
Fundamenta Informaticae 91 (2009) 105–126 105

DOI 10.3233/FI-2009-0008

IOS Press

Four Small Universal Turing Machines

Turlough Neary∗†

Boole Centre for Research in Informatics, University College Cork, Ireland.

tneary@cs.nuim.ie

Damien Woods‡

Department of Computer Science and Artificial Intelligence, University of Seville, Spain.

d.woods@cs.ucc.ie

Abstract. We present universal Turing machines with state-symbol pairs of (5, 5), (6, 4), (9, 3)
and(15, 2). These machines simulate our new variant of tag system, the bi-tag system and are the
smallest known single-tape universal Turing machines with5, 4, 3 and 2-symbols, respectively. Our
5-symbol machine uses the same number of instructions (22) as the smallest known universal Turing
machine by Rogozhin. Also, all of the universal machines we present here simulate Turing machines
in polynomial time.

Keywords: small universal Turing machine, 2-tag system, bi-tag systems, Post system, computa-
tional complexity, polynomial time.

1. Introduction

Shannon [24] was the first to discuss the problem of finding thesmallest possible universal Turing ma-
chine. In 1962 Minsky [11] constructed a 7-state, 4-symbol universal Turing machine that simulates
Turing machines via 2-tag systems [2]. Minsky’s technique of 2-tag simulation was extended by Ro-
gozhin [23] to construct small universal Turing machines with state-symbol pairs of(24, 2), (10, 3),

∗Turlough Neary is funded by the Irish Research Council for Science, Engineering and Technology, and by Science Foundation
Ireland Research Frontiers Programme grant number 07/RFP/CSMF641.
†Address for correspondence: Boole Centre for Research in Informatics, University College Cork, Ireland.
‡Damien Woods is supported by Junta de Andalucı́a grant TIC-581.

106 T. Neary and D. Woods / Four Small Universal Turing Machines

u : our new universal machines
that simulate bi-tag systems

rs : smallest known machines that
directly simulate Turing Machines

bc : universal machines of Rogozhin et al.
that simulate 2-tag systems

universal curve

non-universal curve

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

state

symbol

u

u

uu

u

rs

rs

rs

rs

rs

bc

bc

bc

bc

bc

bc

bc

Figure 1: Current state-symbol plot of small universal Turing machines. The non-universal curve shows
Turing machines that are known to have a decidable halting problem.

(7, 4), (5, 5), (4, 6), (3, 10) and(2, 18). Subsequently some of these machines were reduced in size to
give machines with state-symbol pairs of(3, 9) [7], (19, 2) [1] and(7, 4) [1]. Figure 1 is a state-symbol
plot where the current smallest 2-tag simulators of Rogozhin et al. are plotted as circles.

Here we present universal Turing machines with state-symbol pairs of(5, 5), (6, 4), (9, 3) and(15, 2).
The 5, 4, and 3-symbol machines have previously appeared in [16]. The new 15-state, 2-symbol machine
we present here is a significant improvement on the 18-state,2-symbol machine that appeared in [16].
All of these machines simulate Turing machines via bi-tag systems and are plotted as triangles in Fig-
ure 1. These machines improve the state of the art in small universal Turing machines and reduce the
space between the universal and non-universal curves. Our 5-symbol machine uses the same number
of instructions (22) as the current smallest known universal Turing machine (Rogozhin’s 6-symbol ma-
chine [23]). Also, our 5-symbol machine has less instructions than Rogozhin’s 5-symbol machine. Since
Minsky [11] constructed his 7-state, 4-symbol machine, a number of authors [1, 21, 23] have given 4-
symbol machines. Rogozhin [23] improved on Minsky’s resultby giving a 7-state, 4-symbol machine
with 26 instructions and Baiocchi [1] further improved on this result to give a 7-state, 4-symbol machine
with 25 instructions. Our 4-symbol machine is the first reduction in the number of states since Minsky’s
machine. In fact, in 1991 Robinson [21] noted that when considering the numbers of states and symbols
of the machines constructed since Minsky’s machine “there is no known such machine which decreases
one parameter without increasing the other.” It is interesting to note that the current universal curve in
Figure 1 is no longer symmetric about the line where the number of states is equal to the number of
symbols. (For a brief period, the universal curve was symmetric following the work in [16].)

T. Neary and D. Woods / Four Small Universal Turing Machines 107

Recently, the simulation time overhead of Turing machines by 2-tag systems was improved from
exponential [2] to polynomial [30]. More precisely, ifM is a single tape deterministic Turing machine
that runs in timet, then the universal Turing machines of Minsky and Rogozhin et al. now simulateM in
O(t8(log t)4) time. It turns out that the time overhead can be improved toO(t4(log t)2) [13]. In earlier
work [15] we gave the smallest known universal machines thatdirectly simulate Turing machines. These
machines run in timeO(t2) and are plotted as squares in Figure 1. Our new universal Turing machines
are polynomial time simulators of Turing machines. Specifically, our new machines simulate one-tape
deterministic Turing machines, with a time overhead ofO(t6): they simulate bi-tag systems (quadratic
time overhead), which in turn simulate one tape deterministic Turing machines (cubic time overhead).

The halting problem has been shown to be decidable for the following state-symbol pairs:(2, 2) [5,
18], (3, 2) [19], (2, 3) (Pavlotskaya, unpublished),(1, n) [4], and(n, 1) (trivial) for n > 1. Thus, these
results induce the non-universal curve which is illustrated in Figure 1. More on small universal Turing
machines, and related notions, can be found in [8, 9, 13, 29, 28].

In Section 2 we show that bi-tag systems simulate Turing machines. We begin by introducing the
clockwise Turing machine, and then prove that it simulates Turing machines. Following this we introduce
bi-tag systems and prove that they simulate clockwise Turing machines. Section 3 begins with the input
encodings to each of the universal Turing machines. This is followed by an overview of the simulation
algorithm used by our machines. Then, each of the universal Turing machines are given along with a
more detailed look at their operation. The final part of the paper, Section 4, contains some discussion
and conclusions. This paper is an extended version of the paper that appeared in [16], it contains new
results, extra proofs and discussion.

1.1. Preliminaries

The Turing machines considered in this paper are deterministic and have one tape. Our universal Turing
machine withm states andn symbols is denotedUm,n. We writec1 ⊢ c2 if a configurationc2 is obtained
from c1 via a single computation step. We letc1 ⊢t c2 denote a sequence oft computation steps and let
c1 ⊢∗ c2 denote 0 or more computation steps. Also, we let〈x〉 denote the encoding of objectx andǫ
denote the empty word.

2. Bi-tag systems simulate Turing machines

2.1. Clockwise Turing machines simulate Turing machines

A clockwise Turing machine is a Turing machine that has a single tape, which is circular, and whose tape
head moves only in a clockwise direction. The operation of clockwise Turing machines is quite similar
to that of the circular Post machines of Kudlek and Rogozhin [6].

Definition 2.1. (Clockwise Turing machine [14])
A clockwise Turing machine is a tupleC = (Q,Σ, f, q1, q|Q|). Q andΣ are the finite sets of states and
tape symbols, respectively.q1 ∈ Q is the start state andq|Q| ∈ Q is the halt state. The transition function
f : Q × Σ → {Σ ∪ ΣΣ} × Q is undefined on stateq|Q| and is defined for allq ∈ Q, q 6= q|Q|.

We write f as a list of clockwise transition rules. Each clockwise transition rule is a quadruple
t = (qx, σ1, v, qy), with initial stateqx, read symbolσ1, write valuev ∈ {Σ ∪ ΣΣ} and next stateqy.

108 T. Neary and D. Woods / Four Small Universal Turing Machines

(a)

. . . σ1 σ2 σ3 σ2 σ3 σ2 σ2 σ1
. . .

tape head

(b)

σlσr

σ2

σ3

σ2σ3

σ2

σ2

Figure 2: (a) Example Turing machine tape contents. The Turing machine’s blank symbol isσ1. (b)
Clockwise Turing machine encoding of the Turing machine tape contents in (a), the symbolsσr andσl

encode the infinite sequence of blank symbols to the right andleft of M ’s encoded tape contents.

A clockwise transition rule is executed as follows: If the write valuev is from Σ then the tape cell
containing the read symbol is overwritten byv, if v is from ΣΣ then the cell containing the read symbol
becomes two cells, each of which contain a symbol fromv. The machine’s state becomesqy and the tape
head moves clockwise by one tape cell. Here we define clockwise Turing machines to be deterministic.

Lemma 2.1. Let M be a deterministic Turing machine with a single tape that computes in timet, then
there is clockwise Turing machineCM that simulates the computationM in timeO(t2) and spaceO(t).

