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Abstract—Power-maximising control of wave energy converters
(WECs) can be implemented within a receding-horizon (RH)
framework, whereby the reference force or velocity trajectory is
updated in real-time by a feed-forward control (FFC) algorithm.
For the computation of optimal WEC trajectories and control
forces, Fourier pseudo-spectral (PS) control, using periodic basis
functions, is simple and computationally attractive, for both
linear and non-linear WEC dynamics. However, the finite-length
wave excitation signal, as seen by the FFC, is in general non-
periodic. In this paper, it is shown that, despite the non-
periodicity of the input wave signal, a simple Fourier PS method
can be successfully used as a FFC algorithm, by applying
suitable windowing functions to the input signal when necessary.
Furthermore, a simple wave forecasting algorithm is introduced,
solely based on past values of the wave excitation, and the
impact of wave forecast errors on the controller performance
is investigated. Overall, with or without forecast errors, the
proposed approach allows for power absorption above 99% of
the optimum, for a forecasting horizon of less than 30 seconds for
a linear WEC model, and less than 15 seconds for a non-linear
WEC model including a quadratic viscous drag term.

Index Terms—Wave energy converters, optimal control, power
maximisation, receding-horizon control, Fourier pseudo-spectral
methods, wave forecasting

I. INTRODUCTION

POWER-MAXIMISING control has the potential to sig-
nificantly improve the economic competitiveness of wave

energy converters (WECs) [1]. Due, in particular, to radiation
force memory effects, the optimal control law for WEC power
maximisation is, in general, non-causal, i.e. the knowledge
of future wave excitation is required [2]. Thus, RH, model-
predictive control provides a relevant framework which utilises
wave excitation forecasts over a finite time horizon, where
the optimal trajectory (for device velocity or control force) is
updated in real time, as new wave input forecasts become
available [3]. The general receding-horizon WEC control
philosophy is illustrated in Fig. 1, showing the reference
WEC velocity (optimal velocity prediction) updated at two
consecutive time steps. For a thorough overview of model-
predictive WEC control algorithms (implemented or not in a
RH fashion), the reader is referred to [4].

In this paper, the control structure is assumed hierarchical,
as in [5]. The optimal trajectory is updated through a feed-
forward calculation (from the feed-forward controller, FFC)
which is, in fact, an optimisation problem [1], whereby power
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Fig. 1: Receding-horizon WEC control philosophy - optimal
velocity trajectory updates at two consecutive time steps.
Solid blue (resp. orange): actual wave excitation (resp. optimal

WEC trajectory). Dashed blue (resp. red): predicted wave excitation
(resp. predicted optimal WEC trajectory). Dotted red: actual
trajectory followed by the WEC (assuming perfect tracking).

production is maximised over the finite receding time window,
while satisfying the WEC operational constraints. The feed-
forward set-point velocity trajectory resulting from the optimi-
sation, vf , is tracked by a lower-loop controller (LLC), until
the next update of the feed-forward trajectory is computed. The
corresponding two-level control structure is illustrated in the
diagram of Fig. 2. In this paper, however, only the performance
of the upper loop (FFC) is investigated.

The accuracy of the reference trajectory, updated by the
FFC, is essential in achieving acceptable power absorption,
assuming that reasonable tracking performance is achieved by
the LLC. In particular, the FFC should accommodate complex
WEC dynamics and constraints, while being computable in
real-time. The RH configuration (Fig. 1) is also subject to
two specific sources of inaccuracies: firstly, the optimisation
is carried out over a finite time window only, which implies
that not all future wave input information can be taken into
account; secondly, the predicted wave excitation signal e is
possibly affected by forecast errors.

As stressed in [6], hydrodynamic non-linearities tend to be
highlighted under actively controlled conditions compared to,
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Fig. 2: Simplified diagram of a two-level control structure -
vf is the feed-forward velocity set-point, v the actual device

velocity, fc the PTO control force, e the wave excitation

for example, passive linear damping. In addition, non-linear
dynamics may also stem from the characteristics of the PTO
machinery or from other physical components, such as the
mooring system. Finally, operational constraints must be taken
into account. Therefore, the FFC algorithm should be able to
handle non-linear effects in the device dynamics, as well as
system constraints.

