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Abstract Two of the most common modes of oscillation of
single degree of freedom wave energy converters are heave
and surge,which are, respectively, exploited by heaving point
absorbers (HPAs), and oscillating wave surge converters
(OWSCs). Given major hydrodynamic differences between
HPAs and OWSC, different nonlinear forces may be more or
less relevant. Likewise, the scaling properties of such nonlin-
ear forces may be different, according to the type of device,
introducing uncertainties. This paper studies different non-
linear effects, and the relevance of different hydrodynamic
force components, in HPAs and OWSCs. Nonlinear Froude–
Krylov forces, as well as viscous drag effects, are represented
and both prototype and full-scale device sizing are consid-
ered. Results show that HPAs are predominantly affected by
nonlinear Froude–Krylov forces, while the most important
hydrodynamic forces in OWSCs are diffraction and radia-
tion effects. In addition, viscous drag appears to have little
relevance in HPAs, but a significant influence in OWSCs.
Finally, nonlinearities are shown to significantly affect the
phase of the different force components.
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1 Introduction

Wave energy converters (WECs) are often classified based on
the operating principles they use to absorb energy from ocean
waves. Such operating principles refer to the modes in which
the device oscillates, due to the action of the waves. Two
of the most common modes are heave and surge, which are
exploited, respectively, by heaving point absorbers (HPAs)
and oscillating wave surge converters (OWSCs).

Due to different geometry, characteristic dimension, and
degree of freedom (DoF), very different fluid–structure inter-
action mechanisms govern the motion of such devices;
therefore, major hydrodynamic differences exist between
HPAs and OWSCs (Folley et al. 2015). Nevertheless, the
same linear model structure is commonly utilized, to define
amathematicalmodel for the physical system.Unfortunately,
the linearising assumption of small motion is critically chal-
lenged when a control strategy is included which, with the
aim of increasing the power capture, magnifies the motion of
the device, consequently increasing the relevance of nonlin-
earities, as shown by Giorgi et al. (2016b).

Givendifferent hydrodynamic characteristics ofHPAs and
OWSCs, different nonlinear forces may be less or more rele-
vant, depending on the device operating principle. Likewise,
scaling properties of such nonlinear forces may be differ-
ent according to the type of device. Scalability of nonlinear
forces is particularly importantwhen testswith prototypes are
used to predict the performance of the device at full scale.

Candidates to incorporate significant nonlinear effects into
the WEC model appear to be Froude–Krylov (FK) forces,
and viscous drag forces, while the linear formulation of
diffraction and radiation forces is normally assumed to be
accurate enough, especially when the characteristic length
of the device is much smaller than the wave length (Falnes
2002; Clement and Ferrant 1988).
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Fig. 1 Full-scale devices under
study: On the left, a spherical
heaving point absorber in deep
water with radius R of 2.5 m,
with the centre of gravity G at
the still water level (SWL); on
the right, a prismatic oscillating
wave surge converter, hinged at
4 m from the sea bottom, and
piercing 3 m from the SWL
when at rest. Both devices have
a power take-off (PTO) system
with a damping and a stiffness
term. The PTO representation
for the OWSC is simply
conceptual, since the actual PTO
operates on the rotational
quantities of δ and δ̇

In the literature, different approaches can be found for
modelling nonlinear FK forces for HPAs (Gilloteaux 2007;
Giorgi and Ringwood 2016), and OWSCs (Giorgi et al.
2016a). Viscous drag forces are usually included in themodel
by means of a Morison-like term (Lok et al. 2014; Bhinder
et al. 2012). It is worthmentioning that a full validation of the
nonlinear models proposed in this paper is not yet complete.
Despite the fact that some validation of the methods applied
to describe nonlinear FK and drag forces can be found in
the literature, to the best of knowledge of the authors, no
previous work has used both nonlinear FK and drag force
under similar controlled conditions. Gilloteaux (2007) val-
idates nonlinear FK forces for a point absorber using the
same method as in this paper, but without including vis-
cous drag; viscous drag force using theMorison equation has
been validated for a HPA (Bhinder et al. 2011) and OWSC
(Bhinder et al. 2015), but using a fixed body or a free decay
experiment, therefore without a controller exaggerating the
amplitude of motion. Finally, a first validation of the non-
linear Froude–Krylov and drag forces under control for HPA
using a numerical wave tank has been proposed in Giorgi and
Ringwood (2017).

