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a b s t r a c t 

Model predictive control (MPC) has achieved considerable success in the process industries, with its abil- 

ity to deal with linear and nonlinear models, while observing system constraints and considering future 

behaviour. Given these characteristics, against the backdrop of the energy maximising control problem for 

Wave Energy Converters (WECs), with physical constraints on system variables and a non-causal optimal 

control solution it is, perhaps, natural to consider the application of MPC to the WEC problem. However, 

the WEC energy maximisation problem requires a significant modification of the traditional MPC objec- 

tive function, resulting in a potentially non-convex optimisation problem. A variety of MPC formulations 

for WECs have been proposed, with variations in the WEC model, discretisation method, objective func- 

tion and optimisation algorithm employed. This paper attempts to provide a critical comparison of the 

various WEC MPC algorithms, while also presenting WEC MPC algorithms within the broader context of 

other WEC “optimal” control schemes. 

© 2017 Elsevier Ltd. All rights reserved. 
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. Introduction 

Covering almost the 71% of the earth surface, the ocean is an

lmost inexhaustible source of clean energy. Energy capture from

cean waves has an enormous potential to fulfil the increasing

orldwide energy demand, with an estimation of about 32,0 0 0

Wh/year ( Mork, Barstow, Kabuth, & Pontes, 2010 ). Nevertheless,

ave energy is at an early stage of development ( Edenhofer et al.,

011 ). Since the main difficulty with wave power is the irregular

otion of the sea on different time scales ( de O. Falcão, 2010 ), the

echnical and conceptual convergence to a device, best suited for

his application, has not yet been achieved. As a result, hundreds of

atents proposing different methodologies have been filed around

he world ( Pelc & Fujita, 2002 ). An overview and classification of

ave Energy Converters (WECs) can be found in Drew, Plummer,

nd Sahinkaya (2009) and de O. Falcão (2010) . 

A WEC is a device used to harvest ocean wave energy, usually

onverting the mechanical energy of the waves to electrical energy

hrough a Power Take-Off system (PTO). In order to be profitable,

n optimised process, that ensures extracting the maximum time

veraged power from ocean waves, is crucial. Moreover, such an

ptimisation strategy must take into account the physical limita-

ions of the complete conversion chain in order to maximise power
∗ Corresponding author. 
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bsorption and minimise the risk of damage. Such an optimisation

rocedure can be achieved by designing an optimal controller that

ccomplishes this energy-maximising control objective. 

Several optimal control formulations and methods have been

eveloped in order to improve energy extraction from WECs, with

xtensive reviews available in studies such as Ringwood, Bacelli,

nd Fusco (2014a) and Ringwood, Bacelli, and Fusco (2014b) . A

rief discussion on the evolution of these kinds of controllers is

lso given in Section 3 . 

A well-developed control strategy, within both the research and

ndustrial control communities, that takes into account constraints,

hile optimising a given criterion, is Model Predictive Control

MPC). MPC was first suggested within the wave energy context in

ieske (2007) . Subsequently, several studies began to implement

ifferent MPC strategies within the same context. Moreover, MPC-

ike strategies, based on spectral and pseudospectral methods, have

een developed and implemented in this field, in an attempt to

vercome the computational burden of the original MPC strategies.

hose MPC and MPC-like algorithms constitute the main scope of

his study. 

This review paper is organised as follows: First, the basics of

EC modelling, and physical constraints considered, are given in

ection 2 , while an overview of optimal control methods applied

ithin wave energy conversion and, particularly, MPC strategies

s an optimal formulation, can be found in Section 3 . In order to

rovide a broader context, and a basis for comparison, brief sum-

ary on “traditional” MPC controllers can be found in Section 4 .

http://dx.doi.org/10.1016/j.ifacsc.2017.07.001
http://www.ScienceDirect.com
http://www.elsevier.com/locate/ifacsc
mailto:nicolasfaedo@gmail.com
http://dx.doi.org/10.1016/j.ifacsc.2017.07.001
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Fig. 1. Wave energy converter. 
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An extensive characterisation of MPC controllers in wave energy

is given in Section 5 , where the key elements of such strategies

are analysed. Spectral and pseudospectral techniques (MPC-like al-

gorithms) are presented in Section 6 and, finally, a discussion and

further directions related to predictive control of WECs are given

in Section 7 . 

2. WECs: models and path constraints 

The WEC representation in Fig. 1 shows a spherical heaving

point absorber, constrained to move in heave only, for simplicity.

The device is assumed to be bottom referenced, with the opposing

PTO force, u ( t ), providing the control input. While the representa-

tion in Fig. 1 is for simple illustrative purposes only, a wide variety

of WEC geometries and principles have been proposed ( Koca et al.,

2013 ). 

In essence, the useful energy is converted in the PTO, calculated

as the integral of converted power: 

E = −
∫ 

u (t) ̇ x (t) dt (1)

where ˙ x (t) is the velocity of the device. The control problem can

be informally described as the specification of u ( t ) so that (1) is

maximised. In general, if the resisting force u ( t ) is larger, the veloc-

ity ˙ x (t) will be smaller, while a smaller resisting force will result in

a greater velocity. Since the wave excitation force is bi-directional

and multi-frequency, the determination of the optimal PTO force

profile is non-trivial. 

2.1. WEC model 

In the majority of the published studies, the device is assumed

to be a one degree-of-freedom system (1-DOF), constrained to

move in heave only, such as that shown in Fig. 1 . The WEC is refer-

enced from its equilibrium position, immersed in an infinite-depth

sea, in an undisturbed wave field. Such a system is then subject to

fluid–structure interactions. These fluid–structure interactions are

typically modelled using potential flow theory, where the fluid is

assumed to be inviscid and incompressible, and flow is considered

irrotational. Applying Newton’s second law to the heaving body

yields the linear hydrodynamic formulation: 

m ̈x (t) = F r (t) + F h (t) + F exc (t) + u (t) (2)
 s  
here m is the mass of the buoy, x ( t ) the heave excursion, F exc (t)

he wave excitation force, F r (t) the radiation force, F h (t) the

ydrostatic restoring force, and u ( t ) is the control input applied

hrough the PTO system. The hydrostatic force for a floating body

s F h (t) = ρgV i where ρ is the water density, g is the acceleration

ue to gravity, and V i = V 0 − Sx (t) represents the immersed volume

f the WEC, with V 0 the immersed volume at the equilibrium po-

ition and −Sx (t) as an approximation of the additional immersed

olume depending on the position of the WEC. The radiation force

 r is also modelled, based on linear potential theory and, using the

ell-known Cummins’ equation ( Cummins, 1962 ), is represented

s 

 r (t) = −m ∞ ̈

x (t) −
∫ t 

0 

K(t − τ ) ̇ x (τ ) dτ (3)

here m ∞ 

represents the added-mass at infinite frequency (further

iscussed in Section 3.1 ) and K ( t ) is the (causal) radiation impulse

esponse. Finally, the linearized equation of motion of the WEC is

iven as 

(m + m ∞ 

) ̈x (t) + 

∫ t 

0 

K(t − τ ) ̇ x (τ ) dτ + S h x (t) = F exc (t) + u (t) 

(4)

here S h = ρgS corresponds to the hydrostatic stiffness. 