Such non-linear optimisation problems can be difficult to
solve (see for example [7]), especially if the length of the
RH window results in a large computational load. However,
allowing for a discretisation of the continuous-time control
problem into a non-linear programming (NLP) problem of
finite dimension, pseudospectral (PS) methods have shown
some promise, in order to solve the constrained WEC optimal
control problem, for linear [8] [3] or non-linear [9] [10] [11]
[12] WEC models, while keeping computational requirements
relatively low. PS methods are thus interesting candidate tools
as FFC algorithms.

In particular, the Fourier PS control formulation - i.e.
using harmonic functions as a PS functional basis - shows
appealing characteristics in terms of ease of implementation
and computational speed [11], [12], and has proven able to
compute WEC optimal trajectories under strong non-linearities
and constraints [12]. It also constitutes an intuitive choice,
given the pseudo-periodic nature of ocean waves. [11] and
[12] use a Fourier PS formulation to calculate steady-state
optimal control trajectories, in periodic input wave signals
(monochromatic in [11], polychromatic in [12]), under various
linear and non-linear modelling assumptions and constraints.
However, in a RH implementation, the wave input signal
seen by the FFC within the receding window is, in general,
not periodic. As a consequence, non-periodic basis functions
have been proposed instead of Fourier series, e.g. Lagrange
polynomials [9] or Half-Range Chebyshef Fourier functions
[3].

Alternatively, this paper explores the pragmatic option of
retaining a periodic Fourier approach in a RH implementation,
either by simply ignoring the non-periodicity of the finite input
wave excitation, or by applying a windowing function to the
finite input wave excitation, so as to make the control problem
more amenable to a Fourier PS approach. The corresponding

requirements in terms of the receding window length are
studied.

Retaining a Fourier formulation has another significant
advantage with respect to other basis functions: even for long,
periodic wave inputs (more than 10 typical wave periods), the
Fourier PS framework can be used to compute, at once, the
optimal velocity profile over the whole signal, as in [12]. Thus,
in this paper, the quality of the feed-forward WEC trajectory,
obtained by the FFC within the RH framework, is numerically
assessed through a comparison with the actual optimal velocity
profile, obtained by taking into account the totality of the wave
excitation signal.

In addition, as stressed in Chapter 12 of [13], the effect
of wave excitation forecast errors on the performance of RH
controllers has not yet been fully investigated. In this paper,
two parallel cases are considered for each set of results: in
the first one, the wave excitation forecast is assumed to be
perfect over the length of the receding window while, in the
second case, future wave elevation values are obtained through
a linear predictor, solely based on past measured values of the
wave excitation force. Thus, in the latter case, the future wave
excitation signal, seen by the controller, contains significant
prediction errors.

In summary, this paper describes a methodology to evaluate
the quality of the reference trajectory, generated by a FFC
algorithm in a RH fashion using a Fourier PS approach, with
and without wave forecasting inaccuracies. Other important
aspects of a comprehensive RH WEC control framework are
beyond the scope of this study: in particular, no constraints
are considered; excitation force measurement or estimation is
not dealt with; and the LLC tracking is assumed ideal.

The rest of this paper is organised as follows: Section
II describes the Fourier PS approach, as well as its imple-
mentation as a FFC in a RH set-up. The wave excitation
forecasting method is briefly explained in Section III. The
numerical case studies (WEC models, sea states, control set-
up), retained to assess the performance of the proposed FFC,
are described in Section IV. The corresponding numerical
results are shown and commented in Section V. Finally,
conclusions and discussions are presented in Section VI.

II. FOURIER PSEUDO-SPECTRAL CONTROL

A. Frequency-domain control formulation

Let us consider a 1-DoF WEC, whose generalised position
is described by means of a scalar coordinate z. In the follow-
ing, it is assumed that Newton’s second law, to describe the
WEC dynamics, can be written as follows:

gl(z, ż, z̈) + gnl(z, ż, η)− u(t)− e(t) = 0 (1)

where

• gl includes inertial terms and forces, which depend on
z and its derivatives in a linear way. For example, if all
the hydrodynamic forces acting on the device are linearly
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modelled, gl consists of the linear terms of the popular
Cummins’ equation [14]:

gl(z, ż, z̈) = (µ+ µ∞)z̈ +

t∫
−∞

krad(t− τ)ż(τ)dτ + khz

(2)
where µ is the WEC inertia, kh is a hydrostatic stiffness
coefficient, and the radiation forces are computed as the
sum of an inertial term µ∞z̈, and a convolution product
between the past values of the velocity and the radiation
impulse response function krad;

• gnl is an analytical expression, containing the forces
which non-linearly depend on z, its derivative, and pos-
sibly the wave input η. Obviously, if a part of the
hydrodynamic force is non-linearly modelled in gnl, the
corresponding terms in (2) have to be removed from gl;

• The control input u(t) is the force exerted by the PTO
system onto the WEC;

• e(t) is an additive wave excitation term, which directly
depends on the wave input η. For example, e may consist
of the linear wave excitation or diffraction force.

