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Abstract. We present universal Turing machines with state-symbatspafi (5,5), (6,4), (9,3)
and(15,2). These machines simulate our new variant of tag system,ittagtsystem and are the
smallest known single-tape universal Turing machines @it 3 and 2-symbols, respectively. Our
5-symbol machine uses the same number of instructions &Beasmallest known universal Turing
machine by Rogozhin. Also, all of the universal machines resent here simulate Turing machines
in polynomial time.

Keywords: small universal Turing machine, 2-tag system, bi-tag systePost system, computa-
tional complexity, polynomial time.

1. Introduction

Shannon [24] was the first to discuss the problem of findingsthallest possible universal Turing ma-
chine. In 1962 Minsky [11] constructed a 7-state, 4-symhversal Turing machine that simulates
Turing machines via 2-tag systems [2]. Minsky’s techniqgfi®-tag simulation was extended by Ro-
gozhin [23] to construct small universal Turing machineshvgtate-symbol pairs of24, 2), (10, 3),
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Figure 1: Current state-symbol plot of small universal mgrnmachines. The non-universal curve shows
Turing machines that are known to have a decidable haltioglem.

(7,4), (5,5), (4,6), (3,10) and(2, 18). Subsequently some of these machines were reduced in size to
give machines with state-symbol pairs(6f9) [7], (19,2) [1] and(7,4) [1]. Figure 1 is a state-symbol
plot where the current smallest 2-tag simulators of Rogoehial. are plotted as circles.

Here we present universal Turing machines with state-sypdics of (5, 5), (6,4), (9, 3) and(15, 2).

The 5, 4, and 3-symbol machines have previously appeard@jnThe new 15-state, 2-symbol machine
we present here is a significant improvement on the 18-s2asgmbol machine that appeared in [16].
All of these machines simulate Turing machines via bi-tagfeays and are plotted as triangles in Fig-
ure 1. These machines improve the state of the art in smalersdl Turing machines and reduce the
space between the universal and non-universal curves. Gumbol machine uses the same number
of instructions (22) as the current smallest known unidefaaing machine (Rogozhin’s 6-symbol ma-
chine [23]). Also, our 5-symbol machine has less instrudithan Rogozhin’s 5-symbol machine. Since
Minsky [11] constructed his 7-state, 4-symbol machine, mloer of authors [1, 21, 23] have given 4-
symbol machines. Rogozhin [23] improved on Minsky’s regyitgiving a 7-state, 4-symbol machine
with 26 instructions and Baiocchi [1] further improved oistresult to give a 7-state, 4-symbol machine
with 25 instructions. Our 4-symbol machine is the first reaaucin the number of states since Minsky’s
machine. In fact, in 1991 Robinson [21] noted that when aeréing the numbers of states and symbols
of the machines constructed since Minsky’s machine “thermiknown such machine which decreases
one parameter without increasing the other.” It is inténgsto note that the current universal curve in
Figure 1 is no longer symmetric about the line where the nurobestates is equal to the number of
symbols. (For a brief period, the universal curve was symimggllowing the work in [16].)
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Recently, the simulation time overhead of Turing maching®4tag systems was improved from
exponential [2] to polynomial [30]. More precisely, i is a single tape deterministic Turing machine
that runs in time, then the universal Turing machines of Minsky and Rogozhal.enow simulatel/ in
O(t8(log t)*) time. It turns out that the time overhead can be improve@ td (log ¢)?) [13]. In earlier
work [15] we gave the smallest known universal machinesdiattly simulate Turing machines. These
machines run in tim@(¢?) and are plotted as squares in Figure 1. Our new universahduniachines
are polynomial time simulators of Turing machines. Speaiffic our new machines simulate one-tape
deterministic Turing machines, with a time overheadXt®): they simulate bi-tag systems (quadratic
time overhead), which in turn simulate one tape determinigiring machines (cubic time overhead).

The halting problem has been shown to be decidable for thanfilg state-symbol pairg:2, 2) [5,
18], (3,2) [19], (2, 3) (Pavlotskaya, unpublished)l, n) [4], and(n, 1) (trivial) for n > 1. Thus, these
results induce the non-universal curve which is illustiate Figure 1. More on small universal Turing
machines, and related notions, can be found in [8, 9, 13,89, 2

In Section 2 we show that bi-tag systems simulate Turing inash We begin by introducing the
clockwise Turing machine, and then prove that it simulate®ig machines. Following this we introduce
bi-tag systems and prove that they simulate clockwise §umachines. Section 3 begins with the input
encodings to each of the universal Turing machines. ThislieWed by an overview of the simulation
algorithm used by our machines. Then, each of the universahd machines are given along with a
more detailed look at their operation. The final part of thpgsaSection 4, contains some discussion
and conclusions. This paper is an extended version of therghpt appeared in [16], it contains new
results, extra proofs and discussion.

1.1. Preliminaries

The Turing machines considered in this paper are deterigigisd have one tape. Our universal Turing
machine withm states ana symbols is denoted,,, ,. We writec; I ¢, if a configurationc; is obtained
from ¢, via a single computation step. We lgt-! ¢, denote a sequence btomputation steps and let
c1 F* ¢ denote 0 or more computation steps. Also, we(ietdenote the encoding of objectande
denote the empty word.

2. Bi-tag systems simulate Turing machines

2.1. Clockwise Turing machines simulate Turing machines

A clockwise Turing machine is a Turing machine that has alsitape, which is circular, and whose tape
head moves only in a clockwise direction. The operation ofklvise Turing machines is quite similar
to that of the circular Post machines of Kudlek and Rogoz8jn [

Definition 2.1. (Clockwise Turing machine [14])

A clockwise Turing machine is a tuplé = (Q, %, £, q1,q|g|)- @ andX are the finite sets of states and
tape symbols, respectively; € @ is the start state angly| € @ is the halt state. The transition function
[:Qx %Y — {¥UXX} x Qis undefined on statg, and is defined for aly € Q, ¢ # q|¢|-

We write f as a list of clockwise transition rules. Each clockwise s¢iaon rule is a quadruple
t = (¢z,01,v,qy), With initial stateq,, read symbob, write valuev € {£ U XX} and next state,.
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Figure 2: (a) Example Turing machine tape contents. Thengumachine’s blank symbol is;. (b)
Clockwise Turing machine encoding of the Turing machinetapntents in (a), the symbals ando;
encode the infinite sequence of blank symbols to the rightefthdf M's encoded tape contents.

A clockwise transition rule is executed as follows: If theiterrvaluewv is from X then the tape cell
containing the read symbol is overwritten byif v is from XX then the cell containing the read symbol
becomes two cells, each of which contain a symbol feoriithe machine’s state becomgsand the tape
head moves clockwise by one tape cell. Here we define cloekWising machines to be deterministic.