.2. Path constraints 

Real approaches to control solutions must consider the physical

imitations constraining the body’s motion and actuator character-

stics. The importance of considering path constraints stems from

he fact that the unconstrained solution that maximizes energy ab-

orption ( Falnes, 2002 ) is often impossible to achieve, due to exces-

ive displacement (amplitude), velocity and/or force requirements.

ther practical aspects related to the consideration of path con-

traints can be found, for example, in Genest, Bonnefoy, Clément,

nd Babarit (2014) . Constraints considered in WEC control prob-

ems are often related to amplitude (position) x ( t ), velocity ˙ x (t)

nd control input u ( t ) which can be written ( Genest & Ringwood,

016a ) as, 

 t ∈ R , 
(
X max , ˙ X max , U max 

)
∈ R 

+ 3 , 

{ | x (t) | ≤ X max 

| ̇ x (t) | ≤ ˙ X max 

| u (t) | ≤ U max 

(5)

Constraints can be also found regarding the rate of change of

he control input �u ( t ), and (unusually) the maximum power al-

owed by the PTO mechanism P max , as discussed in Section 5.2 . A

eparate constraint relates to the direction of the power flow be-

ween the PTO system and the grid, termed a passivity constraint ,

ccording with the definition of passive systems : Consider a dynam-

cal system with input u ( t ) and output y ( t ), where y = h (t, u (t))

nd t ∈ [0, ∞ ), u, y ∈ R 

q ; a system is said to be a passive system

f u ( t ) y ( t ) ≥ 0 , ∀ t ∈ [0, ∞ ) ( Khalil, 1996 ). The motivation to con-

ider the analysis of unidirectional power flow is also discussed in

ection 5.2 , together with a description of studies reviewed that in-

egrate this power flow constraint into their formulation. 

.3. Summary of WEC modelling 

In summary, a wide variety of WEC devices with different oper-

tional principles can be found, since the conceptual convergence

o a particular device has not been achieved yet, as discussed in

ection 1 . The control objective for WECs is strongly (but not al-

ays exclusively) related to the useful energy absorbed (1) , which

irectly depends on the velocity-force product for the PTO system.

espite the fact that the most common physical constraints con-

idered for a WEC device are related to displacement, velocity and
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Fig. 2. Analogous electric circuit counterpart of the impedance matching problem 

for a WEC. 
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(a) Complex-Conjugate Control

(b) Phase and Amplitude Control

Fig. 3. Block diagram of CC (a) and PA (b) optimal control strategies. H ( ω) repre- 

sents the input–output dynamics of the WEC using velocity as measurable variable. 

In (b), C ( ω) is the transfer function of a controller designed for tracking the optimal 

velocity reference profile ˆ ˙ x opt . 
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ontrol input, additional constraints on the rate of change of the

ontrol force and even on the direction of the power flow between

he device and the PTO system (passivity constraint) can also be

mportant. 

. Optimal control of WECs 

A general definition of the control problem for WECs can be

iven as follows ( Ringwood et al., 2014b ), 

Optimal control objective 

Maximize: Energy absorption 

Subject to: Path constraints in (5) 

A first approach to accomplish the energy-maximising control

bjective can be carried out by ignoring system constraints and

onsidering a frequency-domain model with velocity ˙ x as output,

nd the sum of the excitation force F exc and PTO force u as input,

btained from (4) ( Falnes, 2002 ) as 

ˆ ˙ x (ω) 

ˆ F exc (ω) + 

ˆ u (ω) 
= 

1 

Z i (ω) 
(6) 

ith 

ˆ W ≡ F { W } , where F { •} represents the Fourier transform of

 and, particularly, Z i ( ω) represents the intrinsic impedance of the

ystem (4) , expressed ( Falnes, 2002 ) as 

 i (ω) = R r (ω) + jω 

[ 
m + m (ω) 

] 
+ 

S h 
jω 

(7)

here R r ( ω) is the radiation resistance (which is real and even)

nd m ( ω) is the frequency-dependent added mass. Assuming that

ˆ  (ω) = −Z u (ω ) ̂ ˙ x (ω ) , it is possible to derive the conditions for op-

imal energy absorption from (6) , in the frequency-domain ( Falnes,

002 ), as 

 

opt 
u (ω) = Z ∗i (ω) (8)

here the operator { • } ∗ denotes the complex conjugate of • ∈
 . The choice defined in (8) is alternatively termed as complex-

onjugate (CC) control ( Salter, 1979 ), reactive control ( Budal &

alnes, 1980 ) or impedance-matching control . The last term origi-

ates within electrical engineering, where the condition for max-

mum power transfer between an electrical generator and a com-

lex load is analogous to (8) , and is represented in Fig. 2 . An alter-

ative expression of (8) is given by the following two conditions

 Falnes, 2002 ), 

mplitude: 
∣∣ ˆ ˙ x opt (ω) 

∣∣ = 

∣∣ ˆ F exc (ω) 
∣∣

2 R r (ω) 
(9a) 

hase: cos (φ) = 1 (9b) 

here φ is the phase difference between the phasors of the ve-

ocity ˙ x and the excitation force F exc . A control strategy based on

atisfying both conditions in (9) is known in the literature as phase

nd amplitude (PA) control ( Budal & Falnes, 1977 ). A block diagram

f both CC and PA control strategies is given in Fig. 3 . 

The conditions presented in both (8) and (9) have been devel-

ped by pursuing the maximisation of the average power absorbed
y the WEC. Under the same assumptions, both control strategies

ead to the same results in terms of motion, forces and converted

ower, differing in the method by which they achieve that objec-

ive ( Falnes, 2002 ). However, the absorbed energy obtained by ap-

lying CC and PA control is achieved at the cost of large motions,

arge forces and power fluctuations. Some other important impli-

ations are listed in the following, 

• Both results, namely (8) and (9) , are frequency dependent;

there is a different optimal control policy for each frequency,

making its application difficult in irregular seas containing sev-

eral frequencies. 

• The control problem resulting from the optimality conditions of

(8) and (9) is, in general, non-causal; due to F 

−1 
{

Z ∗
i 

}
, which is

non-causal, u opt ≡ u | 
Z u = Z opt 

u 
is dependent of future values of ˙ x in

(8) or of F exc in (9) ( Falnes, 2002 ). This non-causal behaviour is

further discussed in Section 3.1 . 

• Finally, (8) and (9) take no account of path constraints, making

the optimal solution unrealistic. 

Pioneering studies, regarding the optimal control of WECs, can

e found in Evans (1979) and Falnes (1980) , where the analyti-

al formulations of the maximum power absorbed by a system

f oscillating devices were developed independently. A review of

he theory behind wave energy absorption can be found in Evans

1981b) . A comprehensive description of optimal power absorption

heory can be found in Falnes (2002) , while an overview of the

heory of optimal WEC control is given in Korde (20 0 0) , where

requency-domain and time-domain approaches are examined and

iscussed. One of the first applications of reactive control is de-

cribed in Salter (1979) . A study of the effect of irregular waves

n CC control can be found, for example, in Tedeschi, Molinas,

arraro, and Mattavelli (2010) and Tedeschi, Carraro, Molinas, and

attavelli (2011) , where an analysis of instantaneous power is per-

ormed in addition to the consideration of average power. 
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Fig. 4. Contribution of K ( t ) in the impulse response of ˜ Z i (ω) and ˜ Z ∗
i 
(ω) for a heav- 

ing point absorber WEC of 5 metres of radius. 