Let us now consider the control problem for a wave input
expanded in a Fourier series as:

η(t) = aη,0 +
N−1∑
n=1

aη,n cos(ωnt) + bη,n sin(ωnt) (3)

where ωn = n∆ω, ∆ω = 2π/T is the frequency step, and T
is the period of the signal.

The control problem, over [0;T ], consists of transmitting as
much power as possible from the waves to the PTO system:

minP (z, u) =
1

T

T∫
0

ż(t)u(t)dt

s.t. gl(z, ż, z̈) + gnl(z, ż, η)− u(t)− e(t) = 0

(4)

As in [10], the variables z and u can be approximated using
the same basis of harmonic sinusoids used in (3), as:

z(t) ≈ az,0 +

N−1∑
n=1

az,n cos(ωnt) + bz,n sin(ωnt)

u(t) ≈ au,0 +
N−1∑
n=1

au,n cos(ωnt) + bu,n sin(ωnt)

(5)

Let us define Z and U in R2N , the vectors composed of the
Fourier coefficients of z and u respectively. Define a matrix
D ∈ R(2N−1)×(2N−1):

D =



0 0 · · · 0 0 · · · 0
0 0 · · · 0 ω1 · · · 0
...

...
. . .

...
...

. . .
...

0 0 · · · 0 0 · · · ωN−1
0 −ω1 · · · 0 0 · · · 0
...

...
. . .

...
...

. . .
...

0 0 · · · −ωN−1 0 · · · 0


(6)

The projection of the velocity ż onto the Fourier basis is
obtained from Z as V = DZ. As shown in [10], the objective
function of (4) can then be simply expressed as

P (Z,U) =
1

2
ZTDTU (7)

Furthermore, inspired by [12], the dynamical equation (1)
is also projected onto a Fourier basis, so that U is expressed
as a function of the other variables as:

Ũ(Z) = MZ +Gnl(Z)− E (8)

where
• The frequency-domain projection of the linear terms gl

in (1) is given, in matrix form, as Gl(Z) = MZ.
Typically, when radiation and hydrostatic restoring forces
are linearly modelled, the components of M are given as,
∀i, j ∈ J1;N − 1K2,

M1,1 = kh

Mi+1,j+1 =

{
−ω2

i (µ+Arad(ωi)) + kh, i = j

0, i 6= j

Mi+N,j+N = Mi+1,j+1

Mi+1,j+N =

{
ωiBrad(ωi), i = j

0, i 6= j

Mi+N,j+1 = −Mi+1,j+N

where Arad and Brad are the frequency-dependent radi-
ation added mass and damping, respectively.

• Gnl represents the Fourier expansion of gnl up to the
harmonic of order N − 1;

• E denotes the Fourier expansion of the additive force
term e.

Combining with (7), the minimisation problem (4) becomes

min P̃ (Z) :=
1

2
ZTDTŨ(Z) (9)

which can be efficiently solved using gradient-based optimi-
sation techniques [12]. The solution Z of (9) is the optimal
steady-state solution for Problem (4), within the chosen func-
tional space, i.e. amongst the solutions which can be described
as Fourier series up to the harmonic of order N − 1.

Finally, note that the simplifications made here to obtain Eq.
(9) require that the control input u is the PTO force itself, and
can be explicitly written as a function of the other variables
through the dynamical equation in (8). In cases where such a
simplification is not possible, the dynamical equation must be
expressed as a set of equality constraints, as in [10].

B. Receding-horizon implementation

Consider a window of length L. Given the memory effect
of the radiation forces, taking into account both past and
future values of the input wave signal, as in [2], is useful for
the computation of the updated feed-forward velocity profile.
Therefore, the window is defined such that the present time t
is in the middle of the window interval, [t− L/2; t+ L/2].