Lemma 2.1. Let M be a deterministic Turing machine with a single tape thatmaes in timet, then
there is clockwise Turing machir@,; that simulates the computatidd in time O(¢?) and space(t).

Proof:

Let M = ({q1,---, 9} 101, -, 01}, 01, f, @1, {q)|})- Without loss of generality we can assume
that M is a Turing machine that has the following restrictions:ttig blank symbob; does not appear
as input toM, (i) M may read the blank symbet; but is not permitted to write it to the tape, (i)
has exactly one final state. Due to the restrictions placed/owe know that when\/ reads a blank
symbol it is either at the left or right end of its tape consere construct a clockwise Turing machine
Cu = (Qc, Xc, fo,q1,q)) that simulates\/, whereQc, ¢, fc are defined below.

EC == {027 .. ,0'|2‘,O'T‘,O'l70'm}

The symbolr,, is a special marker symbol and symbelsando; encode the infinite sequence of blank
symbols to the right and left a¥/’s encoded tape contents, respectively (see Figure 2).

QC :{q17 q1,2,- - - 7q1,‘2|7 q1,r5 91,7, 41,1,

42,422, - - - 7q2,|2‘7 92,7, 92,75, 42,1,

UQ1» 4112 - -+ 41QLIS) 411 AQlr AQILLY

We can think of right moves af/’s tape head as clockwise moves(®f;'s tape head. Here we give
right move transition rules followed by the clockwise tritiog rules that simulate them.

qx,O'k,O'j,R, Qy : 4z, 0k,04,4y (1)

qgc70'170'j7R7Qy : 4,010,010,y (2)
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whereoy,, 0; # o1. The clockwise transition rule in Equation (2) simulafésprinting the write symbol

o; over the blank symbol immediately to the left of its tape emt$. The clockwise transition rule’s
write valueo;o; € XX also preserves;; the symbol that encodes the infinite sequence of blank sigmbo
to the left of the tape contents.

The remaining right moving case is whéf's tape head is over the blank symbol immediately to the
right of its tape contents. In such a caSg'’s tape head is initially oves,., and then immediately after
simulation of the transition rul&y;'s tape head is again ovet.. Immediately below are the clockwise
transition rules that simulate this case.

R ) qz;Or, 050, Qy v/ (*)
Qo> T1, 95> 1 By ’ Qy,r's Ois Oy Qy 1’ (**)
whereo; € ¥c — {om,0,}. The clockwise transition rule (*) printd/’s encoded write symbat;
and sendg’y;’s control into statey, ,.. Stateg,,» movesC),’s tape head around the tape to the cell
containingo,.. This completes the simulation of the transition rule.

Left moving transition rules are more difficult to simulate(@,,’s tape head moves only clockwise.
C)s begins by marking the current location of the tape head wWithdymbolo,,. Cj; now moves
each symbol clockwise by one cell. Whéh,’s tape head reads,, the left move is complete. This
process moves the tape head anti-clockwise relative toatie ¢ontents, thus simulating a left move.
Immediately below is given the clockwise transition rulbattmark the tape head’s location with the
symbolo,,.

q$70170j7L7qy : q$70l70l0m7Qy,j
q$70170j7L7qy : q$70r70m0j7Qy,r
Q:an-kyo-jaLaQy 4z, 0k, Om,; Qy,j5

The clockwise transition rules that move each symbol claskvwy one cell are of the form:

Qymn>0s,0n; Qy,s

whereoy, 0, € X¢ — {0 }. WhenC),'s tape head reads,, thenC)y, is in a state of the formg,, , and
the unique clockwise transition rule defined by the stataksy pair @, s, o,,) will begin simulation of
the next transition rule. This transition rule is of the fo(q), 01,01, D, ¢.) if 05 = 0,,0; and of the
form (qy, 05, 0%, D, q.) if 05 # 01, 0y.

Input to M is encoded foC'y; by a finite state transducer. Given this encoded irfpyt simulates
the sequence of transition rules inM’s computation and halts in statg, the encoding of\/’s halt
stateq|q. Cr uses space ab(t). A single computation step of/ is simulated inO(t) steps ofC},.
Thus the computation time @, is O(t?). O

2.2. Bi-tag systems simulate clockwise Turing machines

In this section we present the bi-tag system, our new vaoaitiie tag system, and prove that it simulates
Turing machines via clockwise Turing machines. The openatif a bi-tag system is similar to that of
a standard tag system [12]. Bi-tag systems are essentid#lg $ystems (and so they read and delete
one symbol per timestep), augmented with additional caérgersitive rules that read, and delete, two
symbols per timestep.
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Definition 2.2. (Bi-tag system)
A bi-tag system is a tupléA, E, e, P). Here A and E are disjoint finite sets of symbols anag € F is
the halt symbol P is the finite set of productions. Each production is of oneheffbllowing 3 forms:

P(a) =a, P(ea) € AE, Ple,a)€ AAE,

wherea € A, e € E, andP is defined on all elements ¢fA U ((E — {ex}) x A)} and undefined on all
elements of e, } x A. Bi-tag systems are deterministic.

A configuration of a bi-tag system is a word of the foum= A*(AF U EA) A*. We callw the dataword.

Definition 2.3. (BTS computation step)
A production is applied in one of two ways:

(i) if s =as' thenas’ + s'P(a),
(i) if s =eas’ theneas' F s'P(e,a).

A bi-tag system computation is a finite sequence of compmrtatieps that are consecutively applied
to an initial dataword. It is the leftmost symbol in the dataword then the computatiitsh

Example 2.1. (Bi-tag system computation.) et bi-tag systemB; = ({ag,a1},{eo,e1,e2},e2, P)
where the seP = {ag — ag, a1 — a1, egag — aieg, ega; — aies, e1ag — ap€y, €141 — a1€2}.
Given the wordu; egag, the computation oB; proceeds as follows:

ajepap H €papaq H ajaleq F ajepaq H €pal1aq F a1a1€9 H aieqa H €20a1a1
The computation halts as the halt symbehas become the leftmost symbol.

Lemma 2.2. Let C be a clockwise Turing machine that runs in timéhen there is a bi-tag systeBr
that simulates the computation €fin time O(¢?) and space(t).

Before giving the proof of Lemma 2.2 we explain the proof idEachA symbol of B encodes a
symbol of C’s tape alphabet. Eachi symbol of B- encodes a state ¢f. The location of theZ symbol
in the dataword represents the locatior(Css tape head, as illustrated in Figure 3.

Each clockwise transition rule @f is simulated in the following way. The change of state, syinbo
and tape head position is simulated by executing production over the x A pair that encodes
the current state and read symbol (see Figure 3(c)). A ptamtucs then applied to each symbol in
the dataword. This moves the ndx A pair to the left of the dataword, in order to prepare for the
simulation of the next clockwise transition rule.