Proof:
Let M = ({q1, . . . , q|Q|}, {σ1, . . . , σ|Σ|}, σ1, f, q1, {q|Q|}). Without loss of generality we can assume
thatM is a Turing machine that has the following restrictions: (i)the blank symbolσ1 does not appear
as input toM , (ii) M may read the blank symbolσ1 but is not permitted to write it to the tape, (iii)M
has exactly one final state. Due to the restrictions placed onM we know that whenM reads a blank
symbol it is either at the left or right end of its tape contents. We construct a clockwise Turing machine
CM = (QC ,ΣC , fC , q1, q|Q|) that simulatesM , whereQC ,ΣC , fC are defined below.

ΣC = {σ2, . . . , σ|Σ|, σr, σl, σm}

The symbolσm is a special marker symbol and symbolsσr andσl encode the infinite sequence of blank
symbols to the right and left ofM ’s encoded tape contents, respectively (see Figure 2).

QC ={q1, q1,2, . . . , q1,|Σ|, q1,r, q1,r′ , q1,l,

q2, q2,2, . . . , q2,|Σ|, q2,r, q2,r′ , q2,l,

...

q|Q|, q|Q|,2, . . . , q|Q|,|Σ|, q|Q|,r, q|Q|,r′, q|Q|,l}

We can think of right moves ofM ’s tape head as clockwise moves ofCM ’s tape head. Here we give
right move transition rules followed by the clockwise transition rules that simulate them.

qx, σk, σj , R, qy : qx, σk, σj , qy (1)

qx, σ1, σj , R, qy : qx, σl, σlσj, qy (2)

T. Neary and D. Woods / Four Small Universal Turing Machines 109

whereσk, σj 6= σ1. The clockwise transition rule in Equation (2) simulatesM printing the write symbol
σj over the blank symbol immediately to the left of its tape contents. The clockwise transition rule’s
write valueσlσj ∈ ΣΣ also preservesσl; the symbol that encodes the infinite sequence of blank symbols
to the left of the tape contents.

The remaining right moving case is whenM ’s tape head is over the blank symbol immediately to the
right of its tape contents. In such a caseCM ’s tape head is initially overσr, and then immediately after
simulation of the transition rule,CM ’s tape head is again overσr. Immediately below are the clockwise
transition rules that simulate this case.

qx, σ1, σj , R, qy :
qx, σr, σjσr, qy,r′ (∗)

qy,r′ , σi, σi, qy,r′ (∗∗)

whereσi ∈ ΣC − {σm, σr}. The clockwise transition rule (*) printsM ’s encoded write symbolσj

and sendsCM ’s control into stateqy,r′ . Stateqy,r′ movesCM ’s tape head around the tape to the cell
containingσr. This completes the simulation of the transition rule.

Left moving transition rules are more difficult to simulate asCM ’s tape head moves only clockwise.
CM begins by marking the current location of the tape head with the symbolσm. CM now moves
each symbol clockwise by one cell. WhenCM ’s tape head readsσm the left move is complete. This
process moves the tape head anti-clockwise relative to the tape contents, thus simulating a left move.
Immediately below is given the clockwise transition rules that mark the tape head’s location with the
symbolσm.

qx, σ1, σj , L, qy : qx, σl, σlσm, qy,j

qx, σ1, σj , L, qy : qx, σr, σmσj, qy,r

qx, σk, σj , L, qy : qx, σk, σm, qy,j

The clockwise transition rules that move each symbol clockwise by one cell are of the form:

qy,n, σs, σn, qy,s

whereσs, σn ∈ ΣC − {σm}. WhenCM ’s tape head readsσm thenCM is in a state of the formqy,s and
the unique clockwise transition rule defined by the state-symbol pair (qy,s, σm) will begin simulation of
the next transition rule. This transition rule is of the form(qy, σ1, σk,D, qz) if σs = σr, σl and of the
form (qy, σs, σk,D, qz) if σs 6= σr, σl.

Input toM is encoded forCM by a finite state transducer. Given this encoded inputCM simulates
the sequence oft transition rules inM ’s computation and halts in stateq|Q| the encoding ofM ’s halt
stateq|Q|. CM uses space ofO(t). A single computation step ofM is simulated inO(t) steps ofCM .
Thus the computation time ofCM is O(t2). ⊓⊔

2.2. Bi-tag systems simulate clockwise Turing machines

In this section we present the bi-tag system, our new varianton the tag system, and prove that it simulates
Turing machines via clockwise Turing machines. The operation of a bi-tag system is similar to that of
a standard tag system [12]. Bi-tag systems are essentially 1-tag systems (and so they read and delete
one symbol per timestep), augmented with additional context sensitive rules that read, and delete, two
symbols per timestep.

110 T. Neary and D. Woods / Four Small Universal Turing Machines

Definition 2.2. (Bi-tag system)
A bi-tag system is a tuple(A,E, eh, P). HereA andE are disjoint finite sets of symbols andeh ∈ E is
the halt symbol.P is the finite set of productions. Each production is of one of the following 3 forms:

P (a) = a, P (e, a) ∈ AE, P (e, a) ∈ AAE,

wherea ∈ A, e ∈ E, andP is defined on all elements of{A ∪ ((E − {eh}) × A)} and undefined on all
elements of{eh} × A. Bi-tag systems are deterministic.

A configuration of a bi-tag system is a word of the formw = A∗(AE∪EA)A∗. We callw the dataword.

Definition 2.3. (BTS computation step)
A production is applied in one of two ways:

(i) if s = as′ thenas′ ⊢ s′P (a),

(ii) if s = eas′ theneas′ ⊢ s′P (e, a).

A bi-tag system computation is a finite sequence of computation steps that are consecutively applied
to an initial dataword. Ifeh is the leftmost symbol in the dataword then the computation halts.

Example 2.1. (Bi-tag system computation.)Let bi-tag systemB1 = ({a0, a1}, {e0, e1, e2}, e2, P)
where the setP = {a0 → a0, a1 → a1, e0a0 → a1e0, e0a1 → a1e2, e1a0 → a0e0, e1a1 → a1e2}.
Given the worda1e0a0, the computation ofB1 proceeds as follows:

a1e0a0 ⊢ e0a0a1 ⊢ a1a1e0 ⊢ a1e0a1 ⊢ e0a1a1 ⊢ a1a1e2 ⊢ a1e2a1 ⊢ e2a1a1

The computation halts as the halt symbole2 has become the leftmost symbol.

Lemma 2.2. Let C be a clockwise Turing machine that runs in timet, then there is a bi-tag systemBC

that simulates the computation ofC in timeO(t2) and spaceO(t).

Before giving the proof of Lemma 2.2 we explain the proof idea. EachA symbol ofBC encodes a
symbol ofC ’s tape alphabet. EachE symbol ofBC encodes a state ofC. The location of theE symbol
in the dataword represents the location ofC ’s tape head, as illustrated in Figure 3.

Each clockwise transition rule ofC is simulated in the following way. The change of state, symbol
and tape head position is simulated by executing aP production over theE × A pair that encodes
the current state and read symbol (see Figure 3(c)). A production is then applied to each symbol in
the dataword. This moves the newE × A pair to the left of the dataword, in order to prepare for the
simulation of the next clockwise transition rule.

Proof:
Let clockwise Turing machineC=({q1, . . . , q|Q|}, {σ1, . . . , σ|Σ|}, f, q1, q|Q|). We construct a bi-tag sys-
temBC that simulatesC ’s computation.

BC = (AC , EC , e|Q|, PC)

whereAC , EC , PC are defined below.

AC = {a1, . . . , a|Σ|}

T. Neary and D. Woods / Four Small Universal Turing Machines 111

(a)

0
01

0

q2 (b)

1
01

0
q3

(c) e2 0 0 0 1 applye20 → 1e3

0 0 1 1 e3 apply0 → 0

0 1 1 e3 0 apply0 → 0

1 1 e3 0 0 apply1 → 1

1 e3 0 0 1 apply1 → 1

(d) e3 0 0 1 1 simulation complete

Figure 3: Bi-tag system simulating the clockwise transition rule (q2, 0, 1, q3). The clockwise Turing
machine statesq2 andq3 are encoded ase2 ande3, respectively. Thee symbols also mark the location
of the simulated tape head. (a) A configuration of the clockwise Turing machine before execution of
the clockwise transition rule. (b) A configuration of the clockwise Turing machine after execution of
the clockwise transition rule. (c) Bi-tag system encoding of the configuration in (a). (d) Bi-tag system
encoding of the configuration in (b).

C ’s tape symbolsσ1, . . . , σ|Σ| are encoded asa1, . . . , a|Σ|, respectively.

EC = {e1, . . . , e|Q|}

C ’s statesq1, . . . , q|Q| are encoded ase1, . . . , e|Q|, respectively, and the encoded halt statee|Q| is the halt
symbol ofBC .

