) is encoded as ⟨Ik⟩ = ⟨J(x)⟩ = 0000y1 for some y ∈ {0, 1, 2, . . .} (y is de-
fined below), and for the purposes of explanationwe assume that Ik+1 = L. This gives the configuration

q1 P = . . . 1 0000y1 001 . . . C = . . . 01 . . . W = . . . 0 . . . .

After applying rules 3, 5 and 7 from Table 1 we get the following

q3 P = . . . 1 00000y−11 001 . . . C = . . . 01 . . . W = . . . 0 . . . .

Next, rule 8 is applied y times followed by a single application of rule 9 to give

q1 P = . . . 1 0000y1 001 . . . C = . . . 01 . . . W = . . . 0 . . . .

In the configuration immediately above, the simulation of J(x) when the Wang machine read symbol
is 0 is complete. Note thatH has returned to state q1 and the tape head of P is over the leftmost symbol
of the encoded instruction ⟨Ik+1⟩ = 001.

Case 2. Wang B machine read symbol is 1. In this case, simulating the instruction Ik = J(x) involves
moving the P tape head to the leftmost symbol of ⟨Ix⟩.

We begin with an overview, which includes specifying the encoding of jump instructions. Each en-
coded instruction contains a single 1 symbol, and so as we move through the P tape we can count the
number of encoded instructions by counting the number of 1 symbols. If x 6 k, then, from Eq. (10),
we can move from ⟨Ik⟩ to ⟨Ix⟩ on P by moving left until we have read the symbol 1 exactly k − x + 1
times, and thenmoving right. Recall that the P tape is circular, and so if x > k, using Eq. (10), wemove
from ⟨Ik⟩ to ⟨Ix⟩ on P by moving left until we have read the 1 symbol exactly (n + 2 + k − x) times,
and then moving right. We are now ready to give the encoding for jump instructions.

⟨Ik⟩ = ⟨J(x)⟩ = 0000y1

where

y =


k − x if x 6 k
n + 1 + k − x if x > k. (11)

In the simulation, moving from ⟨Ik⟩ to ⟨Ix⟩ is done in 2 stages. In the first stage the word ⟨J(x)⟩ =

0000y1 is read and the value y + 1 is recorded by the tape head position on the C tape. In the second
stage, using the value stored on the C tape, the tape head of P moves left until we have read the symbol
1 exactly y + 1 times. So, the tape head of P finishes its scan left immediately to the left of the 1 in
⟨Ix−1⟩; from there it moves right two cells to the leftmost symbol of ⟨Ix⟩.
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Nowwegive the details of howH simulates a jump from instruction Ik to instruction Ix. For the pur-
poses of illustration we assume the instruction to the left of Ik is Ik−1 = L. This gives the configuration

q1 P = . . . 001 0000y1 . . . C = . . . 01y+1 . . . W = . . . 1 . . . .

First, rules 3, 5 and 7 from Table 1 are applied, and then rule 10 is applied y times, followed by a single
application of rule 11, to give

q4 . . . P = 001 0000y−101 . . . C = . . . 01y1 . . . W = . . . 1 . . . .

In the configuration immediately above the value y+ 1 is recorded by the position of the tape head of
C , which is over y+1th symbol to the right of the single 0 symbol. Rule 12 is applied y+3 times to give

q4 . . . P = 001 0000y1 . . . C = . . . 01y1 . . . W = . . . 1 . . . .

When 1 is read on tape P the value stored on tape C is decremented by moving left once on C using
rule 13. This gives

q4 . . . P = 001 0000y1 . . . C = . . . 01y−111 . . . W = . . . 1 . . . .

The above process of decrementing the value stored in C by applying rules 12 and 13 continues until
the tape head of C reads a 0, indicating that the scan left is finished (during this process Rule 13 is
applied a total of y+1 times). At this point we have a configuration that is of one of the following two
forms

q4 P = . . . 01 . . . C = . . . 01 . . . W = . . . 1 . . .
q4 P = . . . 11 . . . C = . . . 01 . . . W = . . . 1 . . . .

Rule 13 was applied y + 1 times reading a 1 each time. Rules 14 and 2 are applied to move the tape
head of P right twice, placing it over the leftmost symbol of instruction ⟨Ix⟩ to complete the simulation
of Ik = J(x).
Simulation of halting. Recall from Section 3, that a Wang B machine halts when it attempts to move to
the non-existent instruction In after executing instruction In−1. Since H does not have a distinguished
halt state, it instead simulates halting by entering a repeating sequence of configurations. Note that
in Eq. (10), as part of the Wang B machine encoding, there is an extra instruction (In = J(n)) that
jumps to itself. So when program H simulates aWang Bmachine that halts by attempting to move to
instruction In, the program simulates the instruction J(n) which results in an infinite loop and signals
the end of the simulation. (The jump instruction works as intended only if we have the assumption
that the cell underW ’s tape head reads 1; it is easy to modify any Wang B program so that this is the
case by having the program end with a single mark instruction, i.e. In−1 = M .) This jump works as
follows. From Eq. (11), a jump instruction of the form In = J(n) is encoded as ⟨In⟩ = ⟨J(n)⟩ = 0001.
This gives the configuration

q1 P = . . . 0001 . . . C = . . . 01 . . . W = . . . 1 . . . . (12)