Consider a given time t0. Assume that the wave excitation
is perfectly known over the window [t0 − L/2; t0 + L/2].
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The input to the FFC algorithm is the windowed excitation
force, ew(t0, τ) := e(t0 + τ), τ ∈ [−L/2;L/2], which is used
by the FFC algorithm to compute an optimal velocity profile
vw(t0, τ), τ ∈ [−L/2;L/2]. More specifically, the signal
ew(t0, τ) is developed as a Fourier series, using the frequency
step ∆ω = 2π/L, and the optimisation is carried out by
solving (9). The solution velocity Vw = DZw is transformed
back to the time domain, to obtain vw(t0, τ), τ ∈ [−L/2;L/2].
vw(t0, τ) is only followed by the lower-level control loop until
the next update of vw, i.e. for τ close to zero.

Consider a sufficiently long simulation wave signal, of
length T � L. For a simple assessment of the quality of
the feed-forward trajectory, vw(t, τ) is computed at each time
step t ∈ [0;T ], but only vw(t, 0) is retained, assuming that
this value will be ideally followed by the WEC. The overall
feed-forward signal is thus given by vf (t) := vw(t, 0), for
t ∈ [0;T ].

The power obtained by perfectly tracking vf (t) over [0;T ]
is denoted Pf , and can be calculated as follows:
• Expand vf (t), t ∈ [0;T ] in Fourier series, using ∆ω =

2π/T , to obtain Vf . Calculate Zf such that DZf = Vf .
From Eq. (8) calculate Uf := Ũ(Zf ), the frequency-
domain control force necessary to achieve Vf ;

• Compute Pf = − 1
2V

T
f Uf

Finally, as mentioned in the introduction, the input ex-
citation ew(t, τ), in each receding time interval, may be
multiplied with a windowing function w(τ), τ ∈ [−L/2;L/2].
Furthermore, when the future wave excitation is predicted,
rather than perfectly known, actual values ew(t, τ) have to be
replaced with their predicted counterparts êw(t, τ) for τ > 0,
as detailed in Section III.

C. Optimisation over the whole signal

Consider the simulation signal, of length T � L. In
addition to computing vf (t) (obtained in a RH fashion as
explained in Section II-B), the true optimal velocity v∗(t) can
also be calculated, off-line, using the simulated wave signal
in its entirety (as in [12]). Indeed, the total wave signal is
periodic with period T . Thus, using the fundamental frequency
∆ω = 2π/T (but the same cut-off frequency ωc = π as for
the RH calculations), the control problem can be parametrised
as in Eqs. (3) and (5), and the corresponding Problem (9) is
solved.

Of course, the size of Problem (9) for the overall signal is
significantly larger than it is for a given RH control problem.
However, unlike vf (t), v∗(t) needs only be computed off-line,
and therefore the computation time for v∗(t) is not of primary
importance. In each simulated wave signal, v∗(t), as well as
the resulting optimal power P ∗, provide a point of comparison
for vf (t) and Pf computed in the same simulated waves. In
theory, vf and Pf should always be sub-optimal with respect
to v∗ and P ∗.

III. WAVE EXCITATION FORECASTING

A cost-effective approach to short-term wave forecasting
consists of treating the wave signal as a time series [15], using
past measurements at the point of interest (in this case, the

WEC location) to predict the incoming signal. This section
shows how the Gaussian description of ocean waves can be
used to provide a simple, statistically-optimal predictor, as
proposed in [16].

Consider the wave elevation modelled as a stationary, er-
godic Gaussian process [17], which is entirely characterised
by its mean (η̄ = 0) and its auto-covariance function (ACVF)
Rηη(τ) for τ ∈ R:

Rηη(τ) = E[η(t)η(t+ τ)] (10)

Rηη(τ) can be computed from the spectral density function
(SDF) of the wave process, Sηη(ω), by means of a Fourier
transform, by virtue of the Wiener-Khintchine theorem [17].

Following the definition of a Gaussian random process,
any finite, discrete ensemble of wave measurements, taken at
various points in time, forms a multivariate, Gaussian random
vector. Considering that the wave elevation is sampled, say,
every second, define x as the vector of the last M recorded
values (indexed by m ∈ J1;MK), and y the (unknown) vector
of the next N wave elevation values (indexed by n ∈ J1;NK).

Altogether, the N +M points form a multivariate Gaussian
random vector, v ∈ RM+N . Its mean is 0RM+N and its
variance-covariance matrix, noted Σvv, can be entirely derived
from the correlation values between any pair of points in time,
or the wave spectrum, i.e. Σvvi,j = Rηη(tj − ti).