Fig. 5. System variables under latching control [7]. 
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3.1. Optimal non-causal control 

A brief discussion on the causality of the optimal control formu-

lations in both CC (8) and PA (9) controllers is given in the follow-

ing, since such non-causal behaviour is a significant challenge as-

sociated with both CC and PA optimal controllers. Using the inverse

Fourier transform, the impulse response F 

−1 { Z i (ω) } = z i (t) , asso-

ciated with the mechanical impedance Z i ( ω), is non-causal ( Falnes,

2002 ), since 

z i (t) = K(t) + (m + m ∞ 

) ̇ δ(t) + 

1 

2 

S h sign (t) (10)

where F 

−1 { Z r (ω) − jω m ∞ 

} = K(t) is the (causal) radiation im-

pulse response as defined in Eq. (3) , ˙ δ(t) is the first generalized

derivative of the Dirac delta function and sign( t ) is the signum

function, which is non-zero for t < 0 if S 	 = 0, and hence the im-

pulse response z i ( t ) is non-causal. m ∞ 

is the infinite-frequency

added mass asymptote, i.e. lim ω → ∞ 

m ( ω). The intrinsic mechani-

cal impedance can be modified to make the corresponding impulse

response causal, by adding the term S h πδ( ω), as 

˜ Z i (ω) = Z i (ω) + S h πδ(ω) (11)

Then, using the inverse Fourier transform, ˜ z i (t) is evaluated as 

˜ z i (t) = K(t) + (m + m ∞ 

) ̇ δ(t) + S h U(t) (12)

where U ( t ) is the Heaviside unit step function. The impedances

Z i ( ω ) and 

˜ Z i (ω ) differ only for ω = 0 , which is not relevant in

practice, because the mean velocity of oscillating WECs is gener-

ally zero ( Bacelli, 2014 ). It follows that the CC controller, with an

impedance defined as in Eq. (8) , is non-causal: Let ˜ z i (t) be ex-

pressed ( Falnes, 2002 ) as 

˜ z i (t) = 

˜ r i (t) + 

˜ x i (t) = 

{ 

2 ̃

 r i (t) for t > 0 

˜ r i (0) for t = 0 

0 for t < 0 

(13)

where the even part ˜ r i (t) and odd part ˜ x i (t) of ˜ z i (t) , are the in-

verse Fourier transforms of Re 
{

˜ Z i (ω) 
}

and Im 

{
˜ Z i (ω) 

}
respectively.

Then, the inverse Fourier transform of ˜ Z ∗
i 
(ω) is 

˜ z ∗i (t) = 

˜ r i (t) − ˜ x i (t) = 

˜ r i (−t) + 

˜ x i (−t) = 

˜ z i (−t) (14)

Therefore, the impulse response associated with the CC controller

is non-causal, if ˜ z i (t) is causal. In particular, it vanishes when t > 0,

due to the causality of ˜ z i (t) . Also, the optimal PA controller cal-

culation (9) is non-causal, because the transfer function 

1 
R r (ω) 

is

real and even in ω, and consequently, the associated impulse re-

sponse is non-zero for t < 0. This can be further appreciated in

Fig. 4 , where both the radiation impulse response K ( t ) in ˜ z i (t) (12) ,

and its counterpart in ˜ z ∗
i 
(t) (14) are shown. Results are computed

for a spherical heaving point absorber WEC (as illustrated in Fig. 1 ),

of 5 m radius. The non-causality of the CC controller (8) implies

that the computation of the optimal control force u opt requires

future knowledge of the velocity ˙ x of the device, while the non-

causality of the PA formulation (9) implies that the calculation of

the optimal velocity profile ˙ x opt requires future knowledge of the

excitation force F exc . 

Since the optimality conditions developed in (8) and (9) cannot

be achieved exactly (because of the required perfect prediction of

either velocity or excitation force), sub-optimal causal controllers

have been proposed. One of the most common approaches is to

obtain a causal transfer function that approximates the ideal non-

realisable transfer function in the frequency interval containing

most of the wave energy ( Falnes, 2002 ). For example, in Clément

and Maisondieu (1993) , two causal approximations are considered

for a simple device and compared with the ideal non-causal con-

troller. Several other contemporary studies also consider the devel-

opment of causal controllers. In Scruggs (2011) and Scruggs, Lat-

tanzio, Taflanidis, and Cassidy (2013) , a linear quadratic Gaussian
ontroller is designed for a 3-DOF WEC, subject to constraints;

n extension of Scruggs et al. (2013) can be found in Nie et al.

2016) , which can be used to accommodate nonlinearities in the

ystem dynamics; causal stochastic optimal control is implemented

n Nielsen, Zhou, Kramer, Basu, and Zhang (2013) , based on the

pectral characteristic of the wave elevation, which is optimal un-

er monochromatic wave excitation, while a completely different

ausal approach is considered in Mundon, Murray, Hallam, and Pa-

el (2005) , where a phase controller is developed using genetic

earch techniques. 

.2. Latching and de-clutching 

Inherently discrete sub-optimal controllers have been devel-

ped with different strategies using the conditions in (9) . Several

esearchers ( Budal & Falnes, 1975; French, 1979; Guenther, Jones,

 Brown, 1979 ), proposed a control strategy termed latching which

ims to satisfy the phase condition only (9b) . The excitation force

s kept in phase by locking the wave absorber in a fixed posi-

ion for an appropriate time interval ( Ringwood et al., 2014b ). With

atching, the control action is made at discrete instants of the cy-

le, as can be appreciated in Fig. 5 : Latching is applied at time t 1 ,

ith the device released at t 2 after a latching duration T L , with

 similar protocol for positive displacements. Latching effectively
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ncreases the potential energy during each half cycle ( Ringwood

t al., 2014b ). 

One advantage of latching control is that any negative energy

ow to the PTO is eliminated, easing the requirement of high

onversion efficiency, when compared to the optimal formulation.

atching also deals with non-causality, specifically when comput-

ng the optimal latching interval ( Naito & Nakamura, 1986 ). How-

ver, a difficulty arises when the incident wave contains several

requency components and the concept of phase between excita-

ion force and velocity is no longer well-defined, in which case the

olution of optimising the latching interval is not unique ( Babarit,

uclos, & Clément, 2004 ). A comparison of several latching con-

rol strategies in regular (semi-analytical solution) and irregular

numerical solution) seas can be found in Babarit et al. (2004) . In

abarit and Clément (2006) , two methods to compute the opti-

al latching time for regular and random seas are considered. The

rst method is based on an analytical solution, while the second

ethod is based on Pontryagin’s maximum principle ( Hoskin &

ichols, 1987 ). A counterpoint to latching, termed de-clutching , is

eveloped in Babarit, Guglielmi, and Clément (2009) and Babarit,

ouslim, Guglielmi, and Clément (2008) . In de-clutching, the de-

ice is unloaded at specific time instants during the cycle. Stud-

es on derivative-free optimisation have been performed for latch-

ng ( Feng & Kerrigan, 2013 ), de-clutching ( Feng & Kerrigan, 2014 )

nd combined latching/de-clutching ( Feng & Kerrigan, 2015 ). A

oteworthy observation has been made in Teillant, Gilloteaux, and

ingwood (2010) which states that (in general), for monochromatic

eas and linear models, latching (de-clutching) is optimal when the

evice resonant period is shorter (larger) than the wave period. 

.3. Constrained control 

Constraints must be considered as part of the optimisation

roblem, since the WECs are built using mechanical components

hich have limited operating ranges, as discussed previously in

ection 2.2 . An early theory for the maximisation of wave-power

bsorption of a system of oscillating bodies in the frequency-

omain is presented in Evans (1981a) subject to amplitude restric-

ions, while a time-domain formulation for the energy-maximising

bjective can be found in Eidsmoen (1996a) , also subject to am-

litude constraints. In Eidsmoen (1996b) ; 1996c ) and Eidsmoen

1998) , phase control of a WEC subject to amplitude constraints

s considered. The phase control applied produces results similar

o latching, and aims to keep the velocity in phase with the exci-

ation force (9b) . 