Proof:
Let clockwise Turing machin€=({q1, ..., qq}; {01, -, 02}, f; 41, q)q|)- We construct a bi-tag sys-
tem B¢ that simulate€’s computation.

Be = (Ac, Ec, ¢, Fo)
whereA¢q, Ec, Po are defined below.

AC = {a'17 s 7a‘2|}
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(c) ea00 01 applyes0 — leg

@) (b) 0011es apply0—0
011e0 applyo—0

1e3001 applyl —1
(d e3s0 011 simulation complete

Figure 3: Bi-tag system simulating the clockwise transitiale (¢2,0, 1, g3). The clockwise Turing
machine stateg, andgqs are encoded as, andes, respectively. The symbols also mark the location
of the simulated tape head. (a) A configuration of the closkwiuring machine before execution of
the clockwise transition rule. (b) A configuration of the atwise Turing machine after execution of
the clockwise transition rule. (c) Bi-tag system encodifighe configuration in (a). (d) Bi-tag system
encoding of the configuration in (b).

C’s tape symbolgr, . .., ox| are encoded asy, . . ., ax|, respectively.

Ec={e1,....eq}

C’s statesyy, ..., q/g are encoded as, . . . , ¢/q|, respectively, and the encoded halt stagg is the halt
symbol of B¢.

/
Po ={a; — a,...,ay — CL‘E|} U FPg

P(, is the set of productions defined ¢/ — {¢|g}) x A. There is one production i/, for each
clockwise transition rule i’. Clockwise transition rules fall in two categories, thasattwrite a single
symbol fromX: and those that write a pair of symbols frogX. The two possible clockwise transition
rules, and their encodings as productions, are as follows

(q:mo-iao-jaQy) D €EgQy — Gy
(Q$7Ui70jak7Qy) D €l — GjAEEy

We have constructed a bi-tag systéa: that simulates”. B¢ usesO(t) space. To simulate a
computation step of’, a production is applied to each symbol in the dataword thab@es the current
configuration ofC, as the example in Figure 3 illustrates. This tak¥s$) steps and yields a new data-
word that encodes the next configuration(@§ computation. In this wayB< simulatest steps ofC’s
computation in time)(¢2). The simulation halts when the halt symiag), that encodes the halt state of
C becomes the leftmost symbol in the dataword. O

Given a single tape deterministic Turing machih&that runs in timet, we conclude from Lem-
mata 2.1 and 2.2 that/ is simulated by a bi-tag system in tini&t*). However this overhead is easily
improved toO(#3) as the next theorem shows.

Theorem 2.1. Let M be a deterministic Turing machine with a single tape thatmates in timet, then
there is a bi-tag syster®®,; that simulates the computation &f in time O(¢3) and spac@(t).
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Proof:

From Lemmata 2.1 and 2.2 a bi-tag system simulates the catmputof A/ via a clockwise Turing
machineC);. From Lemma 2.1, simulatesM in time O(¢?). HoweverC), usesO(t) space, hence
By usesO(t) space.Bj, appliesO(t) productions to simulate a clockwise transition rule’af. Thus
By simulatesO(¢2) clockwise transition rules to simulafe via C; in time O(t3). O

3. Universal Turing machines

In this section we give the input encoding to our universaifigumachines. Following this we give each
machine and describe its operation by explaining how it &tes bi-tag systems. Lé&t = (A, E, ey, P)

be a bi-tag system wheté¢ = {a;,...,a,} andE = {ej,...,ex}. The encoding o3 as a word is
denoted(B). The encodings of symbols € A ande € E are denoteda) and(e), respectively. The
encodings of productionB(a) and P(e, a) are denoted a&P(a)) and(P(e, a)), respectively.

Definition 3.1. The encoding of a configuration &f is of the form
... cce{B)S*G({A)N)* (<A>N<E> U (E) <A>N) ((AYN)*Dece.... @)

where(B) is given by Equation (4) and Tables 1, 2 and53,andG are given by Table 1, and the word
((A)N)* <<A>N(E> U (E) <A>N) ((A)N)* D encodesB’s dataword via Table 1.

(B) =H(P(ep-1,aq))V{P(en-1,a4-1)) ... V(P(er-1,a1))

' (4)
V(P(e1,aq))V(P(e1,a9-1)) ... V(P(e1,a1))

V2(P(ag))V*(P(ag1)) ... V2 (P(a1))V?
whereV and H are given by Table 1. In Equation (3) the position of the tapadnis over the rightmost

symbol of G for Uy » and is immediately to the right @f3).S*G for each of the other Turing machines.
The initial state is:; and the blank symbol is c.

(a;) (ej) (en) S G N D V H
Uss pri-t bia bihat3s d? e 0 € ) cdd
Us.a bBi—5 pia  pSalhtl)+h5 42 e 6 b & Equation (5)
Uy s pri—1 pHia ptha c? € 0 e dcc beebe
Uisa | (eb)®75  (cb)®7  (cb)8m4+3bb  (cc)? be bbb € cb bbeech

Table 1: Symbol values for Equations (3) and (4). The valué&/dbr Us 4 is given by Equation (5) in
Section 3.4.
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(P(ej, a;)) (P(ej, a:))

(P(a;)) P(ej,a;) = agem P(ej,a;) = aken
U5 5 55d16i76 55d16mq5d16k76 55d16hq+145d16k76
U6,4 559121'7105 54912mq55912k7105 54gl2q(h+1)+855gl2k7105
Ug 3 8dccd Bt SecdbcBmat2§esk Sccddcdhat25c8k

Uiso |(eb)*(cceb)?(cc)® =5 (cb)®(ce)¥™(ceeb)? (cc)® =5 (¢b)3(ceeb)? (cc)8hit3(cech)?(cc)®F—°

Table 2: Encoding of productions. Herey;,ay,a, € A andej, ey, e, € E. Given in the rightmost
column is the special encoding for productions which cahsehtilt symbok,, to be printed. Noté/, 3
encodes such productions, that pept in the same way as its other productions.

(P(ej, a;)) (P(ej, a;))

P(ej,ai) = ayarem P(ej,a;) = ayaken
U5 5 6d16mq6d16k—26d16v—6 6d16hq+146d16k—26d16v—6
U6,4 62912mq66912hq+12k_455912U—105 62912q(h+1)+866912hq+12k—465912v—106
Uy s 58cBMat2 58k §8v 58cBhat2 58k §o8v

Uis 2| (cb)3(cc)®™4(ceeh)? (ce)® 2 (cech)?(ce)® 0 cb(cee)?(cc)®MF3 (ceeb)? (ce)¥ =5 (ceeb)? (cc)® 0

Table 3: See caption text for Table 2.