Σvv can be written as:

Σvv =

(
Σyy Σyx

Σxy Σxx

)
(11)

where Σyx = ΣT
xy. Using µx = µy = 0, the conditional

distribution of y|x is multivariate Gaussian (see for example
[18]) with mean:

µy|x = ΣyxΣ−1xxx (12)

and variance:

Σy|x = Σyy − ΣyxΣ−1xxΣxy (13)

The best predictor of y, in a least mean-square sense, is given
as

ŷ = µy|x = ΣyxΣ−1xxx (14)

It is convenient to define the prediction matrix, Q :=
ΣyxΣ−1xx , which maps M measured values to N predicted
values. The mean-square prediction error ε2(h), for each
prediction horizon h, is given by the diagonal terms of Σy|x.
For a given order M , any other forecasting method is sub-
optimal with respect to the law derived in (14), to evaluate
the N predicted points.

The prediction matrix Q needs only be updated as the wave
condition evolves significantly (e.g. every 30 minutes), and the
only operation carried out in real-time is the multiplication
ŷ = Qx.

In the case study presented in this paper, it is assumed
that the wave excitation torque, rather than the wave elevation
itself, is predicted, assuming that the torque can be measured
or estimated in real-time [19], [20]. Therefore, in the above
analysis, the wave elevation SDF Sη(ω) is simply replaced
with the wave excitation torque SDF, obtained as Se(ω) =
Sη(ω)|Hηe(ω)|2, where Hηe(ω) is the linear wave-to-torque
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Fig. 3: GoF of the excitation torque prediction, JONSWAP
spectrum (Hs = 2m, Tp = 10s)

transfer function for the flap-type WEC, computed with the
hydrodynamic software WAMIT1. The WEC is introduced in
more detail in Section IV-A.

Orders M higher than 200 (for a time step of 1 second)
were found not to bring any significant improvement in the
accuracy of the predictions. Therefore, an order of 200 was
retained. Fig. 3 shows the corresponding goodness of fit (GoF)
of the excitation torque prediction, computed as

G(h) = 1−

√
ε2(h)

E[e2]
(15)

for a JONSWAP spectrum with Hs = 2m and Tp = 10s, and
where E[e2] represents the variance of the excitation torque
process.

IV. NUMERICAL CASE STUDIES

A. WEC model

A flap-type wave energy converter, subject to a quadratic
viscous drag force, is chosen. The hydrodynamic model is
identical to the one used in [10]. The only degree of freedom is
the WEC angular position. The radiation and excitation forces
are represented linearly. The frequency-domain coefficients
Arad(ω), Brad(ω) and E(ω) are computed with the hydrody-
namic software WAMIT2. A linear model is also considered,
by simply removing the quadratic drag term.

B. Numerical set-up

The sea states considered are expressed by JONSWAP
[21] spectra with typical Hs and Tp values (Tp ∈ [6; 14]
and Hs ∈ [1; 4]). However, unless specified otherwise, the
numerical results are plotted for Hs = 2m and Tp = 10s. The
prediction matrix Q (see Section III) is computed for each sea
spectrum.

The FFC algorithm performance is assessed over wave
signals of length T = 300s. The time step (both for t and
τ ) is 1 second, which corresponds to a cut-off frequency
ωc = π rad/s. As explained in Section II-B, the feed-forward
velocity trajectory vf is updated every second by the FFC
algorithm, using L data points (the fundamental frequency
is ω1 = 2π/Tw). In contrast, the optimal velocity v∗(t) is

1http://www.wamit.com/
2http://www.wamit.com/

Fig. 4: Various windowing functions

computed by considering the totality of the wave signal, as
explained in Section II-C.

The non-linear control problems (9), in both the RH im-
plementation and for the calculation of v∗, are solved using a
trust-region algorithm (readily implemented in Matlab within
the fminunc solver3).

Tukey windows [22] are investigated, in order to make the
finite-length wave excitation signal more suitable for a control
framework involving periodic basis functions. Tukey windows
leave the signal unchanged in its middle, over a length defined
by the parameter r ∈ [0; 1], as illustrated in Fig. 4, and thus
provide an interesting family of windows to investigate. A
Hamming window, which does not exactly bring the signal to
zero at the ends, is also investigated. Note that the absence of
windowing function can also be seen as the default application
of a rectangular window:

C. Simulation procedure

To assist the reader in connecting the different sections of
this paper, the experimental procedure for a given simulated
wave signal (here, assuming that the wave excitation is pre-
dicted, and that the RH signal is windowed through a window
function w(τ)) is summarised as follows:

1- From excitation force spectrum Se(ω), randomly generate
simulation wave excitation signal e(t) with period T =
300s.