.4. Summary of optimal control of WECs 

In summary, the optimal control problem for WECs is non-

ausal. This either requires predictive control action (requiring

ave forecasting) or a causal approximation. Both of these solu-

ions involve an approximation error. Some simple, discrete, con-

rol formulations can be effective (latching, de-clutching), but do

ot, in general, observe the physical limitations on the system vari-

bles. A combination of these requirements motivated researchers

o adapt the popular optimal MPC strategy for wave energy appli-

ations. 

. Model predictive control 

MPC has its origins in late seventies, due to Richalet, Rault,

estud, and Papon (1976) and Richalet, Rault, Testud, and Papon

1978) , presenting Model Predictive Heuristic Control (MPHC), and

utler and Ramaker (1980) with Dynamic Matrix Control (DMC).

he main difference between MPHC and DMC concerns the type of

ynamic model used ( impulse response in MPHC and step response
n DMC). In 1987, Generalized Predictive Control (GPC) ( Clarke, Mo-

tadi, & Tuffs, 1987 ) appeared, based on the CARIMA input–output

odel . Further efforts to develop MPC within a state-space frame-

ork can be found in Li, Lim, and Fisher (1989) . A significant

mount of MPC development has subsequently taken place (see,

or example, Camacho and Alba, 2013; Garcia, Prett, and Morari,

989 and Maciejowski, 2002 ). Thus, the term MPC refers to a wide

amily of model-based control strategies, which obtains an optimal

ontrol input by considering an optimisation procedure (minimisa-

ion or maximisation) over a finite future time horizon. Unifying

eatures of MPC in discrete time ( Camacho & Alba, 2013 ) are: 

• A mathematical model of the process, to predict the output

at future time instants (horizon N ). Typically, a discrete-time

model is used, so that the continuous-time problem must be

discretised with a chosen technique. 

• An objective function J , in order to obtain an optimal control

sequence within the optimisation window. Obtaining such an

optimal control policy involves a constrained or unconstrained

minimisation (or maximisation) procedure, which can be solved

with a variety of optimisation algorithms . 

• A receding strategy where, at each instant k , the finite horizon

is displaced towards the future, and only the first control signal

of the optimal sequence calculated is applied at each step. 

These algorithms are also called Receding Horizon Predictive Con-

rol . In particular, if nonlinearities are present in the system model,

he algorithm is said to be a Nonlinear MPC (NMPC). The advan-

ages of MPC include the handling of multi-variable systems in

 straightforward manner, and compensation for dead time can

e dealt with in an intrinsic way. Nevertheless, the most im-

ortant aspect is constraint handling, which remains conceptu-

lly simple, and can be systematically included during the design

rocess. 

The methodology of all controllers within the MPC family is de-

ned by the following strategy ( Camacho & Alba, 2013 ): at each

teration of the algorithm k , the whole vector of future values of

he control signal u (k ) = [ u (k | k ) · · · u (k + N u − 1 | k )] T is calculated

n-line. u (k + p| k ) denotes the value of the control input for the

ampling instant k + p calculated at iteration k , and N u is the con-

rol horizon. Alternatively, the vector of increments of the future

alues of the manipulated variable �u (k ) = u (k ) − u (k − 1) can

e used. This vector is found by minimising an objective function

constrained or unconstrained) that usually takes into account the

racking errors over the prediction horizon N and a penalty term

hat encourages the reduction of excessive changes in the manip-

lated variable. The typical quadratic MPC objective function takes

he form 

 (k ) = 

N ∑ 

p=1 

[
y sp (k + p| k ) − ˆ y (k + p| k ) ]2 + λ

N−1 ∑ 

p=0 

[ �u (k + p| k ) ] 2 

( 15) 

here λ is a weighting coefficient, y sp (k + p| k ) is the set-point

alue for the sampling instant k + p known at the instant k and

ˆ  (k + p| k ) is the predicted value of the output obtained with the

athematical model at the sampling instant k + p, calculated at

he current iteration k . The prediction of the outputs is performed

onsecutively for p = 1 , . . . , N. Regarding the receding strategy,

nly the first element is applied to the process at sampling in-

tant k , that is u (k ) = u (k | k ) or u (k ) = �u (k | k ) + u (k − 1) . At the

ext iteration (k + 1) , the output measurement is updated and

he procedure is repeated. While MPC applied to WECs also in-

olves a mathematical model, a receding horizon strategy, and

an deal with system constraints, the objective function contrasts
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Fig. 6. The schematic diagram of the float with non-constant radius ( Li, 2015 ). 
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significantly with the “tracking” objective of (15) . Rather, a con-

verted energy maximising objective, consistent with the defini-

tion of the WEC control problem at the start of Section 3 is em-

ployed, further detailed in Section 5.5 . In particular, this variation

can cause numerical search problems, due to the loss of convex-

ity of the performance function (see Section 5.5 ). Some exceptions,

where a traditional MPC objective is applied in the WEC field, are

detailed in Section 5 . 

5. Model predictive control in wave energy 

As stated in Section 4 , the key distinguishing elements of MPC

strategies relate to variations in dynamical models, objective func-

tions and optimisation algorithms . Hence a categorisation of the

reviewed literature in terms of models used (characteristics, rep-

resentation and discretisation techniques), performance functions

employed to accomplish the energy maximising objective, and op-

timisation algorithms implemented to solve such a problem, are

given in the following subsections. 

5.1. WEC model 

A linear model structure similar to (4) is used in the vast ma-

jority of studies implementing MPC and MPC-like strategies in

wave energy. However, differences can be observed in the litera-

ture concerning both MPC and MPC-like algorithms, where addi-

tional terms are sometimes included. Such relevant differences will

be briefly detailed in the following. In Li, Weiss, Mueller, Town-

ley, and Belmont (2012) , a viscous force (termed a friction force )

is considered, which can be written using an additional damp-

ing term, as in Falnes (2002) . In Richter, Magaña, Sawodny, and

Brekken (2014) a MPC strategy for a two-body WEC is proposed,

with a linearised mooring-line term added to the model. In a sub-

sequent study ( Richter, Magaña, Sawodny, & Brekken, 2013 ), the

authors of Richter et al. (2014) develop a NMPC formulation for the

same device, for the case where a nonlinear mooring-line term is

considered. Such a mooring system is based on the configuration

developed in Yu and Li (2011) . Another variation can be found in Li
Fig. 7. Schematic diagram of a multibody hinge-barge device, as an example
nd Belmont (2014a) ; 2014b ) and Li (2015) , where the convolution

ntegral present in the equation of the radiation force (3) depends

n the relative device/fluid velocity. An array of WECs is consid-

red in Li and Belmont (2014b) , where their interaction is derived

rom linear identification, based on experimental data. For numer-

cal simulation, the authors use the fluid/mechanical model as de-

cribed in Falnes (1980) . Another interesting modification is pre-

ented in both Olaya, Bourgeot, and Benbouzid (2014) and Olaya,

ourgeot, and Benbouzid (2015) , where the MPC strategy is applied

o a two-body system using a one-body equivalent model, rather

han a full two-body dynamic system. 

A different formulation can be found in Tom and Yeung (2014) ,

here a particular choice of the PTO system (permanent magnet

enerator), described as a time-varying damper, is studied. Amann,

agaña, and Sawodny (2015) also present a nonlinear mooring

erm, resulting in an NMPC formulation, which is based on the

ame mooring configuration presented in Richter et al. (2013) . In

ig. 8 , the nonlinear behaviour of such terms can be appreciated,

hich is also compared with a corresponding linear approxima-

ion. An alternative approach can be found in Kovaltchouk et al.