3.1. Universal Turing machine algorithm overview

Each of our universal Turing machines use the same basidationualgorithm. Here we give a brief
description of the algorithm by explaining how our machitesate and simulate a production. The
encoded production to be simulated is located using a undgxing method as illustrated in Figure 4.
The encoded productioriP(a;)) or (P(ej,a;)) in Equation (4), is indexed (pointed to) by the number
of symbols contained in the leftmost encoded symbol or daymbols in the encoded dataword (Equa-
tion (3)). For illustration purposes we assume that we airggus, 5. If the leftmost encoded symbol is
{a;) = b*~1 (Table 1) then the valuéi — 1 is used to indeXP(a;)). If the leftmost encoded symbol
is {e;) = bY9, and(a;) = b*~! is adjacent, then the valugq + 4i — 1 is used to index P(e;, a;)).
The number ob symbols in the encoded symbol, or pair of encoded symboégjusl to the number of
oc* words between the leftmost encoded symbol and the encodedgiion to be simulated. To locate
this production Uy 3 simply changes onéc* word tob*, for eachb in the leftmost encoded symbol or
pair of encoded symbols. This process continues untibttiet separates two encoded symbols in the
dataword is read. Note from Equation (3) that there isymarker between eacfe;) and the(a;) to

its right, thus allowing(e;)(a;) to be read together during indexing. After indexing, our hiaes print
the indexed production immediately to the right of the emzbdataword as shown in Figure 5. After
the indexed production has been printed, thBh, the encoding o, is restored to its original value as
illustrated in configurations (ii) and (iii) of Figure 5. Thtompletes the simulation of the production.
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—— encoding of bi-tag systel® =~ ——}— 0?32?3\,?09@ —

§ -6 (PVS(PYS(PYS (P)S |bbbd (a)(e)§
|<(a)~

§ -5 (P)6 (PYS(P)§ (P)6 | bbb (a) (e)d
1t <—tape head of/

5---5<P>5<P>5<P>5<P>?T [Bbb6 (a) ()5

6 -6 (P)6(PY6(P)J (P)§ lﬁTbTbé (a) () &

0 --- 0 (P)I <P>5<P>%<P>¢3 [ BB (a) fe)

6 -3 (P56 (PSP (P |W%5<a> {e) 0

6 --- 0 (P)o <P>%<P>f5 (P)§ [BBBS (a)(e) &

QT R R R LSY ALY AT LTI T ATXOY:

indexed encoded
production

Figure 4: Indexing of an encoded production during simafaif a production ofB. The encoded
production(P), to be executed, is indexed by reading the leftmost encogmtba () in the encoded
dataword and marking off symbols in the encoding dB.

Extensive computer testing has been carried out on eachr efndeersal Turing machines.

3.2. Uygs
Ui (5 us U4 us Ue uy us Uug
c bRuq cLus cLus bLugy cRug bLuy 0 Luy cRuy bLus
cLus cLuo bLuy bLuy bRug bRu7 cRug cRusg
0Rus 0 Lus dRuy 6Luy 0Lug 0Rug O6Ru; ORus cRu;

Table 4:Table of behaviour fot/y 3.

Example 3.1. (/g 3 simulating the execution of the productionP(a,))

This example is presented using three cycles. The tape liéagsas given by an underline. The current
state ofUy 3 is given to the left in bold. The datawotde;a; is encoded via Equation (3) and Table 1 as
bbbsb*9p* =15 and P(a, ) is encoded via Table 2 d#(a1)) = ddcedc®. From Equation (3) we get the
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—— encoding of bi-tag systel®# ——]
() —3 -3 (Poccc M@ F [FFPo(aieocee -
(P f

§ -8 (P)6 CCT}?WPH?(PM? | bpBo(a){e)dccec -

§ -0 (PYdccég (P f(P)§ |

S
S
S

d{a){e)dcce ---
f

6 -0 <P>6Cﬁ:¢6 (PYFPYF [BBBSa)le)dbee ---

R AT L R RGY A L1 T T XD OY o

(«%)
(e

<P>5§¢¢¢3 (Y (P § [PPPFoa) () dbbee

5 -0 (PYo¢ddF (P)F (PYF (VPP (a) <6>5bb%c

i ~5---35 <P>ﬁ¢¢¢¢3 (P)f (PYF [pPpola)(e)dbbbe .-
[+ of dataneta—]

i) & ---0 (P)scccd(P)§(P)§ |ccecla)le)dbbbe ---
T F~{a)

Figure 5: Printing of an encoded production during simolaif a production of3. Over a number of
timesteps, the encoded productigh) that was indexed in configuration (i) of Figure 4, is printedhe
right of the encoded dataword.

initial configuration:
uy, ... (P(ay))(dcc)?06ccoc® Secdecdcchbbob™ b scce . . .

Cycle 1 (Index next production). In Cycle 1 (Table 5)[ 3 reads the leftmost encoded symbol and
locates the next encoded production to execute (see Figuts 4 scans right until it readgin stateu; .
ThenUy 3 scans left in states, andus until it reads the subworélc*. This subword is changed t6* as
Uy 3 scans right in states; andug. The process is repeated urifi} 3 readsb in stateus. This indicates
that we have finished reading the leftmost encoded symbgarof encoded symbols, and that the
encoded production to be executed has been indexed. Thasitne end of Cycle 1 and the beginning
of Cycle 2.

Uy Us U3 Uy us Ug uy ug Ug

c bRui cLus cLug c bLug cRug bLus O0Luy cRu; bLus
cLuy cLug bLuy b bLuy bRug bRuy

0 0Rus O6Luy ORuy 0 | 0Lug O6Lug ORug ORuy ORus

Table 5: Cycle 1 ol 3. Table 6:Cycle 2 ofUy 3.
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H ug, ... (P(az))(dcc)>55ccdcdSecdecdeccbbsbibY " scec . . .
-2 ug, ... (P(az))(6cc)>56cedcddecdeedcecbbdbibY " secc . . .
4 uy, ... (P(az))(6cc)285ccdcddecdecdbbbbbdb b L5cce. . .
|44 uy, ... (P(ag))(8ce)?8ccdc® 5bbdbbobbbbbdb1bY 1 5cce . . .
-2 ug, ... (P(az))(dcc)?55ccdcd 5bbsbbibbbbbsb* b  ~15ccc . . .

In the configuration immediately above the encoded prodngtP(a,)) has been indexed and we have
entered Cycle 2.

Cycle 2 (Print production). Cycle 2 (Table 6) prints the encoded production, that wasxed in
Cycle 1, immediately to the right of the encoded datawore g&gure 5).Uy 3 scans left in state, and
records the next symbol of the encoded production to beqatirif Uy 5 reads the subworetc it enters
stateug, scans right, and printsat the right end of the encoded dataword. A sirigie printed for each
cc pair that does not haveimmediately to its left. IfU 3 reads the subwordbcc it scans right in state
wy and printso at the right end of the encoded dataword. This process iategeaintil the end of the
encoded production is detected by reading the subwérdwhich causeéd/s 5 to enter Cycle 3.