This paper attempts to develop parsimonious hydrody-
namic models for HPAs and OWSCs by combining, as
appropriate, linear and nonlinear hydrodynamic forces in a
boundary element formulation and considering both proto-
type and full-scale models. Indeed, including nonlinearities
may increase the model accuracy, but at an additional com-
putational burden. A model is parsimonious if describes
only relevant nonlinearities, in the attempt to realize the best
compromise between model fidelity and computational cost.
Crucially, parsimonious dictates that OWSC and HPA mod-
els differ in model structure.

The reminder of the paper is organized as follows: Sect. 2
presents the nonlinear hydrodynamic models, which are
applied to a case study, presented in Sect. 3. Results are given
in Sect. 4, and some conclusions and final remarks are pre-
sented in Sect. 5.

2 Hydrodynamic models

This paper considers two single-DoF devices, as shown in
Fig. 1: a heaving point absorber, which is constrained to
translate in the vertical direction only, and an oscillatingwave
surge converter, which pitches around a hinge, with angle δ.
More detailed illustrations of the HPA and the OWSC are
shown in Figs. 2 and 3, respectively. The dimensions shown
in Fig. 1 refer to a likely full-scale size.

Under the assumption of inviscid fluid, and irrotational
and incompressible incident flow, Newton’s second law of
dynamics can be applied (Merigaud et al. 2012), so that, for
the HPA:

mz̈(t) = Fg −
∫∫

S(t)

P(t) n dS + FPTO(t), (1)

while, for the OWSC:

I δ̈(t) = Fg × Lg −
∫∫

S(t)

P(t) n × l dS + TPTO(t), (2)

wherem and I are, respectively, the mass of the HPA and the
pitching inertia of the OWSC, Fg is the gravity force, Lg the
distance between the centre of gravity of the OWSC and the
hinge, S the submerged surface, P the pressure of the fluid on
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Fig. 2 Axisymmetric heaving
device with generic profile
f (σ ): the figure on the left
shows the rest position, with the
centre of gravity G at the still
water level (SWL) and draft h0;
the figure on the right shows the
free surface elevation η and the
device displacement zd after a
time t∗. The pressure is
integrated over the surface
between σ1 and σ2 (Giorgi and
Ringwood 2016)

Fig. 3 Scheme for nonlinear Froude–Krylov force calculation for an
oscillating wave surge converter. The static and dynamic pressures act
on the front and rear surfaces of the flap, delimited by αF and αR at the
bottom, and βF and βR at the intersection between the free surface and
the body

the body surface, and n the vector normal to the infinitesimal
surface dS, which is a distance l from the hinge in the case
of the OWSC. Finally, the power take-off system applies a
force (FPTO) on the HPA and a torque (TPTO) on the OWSC.

According to Bernoulli’s equation (Falnes 2002), the fluid
pressure P acting of the surface of the structure is obtained
as:

P(t) = −ρgz(t) − ρ
∂φ(t)

∂t
− ρ

|∇φ(t)|2
2

(3)

where ρ is the density of thewater, g the acceleration of grav-
ity, −ρgz the hydrostatic pressure (Pst), and φ the potential
flow which, based on linear wave theory, is the sum of the
undisturbed incident flow potential φI, the diffraction poten-
tial φD, and the radiation potential φR:

φ(t) = φI(t) + φD(t) + φR(t) (4)

Omitting the time-dependence annotation for brevity, sub-
stitutingEqs. (3) and (4) into (1) and (2), and adding a viscous
drag term, one obtains, for the HPA:

mz̈ = FFK + FD + FR + Fvis + FPTO, (5)

while, for the OWSC:

I δ̈ = TFK + TD + TR + Fvis + TPTO, (6)

where F and T are the force and torque applied on the HPA
and OWSC, respectively, and the subscripts FK, D, R, vis,
and PTO refer to FK, diffraction, radiation, viscous drag,
and PTO, respectively. Note that the FK force is composed
of a static and a dynamic part; furthermore, the sum of the
dynamic FKand diffraction forces is usually referred to as the
excitation force. The detailed definition and implementation
of each component of (5) and (6) is given in Sects. 2.1–
2.4. As a common assumption (Falnes 2002), the nonlinear
quadratic terms in (3) are neglected, and only linear poten-
tials are considered, since the vast majority of waves in the
power production region are appropriately represented by
linear wave theory.