2- Off-line prediction matrix calculation: From Se(ω), com-
pute the matrix Q following the procedure given in
Section III.

3- Online calculation of vf : With ∆t = 1s, and for t =
∆t, 2∆t, ...Ns∆t = T :
a) Forecasting: Define measured vector x with compo-

nents xi,i=0...200 = e(t − i∆t). Calculate y = Qx
with yi,i=1...L/2 = ê(t+i∆t), the vector of predicted
values. See also Section III.

3https://uk.mathworks.com/help/optim/
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Fig. 5: εRMS between vf and v∗ - linear WEC model

b) Define τi = i∆t, and

ew(t, τi) :=

{
e(t+ τi), τi ∈ [−L/2; 0]

ê(t+ τi), τi ∈ [1;L/2]
(16)

c) Windowing: Compute e′w(t, τi) = w(τi)ew(t, τi).
d) Develop e′w(t, τ) in Fourier series, using ∆ω =

2π/L, and solve (9) to obtain v∗w(t, τ), τ ∈
[−L/2;L/2]. See also Sections II-A and II-B.

e) Define vf (t) := v∗w(t, 0)

4- From vf (t), t ∈ [0;T ], calculate Pf as explained in
Section II-B.

5- Off-line control calculation: Develop e(t) in Fourier
series using ∆ω = 2π/T , and solve (9) to obtain v∗(t)
and P ∗. See also Sections II-A and II-C.

V. NUMERICAL RESULTS

A. Assuming perfect knowledge of the future wave excitation

The optimal velocity, v∗(t), and the feed-forward velocity
reference, vf , are compared through the root-mean-square
error, computed as:

εRMS =

√√√√∑T
t=0(vf (t)− v∗(t))2∑T

t=0 v(t)∗2
(17)

Assuming perfect knowledge of the wave signal over the
whole window length, and considering a linear WEC model,
Fig. 5 shows εRMS for different window lengths, using dif-
ferent windowing functions. When no windowing function is
applied, i.e. assuming a default rectangular window, the FFC
is clearly unable to compute a velocity trajectory close to the
optimal one, even for large L values. Accordingly, the power
absorption performance is poor, Pf taking positive values only
for L ≥ 150s (Fig. 6).

However, the results can be significantly improved by
windowing the FFC input signal ew, such as described in
Section IV-B (Figs. 5 and 6). The Tukey window with r = 0.75
is found to be the best choice amongst the studied options,
allowing Pf to reach more than 99% of P ∗ with L = 56s.

In contrast, with the non-linear WEC model including a
quadratic viscous drag force, the error function is relatively
small (Fig.7) and Pf is close to P ∗, even for relatively short
windows (Fig. 8). The quadratic damping term seems to reduce
the sensitivity of the FFC performance to the window length.

Fig. 6: Pf resulting from tracking vf , for different window
lengths and windowing functions - linear WEC model

Fig. 7: εRMS between vf and v∗ - non-linear WEC model

Indeed, since the damping term reduces the order of magnitude
of the optimal velocity, the relative impact of the radiation
terms, and the associated memory effect, are also reduced.

Accordingly, the improvement brought by applying window
functions, in the presence of viscous damping, is less signifi-
cant. However, as for the linear case, the Tukey window with
r = 0.75 is found to be the best option, with Pf exceeding
99% of P ∗ with L = 22s only.

B. With (imperfect) wave excitation forecasts

Instead of assuming perfect knowledge of the wave exci-
tation, forecasts are now carried out as explained in Section
III so that, within each window, the first half of the signal is
assumed to be perfectly known, while the second half consists
of predicted values, as illustrated in Fig. 9. For the sake of
conciseness, results presented further in this subsection are all
obtained by adopting the Tukey window with r = 0.75.

For the linear device, Figs. 11 and 10 show that forecast
errors have a modest impact on the quality of the feed-forward
trajectory vf : 99% of P ∗ can still be achieved with L = 56s.