13 ug, ... (P(az))(cc)250cedcd cc(5bb)3bbbob b4 L 5cce . . .
-3 . {P(a2))(5cc)*85cedc® bb(5bb)2bbbob™ b L scce . .
AUt +14 . (P(a2))(8cc)?66ccd S bb(5bb)>bbbob*bY 1 cce . .
- . (P(ag))(8cc)*68ccdcObb(5bb)>bbbib b1~ 1§bccc...

In the configuration immediately above the first symbol of émeoded productioiP(a;)) has been
printed. Following the printing of the final symbol of the eded production we get:

- ug, ... (P(az))(dcc)?56ccob®(5bb)3bbbsb* b 1503 dccc . . .
-3 ug, ... (P(a2))(dcc)256bbsb® (5bb)3bbbob* b 15036 ccc . . .

In the configuration immediately above we have finished printhe encoded productiofP (a1 )) to the
right of the dataword and we have entered Cycle 3.

Cycle 3 (Restore tape) Cycle 3 (Table 7) restored3) to its original value (see configurations (ii) and
(i) in Figure 5). The tape head dfy 3 scans right switching between states andug changingb
symbols toc symbols. This continues unfily 3 reads the) marking the leftmost end of the dataword in
ug. Note from Tables 2 and 3 and Equation (4) that there is an euetber ofb symbols between each
pair of § symbols in(B) hence eacld symbol in(B) will be read in state:s. Eacha; symbol in the
dataword is encoded by an odd numbeb sfymbols (a;) = b*~') and hence the first symbol in the
dataword will be read in state,. Thisé symbol marks the left end of the new dataword and calsgs
to enter state;; thus completing Cycle 3 and the production simulation.

|25 ug, ... (P(az))(6cc)>55ccdcd (dce)3cecdb™ Y1503 dccc . . .
H uy, ... (P(az))(6cc)255cedcd (dce)3ceccbb™ I~ 104 L5b3 sccc . . .
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us Uug
b cRug cRusg
0 | 0Rug cRuy

Table 7:Cycle 3 ofUy 3.

In the last configuration of Cycle 3 our example simulatiopfductionP(a;) is complete.

Theorem 3.1. Given a bi-tag systen® that runs in timeg the computation of3 is simulated byl 3 in
time O(#?).

Proof:
In order to prove the correctness Bf 3 we prove thatl/y 3 simulates any possibl&(a) or P(e,a)
production of an arbitrary bi-tag system and, that; also simulates halting when the encoded halt
symbol(e,) is encountered. In Example 3% 3 simulatesP(a;) for an arbitrary bi-tag system where
ay is the leftmost symbol in a fixed dataword. This example gag@heralises to any productid?(a;)
whereaq; is the leftmost symbol in an arbitrary dataword. When seme E is the leftmost symbol in
the dataword then some productiétie, a) must be executed. The simulation Bfa;) in Example 3.1
is also used to verify the simulation éf(e, a). Note from Equation (3) that there is hanarker between
each(e;) and the adjacen(u;) to its right, thus(e;) and(a;) are read together during Cycle 1. Using the
encoding in Definition 3.1, the number bsymbols in(e;)(a;) indexes(P (e, a)). Thus, the indexing
of (P(e,a)) is carried out in the same manner as the indexing/tfz)). The printing of production
(P(e,a)) during Cycle 2 and the subsequent restoringi®f during Cycle 3 proceed in the same manner
as withP(ay).

If the encoded halt symbdk;,) = b4 is the leftmost symbol in the encoded dataword, &ndl =
b4~ is adjacent, this is encoded via Definition 3.1 as follows:

uy, beehe(P(ep_1,aq))dcc. .. (P(ay))(5ce)® (ce)*bb*M 16415 ((A)5)* ece.. ..

During Cycle 1, immediately after reading thehq + 3)*™® b symbol in the dataword)/g 3 scans left in
uo and we get the following:

H* g, beehe(P(en_1,aq))dcc. .. (P(ay))(5ce)® (ce)* cMam3pti=15((A)d) cec. . .
1 g, bbbbe(P(ep_1,a4))dcc. .. (P(a1))(dcc)? (cc)*cMar3pti=i5((A)s) *cec. ..

There is no transition rule in Table 4 for the case ‘whendmreadd’, hence the computation halts. O

The proof of correctness given fofy 3 can be applied to the remaining machines in a straightfatwar
way, so we do not restate it.

3.3. Uss

The datawordy; e;a; is encoded via Equation (3) and Table 1baksb*/9b% 1§, and P(a,) is encoded
via Table 2 agP(a;)) = §6d'°. From Equation (3) we get the initial configuration:

uy, ... 6%(P(ag))0266d 0 565bbbob b4 L 5cce . . .
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U1 Us us Uy us
g bLuy gRu; bLus

b | gLu; gRus dRus gRus dRus
1) cRuy cRus 6Rus cRus dRuy
c 6Luy bLug O0Lus J6Lus

d bLu; gRus bLus bLus bLuy

Table 8:Table of behaviour fots 5.

Cycle 1 (Index next production). In Cycle 1 (Table 9) whei/s 5 readsb in stateu,, it changes it tg
and scans left until it reads Thisé is changed te andUs 5 then enters state; and scans right until it
readsg which causes it to re-enter state. This process is repeated urili} 5 reads the that separates
a pair of encoded symbols in the encoded dataword. Thislsigina end of Cycle 1 and the beginning
of Cycle 2.

uy Uz Us s Uz ug Uy us
g bLu; gRu; g bLug
b | gLu; gRus b gRuy gRuy
) cRus cRus ) cRuy 6Rusz cRuy Us,s us Uus
c 0Luy c bLus o6Lus 6Lus b dRus dRus
d bLuq d gRus bLus bLus bLuy 1) 0Rus dRu;
Table 9:Cycle 1 ofUs 5. Table 10:Cycle 2 ofUs 5. Table 11:Cycle 3 ofUs 5.
3 uy, ... 0% (P(as))0266d'°865cgbbob™bY occc. . .
|18 w1, ... 6%(P(as))6%66d"0 ccegggdb™ bt cce. . .
H ug, ... 0% (P(as))6%66d" cecgggebb¥ T 1 sece . .

Cycle 2 (Print production). Cycle 2 (Table 10) begins withs 5 scanning right and printing to the
right of the encoded dataword. Following thi&; 5 scans left in state; and records the next symbol of
the encoded production to be printed K 5 reads the subwordddd it enters state,, scans right, and
prints b at the right end of the encoded datawordUlf5 reads the subworddd it scans right in state
uyg and printso at the right end of the encoded dataword. This process iategeaintil the end of the
encoded production is detected by readirig stateus, which cause$/s 5 to enter Cycle 3.