2.1 Diffraction term

The diffraction force/torque is the integral over the wetted
surface of the diffraction pressure PD = −ρ

∂φD
∂t . Assum-
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ing only small wave amplitude and steepness, the potential
problem is linearized and solved around the equilibriumposi-
tion of the device. Therefore, the mean wetted surface SM
is considered, and the diffraction term is computed through
the convolution product between the diffraction impulse
response function (IRF) KD and the free surface elevation
η. The resulting radiation force for the HPA is

FD = −
∫∫

SM

PD n dS = −
∫ ∞

−∞
KHPA
D (t − τ) η(τ ) dτ, (7)

while the radiation torque for the OWSC is

TD = −
∫∫

SM

PD n × l dS = −
∫ ∞

−∞
KOWSC
D (t − τ) η(τ ) dτ

(8)

The impulse response functions for each device are
obtained from the boundary element method (BEM) soft-
ware WAMIT (WAMIT Inc. 2013).

2.2 Radiation term

The radiation force/torque is the integral over the wetted sur-
face of the radiation pressure PR = −ρ

∂φR
∂t . As in Sect. 2.1,

the radiation term is computed under linear assumptions.
Using Cummins equation (Cummins 1962), the radiation
term is computed, for the HPA, as

FR = −m∞ z̈ −
∫ ∞

−∞
KHPA
R (t − τ) ż(τ ) dτ, (9)

and for the OWSC, as

TR = −I∞δ̈ −
∫ ∞

−∞
KOWSC
R (t − τ) δ̇(τ ) dτ, (10)

where m∞ and I∞ are, respectively, the added mass at infi-
nite frequency of the HPA, and the added inertia at infinite
frequency of the OWSC, and KR is the radiation impulse
response function.

The computationally expensive radiation convolution
product is replaced by its state space representation, as shown
by Taghipour et al. (2007).

2.3 Froude–Krylov term

The FK force is divided into two parts, static and dynamic,
where the static FK force is the balance between the gravity
force, and the integral over the wetted surface of the static
pressure Pst, while the dynamic FK force refers to the inte-
gral over the wetted surface of the dynamic pressure, derived

from the incident field potential as Pdy = −ρ
∂φI
∂t . The inte-

gral is nonlinearly computed over the instantaneous wetted
surface of the devices, considering the instantaneous inter-
section between the body and the free surface elevation. Due
to the different shape and mode of oscillation of HPAs and
OWSCs, the formulation of the nonlinear FK is analyzed
separately.

2.3.1 Froude–Krylov force for heaving point absorbers

Applying Airy’s wave theory in deep water conditions, and
assuming the origin of the frame of reference to be at the still
water level (SWL), the total pressure is obtained as follows:

P(x, z, t) = Pst + Pdy = −ρgz + ρgaeχ z cos (ωt − χx)

(11)

where x is the direction of wave propagation, a is the wave
amplitude, χ the wave number and ω the wave frequency.

As shown in detail in Giorgi and Ringwood (2016), an
algebraic solution is achievable for any axisymmetric heav-
ing point absorber, in deep water conditions, such as the one
in Fig. 2, which can be described by parametric cylindrical
coordinates [σ, θ ] as:

⎧⎪⎨
⎪⎩
x(σ, θ) = f (σ ) cos θ

y(σ, θ) = f (σ ) sin θ

z(σ, θ) = σ

, σ ∈ [σ1, σ2] ∧ θ ∈ [0, 2π)

(12)

Referring to the notation in Fig. 2, the resulting FK heave
force is computed as follows:

FFKz = Fg −
∫ 2π

0

∫ σ2

σ1

P (x(σ, θ), z(σ, θ), t) f ′(σ ) f (σ )dσdθ

(13)

where the subscript z indicates the heave component of the
FK force; the limits of integration, defining the instantaneous
wetted surface, are σ1 = zd − h0 and σ2 = η.

The algebraic solutionof (13) is straightforward and easily
implemented in the simulation model.

2.3.2 Froude–Krylov torque for oscillating wave surge
converters

Since the OWSC is a bottom-hinged device, the pressure
formulation in intermediate depth water conditions needs to
be used:

P(x, z, t) = −ρgz + ρga
cosh (χ (z + h))

cosh (χh)
cos (ωt − χx)

(14)
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where h is the water depth.
The static and dynamic pressures simultaneously act per-

pendicularly on the front and rear surfaces of the OWSC,
which have opposite normals, generating, as a consequence,
opposite torques. The torque due to the pressure on each side
of the OWSC is computed as the outer product between the
resulting force FFK and its distance LFK from the hinge:

FFKF = −
∫ W

2

−W
2

∫ βF

αF

P n
dx dy

sin δ
(15a)

LFKF = 1

FFKF

∫ W
2

−W
2

∫ βF

αF

P n × l
dx dy

sin δ
(15b)

FFKR = −
∫ W

2

−W
2

∫ βR

αR

P n
dx dy

sin δ
(15c)

LFKR = 1

FFKR

∫ W
2

−W
2

∫ βR

αR

P n × l
dx dy

sin δ
(15d)

where F and R subscripts refer to the front and rear surface,
respectively, and the infinitesimal area of the flap rotated by
an angle δ is dS = dx dy

sin δ
.The limits of integration are defined

by W , which is the width of the flap along the y axis, and
by αF, αR, βF and βR, which define the surface on which the
pressure is acting, as shown in Fig. 3. If the body is piercing
the water, βF and βR are the submerged lengths of the flap;
if the device becomes fully submerged (when large motions
occur), βF and βR are the extremities of the flap.