Results are similar for the non-linear device, although vf
seems to contain some residual error, even for large L values
(Fig. 12), which can be attributed to the forecast errors.
However, the power production is not significantly adversely
affected (Fig. 13).
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Fig. 8: Pf resulting from tracking vf , for different window
lengths and windowing functions - non-linear WEC model

forecast signalmeasured signal

Fig. 9: Example of input wave excitation signal within a
receding time interval - actual vs predicted values

Fig. 10: RMSE between vf and v∗, with actual and forecast
wave excitation - linear WEC model

Fig. 11: Pf resulting from tracking vf , with actual and
forecast wave excitation - linear WEC model

Fig. 12: RMSE between vf and v∗, with actual and forecast
wave excitation - non-linear WEC model

Fig. 13: Pf resulting from tracking vf , with actual and
forecast wave excitation - non-linear WEC model
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TABLE I: L [s] yielding 99% of P ∗, in a range of
JONSWAP spectra (linear WEC model)

Tp [s]
6 8 10 12 14
58s 57s 56s 52s 51s

TABLE II: L [s] yielding 99% of P ∗, in a range of
JONSWAP spectra (non-linear WEC model)

Tp [s]
6 8 10 12 14

Hs [m]

1 30s 26s 25s 24s 23s
2 28s 25s 22s 21s 19s
3 22s 20s 19s 18s
4 19s 19s 19s

For the sake of brevity, only the results obtained using
a JONSWAP spectrum with Hs = 2m and Tp = 10s are
presented in this section. However, conclusions remain similar
with other values for Hs and Tp. Tables I and II show that,
regardless of the sea state, 99% of P ∗ can be achieved, with
L ∈ [51 : 58] for the linear WEC model, and L ∈ [19 : 30]
for the non-linear WEC model.

Overall, in spite of significant forecast errors, it seems
possible to achieve a Pf close to P ∗, by properly choosing
the receding window length, and by applying appropriate
windowing functions.

VI. CONCLUSIONS AND DISCUSSIONS

A. Conclusions

The results presented in this paper clearly demonstrate the
applicability of PS methods based on periodic functions, for
the computation of the feed-forward velocity reference within
a RH control scheme for WEC power maximisation, using
both linear and non-linear WEC models. In the proposed
set-up, the receding window is chosen in such a way that
the present time (where the computed velocity reference will
actually be tracked) is in its centre. The receding window
should be long enough, so that the accuracy of the feed-
forward velocity trajectory is ensured, but not so long as to
make the optimisation problem intractable in real-time.

For a linear WEC model, the window length requirements,
necessary to obtain a feed-forward velocity reference with
sufficient quality, can be large (more than 200s). However,
applying simple windowing functions to the input wave ex-
citation signal, seen by the FFC algorithm, can dramatically
reduce the window length requirements, making it possible
to achieve quasi-optimal performance - within 99% of the
optimal power - using window lengths smaller than 60s.

When a non-linear (quadratic) viscous loss term is included
in the WEC model, the window lengths, necessary to achieve
quasi-optimal performance, are significantly smaller (less than
30s) although the achievable power extraction is obviously
smaller than for the linear WEC model. In the non-linear case,
the benefits of using windowing functions are thus relatively
modest.

A simple technique for wave excitation forecasting is also
proposed, assuming that the sea state is known, and that
the wave excitation torque experienced by the WEC can be

measured or estimated in real time. Although the prediction
errors introduced by the simple forecasting algorithm are
relatively large, they do not seem to significantly affect the
quality of the feed-forward velocity calculation, irrespective of
whether the WEC model is linear or non-linear. These findings
suggest that the required window lengths are not so much
because accurate forecasts are necessary a long time ahead,
but rather because the window must be sufficient to allow
for accurate Fourier calculations, as also suggested by other
researchers [23]. Besides, although errors may appear large,
low-frequency wave components, also the most important
for energy absorption, are better predicted than their higher-
frequency counterparts, which can also explain the relatively
good performance of the receding-horizon calculations in spite
of the prediction inaccuracies.

B. Limitations and further developments
The set-up, described in this study, allows for assessing

the accuracy of the feed-forward velocity calculations, with
respect to the optimal trajectory. However, the short-term
dynamics of the lower-level control loop, and their interaction
with the update rate of the FFC algorithm, are not considered.

Furthermore, the WEC model, used as a case study through-
out this work, is not subject to any operational constraint. The
satisfaction of constraints by the RH scheme, while achieving
satisfactory power absorption, needs to be investigated. In
particular, the presence of constraints may positively or neg-
atively influence the window length and prediction accuracy
requirements. More generally, the applicability of the proposed
methodology to other WEC models should also be examined
on a case-by-case basis.