PC = {a1 → a1, . . . , a|Σ| → a|Σ|} ∪ P ′
C

P ′
C is the set of productions defined on(E − {e|Q|}) × A. There is one production inP ′

C for each
clockwise transition rule inC. Clockwise transition rules fall in two categories, those that write a single
symbol fromΣ and those that write a pair of symbols fromΣΣ. The two possible clockwise transition
rules, and their encodings as productions, are as follows

(qx, σi, σj , qy) : exai → ajey

(qx, σi, σjσk, qy) : exai → ajakey

We have constructed a bi-tag systemBC that simulatesC. BC usesO(t) space. To simulate a
computation step ofC, a production is applied to each symbol in the dataword that encodes the current
configuration ofC, as the example in Figure 3 illustrates. This takesO(t) steps and yields a new data-
word that encodes the next configuration ofC ’s computation. In this wayBC simulatest steps ofC ’s
computation in timeO(t2). The simulation halts when the halt symbole|Q| that encodes the halt state of
C becomes the leftmost symbol in the dataword. ⊓⊔

Given a single tape deterministic Turing machineM that runs in timet, we conclude from Lem-
mata 2.1 and 2.2 thatM is simulated by a bi-tag system in timeO(t4). However this overhead is easily
improved toO(t3) as the next theorem shows.

Theorem 2.1. Let M be a deterministic Turing machine with a single tape that computes in timet, then
there is a bi-tag systemBM that simulates the computation ofM in timeO(t3) and spaceO(t).

112 T. Neary and D. Woods / Four Small Universal Turing Machines

Proof:
From Lemmata 2.1 and 2.2 a bi-tag system simulates the computation of M via a clockwise Turing
machineCM . From Lemma 2.1CM simulatesM in time O(t2). HoweverCM usesO(t) space, hence
BM usesO(t) space.BM appliesO(t) productions to simulate a clockwise transition rule ofCM . Thus
BM simulatesO(t2) clockwise transition rules to simulateM via CM in timeO(t3). ⊓⊔

3. Universal Turing machines

In this section we give the input encoding to our universal Turing machines. Following this we give each
machine and describe its operation by explaining how it simulates bi-tag systems. LetB = (A,E, eh, P)
be a bi-tag system whereA = {a1, . . . , aq} andE = {e1, . . . , eh}. The encoding ofB as a word is
denoted〈B〉. The encodings of symbolsa ∈ A ande ∈ E are denoted〈a〉 and〈e〉, respectively. The
encodings of productionsP (a) andP (e, a) are denoted as〈P (a)〉 and〈P (e, a)〉, respectively.

Definition 3.1. The encoding of a configuration ofB is of the form

. . . ccc〈B〉S∗G(〈A〉N)∗
(

〈A〉N〈E〉 ∪ 〈E〉〈A〉N
)

(〈A〉N)∗Dccc . . . (3)

where〈B〉 is given by Equation (4) and Tables 1, 2 and 3,S∗ andG are given by Table 1, and the word

(〈A〉N)∗
(

〈A〉N〈E〉 ∪ 〈E〉〈A〉N
)

(〈A〉N)∗D encodesB’s dataword via Table 1.

〈B〉 =H〈P (eh−1, aq)〉V 〈P (eh−1, aq−1)〉 . . . V 〈P (eh−1, a1)〉

...

V 〈P (e1, aq)〉V 〈P (e1, aq−1)〉 . . . V 〈P (e1, a1)〉

V 2〈P (aq)〉V
2〈P (aq−1)〉 . . . V 2〈P (a1)〉V

3

(4)

whereV andH are given by Table 1. In Equation (3) the position of the tape head is over the rightmost
symbol ofG for U15,2 and is immediately to the right of〈B〉S∗G for each of the other Turing machines.
The initial state isu1 and the blank symbol is c.

〈ai〉 〈ej〉 〈eh〉 S G N D V H

U5,5 b4i−1 b4jq b4hq+3δ d2 ǫ δ ǫ δ cdδ

U6,4 b8i−5 b8jq b8q(h+1)+5δ g2 ǫ δ b δ Equation (5)

U9,3 b4i−1 b4jq b4hq c2 ǫ δ ǫ δcc bccbc

U15,2 (cb)8i−5 (cb)8jq (cb)8hq+3bb (cc)2 bc bb ǫ cb bbcccb

Table 1: Symbol values for Equations (3) and (4). The value ofH for U6,4 is given by Equation (5) in
Section 3.4.

T. Neary and D. Woods / Four Small Universal Turing Machines 113

〈P (ej , ai)〉 〈P (ej , ai)〉

〈P (ai)〉 P (ej , ai) = akem P (ej , ai) = akeh

U5,5 δδd16i−6 δδd16mqδd16k−6 δδd16hq+14δd16k−6

U6,4 δ5g12i−10δ δ4g12mqδδg12k−10δ δ4g12q(h+1)+8δδg12k−10δ

U9,3 δδccδc8i δccδδc8mq+2δc8k δccδδc8hq+2δc8k

U15,2 (cb)4(cccb)2(cc)8i−5 (cb)5(cc)8mq(cccb)2(cc)8k−5 (cb)3(cccb)2(cc)8hq+3(cccb)2(cc)8k−5

Table 2: Encoding ofP productions. Hereai, ak, av ∈ A andej , em, eh ∈ E. Given in the rightmost
column is the special encoding for productions which cause the halt symboleh to be printed. NoteU9,3

encodes such productions, that printeh, in the same way as its other productions.

〈P (ej , ai)〉 〈P (ej , ai)〉

P (ej, ai) = avakem P (ej, ai) = avakeh

U5,5 δd16mqδd16k−2δd16v−6 δd16hq+14δd16k−2δd16v−6

U6,4 δ2g12mqδδg12hq+12k−4δδg12v−10δ δ2g12q(h+1)+8δδg12hq+12k−4δδg12v−10δ

U9,3 δδc8mq+2δc8kδc8v δδc8hq+2δc8kδc8v

U15,2 (cb)3(cc)8mq(cccb)2(cc)8k−5(cccb)2(cc)8v−5 cb(cccb)2(cc)8hq+3(cccb)2(cc)8k−5(cccb)2(cc)8v−5

Table 3: See caption text for Table 2.

3.1. Universal Turing machine algorithm overview

Each of our universal Turing machines use the same basic simulation algorithm. Here we give a brief
description of the algorithm by explaining how our machineslocate and simulate a production. The
encoded production to be simulated is located using a unary indexing method as illustrated in Figure 4.
The encoded production,〈P (ai)〉 or 〈P (ej , ai)〉 in Equation (4), is indexed (pointed to) by the number
of symbols contained in the leftmost encoded symbol or pair of symbols in the encoded dataword (Equa-
tion (3)). For illustration purposes we assume that we are using U9,3. If the leftmost encoded symbol is
〈ai〉 = b4i−1 (Table 1) then the value4i − 1 is used to index〈P (ai)〉. If the leftmost encoded symbol
is 〈ej〉 = b4jq, and〈ai〉 = b4i−1 is adjacent, then the value4jq + 4i − 1 is used to index〈P (ej , ai)〉.
The number ofb symbols in the encoded symbol, or pair of encoded symbols, isequal to the number of
δc∗ words between the leftmost encoded symbol and the encoded production to be simulated. To locate
this production,U9,3 simply changes oneδc∗ word toδb∗, for eachb in the leftmost encoded symbol or
pair of encoded symbols. This process continues until theδ that separates two encoded symbols in the
dataword is read. Note from Equation (3) that there is noδ marker between each〈ej〉 and the〈ai〉 to
its right, thus allowing〈ej〉〈ai〉 to be read together during indexing. After indexing, our machines print
the indexed production immediately to the right of the encoded dataword as shown in Figure 5. After
the indexed production has been printed, then〈B〉, the encoding ofB, is restored to its original value as
illustrated in configurations (ii) and (iii) of Figure 5. This completes the simulation of the production.