The total FK torque is the sum of the torque due to gravity,
and the torques due to the static and dynamic pressures on
the front and rear surfaces:

TFK = Fg × Lg + FFKF × LFKF + FFKR × LFKR (16)

2.4 Viscous drag term

2.4.1 Viscous drag force for heaving point absorbers

The viscous drag force calculation is based on the Morison
equation (Morison et al. 1950), which takes into account the
shape of the device vie the drag coefficient Cd, the size of
the floater with the characteristic area Ad, and the relative
velocity between the velocity of the floater V and the vertical
componentV0z of the undisturbedflowvelocity (Babarit et al.
2012):

Fvis = −1

2
ρ CdAd

∣∣V − V0z
∣∣ (V − V0z ) (17)

Note that the characteristic surface area Ad is the pro-
jection of the instantaneous wetted surface onto the plane
normal to the flow. Therefore, as the the instantaneous wet-

ted surface is considered, Ad changes as the device pierces
the water during its motion.

The value of the drag coefficient Cd can be estimated
for simple geometries by the Keulegan–Carpenter number
(KC), which is a dimensionless quantity defined as the ratio
between drag and inertia forces, acting on a body in an oscil-
latory fluid flow (Keulegan and Carpenter 1956). In case of
sinusoidal motion, the KC number can be computed as:

KC = 2π
A

Lc
(18)

where A is the amplitude of motion and Lc is the character-
istic length scale, which is equal to the diameter, in the case
of a sphere. The motion of the HPA and the diameter of the
floater are of the same order of magnitude, which means that
the KC number is about 2π so, according to Molin (2002),
Cd can be taken equal to 1. However, it is worth pointing out
that such a method for estimating the drag coefficient is sub-
ject to some uncertainty, which could be assessed through a
sensitivity analysis, as shown by Babarit et al. (2012).

2.4.2 Viscous drag torque for oscillating wave surge
converters

As in Sect. 2.4.1, the drag torque is computed by applying
the Morison equation (Morison et al. 1950). However, since
the device is rotating, the relative linear velocity between
the body and the fluid is progressively changing, while mov-
ing away from the hinge. Furthermore, as intermediate depth
water conditions are used, the fluid velocity is significantly
changing with depth, due to the proximity of the bottom.
Therefore, the wetted surface of the flap is equally divided
into Ns = 10 horizontal sections, and the total viscous torque
Tvis is computed as follows (Babarit et al. 2012):

Tvis =
Ns=10∑
i=1

Li ×
(

−1

2
ρ CdAdi

∣∣Vi − V0i
∣∣ (Vi − V0i )

)

(19)

where Li is the distance from the centre of the i th slice to
the hinge, and Vi = Li δ̇ is its velocity. In Sect. 2.4.1, the
instantaneous wetted surface is similarly taken into account.

The number of sections Ns has been chosen as 10 to have
a reasonable balance between computational time and accu-
racy. On the one hand, the higher the number of divisions, the
smaller the width of each section; the smaller the variation
of the velocities with respect to the centre of the section, the
higher the accuracy of the computation. On the other hand,
the computational time is directly proportional to the number
of sections.
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The amplitude of motion of the top of the flap is likely
to be of the same order of magnitude as the wave amplitude,
which results in a Keulegan–Carpenter number less than one.
According to Bearman et al. (1985), the drag coefficient for a

plate in oscillatory flow at lowKC isCd = 7.8 KC− 1
3 , soCd

has been taken as 8. As already mentioned in Sect. 2.4.1, the
estimation of the value of Cd is subject to some uncertainty
(Babarit et al. 2012).

3 Case study

Figure 1 shows the geometries and full-scale dimensions of
the HPA and the OWSC, which have been inspired, respec-
tively, by the Wavestar HPA (Wavestar 2016) and the Oyster
2OWSC (Aquamarine 2016). One of the inherent differences
between HPAs and OWSCs is that OWSCs must be installed
near shore, whereas HPAs may be installed either near or
off-shore. Therefore, to highlight such a difference, related
to the operating principle, deep water conditions are chosen
for the HPA.