2015) , where an energetic model of the buoy (using the fact that

he model is linear and passive) is employed. In Li (2015) , a fur-

her NMPC strategy is developed, where the model is the same as

n Li and Belmont (2014a) ; 2014b ) or Li et al. (2012) , but includes a

onlinear buoyancy force, due to consideration of the non-uniform

ross-sectional area of the device. Such a device is shown in Fig. 6 .

An array of three WECs is considered in Oetinger, Magaña, and

awodny (2014) , where each device behaves like a heaving point

bsorber moored to the sea-floor, with a certain angle with respect

o the surface, as in Vicente, Antonio, Gato, and Justino (2009) . Fi-

ally, a different type of point absorber is considered in Andersen,

edersen, Nielsen, and Vidal (2015) and Nguyen, Sabiron, Tona,

ramer, and Sanchez (2016) , which is based on a real prototype

ited in Hansen and Kramer (2011) , composed of a number of

emispherically shaped floats attached to a single platform. 

Other differences can be found in studies applying spectral and

seudospectral methods (see Section 6 ). In Bacelli, Ringwood, and

illoteaux (2011) a self-reacting point absorber composed of two

oncentric asymmetric bodies is considered, while different WECs

re used in Bacelli and Ringwood (2014) and Genest and Ring-

ood (2017) (flap-type device de O. Falcão (2010) ), and Paparella

nd Ringwood (2017a) and Paparella and Ringwood (2017b) (multi-

ody hinge-barge device Paparella, Bacelli, Paulmeno, Mouring, &

ingwood, 2016 ). This last device is presented in Fig. 7 , as an exam-

le of a multibody structure, among the different types of WECs. 

In summary, a wide variety of WEC models are employed by

arious researchers, with some variation due to the disparity be-

ween WEC types, but also related to the limitations of the model

omplexity that can be tolerated by WEC MPC formulations with

chievable solutions. The use of spectral methods is also respon-

ible for some of the model variations. Overall, most MPC WEC
 of a multibody WEC. Adapted from Paparella and Ringwood (2017a) . 
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Table 1 

Considered path constraints. 

Variable References 

x ( t ) Abdelkhalik et al. (2016) ; Amann et al. (2015) ; Bacelli et al. (2013 , 2015) ; Bacelli and Ringwood (2013) ; 2015 ); Bacelli et al. (2011) ; Brekken (2011) ; 

Cavaglieri et al. (2015) ; Cretel et al. (2010) ; Cretel et al. (2011) ; de la Villa Jaén et al. (2014) ; Garcia-Rosa et al. (2015a) ; Genest and Ringwood (2016a) ; 

2016b ); 2017 ); Hals et al. (2011) ; Herber and Allison (2013) ; Jama et al. (2014) ; Li (2015) ; Li and Belmont (2014a) ; 2014b ); Li et al. (2012) ; Oetinger et al. 

(2014) ; Olaya et al. (2014) ; O’Sullivan and Lightbody (2017) ; Richter et al. (2013) ; Richter et al. (2014) ; Tom and Yeung (2014) ; Westphalen et al. (2011) 

˙ x (t) Amann et al. (2015) ; Bacelli et al. (2015) ; Brekken (2011) ; Cavaglieri et al. (2015) ; Cretel et al. (2011) ; Genest and Ringwood (2016a) ; 2016b ); 2017 ); 

Oetinger et al. (2014) ; Olaya et al. (2014) ; O’Sullivan and Lightbody (2017) ; Richter et al. (2013 , 2014) 

u ( t ) Abdelkhalik et al. (2016) ; Abraham and Kerrigan (2013) ; Amann et al. (2015) ; Andersen et al. (2015) ; Bacelli et al. (2013 , 2015) ; Bacelli and Ringwood 

(2013) ; 2015 ); Cavaglieri et al. (2015) ; de la Villa Jaén et al. (2014) ; Garcia-Rosa et al. (2015a) ; Genest and Ringwood (2016a) ; 2016b ); 2017 ); Hals et al. 

(2011) ; Herber and Allison (2013) ; Jama et al. (2013) ; Kovaltchouk et al. (2015) ; Li (2015) ; Li and Belmont (2014a) ; 2014b ); 2014b ); Li et al. (2012) ; 

Nguyen et al. (2016) ; Oetinger et al. (2014) ; Olaya et al. (2014) ; 2015 ); O’Sullivan and Lightbody (2017) ; Richter et al. (2013) ; Richter et al. (2014) ; Soltani, 

Sichani, and Mirzaei (2014) ; Tom and Yeung (2014) ; Tona et al. (2015) 

�u ( t ) Brekken (2011) ; Li and Belmont (2014a) . ( Jama et al., 2014; Li & Belmont, 2014b ) 

P max Bacelli et al. (2015) ; Kovaltchouk et al. (2015) 

Fig. 8. Nonlinear eight-cable mooring force compared to the linearised mooring 

force with K m := 10 5 N 
m 

( Amann et al., 2015 ). 
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ormulations utilise linear models, which can have dubious validity

nder an energy (motion) maximising philosophy ( Giorgi, Retes, &

ingwood, 2016 ). 

.2. Path constraints 

As mentioned in Section 4 , one of the main advantages of

PC algorithms is their ability to handle naturally constraints

n the optimisation process. A comprehensive summary of con-

traints, considered in publications on both MPC and MPC-like al-

orithms for WEC control, can be found in Table 1 . Most of the

tudies consider both amplitude (displacement) and control in-

ut force constraints, while other studies consider velocity con-

traints as well. Constraints on the rate of change of the con-

rol input are less common in the literature. It is important to

ention that, in the case of Brekken (2011) and Jama, Wahyudie,

ssi, and Noura (2014) , the MPC algorithm is applied to a track-

ng aspect of WEC control, so that the model is augmented and

he variable used in the optimisation process is, in fact, �u ( t )

 Camacho & Alba, 2013 ). A further comment is needed with re-

pect to Kovaltchouk et al. (2015) , where a MPC strategy, that takes

nto account the main limitations of an electrical PTO chain (max-

mum force and maximum power) and possible losses, is pro-

osed, and considers a constraint on the maximum absolute value

f power P max , due to an intrinsic limitation of the proposed
ctive rectifier. Another noteworthy difference can be found in

erber and Allison (2013) , where an asymmetric control input con-

traint is considered, increasing the difficulty of implementation

rom an optimisation perspective. In addition, a variation arises

n O’Sullivan and Lightbody (2017) , where (besides constraints in

osition, velocity and the control input) authors consider nonlin-

ar constraints due to voltage limitations in the power converters

sed to control the linear permanent magnet generator ( Polinder,

amen, & Gardner, 2004 ) (the PTO system), in order to avoid un-

eachable PTO forces and therefore, infeasible optimal solutions. 

Reactive control (i.e. where bidirectional power flow between

he PTO system and the grid is present), maximises energy ab-

orption, as discussed in Section 3 . However, this strategy comes

ith significant drawbacks, such as non-causality (as expressed in

ection 3.1 ). Furthermore, this controller involves a large reactive

ower flux, as reported in, for example, Hals, Bjarte-Larsson, and

alnes (2002) , where the maximum reactive power flow is shown

o be ten times the average power. This presents a difficulty when

mplementing a reactive control policy using non-ideal actuators,

ince energy losses may be equivalent, or even larger, than the en-

rgy gained with the control strategy ( Genest et al., 2014 ). More-

ver, in Genest et al. (2014) , the PTO efficiency is shown to be crit-

cal to power absorption; reactive control increases the power per-

ormance only if the actuator efficiency is greater than 80%, which

equires high efficiency components. These existing drawbacks, in

he reactive control scheme, motivated researchers to study the op-

imal control formulation subject to constraints on the power flow

irection, i.e. passivity constraints (as defined in Section 2.2 ). In the

iterature reviewed, studies that consider passivity constraints in-

lude, for example, Herber and Allison (2013) ; O’Sullivan and Light-

ody (2017) ; Paparella and Ringwood (2017a) and Paparella and

ingwood (2017b) . 