114 T. Neary and D. Woods / Four Small Universal Turing Machines

encoding of bi-tag systemB -� encoding
of dataword� -

〈a〉� -
δ · · · δ δ δ δ δ〈P 〉 〈P 〉 〈P 〉 〈P 〉 b b b δ 〈a〉 〈e〉 δ

δ · · · δ δ δ δ δ〈P 〉 〈P 〉 〈P 〉 〈P 〉 b b b δ 〈a〉 〈e〉 δ
⇑ � tape head ofU

δ · · · δ δ δ δ δ〈P 〉 〈P 〉 〈P 〉 〈P 〉 b/ b b δ 〈a〉 〈e〉 δ
⇑

δ · · · δ δ δ δ δ/〈P 〉 〈P 〉 〈P 〉 〈P 〉 b/ b b δ 〈a〉 〈e〉 δ
⇑

δ · · · δ δ δ δ δ/〈P 〉 〈P 〉 〈P 〉 〈P 〉 b/ b/ b δ 〈a〉 〈e〉 δ
⇑

δ · · · δ δ δ δ/ δ/〈P 〉 〈P 〉 〈P 〉 〈P 〉 b/ b/ b δ 〈a〉 〈e〉 δ
⇑

δ · · · δ δ δ δ/ δ/〈P 〉 〈P 〉 〈P 〉 〈P 〉 b/ b/ b/ δ 〈a〉 〈e〉 δ
⇑

(i) δ · · · δ δ δ/ δ/ δ/〈P 〉 〈P〉 〈P 〉 〈P 〉 b/ b/ b/ δ 〈a〉 〈e〉 δ
⇑

indexed encoded
production

6

Figure 4: Indexing of an encoded production during simulation of a production ofB. The encoded
production〈P 〉, to be executed, is indexed by reading the leftmost encoded symbol 〈a〉 in the encoded
dataword and marking offδ symbols in the encoding ofB.

Extensive computer testing has been carried out on each of our universal Turing machines.

3.2. U9,3

u1 u2 u3 u4 u5 u6 u7 u8 u9

c bRu1 cLu3 cLu3 bLu9 cRu6 bLu4 δLu4 cRu7 bLu5

b cLu2 cLu2 bLu4 bLu4 bRu6 bRu7 cRu9 cRu8

δ δRu3 δLu2 δRu1 δLu4 δLu8 δRu6 δRu7 δRu8 cRu1

Table 4:Table of behaviour forU9,3.

Example 3.1. (U9,3 simulating the execution of the productionP (a1))
This example is presented using three cycles. The tape head of U9,3 is given by an underline. The current
state ofU9,3 is given to the left in bold. The dataworda1ejai is encoded via Equation (3) and Table 1 as
bbbδb4jqb4i−1δ andP (a1) is encoded via Table 2 as〈P (a1)〉 = δδccδc8 . From Equation (3) we get the

T. Neary and D. Woods / Four Small Universal Turing Machines 115

encoding of bi-tag systemB -�

〈P 〉-�
(i) δ · · · δ δ δ/ δ/ δ/〈P 〉 c c c 〈P 〉 〈P 〉 b/ b/ b/ δ 〈a〉 〈e〉 δ c c c · · ·

⇑

δ · · · δ δ δ/ δ/ δ/〈P 〉 c c c 〈P 〉 〈P 〉 b/ b/ b/ δ 〈a〉 〈e〉 δ c c c · · ·
⇑

δ · · · δ δ δ/ δ/ δ/〈P 〉 c c c/ 〈P 〉 〈P 〉 b/ b/ b/ δ 〈a〉 〈e〉 δ c c c · · ·
⇑

δ · · · δ δ δ/ δ/ δ/〈P 〉 c c c/ 〈P 〉 〈P 〉 b/ b/ b/ δ 〈a〉 〈e〉 δ b c c · · ·
⇑

δ · · · δ δ δ/ δ/ δ/〈P 〉 c c/ c/ 〈P 〉 〈P 〉 b/ b/ b/ δ 〈a〉 〈e〉 δ b c c · · ·
⇑

δ · · · δ δ δ/ δ/ δ/〈P 〉 c c/ c/ 〈P 〉 〈P 〉 b/ b/ b/ δ 〈a〉 〈e〉 δ b b c c · · ·
⇑

δ · · · δ δ δ/ δ/ δ/〈P 〉 c/ c/ c/ 〈P 〉 〈P 〉 b/ b/ b/ δ 〈a〉 〈e〉 δ b b c c · · ·
⇑

(ii) δ · · · δ δ δ/ δ/ δ/〈P 〉 c/ c/ c/ 〈P 〉 〈P 〉 b/ b/ b/ δ 〈a〉 〈e〉 δ b b b c · · ·
⇑

(iii) δ · · · δ δ δ δ δ〈P 〉 c c c 〈P 〉 〈P 〉 c c c c 〈a〉 〈e〉 δ b b b c · · ·
⇑

encoding
of dataword

� -

〈a〉� -

Figure 5: Printing of an encoded production during simulation of a production ofB. Over a number of
timesteps, the encoded production〈P 〉 that was indexed in configuration (i) of Figure 4, is printed to the
right of the encoded dataword.

initial configuration:

u1u1u1, . . . 〈P (a2)〉(δcc)
2δδccδc8δccδccδccbbbδb4jqb4i−1δccc . . .

Cycle 1 (Index next production). In Cycle 1 (Table 5),U9,3 reads the leftmost encoded symbol and
locates the next encoded production to execute (see Figure 4). U9,3 scans right until it readsb in stateu1.
ThenU9,3 scans left in statesu2 andu3 until it reads the subwordδc∗. This subword is changed toδb∗ as
U9,3 scans right in statesu1 andu3. The process is repeated untilU9,3 readsb in stateu3. This indicates
that we have finished reading the leftmost encoded symbol, orpair of encoded symbols, and that the
encoded production to be executed has been indexed. This signals the end of Cycle 1 and the beginning
of Cycle 2.

u1 u2 u3

c bRu1 cLu3 cLu3

b cLu2 cLu2 bLu4

δ δRu3 δLu2 δRu1

Table 5: Cycle 1 ofU9,3.

u4 u5 u6 u7 u8 u9

c bLu9 cRu6 bLu4 δLu4 cRu7 bLu5

b bLu4 bRu6 bRu7

δ δLu4 δLu8 δRu6 δRu7 δRu8

Table 6:Cycle 2 ofU9,3.

116 T. Neary and D. Woods / Four Small Universal Turing Machines

⊢ u2u2u2, . . . 〈P (a2)〉(δcc)
2δδccδc8δccδccδcccbbδb4jqb4i−1δccc . . .

⊢2 u3u3u3, . . . 〈P (a2)〉(δcc)
2δδccδc8δccδccδcccbbδb4jqb4i−1δccc . . .

⊢4 u1u1u1, . . . 〈P (a2)〉(δcc)
2δδccδc8δccδccδbbbbbδb4jqb4i−1δccc . . .

⊢44 u1u1u1, . . . 〈P (a2)〉(δcc)
2δδccδc8δbbδbbδbbbbbδb4jqb4i−1δccc . . .

⊢2 u4u4u4, . . . 〈P (a2)〉(δcc)
2δδccδc8δbbδbbδbbbbbδb4jqb4i−1δccc . . .

In the configuration immediately above the encoded production 〈P (a1)〉 has been indexed and we have
entered Cycle 2.

Cycle 2 (Print production). Cycle 2 (Table 6) prints the encoded production, that was indexed in
Cycle 1, immediately to the right of the encoded dataword (see Figure 5).U9,3 scans left in stateu4 and
records the next symbol of the encoded production to be printed. If U9,3 reads the subwordccc it enters
stateu6, scans right, and printsb at the right end of the encoded dataword. A singleb is printed for each
cc pair that does not haveδ immediately to its left. IfU9,3 reads the subwordcδcc it scans right in state
u7 and printsδ at the right end of the encoded dataword. This process is repeated until the end of the
encoded production is detected by reading the subwordδδcc which causesU9,3 to enter Cycle 3.

⊢13 u4u4u4, . . . 〈P (a2)〉(δcc)
2δδccδc6cc(δbb)3bbbδb4jqb4i−1δccc . . .

⊢3 u6u6u6, . . . 〈P (a2)〉(δcc)
2δδccδc6bb(δbb)3bbbδb4jqb4i−1δccc . . .

⊢4(jq+i)+14 u6u6u6, . . . 〈P (a2)〉(δcc)
2δδccδc6bb(δbb)3bbbδb4jqb4i−1δccc . . .

⊢ u4u4u4, . . . 〈P (a2)〉(δcc)
2δδccδc6bb(δbb)3bbbδb4jqb4i−1δbccc . . .

In the configuration immediately above the first symbol of theencoded production〈P (a1)〉 has been
printed. Following the printing of the final symbol of the encoded production we get:

⊢∗ u4u4u4, . . . 〈P (a2)〉(δcc)
2δδccδb8(δbb)3bbbδb4jqb4i−1δb3δccc . . .

⊢3 u8u8u8, . . . 〈P (a2)〉(δcc)
2δδbbδb8(δbb)3bbbδb4jqb4i−1δb3δccc . . .

In the configuration immediately above we have finished printing the encoded production〈P (a1)〉 to the
right of the dataword and we have entered Cycle 3.