The HPA is a sphere of radius R 2.5 m, with the geometric
and gravity centre at the SWL, designed to work in deep
water conditions, constrained to heave (z) and tethered to the
seabed through a PTOmechanism, composed of stiffness and
damping terms.

The OWSC is a rectangular prism, with dimensions
according to the section shown in Fig. 1 and width W of
26 m. The position of the centre of gravity G (2.74 m below
the SWL), the mass (150,000 kg), and the inertia around the
hinge (8.12×106 kg m2), as well as all the dimensions, have
been taken from (Babarit et al. 2012). The flap rotates around
the hinge with angle δ, and a PTO with rotational stiffness
and damping terms is implemented. Note that the PTO rep-
resentation in Fig. 1 is simply conceptual, since the actual
PTO operates on the rotational quantities δ and δ̇.

Incident regular waves are used, to study the hydrody-
namic forces at each individual frequency. Wave periods Tw
range from 5 to 15 s, with a 1 s step, while wave heights Hw

range from 0.5 to 3 m, with a 0.5 m step. Note that some
of the considered wave conditions (at large Hw and small
Tw) have a steepness too large to be appropriately described
by linear Airy’s theory, as assumed in Sect. 2. However,
the objective of the paper is to focus on the comparative
wave-structure interactions due to different WEC operating
principles, which is facilitated by the use of identical input
wave conditions.

The response of the device is analyzed under controlled
conditions, since the action of the controller enlarges the
amplitude of motion and increases the relevance of non-
linearities. In order to facilitate as close a comparison as
possible, the controller structure has been chosen to be the

same for both the HPA and the OWSC. Therefore, reactive
control is applied, which tunes the stiffness and damping
parameters of the PTO, KPTO and BPTO, respectively, to
maximize the power absorption for each wave condition. No
constraints are imposed in the power optimization strategy,
so that the KPTO may take negative values, for example in
the case where the device resonant frequency is less than the
predominant wave frequency. Furthermore, no constrained
are imposed on either device displacement, velocity, or PTO
force. Simulations show that reactive control is effective for
both the HPA and the OWSC, as it achieves the objective of
increasing the power absorption compared to the case where
the PTO acts just as a linear damper (uncontrolled condi-
tion).

The prototype model dimensions have been obtained by
applying Froude similarity since, in wave energy applica-
tions, gravity and inertial forces are dominant (Heller 2011).
According to Froude similarity, the dimensionless Froude
number (Fr), which is the square root of the ratio between
inertial and gravity forces, is kept constant. The scaling ratio
s has been chosen equal to 1 : 20 for both the HPA and
OWSC, consistent with the prototype scale of the Waves-
tar (Hansen 2013), and Oyster devices (Whittaker et al.
2007).

The PTO coefficients, KPTO and BPTO, have been chosen
in order to optimize the power absorption of the full-scale
device. These control parameters have been scaled down for
the prototype model, according to Froude similarity. Note
that, due to nonlinearities, such PTO parameters may be
suboptimal for the small-scale device. Nevertheless, in real
applications, the objective is to maximize the power absorp-
tion of the full-scale device, rather than the small-scale one.
Furthermore, Froude-scaling the PTO coefficients facilitates
the comparison between small and full-scale models since,
with scaled PTO parameters, differences in the response (dis-
placement, velocity, and forces) are due to nonlinearities
only.

Likewise, the same drag coefficient has been used for the
small and full-scale models. In general, Cd depends on the
type of flow around the device; therefore, it is influenced by
the Reynolds number (Re), which is the dimensionless num-
ber defined as the ratio between inertial and viscous forces.
Froude-scaling ensures the same Fr number, implying a dif-
ferent Re number instead. Nevertheless, it is assumed that
the main contribution to drag forces is flow separation, asso-
ciated with the inertia of the flow field, which is largely
preserved under Froude similarity. Consequently, retaining
the same Cd for small and full-scale devices is considered
as a good first approximation. However, as for the PTO
parameters, having the same drag coefficient makes the com-
parison more even, since differences arise from the model
structure only, rather than from differently scaled coeffi-
cients.
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(a) Heaving point absorber.
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Fig. 4 Maxima of the steady state response for the heaving point
absorber (a), and the oscillating wave surge converter (b)

4 Results

The responses of theHPAandOWSC, at full scale, are shown
in Fig. 4, which presents the maxima of the vertical/angular
displacements, computed once the transient has elapsed.