Issues related to the computation time have not been
discussed, in particular for non-linear control calculations,
which are the most computationally demanding. However,
with a Matlab implementation and the 3.50 GHz, 8-core
Intel R© processor used in this paper, the non-linear control
problems, for each windowed signal, were solved by the
Fourier PS algorithm (using fminunc) in less than 10 ms (for
a 30-s window length, the most unfavourable case), which is
well within the requirements of real-time implementation. For
comparison, the computation time reported in [24], for a linear
WEC model, without constraints, is approximately 5 ms using
the Half-range Chebyshef Fourier basis (for a 20-s window
length). Furthermore, unlike the power level obtained in this
paper, which always reaches approximately 100 % of the
theoretical maximum for sufficient window lengths, the power
obtained in [24] remains sub-optimal. A detailed comparison
of the proposed method, with non-periodic PS methods and
MPC algorithms, both in terms of power absorption and
computation time, similar to [24], is pertinent. The other tasks
involved at each update of the reference trajectory (forecasting,
windowing) have negligible computational costs, compared to
the non-linear control problem. In particular, the prediction
method used in this paper is linear, and its coefficients need
only be updated as the wave condition evolves. Hence the only
real-time operation is a simple matrix multiplication.

Finally, the predictor proposed in this paper assumes per-
fect measurements of the excitation torque signal, ignoring
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the problem of physical measurements or requirement for
estimation techniques. In addition, realistic wave spectra are
often less narrow-banded than JONSWAP spectra, which, as
documented in [16], can negatively affect the forecast quality.

In view of the above considerations, a more practically-
oriented implementation of the proposed controller, compris-
ing a velocity tracking loop, constrained dynamics, estimation
of the excitation signal, as well as a closer examination of
computational time requirements, will be investigated by the
authors in a future study.
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[16] A. Mérigaud and J. V. Ringwood, “Incorporating ocean wave spectrum
information in short-term free-surface elevation forecasting,” IEEE Jour-
nal of Oceanic Engineering, Accepted Jan. 2018.

[17] M. K. Ochi, Ocean Waves: The Stochastic Approach. Cambridge
University Press, 2005.

[18] M. L. Eaton, “Multivariate statistics: A vector space approach,” Lecture
Notes-Monograph Series, vol. 53, pp. i–512, 2007. [Online]. Available:
http://www.jstor.org/stable/20461449

[19] O. Abdelkhalik, S. Zou, G. Bacelli, R. D. Robinett, D. G. Wilson, and
R. G. Coe, “Estimation of excitation force on wave energy converters
using pressure measurements for feedback control,” in Proceedings of
the OCEANS 2016 MTS/IEEE conference, Monterey. IEEE, 2016, pp.
1–6.

[20] M. Abdelrahman, R. Patton, B. Guo, and J. Lan, “Estimation of wave
excitation force for wave energy converters,” in Proceedings of the 3rd
Conference on Control and Fault-Tolerant Systems (SysTol). IEEE,
2016, pp. 654–659.

[21] K. Hasselmann, T. Barnett, E. Bouws, H. Carlson, D. Cartwright,
K. Enke, J. Ewing, H. Gienapp, D. Hasselmann, P. Kruseman et al.,
“Measurements of wind-wave growth and swell decay during the joint
north sea wave project (JONSWAP),” Deutches Hydrographisches Insti-
tut, Tech. Rep., 1973.

[22] F. J. Harris, “On the use of windows for harmonic analysis with the
discrete Fourier transform,” Proceedings of the IEEE, vol. 66, no. 1, pp.
51–83, 1978.

[23] G. Li, G. Weiss, M. Mueller, S. Townley, and M. R. Belmont, “Wave
energy converter control by wave prediction and dynamic programming,”
Renewable Energy, vol. 48, pp. 392–403, 2012.

[24] R. Genest and J. V. Ringwood, “A critical comparison of model-
predictive and pseudospectral control for wave energy devices,” Journal
of Ocean Engineering and Marine Energy, vol. 2, no. 4, pp. 485–499,
2016.

Clément Auger graduated from ENSEEIHT, a
French engineering school in Toulouse, France, in
2018. He is studying water and environmental sci-
ences. During the summer 2017, he worked at the
Center for Ocean Energy Research, NUI Maynooth,
Ireland for a 12 week internship.
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