Cycle 3 (Restore tape).Cycle 3 (Table 7) restores〈B〉 to its original value (see configurations (ii) and
(iii) in Figure 5). The tape head ofU9,3 scans right switching between statesu8 andu9 changingb
symbols toc symbols. This continues untilU9,3 reads theδ marking the leftmost end of the dataword in
u9. Note from Tables 2 and 3 and Equation (4) that there is an evennumber ofb symbols between each
pair of δ symbols in〈B〉 hence eachδ symbol in〈B〉 will be read in stateu8. Eachai symbol in the
dataword is encoded by an odd number ofb symbols (〈ai〉 = b4i−1) and hence the firstδ symbol in the
dataword will be read in stateu9. Thisδ symbol marks the left end of the new dataword and causesU9,3

to enter stateu1 thus completing Cycle 3 and the production simulation.

⊢25 u9u9u9, . . . 〈P (a2)〉(δcc)
2δδccδc8(δcc)3cccδb4jqb4i−1δb3δccc . . .

⊢ u1u1u1, . . . 〈P (a2)〉(δcc)
2δδccδc8(δcc)3ccccbb4jq−1b4i−1δb3δccc . . .

T. Neary and D. Woods / Four Small Universal Turing Machines 117

u8 u9

b cRu9 cRu8

δ δRu8 cRu1

Table 7:Cycle 3 ofU9,3.

In the last configuration of Cycle 3 our example simulation ofproductionP (a1) is complete.

Theorem 3.1. Given a bi-tag systemB that runs in timet the computation ofB is simulated byU9,3 in
timeO(t2).

Proof:
In order to prove the correctness ofU9,3 we prove thatU9,3 simulates any possibleP (a) or P (e, a)
production of an arbitrary bi-tag system and, thatU9,3 also simulates halting when the encoded halt
symbol〈eh〉 is encountered. In Example 3.1U9,3 simulatesP (a1) for an arbitrary bi-tag system where
a1 is the leftmost symbol in a fixed dataword. This example easily generalises to any productionP (ai)
whereai is the leftmost symbol in an arbitrary dataword. When somee ∈ E is the leftmost symbol in
the dataword then some productionP (e, a) must be executed. The simulation ofP (a1) in Example 3.1
is also used to verify the simulation ofP (e, a). Note from Equation (3) that there is noδ marker between
each〈ej〉 and the adjacent〈ai〉 to its right, thus〈ej〉 and〈ai〉 are read together during Cycle 1. Using the
encoding in Definition 3.1, the number ofb symbols in〈ej〉〈ai〉 indexes〈P (e, a)〉. Thus, the indexing
of 〈P (e, a)〉 is carried out in the same manner as the indexing of〈P (a)〉. The printing of production
〈P (e, a)〉 during Cycle 2 and the subsequent restoring of〈B〉 during Cycle 3 proceed in the same manner
as withP (a1).

If the encoded halt symbol〈eh〉 = b4hq is the leftmost symbol in the encoded dataword, and〈ai〉 =
b4−i is adjacent, this is encoded via Definition 3.1 as follows:

u1u1u1, bccbc〈P (eh−1, aq)〉δcc . . . 〈P (a1)〉(δcc)
3(cc)∗bb4hq−1b4i−1δ(〈A〉δ)∗ccc . . .

During Cycle 1, immediately after reading the(4hq + 3)th b symbol in the dataword,U9,3 scans left in
u2 and we get the following:

⊢∗ u2u2u2, bccbc〈P (eh−1, aq)〉δcc . . . 〈P (a1)〉(δcc)
3(cc)∗c4hq+3b4i−4δ(〈A〉δ)∗ccc . . .

⊢4 u5u5u5, bbbbc〈P (eh−1, aq)〉δcc . . . 〈P (a1)〉(δcc)
3(cc)∗c4hq+3b4i−4δ(〈A〉δ)∗ccc . . .

There is no transition rule in Table 4 for the case ‘when inu5 readb’, hence the computation halts. ⊓⊔

The proof of correctness given forU9,3 can be applied to the remaining machines in a straightforward
way, so we do not restate it.

3.3. U5,5

The dataworda1ejai is encoded via Equation (3) and Table 1 asbbbδb4jqb4i−1δ, andP (a1) is encoded
via Table 2 as〈P (a1)〉 = δδd10. From Equation (3) we get the initial configuration:

u1u1u1, . . . δ2〈P (a2)〉δ
2δδd10δδδbbbδb4jqb4i−1δccc . . .

118 T. Neary and D. Woods / Four Small Universal Turing Machines

u1 u2 u3 u4 u5

g bLu1 gRu1 bLu3

b gLu1 gRu2 dRu5 gRu4 dRu3

δ cRu2 cRu2 δRu3 cRu4 dRu1

c δLu1 bLu3 δLu3 δLu3

d bLu1 gRu2 bLu5 bLu2 bLu4

Table 8:Table of behaviour forU5,5.

Cycle 1 (Index next production). In Cycle 1 (Table 9) whenU5,5 readsb in stateu1, it changes it tog
and scans left until it readsδ. Thisδ is changed toc andU5,5 then enters stateu2 and scans right until it
readsg which causes it to re-enter stateu1. This process is repeated untilU5,5 reads theδ that separates
a pair of encoded symbols in the encoded dataword. This signals the end of Cycle 1 and the beginning
of Cycle 2.

u1 u2

g bLu1 gRu1

b gLu1 gRu2

δ cRu2 cRu2

c δLu1

d bLu1

Table 9:Cycle 1 ofU5,5.

U5,5 u2 u3 u4 u5

g bLu3

b gRu2 gRu4

δ cRu2 δRu3 cRu4

c bLu3 δLu3 δLu3

d gRu2 bLu5 bLu2 bLu4

Table 10:Cycle 2 ofU5,5.

U5,5 u3 u5

b dRu5 dRu3

δ δRu3 dRu1

Table 11:Cycle 3 ofU5,5.

⊢3 u1u1u1, . . . δ2〈P (a2)〉δ
2δδd10δδcgbbδb4jqb4i−1δccc . . .

⊢18 u1u1u1, . . . δ2〈P (a2)〉δ
2δδd10cccgggδb4jqb4i−1δccc . . .

⊢ u2u2u2, . . . δ2〈P (a2)〉δ
2δδd10cccgggcbb4jq−1b4i−1δccc . . .

Cycle 2 (Print production). Cycle 2 (Table 10) begins withU5,5 scanning right and printingb to the
right of the encoded dataword. Following this,U5,5 scans left in stateu3 and records the next symbol of
the encoded production to be printed. IfU5,5 reads the subworddddd it enters stateu2, scans right, and
prints b at the right end of the encoded dataword. IfU5,5 reads the subwordδdd it scans right in state
u4 and printsδ at the right end of the encoded dataword. This process is repeated until the end of the
encoded production is detected by readingδ in stateu3, which causesU5,5 to enter Cycle 3.

⊢∗ u3u3u3, . . . δ2〈P (a2)〉δ
2δδd6ddddδδδbbbδb4jqb4i−1δbccc . . .

⊢3 u2u2u2, . . . δ2〈P (a2)〉δ
2δδd6dbbbδδδbbbδb4jqb4i−1δbccc . . .

⊢∗ u3u3u3, . . . δ2〈P (a2)〉δ
2δδddb8δδδbbbδb4jqb4i−1δbbbccc . . .

⊢2 u4u4u4, . . . δ2〈P (a2)〉δ
2δδbbb8δδδbbbδb4jqb4i−1δbbbccc . . .

⊢∗ u3u3u3, . . . δ2〈P (a2)〉δ
2δδbbb8δδδbbbδb4jqb4i−1δbbbδccc . . .

Cycle 3 (Restore tape).In Cycle 3 (Table 11) the tape head ofU5,5 scans right switching between states
u3 andu5 changingb symbols tod symbols. This continues untilU5,5 reads theδ marking the leftmost

T. Neary and D. Woods / Four Small Universal Turing Machines 119

end of the encoded dataword inu5. Note from Tables 2 and 3 and Equation (4) that there is an even
number ofd symbols between each pair ofδ symbols in〈B〉 hence eachδ symbol in〈B〉 will be read in
stateu3. Eachai symbol in the dataword is encoded by an odd number of symbols (〈ai〉 = b4i−1) and
hence the firstδ symbol in the dataword will be read in stateu5. This causesU5,5 to enter stateu1 thus
completing Cycle 3 and the production simulation.

⊢19 u1u1u1, . . . δ2〈P (a2)〉δ
2δδd10δδδddddbb4jq−1b4i−1δbbbδccc . . .

Halting for U5,5. If the encoded halt symbol〈eh〉 = b4hq+3δ is the leftmost symbol in the encoded
dataword then this is encoded via Definition 3.1 as follows:

u1u1u1, cdδ〈P (eh−1, aq)〉δ . . . δ2〈P (a1)〉δ
3(dd)∗bb4hq+2δ(〈A〉δ)∗ccc . . .