In summary, constraints on displacement, velocity and force are

requently considered in the literature, as shown in Table 1 , though

he issues of passivity (to prohibit reactive power flow) and peak

ower limitation (observing the rated power of the PTO) are far

ess common, but no less important. However, limitations on pas-

ivity or peak power make the numerical search problem signifi-

antly more challenging ( Herber & Allison, 2013 ) which, at least,

artially explains their lack of treatment in the literature. 

.3. Model representation: continuous-time state-space 

A MPC strategy can make use of various models to represent

he relationship between the outputs and the measurable inputs

i.e. the system dynamics), as stated in Section 4 . In MPC for-

ulations, related to wave energy conversion, the most common

epresentation is the state-space model. Several methods to ob-

ain a continuous-time state-space representation from Cummins’

quation (4) can be employed. The convolution product present in
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Fig. 9. Error between the radiation impulse response K ( t ) (in fig as K r ( t )) calculated 

with IFT and different order state-space model approximations (in figure as SS n r ). 

The factor πρga 2 in the denominator of the error is used to provide dimensionless 

values ( Tom & Yeung, 2014 ). 
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the radiation force (3) can be approximated with different meth-

ods, as described (for example) in Kristiansen, Hjulstad, and Ege-

land (2005) ; Pérez and Fossen (2008) and Roessling and Ringwood

(2015) . These strategies provide a particular state-space model for

the approximated radiation force, given by, 

˙ x r ( t ) = A r x r ( t ) + B r ˙ x ( t ) ∫ t 

0 

K ( t − τ ) ˙ x ( τ ) dτ ≈ C r x r ( t ) (16)

where x r ∈ X r , such that the dimension of X r is n r and conse-

quently A r ∈ R 

n r ×n r , B r ∈ R 

n r ×1 , C r ∈ R 

1 ×n r . Particularly, n r is the or-

der of the finite-order approximation. As stated in Cretel, Light-

body, Thomas, and Lewis (2011) , the components of x r ( t ) do not

have any physical meaning, but still hold information about the

state of the surrounding fluid. This subsystem, for the radiation

force, which has the velocity of the device ˙ x (t) as input and radi-

ation force as output, can now be included as a part of the overall

model describing the motion of the device, developing a complete

state-space model for the equation of motion (4) expressed as, 

˙ x M 

(t) = A M 

x M 

(t) + B M 

( n F exc (t) + 

n u (t) ) 

y M 

(t) = C M 

x M 

(t) (17)

where x M 

= [ x, ˙ x , x T r ] 
T ∈ R 

(2+ n r ) ×1 is the state-vector of the contin-

uous time model; y M 

= [ x, ˙ x ] T ∈ R 

2 ×1 represents the output vector

of the system (assuming that position and velocity are both mea-

surable outputs); and 

n F exc (t) , n u ( t ) corresponds to the excitation

force and control input, both normalised by the total mass of the

system, i.e. m M 

= m + m ∞ 

. The matrices associated with the sys-

tem (17) are given as follows, 

A M 

= 

⎡ 

⎣ 

0 1 O 1 ×n r 

− S h 
m M 

0 −C r 

O n r ×1 
B r 

m M 
A r 

⎤ 

⎦ B M 

= 

[ 

0 

1 

O n r ×1 

] 

C M 

= 

[
1 0 O 1 ×n r 

0 1 O 1 ×n r 

] (18)

where A M 

∈ R 

(2+ n r ) ×(2+ n r ) , B M 

∈ R 

(2+ n r ) ×1 , C M 

∈ R 

2 ×(2+ n r ) and O a ×b

represents a null matrix of size ( a × b ). Finally, the state-space

model of (17) is represented by (2 + n r ) variables for the dynamic

description. The dimension of the complete state-space increases

with the dimension of X r , which results in an important trade-off

in the optimisation procedure; choosing a higher (and hence more

accurate) radiation force description results in a higher computa-

tional burden for the MPC strategy, which can lead to computa-

tional requirements that preclude real-time application. The accu-

racy of radiation force approximations, regarding the order n r , is

discussed in Tom and Yeung (2014) . Simulations from same study

are presented here, in Fig. 9 , where the error between the radiation

kernel function calculated with the inverse Fourier transform (IFT)

(as in Cummins (1962) ), and the approximated state-space model,

is presented, for various values of n r . 

Most of the studies (that actually specify n r in an explicit

way) consider an approximation order between 3 and 6, such

as Abraham and Kerrigan (2013) ; Cretel, Lewis, Lightbody, and

Thomas (2010) ; Cretel et al. (2011) ; Hals, Falnes, and Moan (2011) ;

Jama, Wahyudie, Assi, and Noura (2013) ; 2014 ); Kovaltchouk et al.

(2015) ; Li (2015) ; Tom and Yeung (2014) ; Tona, Nguyen, Sabiron,

and Creff (2015) and de la Villa Jaén, Santana et al. (2014) . Excep-

tions beyond n r ∈ {3, 4, 5, 6} are also possible, thought the choice

of n r is not necessarily straightforward, since the modelling error

is not always unimodel in n r . Some studies consider the radiation

convolution approximation (16) as a damping term, such as Li and

Belmont (2014a) ; Richter et al. (2014) and Brekken (2011) . Another

case is given in Li et al. (2012) , where the radiation force is not

considered in the development of the state-space model, although
hat changed in later studies, namely Li and Belmont (2014a) ;

014b ) and Li (2015) . In Li and Belmont (2014b) , three MPC strate-

ies for an array of WECs are described, which will be further dis-

ussed in Section 5.5 . In Richter et al. (2013) , two different nonlin-

ar WEC models are considered: an extended model, including an

pproximation of the radiation convolution product, which is used

or plant simulation only, and a reduced model, where authors as-

ume constant inertia and additional linear viscous damping terms,

laiming that convolution terms in radiation forces are “fairly small

ompared to other external forces”. However, the authors of Richter

t al. (2013) indicate that, if required, a full WEC model could be

sed in the MPC formulation, based on a linear state-space ap-

roximation as in (17) (the reader is referred to Richter (2011) for

urther details). Another noteworthy study is Amann et al. (2015) ,

here a nonlinear mooring model, as described in Section 5.1 , is

onsidered. The authors claim that “the radiation forces, [...], are

egligibly small and can be excluded for the given device”. However,

hey also claim that, if necessary, a linear radiation approximation

an be included, without changing the model structure. 

In summary, several state-space representations for the equa-

ion of motion (4) are considered in the literature, by using an

pproximation of the radiation force, as in (16) . The main differ-

nce between studies relates to the order n r of the approximation,

hich impacts directly on the dimension of the state-space model

nvolved in the optimisation procedure. This results in a trade-off

etween the accuracy of the WEC model utilised in the design of

he controller, and the real-time capabilities of the MPC formula-

ion. 