- ug3, ...0%(P(as))6%66d® ddddsssbbbob™ b 1 sbece . . .
-3 ug, ... 0%(P(as))6266d° dbbbsssbbbobY I 1b*~ L 5bece . . .
- ug, ...0%(P(as))62656ddb®665bbbob 96~ sbbbece . . .
-2 ug, ... 6% (P(as))6%65bbbS555bbbSH* b1 sbbbecc . . .

- ug3, ... 0% (P(a3))5%85bbb®565bbbob b1 sbbbccc . . .

Cycle 3 (Restore tape)In Cycle 3 (Table 11) the tape headld{ 5 scans right switching between states
uz andus changingb symbols tod symbols. This continues untifs 5 reads the) marking the leftmost
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end of the encoded dataword i. Note from Tables 2 and 3 and Equation (4) that there is an even
number ofd symbols between each pair ®symbols in(B) hence each symbol in(B) will be read in
stateus. Eacha; symbol in the dataword is encoded by an odd number of symbajs £ v*—!) and
hence the firsé symbol in the dataword will be read in statg. This cause$/s 5 to enter state,; thus
completing Cycle 3 and the production simulation.

|19 uy, ... 0%(P(az))0266d'0566ddddbb 1~ b¥ L sbbbiccc . . .

Halting for Us 5. If the encoded halt symbdk,) = b*74+3§ is the leftmost symbol in the encoded
dataword then this is encoded via Definition 3.1 as follows:

uy, cdd(Plep_1,a,))0 ... 6%(P(a1))83(dd)*bb* 4+ 25((A)d)*ccc. . .

The computation continues as before ubljls enters Cycle 2 and scans lefta3. Immediately after
Us 5 reads the leftmost during this leftward scan we get:

- ug, cbd(P(en_1,a,))d...6%(P(ay)) 83(dd)* b1 35((A)8) becc. . .

In the configuration above,P)’ denotes the word in which all thé symbols in(P) are changed td
symbols. There is no transition rule in Table 8 for the cadeewinus readc’ hence the computation
halts.

3.4. Usy

Uy U us3 Uy us Ug
bLu; gRuy bLus bRus bLug bLuy
gLu; gRus bLus gRus gRug gRus
cRus cRus 6Lus cRugy O6Rus gRup
c 6Luy gRus 6Lus cRus bLus

(ST S

Table 12:Table of behaviour fot/g 4.

The datawordi; e;a; is encoded via Equation (3) and Table (1)ba&5b%/965%—55b. From Equation (3)
we get the initial configuration:

uy, ... 0%(P(as))6%(P(a1))d06bbbob® b5 bece . . .

Cycle 1 (Index next production). In Cycle 1 (Table 13) whelis 4 readsh in stateu; it scans left until it
readss. Thisé is changed te andUs 4 then enters state, and scans right until it readswhich causes

it to re-enter state:;. This process is repeated unti; 4 reads thej that separates a pair of encoded
symbols in the encoded dataword. This signals the end ofeClyahd the beginning of Cycle 2.

Cycle 2 (Print production). Cycle 2 (Table 14) begins wittls 4 scanning right and printingb to the
right of the encoded dataword. Following thi% 4 scans left in state; and records the next symbol of
the encoded production to be printed.U§ 4 reads the subwordggd or gggb it enters state,, scans
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U1 u2 U2 u3 Ug Us Ug
g bLui gRuq g bLus bRus bLug bLuy
b gLu; gRus b |gRus bLus gRuy Uus Ug
0 cRus cRuo 0 |cRuy 0Lus cRus 6Rus b | gRug gRus
c 6Luq ¢ |gRus dLusz cRus bLug 6| 0Rus gRuq
Table 13:Cycle 1 ofUs 4. Table 14:Cycle 2 ofUs 4. Table 15:Cycle 3 ofUs 4.

right, and printsbb at the right end of the encoded dataword.Ulf, reads the subwordggb it scans
right in stateuy and printsdéb at the right end of the encoded dataword. This process iategpaintil
the end of the encoded production is detected by reatingtateus, which causes/s 4 to enter Cycle 3.

Cycle 3 (Restore tape)ln Cycle 3 (Table 15) the tape headl@f 4 scans right switching between states
us andug, changingb symbols tog symbols. This continues untils 4 reads the) marking the leftmost
end of the encoded datawordig. Note from Tables 2 and 3 and Equation (4) that there is an even
number ofg symbols between each pair®symbols in(B), hence each symbol in(B) is read in state

us. Eacha; symbol in the dataword is encoded by an odd number of symkels £ 5*~5) and hence

the firsté symbol in the dataword is read in statg This cause$/s 4 to enter states;, thus completing
Cycle 3 and the production simulation.

Special case foil/s 4. If we are simulating a production of the forfe, a) = a,axe,, we have a special
case. Note from Table 3 and Cycle 2 that the simulatio®(f, a) = a,axe,, for Us 4 results in the
word p8v—55p8hat8k=35p8map heing printed to the right of the dataword. From Table 1 itlesac that

a, is not encoded in this word in its usual from. However wiign, reads the subwortfha+85=35 it
indexes(P(ax)) in H which results ina;) being printed to the dataword. To see this, note that theevalu
of H from Equation (4) foiUs 4 is as follows:

H = cgbV?(P(ag))V*(P(ag-1)) ... V}(P(a1))V? (5)

The halting condition fof/s 4 occurs in a similar manner to that 6% 5. Halting occurs during the first
scan left in Cycle 2 wheb/s 4 readsc in stateug at the left end of B) (note from Table 12 that there is
no transition rule for state-symbol pdiig, c)).

3.5. U,

Example 3.2. (U152 simulating the execution of the productionP(a,))

The example dataword, e;a; is encoded via Equation (3) and Table (1)casbcbbb(cb)®74(ch)®~5bb
and P(ay) is encoded via Table 2 g (a1)) = (cb)*(cceb)?(cc)3. Thus from Equation (3) we get the
following initial configuration

uy, ... (P(a2))(ch)®(ceeb)?(ce)? eb b eb be b ¢b eb bb (¢b)®(cb)¥ > bb ce.. . .

In this example we explain hoW, s » operates by considering how it treats pairs of symbols duzach
cycle. Thus, the extra whitespace between each pair of dgnitbtm improve readability and help illus-
trate our explanation d¥;5 »’s operation.
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Ul (5 us (% us Ue uy us
¢ | cRupo bRus cLu; cLug bRuq bLuy  cLug  bLug
b bRuq bRuq cLus bLus bLuy bLuy bLur bLur

Ug u10 U11 U2 u13 U14 U15
cRuy bLuqq cRu9 cRuqs cLus cLug cRuq4
bLum bRU14 bRu12 bRU12 CRU15 bRU14

Table 16:Table of behaviour fot/;5 5.