The main differences between the HPA and the OWSC
arise from the comparative relevance of each of the hydro-
dynamic forces in each of the devices. Figure 5a, b show
the amplitude of the static FK (FKst), dynamic FK (FKdy),
diffraction (D), radiation (R), and viscous drag (vis) forces
and torques under controlled conditions, for the HPA and
the OWSC, respectively, using a regular wave of Tw = 10 s
and Hw = 1.5m. Due to nonlinearities, forces may be, in
general, asymmetric; therefore, the force amplitude has been
defined as half of the variation from peak to trough.

Finally, both model scales have been plotted together in
Fig. 5: the results obtained with the prototype model have
been scaled up, with a factor s3 for the forces of the HPA, and
s4 for the torques of the OWSC. Forces and torques obtained
with the prototype scale are identified by the subscript p,
whereas f indicates the full-scale model.

Overall, the nonlinear static FK term, which is the restor-
ing force that pulls the device back into the equilibrium

FFKst
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FD FR Fvis
0
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2

3

·105
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rc
e
[N

]

Tw = 10s, Hw = 1.5m

Fp/s3
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(a) Heaving point absorber.
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TFKdy

TD TR Tvis
0

2

4

6

8

·106

T
or
qu

e
[N

m
]

Tp/s4

Tf

(b) Oscillating wave surge converter.

Fig. 5 Full-scale total hydrodynamic force (F) and torque (T ) decom-
position into static FK (FKst), dynamic FK (FKdy), diffraction (D),
radiation (R), and viscous drag (vis), according to the prototype (p)
and full-scale ( f ) model, using a regular wave of period Tw 10 s and
height Hw 1.5 m

position, is by far the largest component in HPAs. While the
dynamics of the HPA are dominated by static and dynamic
FK forces, in the OWSC the major hydrodynamic action is
due to diffraction and radiation forces.

The components related to wave excitation are the
dynamic FK force and the diffraction force. Figure 5 shows
that HPAs aremainly excited by the dynamic FK force while,
in OWSCs, diffraction forces are the most important wave
excitation mechanism.

Radiation damping and viscous drag are the dissipative
terms of the hydrodynamic force, with a notional linear
and quadratic dependance on the velocity of the device,
respectively.While in HPAs, dissipation terms are very small
compared to the FK components, in OWSCs radiation and
viscous drag are predominant.

Comparing small- and full-scale models, it is clear that all
forces and torques are perfectly scalable, meaning that non-
linear FK and viscous drag models are invariant to scaling,
for both the HPA and the OWSC. Consequently, as far as
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the nonlinear model structure is concerned, it is equivalent
to consider small or full scale, as long as the same model
parameters are chosen. However, even though the nonlin-
ear model structure is scale independent, the values of the
model parameters, in particular the viscous drag coefficient,
may vary between different scales. Indeed, Clabby (2014)
shows that the power captured during experimental tests for
an OWSC at prototype scale is 7% greater, relative to full
scale. Figure 5 suggests that such a difference is not due to the
inherent structure of nonlinear forces, but may be attributed
to different flow conditions at different scales, resulting in
different values of the drag coefficient.

Following the scalability considerations, only the full-
scale devices will be discussed hereafter.

Differences between the hydrodynamic forces, experi-
enced by the HPA and the OWSC, are not only due to their
amplitudes, as shown in Fig. 5, but also on the phase with
which they are acting on the body as well. Notwithstanding
the clear notion of phase between quasi-harmonic signals, a
rigorous definition of phase is available only for sinusoidal
signals. Nevertheless, a predominant phase ϕ can be defined,
using the delay at which the cross-correlation function has
its maximum. Such phases are computed for all the forces F
(and torques T ), with respect to the free surface elevation η,
as follows:

ϕ = 2π

argmax
τ

{∫ ∞
−∞ F∗(t) η(t + τ) dt

} , (20)

where F∗ denotes the complex conjugate of the force (or
torque), and τ the time lag.

For all the hydrodynamic forces, such a phase difference
is used to construct a phasor, whose length is equal to the
exponential of the ratio between the amplitude of the force
and the total hydrodynamic force. The phasor graphs for the
HPA and the OWSC are shown in Figs. 6 and 7, respectively.
The reason for scaling the length of the phasor with an expo-
nential is to decrease the differences between the amplitudes
of the different forces, facilitating comparative plotting.