.4. State-space model discretisation 

In order to develop and implement a MPC strategy, the clas-

ical MPC approach uses a discretised version of the continuous-

ime state-space model, given in (17) , to obtain the vector of the

uture outputs over the desired finite-time horizon. Such a dis-

retisation can be achieved in several ways, with different results.

he most common procedure (and the most popular among the

eviewed studies) is the standard Zero-Order Hold (ZOH) method.

hus, references of studies that implement alternative discreti-

ation techniques (apart from ZOH) are highlighted in this sec-

ion. The Triangular Hold , also known as a First-Order Hold (FOH)

 Franklin, Powell, & Workman, 1998 ), is used in Cretel et al. (2011) ;
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e la Villa Jaén et al. (2014) and Genest and Ringwood (2016a) .

n Cretel et al. (2011) , the authors use a FOH, claiming that such a

iscretisation (combined with a modification of the objective func-

ion, explained in Section 5.5 ) “yields better results than those re-

orted earlier”. Such steps were also followed by de la Villa Jaén

t al. (2014) ; Genest and Ringwood (2016a) (for comparative pur-

oses) and O’Sullivan and Lightbody (2017) . A Second-Order Hold

s used in Richter et al. (2013) , claiming that a discretisation of or-

er 1 is not appropriate for the proposed NMPC approach. Another

ase is presented in Tom and Yeung (2014) and Kovaltchouk et al.

2015) , where a trapezoidal rule is used. In Tona et al. (2015) , the

ystem dynamics are discretised using Tustin’s method . One must

ecognise that such a discretisation results in a system represen-

ation which is not strictly proper, i.e. a non-zero feed-through

atrix appears in (17) . Another alternative discretisation method

s used in Amann et al. (2015) , where a second-order truncated

aylor series around the current time step is used, since the au-

hors in Amann et al. (2015) report that the nonlinearities present

n their model are not well approximated with the first deriva-

ive. A similar approach is also used in Richter (2011) . In Jama et al.

2014) , only the control input is expanded with a basis of Laguerre

unctions ( Wang, 2001 ), which has a certain degree of similarity

ith the characteristic orthonormal expansion used in spectral and

seudospectral methods, discussed in Section 6 . 

In summary, despite the fact that the most common discreti-

ation approach is the ZOH, different (and diverse) discretisation

ethods can be found in the literature reviewed. The choice of

echnique to discretise the model mainly relates to the intrinsic

ynamics considered (with possible nonlinearities). Each discreti-

ation technique captures the dynamic of the system differently,

ffecting both the performance of the controller and the computa-

ional burden involved in the optimisation procedure. Nevertheless,

ll the discretisation techniques considered among MPC formula-

ions in wave energy, can be considered as relatively “standard”,

n the sense that are well-known within the control community.

n contrast, as discussed in Section 6 , spectral and pseudospectral

echniques, developed in the wave energy context, use a problem-

pecific parameterisation of the solution, discretising the dynamics

f the system in a potentially more efficient way and, therefore,

iminishing the computational effort required for the receding-

orizon control formulation. 

.5. Objective function 

Considering the objective function, MPC, applied to wave en-

rgy conversion, deviates significantly from traditional MPC, as

etailed in Section 4 . In the WEC case, the objective function is

trictly related to energy absorption, instead of the classical prob-

em of reference tracking (15) . The main objective of a wave en-

rgy device is to harvest energy from the incoming wave field in

hich the device is immersed. A control force u ( t ), as the loading,

s applied by the means of the PTO system. Thus, the control objec-

ive is to maximise the absorbed energy E over a certain prediction

orizon T h , where 

 ≡ J = −
∫ t+ T h 

t 

u (τ ) ̇ x (τ ) dτ (19)
able 2 

onsidered additional terms in objective function. 

Additional 

term References 

λ1 ‖ �u 2 ‖ Cretel et al. (2010) ; Cretel et al. (2011) ; Li and Belmont (2014a) ; 2014b ); N

(2015) 

λ2 ‖ u 2 ‖ Amann et al. (2015) ; Andersen et al. (2015) ; Cretel et al. (2011) ; de la Villa 

Belmont (2014a) ; 2014b ); Oetinger et al. (2014) ; O’Sullivan and Lightbod

λ3 ‖ ε2 ‖ Amann et al. (2015) ; Oetinger et al. (2014) ; Richter et al. (2013 , 2014) 
hile respecting the path constraints defined in (5) . In this way,

he general optimal control objective can be formulated as, 

min 

, ̇ x ∈C[ t ,t + T h ] 
−J + J 


 

ubject to, for t ∈ [ t, t + T h ] : 

System dynamics given by (4) or (17) 

Path constraints given by (5) 
(20) 

here J 


 represents additional terms considered in the objective

unction. The most common additional penalty terms in J 


 relate

o: 

• A measure of the rate of change of the control input, typically

expressed as λ1 ‖ �u ( t ) 2 ‖ , 
• The power losses related to the control action required of the

PTO system, generally expressed as λ2 ‖ u ( t ) 2 ‖ , and/or, 

• Slack variables , used to convexify the optimisation problem

[107], ( Richter, 2011 ), which can be written as λ3 ‖ ε2 ‖ with

ε = [ εx ε ˙ x ] , 

ith λi ∈ R > 0 ∀ i . It should be noted that, when using slack vari-

bles, in general, constraints on ε are added to the optimisa-

ion strategy ( Richter, 2011 ). A summary, regarding the appearance

f additional terms typically appearing in J 


 , in the literature,

s given in Table 2 . Apart from the most common penalty terms

hown in Table 2 , several authors propose further modifications or

lternative penalty terms. In Li and Belmont (2014a) , a quadratic

enalty term related to the buoyancy force is considered, with the

urpose of guaranteeing the feasibility of the optimisation prob-

em. Authors report that large incoming waves are more likely to

ause such an infeasibility, thus the extra penalty term provides a

urther degree of freedom for tuning, to ensure that the constraint

n the heave motion of the buoy can be satisfied for large incom-

ng waves. In their study, the convexity of the objective function is

nalysed and guaranteed, as an improvement to a previous study

 Li et al., 2012 ). Later on, an extension of the optimisation crite-

ia developed in Li and Belmont (2014a) , to an array of WECs, can

e found in Li and Belmont (2014b) , where the authors present a

oordination-based distributed MPC (see e.g. Venkat, Hiskens, Rawl-

ngs, & Wright, 2008 ). An additional study considering an array of

ECs (with an optimisation criteria extended from Richter et al.

2013) ) can be found in Oetinger et al. (2014) , where a decentralized

PC strategy (see e.g. Bemporad & Barcelli, 2010 ) is considered.

ther studies, such as Tom and Yeung (2014) and de la Villa Jaén

t al. (2014) , consider a particular model for the PTO and, hence,

 particular model for the absorbed power and the losses (if any

re involved) in the objective function. In particular, Tom and Ye-

ng (2014) studies the use of a permanent magnet generator as the

TO. An approximation of the power absorbed by the PTO is given

y P (t) = B g (t ) ̇ x 2 (t ) , where the magnitude of B g ( t ) (variable linear

amping) can be manipulated either by altering the magnet coil

ap width, or the applied electrical load (for more details, reader

hould refer to Tom & Yeung, 2013 ). With this particular choice,

he absorbed energy J 2 becomes: 

 = 

∫ t+ T h 

t 

B g (τ ) ̇ x 2 (τ ) dτ (21) 
guyen et al. (2016) ; Olaya et al. (2014) ; 2015 ); Tom and Yeung (2014) ; Tona et al. 