Cycle 1 (Index next production). In Cycle 1 (Table 17)/;5 » scans right in states;, u, andus until

it reads the subwordcd which it changes tebe. Following this, it scans left in states,, u; andug

until it reads the subwordb. Thiscb is changed téb andU; 5 » re-enters state; and scans right. This
process is repeated uniil;5 » has finished reading the encoded read syngbgl or symbols(a;) and

(ej). This occurs when the subwordb no longer appears to the right of the tape head and signals the
end of Cycle 1 and the beginning of Cycle 2.

U1 Uz us Ug Uus Ug
c cRusg bRus cLuz cLug bRuq bLuy
bRuq bRuq cLusg bLus bLuy bLuy

Table 17:Cycle 1 ofUys .

eb)¥(eb)¥ P bbcc. . .
-4 us, ... (P b8 (ceeh)? (ce)® eb ¢b ¢b be be ¢b ¢b bb (¢b)¥9(cb)¥ 5 bb cc. . .

(P(az))(cb)®(ceeb)?(cc)? eb b b be be ¢b eb bb (cb)®79(cb)
(P(az))(ch)®(cech)? (cc)? (cb)™(cb)
-4 ug, ... (P(a2))(ch)®(ceeb)?(ce)® eb bbb be be ¢b eb bb (¢b)®9(cb)¥ > bb ce.. . .
(P(az))(ch)®(ceeh)?(ce)? (cb)*9(cb)
(P(az))(ch)®(cech)? (cc)? (cb)

-3 us, ... a2))(cb)®(ceeb)?(ce

a2

20 ug, ... cb)® (cceb)? (ce)® b bb bb be be be b bb (¢b)¥19(eb)¥ S bb ce. . .
28 ug, ... cb)®(ceeb)?(ce)® bb bb bb be be be be bb (¢b)¥9(cb)*° bb cc.. . .

az

a2

Note that in the configuration immediately above eaklsubword in the encoded read symbio|) =
cbebeb has been changed to the subweéed Note also that the substringb which causes a scan to the
left in uy4, us, andug NoO longer appears in the configuration to the right of the tagmed. This causes
Uis 2 to enter Cycle 2.

Cycle 2 (Print production). Cycle 2 (Table 18) begins witli;5 » scanning right and printingp to the
right of the encoded dataword. Following thig;s > scans left in states;, ug, ug, u19p anduy; and
records the next symbol of the encoded production to beqgtinif, during a scan left/;5 » reads the
subwordcce then it scans right in states andus and changes the: immediately to the right of the
encoded dataword te. If, during a scan left{/;5 » reads the subworecbec it scans right in states;»
andui3 and changes the firstto the right of the encoded dataworditoThis process is repeated until
the end of the encoded production is detected by readinguitnwasd bebee during the scan left. This
caused/;s o to enter Cycle 3.
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al U2 us Uy us Uug Uu10 Uil U2 U3
cRuy bRus cLu; cLug bLug cRuy bLujp cRuis cRuys  cLusg
b bRu1 bRu1 CLU5 bLU7 bLU7 bLU10 bRU14 bRu12 bRu12

Table 18:Cycle 2 ofUy5 5.

H* u, ... (P(a2))(ch)®(ceeb)? cc ce ce (bb) (be)t bb (¢b)®79(cb)® =5 bb cc cc cc
-3 uz, ... (P(a2))(cb)®(cceb)? cc ce ce (bb)3 (be) bb (cb)®4(ch)® = bb cb cc cc
H* uz, ... (P(a2))(ch)®(ceeb)? cc ce cc (bb)? (be)* bb (cb)®7%(cb)® > bb cb cc cc
-3 u1, ... (P(a2))(ch)®(ceeb)? cc ce be (bb)> (be) bb (cb)®79(cb)® 5 bb cb cc cc
H* uz, ... (P(a2))(cb)®(ceeb)? ce cc be (bb) (be)t bb (¢b)®79(cb)® = bb cb cb cc

Each time the substringcc is read during a scan left in states, ug, andug Uys 2 scans right and prints
cb to the right of the encoded dataword. Thus we get:

F* ug, ... (P(a2))(ch)® cccb cc cb cc be be (bb)3 (be)t bb (¢b)®9(ch)® = bb (cb)3 cc cc. . .
5 w12, ... (P(az))(ch)® cc b ce bb be be be (bb)3 (be) bb (cb)¥4(cb)3 5 bb (cb)3 cc cc. . .
- uz, ... (P(as))(ch)8 cccb ccbbbe be be (bb)> (be) bb (cb)®79(cb)* = bb (¢b)® be ce.. . .

&

Each time the substring:bcc is read during a scan left in states, us, ug, 110, andu;; Uys 2 Scans right
and printsh to the right of the encoded dataword. Thus we get:

F* g, ... (P(a2))(cb)? ¢b b cc bb be bb (be)? (bb)3 (be)? bb (¢b)®7(cb)® = bb (cb)3 bb cc. . .
5 g, ... (P(a2))(cb)*cb bb be b be bb (be)? (bb)3 (be) bb (cb)®4(ch)® 5 bb (cb)3 bb cc. . .

When the substringcbcc is read during a scan left in states, us, ug, u19, anduy; Cycle 2 is complete
and Cycle 3 is entered. Thus in the configuration immediatblyvel; 5 » has entered Cycle 3.

Cycle 3 (Restore tape).In Cycle 3 (Table 19) the tape head @fs > scans right in states;, andus
changing eachc to cc and eactbb to cb. This continues until/;5 » readsc in stateu;4. Thisc marks the
leftmost end of the dataword. Note that during Cycles 1 analcher in (B) and eacleb in the encoded
read symbol are changed to the subwadsds Also during Cycles 1 and 2, each subword in(B) is
changed to the subwoigd. Thusc will not be read inuy4 until we encounter the subword at the left
end of the next encoded symbol to be read in the dataword.

s, ... (P(ag2))(ch)* b cb cc b ce cb (be)3 (bb)3 (be)d bb cb (eb)¥1971 (eb)T =5 bb (cb)3 bb cc. . .
A (cb)*

( )
o ug, P(ag))(ch)* b cb cc b cc eb (ce)3(cb)® (ce)t eb ¢b (cb)B T (ch)¥ 5 bb (cb)® bb cc. . .
3 g, ... (Plag))(eb)8(ceeb)?(ce)®(eb)? (ce)* be eb (eb)®197 1 (eb)® =5 bb (cb)3 bb cc.. . .
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In the configuration immediately above the example simomhatif production(P(a;)) is complete. The
encoding of(a;) = (cb)? has been appended onto the right end of the dataword, thel@htag system
(B) has been restored to its original value dng » is ready to read the encoded symbgls) and(a;).

us us U14 u1s
c bRuq cLug cRuyy
cLus cRu1s bRu14

Table 19:Cycle 3 ofUy5 2.