To highlight the effect of nonlinearities, Figs. 6 and 7 are
drawn for waves with the same period Tw = 10 s, and 6
heights Hw from 0.5 to 3 m. Indeed, if the model was fully
linear, the phase of each forcewould depend only on thewave
frequency, while it would be independent of the wave height.
On the contrary, nonlinear forces show a phase drift causing,
in turn, a phase shift in position and velocity. Therefore, due
to nonlinearities, as the wave height increases, the phasors
are rotating in the direction indicated by the curved arrows
in Figs. 6 and 7.

In fact, the only phasor that is not rotating is the diffraction
one, which is linear, and does not depend on the response of
the device. On the other hand, notwithstanding that the radi-
ation force is linear, the radiation phasor is rotating, since it

Fig. 6 Phasor graph for the HPA, for a wave period Tw = 10 s, and 6
heights Hw from 0.5 to 3 m, increasing in the direction of the curved
arrows

Fig. 7 Phasor graph for the OWSC, for a wave period Tw = 10 s, and
6 heights Hw from 0.5 to 3 m, increasing in the direction of the curved
arrows

depends on the velocity. Finally, FK and viscous drag pha-
sors are rotating both due to their nonlinear nature, and their
dependence on the displacement and velocity.

Nevertheless, the rotation of the dynamic FK phasor is
relatively small, since it depends mainly on the free surface
elevation. Conversely, static FK and radiation phasors rotate
in the same direction, due to the large dependence on position
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Table 1 Phase range of the phasors in Figs. 6 and 7, and correspondent
phase difference

Hw (m) HPA OWSC Difference
0.5 → 3 0.5 → 3 0.5 → 3

ϕFKs (deg) 97 → 117 156 → 136 −59 → −19

ϕFKd (deg) 359 → 355 90 → 98 269 → 257

ϕD (deg) 167 → 167 80 → 80 87 → 87

ϕR (deg) 265 → 287 326 → 307 −62 → −20

ϕvis (deg) 179 → 176 291 → 309 −112 → −132

and velocity, respectively; in fact, since position and velocity
are roughly 90◦ out of phase, they rotate with a consistent
phase difference, so static FK and radiation phasors rotate
accordingly.

Finally, the viscous drag phasor rotation is quite small
for the HPA and relatively large for the OWSC, consistent
with the relative importance of the viscous drag term in each
device. Note that, in the OWSC, the phasors of the two dis-
sipative terms, namely radiation and viscous drag forces, are
counter-rotating as the wave height increases. Furthermore,
the phase difference between the radiation and viscous drag
phasors decreases for larger wave amplitude; consequently,
a more constructive interaction is achieved, making the total
loss larger.

Comparing the phasor graphs of the HPA and the OWSC,
in Figs. 6 and 7, respectively, it can be noted that the pha-
sors of each hydrodynamic force component rotate in the
opposite direction (the FKs phasor, for example, is rotat-
ing counter-clockwise for the HPA, but clockwise for the
OWSC). Moreover, the range of phases of each phasor is
different between the HPA and the OWSC (the HPA FKs

phasors, for example, are between 97◦ and 117◦, while the
OWSCFKs phasors are between 136◦ and 156 ◦). Table 1 tab-
ulates the bounding phases for each force component, namely
at the smallest and largest wave height, as well as the phase
difference between the HPA and OWSC.

To have a more complete description of the relevance
of nonlinearities in HPAs and OWSCs for all wave condi-
tions considered in this paper, the FK ratio is defined as the
ratio between the amplitude of FK forces/torques (static plus
dynamic) and the total hydrodynamic force/torque. Like-
wise, the viscous drag ratio is defined as the ratio between
the amplitude of the viscous drag force/torque, and the total
hydrodynamic force/torque.

FK and viscous drag ratios are shown, respectively, in
Figs. 8 and 9, where each line corresponds to a constant
wave height. The HPA exhibits FK ratios from 0.81 to 0.96,
showing that FK forces constitute the largest part of the total
hydrodynamic force. On the other hand, FK ratios for the
OWSC are considerably smaller, ranging from 0.09 to 0.36.
Nevertheless, both the HPA and the OWSC show a similar
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Fig. 8 Froude–Krylov force ratio, defined as the ratio between the FK
force (static and dynamic) and the total hydrodynamic force. Each line
corresponds to constant wave height, ranging from 0.5 to 3 m with a
step of 0.5 m
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Fig. 9 Viscous drag ratio, defined as the ratio between the viscous
drag force and the total hydrodynamic force. Each line corresponds to
constant wave height (shown at the right hand side), ranging from 0.5
to 3 m with a step of 0.5 m

trend: the FK ratio increases with the wave period Tw, while
it is independent of the wave height Hw.