The computation continues as before untilU5,5 enters Cycle 2 and scans left inu3. Immediately after
U5,5 reads the leftmostd during this leftward scan we get:

⊢∗ u5u5u5, cbδ〈P (eh−1, aq)〉
′δ . . . δ2〈P (a1)〉

′δ3(dd)∗b4hq+3δ(〈A〉δ)∗bccc . . .

In the configuration above,〈P 〉′ denotes the word in which all thed symbols in〈P 〉 are changed tob
symbols. There is no transition rule in Table 8 for the case ‘when inu5 readc’ hence the computation
halts.

3.4. U6,4

u1 u2 u3 u4 u5 u6

g bLu1 gRu1 bLu3 bRu2 bLu6 bLu4

b gLu1 gRu2 bLu5 gRu4 gRu6 gRu5

δ cRu2 cRu2 δLu5 cRu4 δRu5 gRu1

c δLu1 gRu5 δLu3 cRu5 bLu3

Table 12:Table of behaviour forU6,4.

The dataworda1ejai is encoded via Equation (3) and Table (1) asbbbδb8jqb8i−5δb. From Equation (3)
we get the initial configuration:

u1u1u1, . . . δ2〈P (a2)〉δ
2〈P (a1)〉δδδbbbδb

8jqb8i−5δbccc . . .

Cycle 1 (Index next production). In Cycle 1 (Table 13) whenU6,4 readsb in stateu1 it scans left until it
readsδ. Thisδ is changed toc andU6,4 then enters stateu2 and scans right until it readsg which causes
it to re-enter stateu1. This process is repeated untilU6,4 reads theδ that separates a pair of encoded
symbols in the encoded dataword. This signals the end of Cycle 1 and the beginning of Cycle 2.

Cycle 2 (Print production). Cycle 2 (Table 14) begins withU6,4 scanning right and printingbb to the
right of the encoded dataword. Following this,U6,4 scans left in stateu3 and records the next symbol of
the encoded production to be printed. IfU6,4 reads the subwordgggδ or gggb it enters stateu2, scans

120 T. Neary and D. Woods / Four Small Universal Turing Machines

u1 u2

g bLu1 gRu1

b gLu1 gRu2

δ cRu2 cRu2

c δLu1

Table 13:Cycle 1 ofU6,4.

u2 u3 u4 u5 u6

g bLu3 bRu2 bLu6 bLu4

b gRu2 bLu5 gRu4

δ cRu2 δLu5 cRu4 δRu5

c gRu5 δLu3 cRu5 bLu3

Table 14:Cycle 2 ofU6,4.

u5 u6

b gRu6 gRu5

δ δRu5 gRu1

Table 15:Cycle 3 ofU6,4.

right, and printsbb at the right end of the encoded dataword. IfU6,4 reads the subwordδggb it scans
right in stateu4 and printsδb at the right end of the encoded dataword. This process is repeated until
the end of the encoded production is detected by readingδ in stateu5, which causesU6,4 to enter Cycle 3.

Cycle 3 (Restore tape).In Cycle 3 (Table 15) the tape head ofU6,4 scans right switching between states
u5 andu6, changingb symbols tog symbols. This continues untilU6,4 reads theδ marking the leftmost
end of the encoded dataword inu6. Note from Tables 2 and 3 and Equation (4) that there is an even
number ofg symbols between each pair ofδ symbols in〈B〉, hence eachδ symbol in〈B〉 is read in state
u5. Eachai symbol in the dataword is encoded by an odd number of symbols (〈ai〉 = b8i−5) and hence
the firstδ symbol in the dataword is read in stateu6. This causesU6,4 to enter stateu1, thus completing
Cycle 3 and the production simulation.

Special case forU6,4. If we are simulating a production of the formP (e, a) = avakem we have a special
case. Note from Table 3 and Cycle 2 that the simulation ofP (e, a) = avakem for U6,4 results in the
word b8v−5δb8hq+8k−3δb8mqb being printed to the right of the dataword. From Table 1 it is clear that
ak is not encoded in this word in its usual from. However whenU6,4 reads the subwordb8hq+8k−3δ it
indexes〈P (ak)〉 in H which results in〈ak〉 being printed to the dataword. To see this, note that the value
of H from Equation (4) forU6,4 is as follows:

H = cgbV 2〈P (aq)〉V
2〈P (aq−1)〉 . . . V 2〈P (a1)〉V

3 (5)

The halting condition forU6,4 occurs in a similar manner to that ofU5,5. Halting occurs during the first
scan left in Cycle 2 whenU6,4 readsc in stateu6 at the left end of〈B〉 (note from Table 12 that there is
no transition rule for state-symbol pair(u6, c)).

3.5. U15,2

Example 3.2. (U15,2 simulating the execution of the productionP (a1))
The example dataworda1ejai is encoded via Equation (3) and Table (1) ascbcbcbbb(cb)8jq(cb)8i−5bb
andP (a1) is encoded via Table 2 as〈P (a1)〉 = (cb)4(cccb)2(cc)3. Thus from Equation (3) we get the
following initial configuration

u1u1u1, . . . 〈P (a2)〉(cb)
6(cccb)2(cc)3 cb cb cb bc cb cb cb bb (cb)8jq(cb)8i−5 bb cc . . .

In this example we explain howU15,2 operates by considering how it treats pairs of symbols during each
cycle. Thus, the extra whitespace between each pair of symbols is to improve readability and help illus-
trate our explanation ofU15,2’s operation.

T. Neary and D. Woods / Four Small Universal Turing Machines 121

u1 u2 u3 u4 u5 u6 u7 u8

c cRu2 bRu3 cLu7 cLu6 bRu1 bLu4 cLu8 bLu9

b bRu1 bRu1 cLu5 bLu5 bLu4 bLu4 bLu7 bLu7

u9 u10 u11 u12 u13 u14 u15

c cRu1 bLu11 cRu12 cRu13 cLu2 cLu3 cRu14

b bLu10 bRu14 bRu12 bRu12 cRu15 bRu14

Table 16:Table of behaviour forU15,2.

Cycle 1 (Index next production). In Cycle 1 (Table 17)U15,2 scans right in statesu1, u2 andu3 until
it reads the subwordccb which it changes tocbc. Following this, it scans left in statesu4, u5 andu6

until it reads the subwordcb. This cb is changed tobb andU15,2 re-enters stateu1 and scans right. This
process is repeated untilU15,2 has finished reading the encoded read symbol〈ai〉 or symbols〈ai〉 and
〈ej〉. This occurs when the subwordccb no longer appears to the right of the tape head and signals the
end of Cycle 1 and the beginning of Cycle 2.

u1 u2 u3 u4 u5 u6

c cRu2 bRu3 cLu7 cLu6 bRu1 bLu4

b bRu1 bRu1 cLu5 bLu5 bLu4 bLu4

Table 17:Cycle 1 ofU15,2.

⊢3 u5u5u5, . . . 〈P (a2)〉(cb)
6(cccb)2(cc)3 cb cb cb bc bc cb cb bb (cb)8jq(cb)8i−5 bb cc . . .

⊢4 u5u5u5, . . . 〈P (a2)〉(cb)
6(cccb)2(cc)3 cb cb cb bc bc cb cb bb (cb)8jq(cb)8i−5 bb cc . . .

⊢4 u2u2u2, . . . 〈P (a2)〉(cb)
6(cccb)2(cc)3 cb cb bb bc bc cb cb bb (cb)8jq(cb)8i−5 bb cc . . .

⊢20 u2u2u2, . . . 〈P (a2)〉(cb)
6(cccb)2(cc)3 cb bb bb bc bc bc cb bb (cb)8jq(cb)8i−5 bb cc . . .

⊢28 u2u2u2, . . . 〈P (a2)〉(cb)
6(cccb)2(cc)3 bb bb bb bc bc bc bc bb (cb)8jq(cb)8i−5 bb cc . . .

Note that in the configuration immediately above eachcb subword in the encoded read symbol〈a1〉 =
cbcbcb has been changed to the subwordbc. Note also that the substringccb which causes a scan to the
left in u4, u5, andu6 no longer appears in the configuration to the right of the tapehead. This causes
U15,2 to enter Cycle 2.

Cycle 2 (Print production). Cycle 2 (Table 18) begins withU15,2 scanning right and printingcb to the
right of the encoded dataword. Following this,U15,2 scans left in statesu7, u8, u9, u10 andu11 and
records the next symbol of the encoded production to be printed. If, during a scan left,U15,2 reads the
subwordccc then it scans right in statesu1 andu2 and changes thecc immediately to the right of the
encoded dataword tocb. If, during a scan left,U15,2 reads the subwordccbcc it scans right in statesu12

andu13 and changes the firstc to the right of the encoded dataword tob. This process is repeated until
the end of the encoded production is detected by reading the subwordbcbcc during the scan left. This
causesU15,2 to enter Cycle 3.