Halting for Uys 2. If the halt symbok;,, encoded age;,) = (cb)®4+3bb, is the leftmost symbol in the
dataword then this is encoded via Definition 3.1 as follows:

uy, bbcccb (P(en_1,aq)) cb ... (cb)?(P(ay))(ch)3((cc?))* be (eb)®M93 bb ((A) bb)* cc cc. ..

The computation continues as before ubtjk > enters Cycle 2 and scans leftin, ug, andug. This
scan ends with the following configuration:

= u10, bb be bb (P(ep_1,a,)) bb ... (bb)*(P(a1)) (bb)3((be)*)* (be)®" T bb ((A) bb)* cb cc. . .

In the configuration immediately abov@?)’ denotes the word in which each andcb subword in(P)
is changed to the subwok@ andbb, respectively. There is no transition rule in Table 16 far tase
‘when inuy readc’ hence the computation halts.

4. Conclusion

In order to determine the minimum size for universal Turingcinines we must identify the largest
possible non-universal Turing machine. Traditionallysthas been done by proving the halting problem
decidable for a given state-symbol pair. For example theldbdity results given in Figure 1 imply that
a universal Turing machine, that simulates any Turing nrezhi and halts if and only ifM halts, is
not possible for these state-symbol pairs. Hence thes#ggsue lower bounds on the size of universal
machines of this type. The decidable halting problem curv&igure 1 could be considered a non-
universality curve in this sense. Thus, following the nevwwersal machines presented in this work there
are 39 state-symbol pairs that remain open.

There has been no improvement on universal Turing machierlbound results since 1978, when
Pavlotskaya [19] proved that the halting problem is dedilfdr 3-state, 2-symbol machines. The proof
is quite long and complex, and improving on this result malf beedifficult. As the state-symbol product
increases, the number of possible machines increasesentaily. Thus it seems that a new approach
needs to be taken. To find new lower bounds one possible méthiogrove that some non-universal
system simulates all of the Turing machines for a given stgtebol pair.

It has been noted in the literature that Minsky's 7-stateydtsol machine [11], which simulates
2-tag systems, mutilates the final output. While it is truat tinsky’s machine changes the final out-
put by making one extra pass over the dataword before hattiigdoes not prevent his machine from
simulating all Turing machines. This is due to the followfiagt. When Cocke and Minsky'’s 2-tag algo-
rithm [2] (or the algorithms given in [13] and [30]) is useddimulate Turing machines, this extra pass
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over the final dataword does not lose any information: in #rese that the simulated Turing machine’s
final output can be retrieved by a (simple) decoding function

Since Minsky’s universal machine all of the smallest ursa¢iTuring machines (including our bi-tag
simulators) have used a similar algorithm. Rogozhin [22,eX8ended Minsky's technique to establish
the universal curve. There have been incremental redwciinoiine size of many of Rogozhin’s machines.
However, the smallest of Rogozhin’s machines, the 6-symmzahine, has not been improved upon since
it was first presented almost 30 years ago. In order to sigmitiz reduce the space between the decidable
halting problem curve and the universality curve we susttetta radically new approach must be taken.
Below we give three methods to aid in the search for smalleeusal Turing machines.

The first approach is to look for some universal systems,rdtien 2-tag or bi-tag systems, that
would require less instructions to simulate. Cyclic tageyss [3] may be used to give smaller machines.
However, the operation of cyclic tag systems is similar & tif 2-tag and bi-tag systems so this may not
give much of an improvement. Perhaps a simple universallaelautomaton could be simulated. The
cellular automaton Rule 110 has given rise to very small Weakiversal Turing machines [3, 17, 27].
In the proof of universality of Rule 110, the initial conditi contains a finite sequence of states that is
repeated infinitely often to the left, and another finite seme that is repeated infinitely often to the
right. These small Turing machines that simulate it use alairkind of initial condition and are thus
said to be weakly universal. Perhaps a sufficiently simpleeusal cellular automaton could be found
that allows us to construct small Turing machines that areeusal, rather than only weakly universal.

Another approach is to simplify some existing universal glad order to make it easier to simulate.
As an interesting example we will briefly consider small seveak machines (which are Turing ma-
chines with an infinitely repeated word on one side of the tigmal the usual repeated blank symbol on
the other side). Watanabe [25] gave a small semi-weaklyeus@l Turing machine with 5 symbols and 6
states that simulates Turing machines directly. LatergWébe [26] gave a small semi-weakly universal
Turing machine with 4 symbols and 5 states that simulatégatesl Turing machines. Watanabe noted
that Turing machines with a binagp, 1} tape alphabet, where the tape head always moves right on 1
and left on O, are universal. Because of this restrictiontavibe’s encoded table of behaviour for each
Turing machine had no need to include information about frection of movement of the tape head.
This in turn simplified the problem of simulating Turing maus.

A third approach is to find an encoding that allows many difféoperations to be carried out by the
same group of instructions. For example, this approachdadiéhe construction of the smallest known
universal Turing machines [15] that simulate Turing maehdtirectly. The encoding used by these
machines allowed each set of transition rules to serve niiaire dne purpose. A single set of transition
rules reads both the encoded current state and the encadksyrabol. Another set of transition rules (1)
prints the encoded write symbol (2) moves the simulated baael and (3) establishes the new encoded
current state. Combining steps in this way has reduced theauof transition rules needed for these
machines.

The small universal machines we have given here conformretol#tssical model used by Minsky [12]
and Shannon [24]. Generalising the Turing machine modeinoflows us to find universal Turing
machines with smaller state-symbol products, such as th# smakly universal machines in [3, 17, 27],
and the semi-weakly universal machines in [25, 26, 29].ithjgortant to note that the decidability results
given in Figure 1 do not give lower bounds for such machinesorter to give relevant lower bounds
for these machines new decidability results must be givethfesse more general models. We note also
that the weak machines in [3, 17] do not halt and thus provireghialting problem decidable does not
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immediately imply lower bounds relevant for these machines

If we restrict the standard Turing machine model then thdlpra of finding machines with small
state-symbol products often becomes more difficult. Soraengkes of restricted small universal Turing
machines have been given by Margenstern [9]. Margenstemgives a number of decidability results
for restricted universal Turing machines.

By giving upper and lower bounds, some boundaries have lweemffor the smallest possible uni-
versal machines in terms of numbers of states and symbdig@gpect to more general Turing machine
models [10, 20]. However, there are many open questionsingmgan the world of small universal Tur-
ing machines. What are the trade-offs between number afs¢sgimbols, space/time complexity, and
encoding complexity in small universal Turing machinesvHtm the smallest possible universal ma-
chines for the different generalisations and restrictiomspare? Do the upper and lower bounds meet?
That is, do there exist machines in the space between thdestabssible universal Turing machines
and the largest machines with a decidable halting problemthi$ day Shannon’s 50 year old question,
regarding the smallest possible universal Turing maclstiéremains unanswered.
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