The viscous drag ratio in Fig. 9 shows a completely dif-
ferent trend, compared to Fig. 8. The viscous drag ratio of
the HPA experiences little dependence on either wave period
or height, especially at larger periods, and exhibits a general
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Fig. 10 Froude–Krylov ratio versus viscous drag ratio, defined as in
Figs. 8 and 9, respectively. Every line has a constant wave height, rang-
ing from 0.5 to 3 m with step 0.5 m, increasing from left to right, with
wave period Tw, ranging from from 5 to 15 s with step 1 s, increasing
upwards along each line

slightly negative slope of the curves; since the FK forces are
dominating the device dynamics, as shown in Fig. 8, the vari-
ations in viscous drag force have little impact on the overall
hydrodynamic force, so the viscous drag ratio remains quite
small (between 0.01 and 0.06). Furthermore, the negative
slope suggests that the increase in viscous drag force is even
smaller than the increase in FK force. On the other hand, the
viscous drag ratio for the OWSC shows a strong dependence
on both wave period and height. Moreover, the curves are
clearly distinct because of the large values the viscous drag
ratio assumes, highlighting its relevance with respect to the
total hydrodynamic force.

It is useful to gather the information contained in Figs. 8
and 9 in a single compact graph, shown in Fig. 10, in order
to highlight the essential differences between HPAs and
OWSCs, and the relative importance of nonlinear FK and
viscous drag effects. As shown by the arrows in Fig. 10, the
cloud of points for each device presents different trends at
constant wave heights Hw, increasing from left to right, with
the wave period Tw increasing upwards along each line.

The cloudof points for theHPA is compact and shows little
dependence ondifferentwaveheights andperiods, occupying
a small area at the top left corner of the graph at high FK ratios
(greater than 0.8), and low viscous drag ratios (smaller than
0.07).

On the contrary, a completely separate region of the graph
in Fig. 10 is occupied by the OWSC, located at low FK ratios
(lower than 0.4), and viscous drag ratios up to 0.35. The

OWSC points are widely spread, showing a strong sensitivity
to both wave period and height.

5 Conclusions

This paper deals with the major hydrodynamic differences
existing between heaving point absorbers, and oscillating
wave surge converters. The relative amplitude and phase
of each hydrodynamic force component are investigated,
using nonlinear models for Froude–Krylov and viscous drag
forces. A particular focus is placed on the importance of
nonlinearities; on the one hand, the sensitivity of scaling to
hydrodynamic nonlinearity is examined, when a prototype
scale model is used to predict the full-scale model perfor-
mance; on the other hand, the relevance on nonlinear forces
is discussed, with respect to the total hydrodynamic force.

From Fig. 5, it is clear that the mathematical structure of
nonlinear Froude–Krylov and viscous drag forces is scale
invariant. Therefore, eventual differences between exper-
imental tests at prototype and full scales are not due to
the inherent structure of the nonlinear forces, but may be
attributed to different flow characteristics, which impact the
model parameters (namely Cd).

Nonlinearities also affect the phase with which the force
components acting on the devices since, for a constant wave
frequency, the phasors of the forces are rotating, as the the
wave height increases.

Nonlinear forces show different relevance in HPAs and
OWSCs. Viscous drag effects in HPAs are small compared
to the other forces, while they are significant in OWSCs. The
most important hydrodynamic force in HPAs is the nonlinear
FK force, while diffraction and radiation are relatively small.
Moreover, the dynamic FK force is the main wave excitation
mechanism in HPAs, since the diffraction force is negligible.
On the contrary, the dynamics of OWSCs are mainly driven
by diffraction and radiation forces, while the dynamic FK
force is relatively low.

Consequently, the relevance of nonlinear FK forces in
HPAs appears to be considerably larger than the viscous drag
force, since FK forces cover 81–96% of the total hydrody-
namic force. Such percentages remain consistent for different
wave heights and periods. Conversely, the relative relevance
of nonlinear FK forces and viscous drag in OWSCs is quite
sensitive to wave parameters. Aside from the variability, FK
forces are, in general, significantly more important in HPAs
than in OWSCs, while viscous drag becomes much more
relevant in OWSCs than HPAs.

Diffraction and radiation forces,which have been assumed
to be linear, appear to be negligible in HPAs, while they
are the most important hydrodynamic force components in
OWSCs.Apossible topic of futureworkwouldbe to include a
nonlinear representation of diffraction and radiation forces as
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well which, especially in OWSCs, could modify the balance
between the different components of the total hydrodynamic
force. A further possible topic of future work would be to
completely validate the mathematical models used in this
paper, for regular and irregularwaves, usingCFDsimulations
or experimental tests.
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