From here, H simulates the jump instruction In = J(n), as described above. In this simple case, sim-
ulating the jump instruction involves executing exactly 10 rules (see Table 1) after which H returns
to configuration (12). Hence we get an infinite loop where the tape contents are unchanged.
Complexity analysis. TheWang Bmachine instructionsM , R, and L are each simulated by Hasenjaeger’s
machine in 1, 2 and 3 timesteps, respectively. The J(x) instruction is simulated in O(n2) timesteps,
where n is the number of instructions in theWang B machine program. Note that we consider n to be
a constant, independent of the input length. Therefore, Hasenjaeger’s program H simulates t steps of
the Wang B machine W in time O(t). �

5. Hooper’s small universal Turing machine simulates Turing machines in polynomial time

Hooper [5,6] gave a small universal Turing machine with 1 state, 2 symbols and 4 tapes. Using
similar techniques to Hasenjaeger, Hooper proved his machine universal by simulating a restricted
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class of Wang B machines. In Hooper’s machine, a non-erasing work tape contains exactly the
same contents as the tape of the Wang B machine it simulates, and a read-only unidirectional
circular program tape stores the encodedWang machine program. Hooper used a relative addressing
technique like Hasenjaeger, but unlike Hasenjaeger, Hooper used two read–write counter tapes
(instead of one read-only tape). Hooper’s simulation of Wang B machines runs in linear time, and
so from Lemma 5 and by suitably modifying the proof of Theorem 7 we get the following result.

Theorem 9. Let M be a deterministic Turing machine with a single binary tape that runs in time t.
Then Hooper’s small universal Turing machine with 1 state, 2 symbols, and 4 tapes [5,6] simulates the
computation of M in time O(t3).

Proof. Hooper’s machine simulates Wang B machines with the following restrictions:

1. In the program list if Ik = J(x), then Ik+1 ∈ {L, R}.
2. Each jump instruction jumps to {L, R}.
3. M instructions are executed only on tape cells that contain 0.

Our proof of Theorem 7 is easily modified to include the above restrictions. For restriction 1, we add
the instruction sequence L, R after each jump instruction in the program. This has no effect on the
program as a move left followed by a move right has the same effect as no move. Our proof already
satisfies restriction 2, as we either jump to the beginning of the sequence encoding a state qi (that
is: R, J(13i + 8), ⟨TRqi,0⟩, ⟨TRqi,1⟩) or we jump to the beginning of a sequence of the form ⟨TRqi,1⟩

(given in Eq. (3)). To satisfy restriction 3, each Ik = M instruction is replaced with the sequence
J(k + 4), R, L,M, R, L. The J(k + 4) will jump over the M instruction if the cell already contains a
1, and the extra R, L instructions are introduced to satisfy restrictions 1 and 2.

In addition to the above changes, we wish to maintain the property from the proof of Theorem 7
that the number of instructions used to encode each Turing machine state is the same for all states.
Recall from Theorem 7 that each state qi is encoded as the sequence of 13 instructions R, J(13i +

8), ⟨TRqi,0⟩, ⟨TRqi,1⟩. This sequence has 3 jump instructions and to satisfy restriction 1 we added the
extra instruction pair L, R for each jump. For restriction 3, we replaced each M instruction with
J(k + 4), R, L,M, R, L. In Eq. (3) this gives an extra 15 instructions for the case (qi, 1, 1, R, qj) and an
extra 5 for the case (qi, 1, 1, L, qj). To ensure that the instruction sequence is the same length for each
case we append the length-10 sequence (L, R, )5 to the sequence for case (qi, 1, 1, L, qj). Satisfying
restriction 3 in Eq. (2) gives an extra 20 instructions for the cases (qi, 0, 0, R, qj) and (qi, 0, 1, R, qj),
and an extra 10 for cases (qi, 0, 0, L, qj) and qi, 0, 1, L, qj. To ensure that the instruction sequence is
the same length for each case we append the length-10 sequence (L, R, )5 to the sequences for case
(qi, 0, 0, L, qj) and case (qi, 0, 1, L, qj). Now the length of the sequence that encodes each state is 54
(instead of 13), and sowe replace jumps of the from J(13i)with jumps of the from J(54i). The sequence
R, J(13i+8), ⟨TRqi,0⟩ of length 8 has been replaced by a sequence of length 32, and sowe replace jumps
of the from J(13i+ 8) with jumps of the form J(54i+ 32). This completes our conversion to aWang B
machine with the 3 restrictions mentioned above. �
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