122 T. Neary and D. Woods / Four Small Universal Turing Machines

u1 u2 u3 u7 u8 u9 u10 u11 u12 u13

c cRu2 bRu3 cLu7 cLu8 bLu9 cRu1 bLu11 cRu12 cRu13 cLu2

b bRu1 bRu1 cLu5 bLu7 bLu7 bLu10 bRu14 bRu12 bRu12

Table 18:Cycle 2 ofU15,2.

⊢∗ u1u1u1, . . . 〈P (a2)〉(cb)
6(cccb)2 cc cc cc (bb)3(bc)4 bb (cb)8jq(cb)8i−5 bb cc cc cc . . .

⊢3 u7u7u7, . . . 〈P (a2)〉(cb)
6(cccb)2 cc cc cc (bb)3(bc)4 bb (cb)8jq(cb)8i−5 bb cb cc cc . . .

⊢∗ u7u7u7, . . . 〈P (a2)〉(cb)
6(cccb)2 cc cc cc (bb)3(bc)4 bb (cb)8jq(cb)8i−5 bb cb cc cc . . .

⊢3 u1u1u1, . . . 〈P (a2)〉(cb)
6(cccb)2 cc cc bc (bb)3(bc)4 bb (cb)8jq(cb)8i−5 bb cb cc cc . . .

⊢∗ u7u7u7, . . . 〈P (a2)〉(cb)
6(cccb)2 cc cc bc (bb)3(bc)4 bb (cb)8jq(cb)8i−5 bb cb cb cc . . .

Each time the substringccc is read during a scan left in statesu7, u8, andu9 U15,2 scans right and prints
cb to the right of the encoded dataword. Thus we get:

⊢∗ u7u7u7, . . . 〈P (a2)〉(cb)
6 cc cb cc cb cc bc bc (bb)3(bc)4 bb (cb)8jq(cb)8i−5 bb (cb)3 cc cc . . .

⊢5 u12u12u12, . . . 〈P (a2)〉(cb)
6 cc cb cc bb bc bc bc (bb)3(bc)4 bb (cb)8jq(cb)8i−5 bb (cb)3 cc cc . . .

⊢∗ u7u7u7, . . . 〈P (a2)〉(cb)
6 cc cb cc bb bc bc bc (bb)3(bc)4 bb (cb)8jq(cb)8i−5 bb (cb)3 bc cc . . .

Each time the substringccbcc is read during a scan left in statesu7, u8, u9, u10, andu11 U15,2 scans right
and printsb to the right of the encoded dataword. Thus we get:

⊢∗ u7u7u7, . . . 〈P (a2)〉(cb)
4 cb cb cc bb bc bb (bc)3(bb)3(bc)4 bb (cb)8jq(cb)8i−5 bb (cb)3 bb cc . . .

⊢5 u14u14u14, . . . 〈P (a2)〉(cb)
4cb bb bc bb bc bb (bc)3(bb)3(bc)4 bb (cb)8jq(cb)8i−5 bb (cb)3 bb cc . . .

When the substringbcbcc is read during a scan left in statesu7, u8, u9, u10, andu11 Cycle 2 is complete
and Cycle 3 is entered. Thus in the configuration immediatelyaboveU15,2 has entered Cycle 3.

Cycle 3 (Restore tape).In Cycle 3 (Table 19) the tape head ofU15,2 scans right in statesu14 andu15

changing eachbc to cc and eachbb to cb. This continues untilU15,2 readsc in stateu14. Thisc marks the
leftmost end of the dataword. Note that during Cycles 1 and 2 eachcc in 〈B〉 and eachcb in the encoded
read symbol are changed to the subwordsbc. Also during Cycles 1 and 2, eachcb subword in〈B〉 is
changed to the subwordbb. Thusc will not be read inu14 until we encounter the subwordcb at the left
end of the next encoded symbol to be read in the dataword.

⊢9 u15u15u15, . . . 〈P (a2)〉(cb)
4 cb cb cc cb cc cb (bc)3(bb)3(bc)4 bb cb (cb)8jq−1(cb)8i−5 bb (cb)3 bb cc . . .

⊢∗ u14u14u14, . . . 〈P (a2)〉(cb)
4 cb cb cc cb cc cb (cc)3(cb)3(cc)4 cb cb (cb)8jq−1(cb)8i−5 bb (cb)3 bb cc . . .

⊢3 u1u1u1, . . . 〈P (a2)〉(cb)
6(cccb)2(cc)3(cb)3(cc)4 bc cb (cb)8jq−1(cb)8i−5 bb (cb)3 bb cc . . .

T. Neary and D. Woods / Four Small Universal Turing Machines 123

In the configuration immediately above the example simulation of production〈P (a1)〉 is complete. The
encoding of〈a1〉 = (cb)3 has been appended onto the right end of the dataword, the encoded tag system
〈B〉 has been restored to its original value andU15,2 is ready to read the encoded symbols〈ej〉 and〈ai〉.

u3 u5 u14 u15

c bRu1 cLu3 cRu14

b cLu5 cRu15 bRu14

Table 19:Cycle 3 ofU15,2.

Halting for U15,2. If the halt symboleh, encoded as〈eh〉 = (cb)8hq+3bb, is the leftmost symbol in the
dataword then this is encoded via Definition 3.1 as follows:

u1u1u1, bb cc cb 〈P (eh−1, aq)〉 cb . . . (cb)2〈P (a1)〉(cb)
3((cc2))∗ bc (cb)8hq+3 bb (〈A〉 bb)∗ cc cc . . .

The computation continues as before untilU15,2 enters Cycle 2 and scans left inu7, u8, andu9. This
scan ends with the following configuration:

⊢ u10u10u10, bb bc bb 〈P (eh−1, aq)〉
′ bb . . . (bb)2〈P (a1)〉

′(bb)3((bc)2)∗ (bc)8hq+4 bb (〈A〉 bb)∗ cb cc . . .

In the configuration immediately above,〈P 〉′ denotes the word in which eachcc andcb subword in〈P 〉
is changed to the subwordbc andbb, respectively. There is no transition rule in Table 16 for the case
‘when inu10 readc’ hence the computation halts.

4. Conclusion

In order to determine the minimum size for universal Turing machines we must identify the largest
possible non-universal Turing machine. Traditionally this has been done by proving the halting problem
decidable for a given state-symbol pair. For example the decidability results given in Figure 1 imply that
a universal Turing machine, that simulates any Turing machine M and halts if and only ifM halts, is
not possible for these state-symbol pairs. Hence these results give lower bounds on the size of universal
machines of this type. The decidable halting problem curve in Figure 1 could be considered a non-
universality curve in this sense. Thus, following the new universal machines presented in this work there
are 39 state-symbol pairs that remain open.

There has been no improvement on universal Turing machine lower bound results since 1978, when
Pavlotskaya [19] proved that the halting problem is decidable for 3-state, 2-symbol machines. The proof
is quite long and complex, and improving on this result may well be difficult. As the state-symbol product
increases, the number of possible machines increases exponentially. Thus it seems that a new approach
needs to be taken. To find new lower bounds one possible methodis to prove that some non-universal
system simulates all of the Turing machines for a given state-symbol pair.

It has been noted in the literature that Minsky’s 7-state, 4 symbol machine [11], which simulates
2-tag systems, mutilates the final output. While it is true that Minsky’s machine changes the final out-
put by making one extra pass over the dataword before halting, this does not prevent his machine from
simulating all Turing machines. This is due to the followingfact. When Cocke and Minsky’s 2-tag algo-
rithm [2] (or the algorithms given in [13] and [30]) is used tosimulate Turing machines, this extra pass

124 T. Neary and D. Woods / Four Small Universal Turing Machines

over the final dataword does not lose any information: in the sense that the simulated Turing machine’s
final output can be retrieved by a (simple) decoding function.

Since Minsky’s universal machine all of the smallest universal Turing machines (including our bi-tag
simulators) have used a similar algorithm. Rogozhin [22, 23] extended Minsky’s technique to establish
the universal curve. There have been incremental reductions in the size of many of Rogozhin’s machines.
However, the smallest of Rogozhin’s machines, the 6-symbolmachine, has not been improved upon since
it was first presented almost 30 years ago. In order to significantly reduce the space between the decidable
halting problem curve and the universality curve we suspectthat a radically new approach must be taken.
Below we give three methods to aid in the search for smaller universal Turing machines.

The first approach is to look for some universal systems, other than 2-tag or bi-tag systems, that
would require less instructions to simulate. Cyclic tag systems [3] may be used to give smaller machines.
However, the operation of cyclic tag systems is similar to that of 2-tag and bi-tag systems so this may not
give much of an improvement. Perhaps a simple universal cellular automaton could be simulated. The
cellular automaton Rule 110 has given rise to very small weakly universal Turing machines [3, 17, 27].
In the proof of universality of Rule 110, the initial condition contains a finite sequence of states that is
repeated infinitely often to the left, and another finite sequence that is repeated infinitely often to the
right. These small Turing machines that simulate it use a similar kind of initial condition and are thus
said to be weakly universal. Perhaps a sufficiently simple universal cellular automaton could be found
that allows us to construct small Turing machines that are universal, rather than only weakly universal.

Another approach is to simplify some existing universal model in order to make it easier to simulate.
As an interesting example we will briefly consider small semi-weak machines (which are Turing ma-
chines with an infinitely repeated word on one side of the input and the usual repeated blank symbol on
the other side). Watanabe [25] gave a small semi-weakly universal Turing machine with 5 symbols and 6
states that simulates Turing machines directly. Later, Watanabe [26] gave a small semi-weakly universal
Turing machine with 4 symbols and 5 states that simulates restricted Turing machines. Watanabe noted
that Turing machines with a binary{0, 1} tape alphabet, where the tape head always moves right on 1
and left on 0, are universal. Because of this restriction, Watanabe’s encoded table of behaviour for each
Turing machine had no need to include information about the direction of movement of the tape head.
This in turn simplified the problem of simulating Turing machines.

A third approach is to find an encoding that allows many different operations to be carried out by the
same group of instructions. For example, this approach aided in the construction of the smallest known
universal Turing machines [15] that simulate Turing machine directly. The encoding used by these
machines allowed each set of transition rules to serve more than one purpose. A single set of transition
rules reads both the encoded current state and the encoded read symbol. Another set of transition rules (1)
prints the encoded write symbol (2) moves the simulated tapehead and (3) establishes the new encoded
current state. Combining steps in this way has reduced the number of transition rules needed for these
machines.

The small universal machines we have given here conform to the classical model used by Minsky [12]
and Shannon [24]. Generalising the Turing machine model often allows us to find universal Turing
machines with smaller state-symbol products, such as the small weakly universal machines in [3, 17, 27],
and the semi-weakly universal machines in [25, 26, 29]. It isimportant to note that the decidability results
given in Figure 1 do not give lower bounds for such machines. In order to give relevant lower bounds
for these machines new decidability results must be given for these more general models. We note also
that the weak machines in [3, 17] do not halt and thus proving the halting problem decidable does not

T. Neary and D. Woods / Four Small Universal Turing Machines 125

immediately imply lower bounds relevant for these machines.
If we restrict the standard Turing machine model then the problem of finding machines with small

state-symbol products often becomes more difficult. Some examples of restricted small universal Turing
machines have been given by Margenstern [9]. Margenstern also gives a number of decidability results
for restricted universal Turing machines.

By giving upper and lower bounds, some boundaries have been found for the smallest possible uni-
versal machines in terms of numbers of states and symbols with respect to more general Turing machine
models [10, 20]. However, there are many open questions remaining in the world of small universal Tur-
ing machines. What are the trade-offs between number of states/symbols, space/time complexity, and
encoding complexity in small universal Turing machines? How do the smallest possible universal ma-
chines for the different generalisations and restrictionscompare? Do the upper and lower bounds meet?
That is, do there exist machines in the space between the smallest possible universal Turing machines
and the largest machines with a decidable halting problem? To this day Shannon’s 50 year old question,
regarding the smallest possible universal Turing machine,still remains unanswered.

References

[1] C. Baiocchi. Three small universal Turing machines. In M. Margenstern and Y. Rogozhin, editors,Machines,
Computations, and Universality (MCU), volume 2055 ofLNCS, pages 1–10, Chişinău, Moldova, May 2001.
Springer.

[2] J. Cocke and M. Minsky. Universality of tag systems withP = 2. Journal of the ACM, 11(1):15–20, Jan.
1964.

[3] M. Cook. Universality in elementary cellular automata.Complex Systems, 15(1):1–40, 2004.

[4] G. T. Hermann. The uniform halting problem for generalized one state Turing machines. InProceedings,
Ninth Annual Symposium on Switching and Automata Theory, pages 368–372, Schenectady, New York, Oct.
1968. IEEE Computer Society Press.

[5] M. Kudlek. Small deterministic Turing machines.Theoretical Computer Science, 168(2):241–255, Nov.
1996.

[6] M. Kudlek and Y. Rogozhin. Small universal circular Postmachines.Computer Science Journal of Moldova,
9(1):34–52, 2001.

[7] M. Kudlek and Y. Rogozhin. A universal Turing machine with 3 states and 9 symbols. In W. Kuich, G. Rozen-
berg, and A. Salomaa, editors,Developments in Language Theory, volume 2295 ofLNCS, pages 311–318,
Vienna, May 2002. Springer.

[8] M. Margenstern. Frontier between decidablity and undecidablity: a survey.Theoretical Computer Science,
231(2):217–251, Jan. 2000.

[9] M. Margenstern. On quasi-unilateral universal Turing machines. Theoretical Computer Science, 257(1–
2):153–166, Apr. 2001.

[10] M. Margenstern and L. Pavlotskaya. On the optimal number of instructions for universality of Turing ma-
chines connected with a finite automaton.International Journal of Algebra and Computation, 13(2):133–202,
Apr. 2003.

[11] M. Minsky. Size and structure of universal Turing machines using tag systems. InRecursive Function Theory,
Symposium in Pure Mathematics, volume 5, pages 229–238, Provelence, 1962. AMS.

126 T. Neary and D. Woods / Four Small Universal Turing Machines

[12] M. Minsky. Computation, finite and infinite machines. Prentice-Hall, New Jersey, 1967.

[13] T. Neary.Small universal Turing machines. PhD thesis, Department of Computer Science, National Univer-
sity of Ireland, Maynooth, 2008.

[14] T. Neary and D. Woods. A small fast universal Turing machine. Technical Report NUIM-CS-TR-2005-12,
Department of Computer Science, National University of Ireland, Maynooth, Dec. 2005.

[15] T. Neary and D. Woods. Small fast universal Turing machines.Theoretical Computer Science, 362(1–3):171–
195, Oct. 2006.

[16] T. Neary and D. Woods. Four small universal Turing machines. In J. Durand-Lose and M. Margenstern,
editors,Machines, Computations, and Universality (MCU), volume 4664 ofLNCS, pages 242–254, Orléans,
France, Sept. 2007. Springer.

[17] T. Neary and D. Woods. Small weakly universal Turing machines. Technical Report arXiv:0707.4489v1
[cs.CC], arXiv online report, July 2007.

[18] L. Pavlotskaya. Solvability of the halting problem forcertain classes of Turing machines.Mathematical
Notes (Springer), 13(6):537–541, June 1973. (Translated from Matematicheskie Zametki, Vol. 13, No. 6, pp.
899–909, June, 1973).

[19] L. Pavlotskaya. Dostatochnye uslovija razreshimostiproblemy ostanovki dlja mashin T’juring.Problemy
kibernetiki, 33:91–118, 1978. (Sufficient conditions for the halting problem decidability of Turing machines.
In Russian).

[20] L. Priese. Towards a precise characterization of the complexity of universal and non-universal Turing ma-
chines.SIAM Journal of Computing, 8(4):508–523, Nov. 1979.

[21] R. Robinson. Minsky’s small universal Turing machine.International Journal of Mathematics, 2(5):551–562,
1991.

[22] Y. Rogozhin. Sem’ universal’nykh mashin T’juringa. InFifth all union conference on Mathematical Logic,
Akad. Naul SSSR. Otdel. Inst. Mat., Novosibirsk, page 27, 1979. (Seven universal Turing machines. In
Russian).

[23] Y. Rogozhin. Small universal Turing machines.Theoretical Computer Science, 168(2):215–240, Nov. 1996.

[24] C. E. Shannon. A universal Turing machine with two internal states.Automata Studies, Annals of Mathemat-
ics Studies, 34:157–165, 1956.

[25] S. Watanabe. 5-symbol 8-state and 5-symbol 6-state universal Turing machines.Journal of the ACM,
8(4):476–483, Oct. 1961.

[26] S. Watanabe. 4-symbol 5-state universal Turing machine. Information Processing Society of Japan Magazine,
13(9):588–592, Sept. 1972.

[27] S. Wolfram.A new kind of science. Wolfram Media, 2002.

[28] D. Woods and T. Neary. The complexity of small universalTuring machines.Theoretical computer Science,
410(4-5):443–450, Feb. 2009.

[29] D. Woods and T. Neary. Small semi-weakly universal Turing machines.Fundamenta Informaticae, 91:161–
177, 2009.

[30] D. Woods and T. Neary. On the time complexity of 2-tag systems and small universal Turing machines.
In 47th Annual IEEE Symposium on Foundations of Computer Science (FOCS), pages 439–446, Berkeley,
California, Oct. 2006. IEEE.