Jaén et al. (2014) ; Herber and Allison (2013) ; Kovaltchouk et al. (2015) ; Li and 

y (2017) ; Richter et al. (2013 , 2014) 
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Fig. 10. Control performance for different time horizon T h and weight of final state 

mechanical energy α under a particular sea state ( Kovaltchouk et al., 2015 ). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 11. Instantaneous power with optimal controls for different PTO efficiencies 

( Tona et al., 2015 ). 
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Tom and Yeung (2014) also considers a penalty term on the con-

trol input, which is expressed in terms of B g ( t ). In a subsequent

study ( Tom, 2014 ), same authors experimentally investigated the

proposed MPC strategy using a scale model of the original WEC

considered. In de la Villa Jaén et al. (2014) a MPC strategy applied to

a point absorber, with a direct drive linear generator is presented.

The model for the PTO system is as in Boldea and Nasar (1997) . A

model for the losses of the PTO system (copper losses, as described

in Villa Jaén, García-Santana, & Montoya-Andrade (2014) ) is specif-

ically considered in the optimisation process. Different objective

function terms are considered in Kovaltchouk et al. (2015) , where

a weight for the endpoint state is considered. The authors report

that without such a weight, the control strategy applied naturally

tends to convert all the energy stored by the WEC at the end of

the optimisationhorizon. The endpoint weight 
 is given as a por-

tion of the mechanical energy that can be used after the horizon,

namely 
(x ) = K α E mech (x ) . The influence of the coefficient α and

the time horizon T h in their optimisationprocedure can be seen in

Fig. 10 . Note that the performance monotonically increases with T h ,

since the authors assume perfect knowledge of the excitation force

F exc . In Fig. 10 , it can also be appreciated that there exists an op-

timal value of α between 0% and 100% that maximizes the perfor-

mance of the control strategy. In Abraham and Kerrigan (2013) , it

is assumed that power is taken off through a damping force pro-

portional to the velocity, written as u ∗(t) = −B u u 2 (t ) ̇ x (t ) + u 1 (t) G,

where u 1 ∈ [ −1 , 1] , G > 0 and B u is a constant damping coefficient,

controlled proportionally through u 2 ( t ) ∈ [0, 1]. With this choice,

the dynamics of the WEC remain bilinear (i.e. linear in the input

and linear in the state, but not jointly linear in both) and the ob-

jective function remains, 

J = 

∫ t+ T h 

t 

−B u u 2 (τ ) ̇ x 2 (τ ) + u 1 (τ ) G ̇

 x (τ ) dτ (22)

A nonlinear efficiency term is considered in Tona et al. (2015) ,

modelled as a function of the ideal instantaneous power u (t) ̇ x (t) :

η(u (t) ̇ x (t)) = 

{
η0 if u (t) ̇ x (t) ≥ 0 

1 
η0 

if u (t) ̇ x (t) < 0 

0 ≤ η0 ≤ 1 (23)

With the definition in (23) , the absorbed energy is 

J = −
∫ t+ T h 

t 

η(u (τ ) ̇ x (τ )) u (τ ) ̇ x (τ ) dτ (24)

Results of instantaneous power, under the optimal control formu-

lation proposed in Tona et al. (2015) , for different PTO efficiencies,

can be seen in Fig. 11 . An application of this same strategy ( Tona

et al., 2015 ), with extensive experimental results on a prototype de-

vice, can be found in Nguyen et al. (2016) . 
Although a considerable number of studies use the criterion de-

ned in (20) , there are some exceptions that present alternative

bjective functions. In Hals et al. (2011) , the objective function at-

empts to maximize the difference between the incident power

ue to the wave excitation force and the total power losses ex-

ressed as 

 = 

∫ t+ T h 

t 
( P e (τ ) − P r (τ ) − P l (τ ) ) dτ (25)

here P e (t) = f e (t) ̇ x (t) represents the excitation power, P r (t) =
f r (t) ̇ x (t) represents the radiated power and P l ( t ) the remaining

ower losses. Although the formulation in (25) takes into account

hese power losses, the optimisation process presented in Hals

t al. (2011) neglects P l ( t ). An optimal velocity profile is obtained

ithin this optimisation problem framework, which leads to a par-

icular optimal control solution. Results regarding to the solution

f such an optimisation problem, can be found in Fig. 12 , where

t can be seen that the optimal solution changes with varying

ave height. Nevertheless, it is observed that, in all cases, the

elocity peaks are in alignment with the excitation force peaks,

greeing with the frequency domain phase condition for uncon-

trained optimal motion (9b) . The same objective function (25) is

dopted later in Jama et al. (2014) . Other approaches can be found

n Brekken (2011) ; Jama et al. (2013) and Jama et al. (2014) , where

PC is used for its original purpose of reference tracking. In

rekken (2011) and Jama et al. (2013) , the optimal velocity profile

s assumed known (as in (9) ) and the objective function addresses

he deviation of the device velocity from the given optimal veloc-

ty profile, similar to (15) . A comprehensive analysis of constraint

andling and possible infeasibilities of the solution with the tradi-

ional MPC approach can be found in Brekken (2011) . In the case

f Jama et al. (2013) , continuous-time MPC is considered. Finally, in

ama et al. (2014) , the authors of Jama et al. (2013) use MPC in or-

er to achieve reference tracking, but the optimal profile is given

y an optimisation procedure with objective function (25) . 

In summary, since the energy-maximising objective (20) is sig-

ificantly different from the traditional “tracking” MPC formula-

ion, a plethora of methods to obtain an efficient optimisation for-

ulation can be found in the literature. Since the objective func-

ion J , as defined in (19) , is potentially non-convex, a variety of

enalty terms J 


 can be found among different studies, mostly in

n attempt to obtain a convex optimisation formulation, guarantee-

ng a unique global solution and real-time capability of the MPC

ptimal controller, since efficient algorithms can be used for the

inimisation of a convex optimisation problem (see Section 5.7 ).

ven performance functions differing significantly from (20) are

roposed, pursuing the same energy-maximising objective from

n alternative perspective. Regarding the penalty terms J 


 , its

mportant to notice that such a practice modifies the original
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Fig. 12. Optimal velocity (blue, dash-dotted) and position (black, fully drawn) for 

the buoy excited by a regular wave of period 9s and varying wave height: 0.5 m 

(top), 1.0 m (middle) and 3.0 m (bottom). The red curve with scale on the right- 

hand axis corresponds to the excitation force, which is a sine function. Heave am- 

plitude is constrained to ± 3 ( Hals et al., 2011 ). (For interpretation of the references 

to colour in this figure legend, the reader is referred to the web version of this 

article.) 
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Fig. 13. The force signal is predicted 2.2 s ahead (dashed, red curve) and compared 

to true values (fully drawn, black curve) ( Hals et al., 2011 ). (For interpretation of the 

references to colour in this figure legend, the reader is referred to the web version 

of this article.) 
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nergy-maximising optimal control objective and, therefore, ren-

ers the formulation to be sub-optimal. 

.6. Forecasting of F exc 

From (20) , and the optimisation procedure, we noted that fu-

ure knowledge of the excitation force F exc (t) is required. This

roblem of short-term forecasting is analysed in Fusco and Ring-

ood (2012) . The same authors present several wave predic-

ion algorithms for real-time application in Fusco and Ringwood

2010) . Additionally, further prediction algorithms are developed in

choen, Hals, and Moan (2011) . With reference to the MPC strat-

gy, the excitation force F exc prediction constitutes a fundamen-

al issue that influences the selection of T h directly, since the un-

ertainty of the prediction gets larger over longer prediction hori-

ons. For longer horizons, the control signal from the MPC algo-

ithm is based on increasingly incorrect data, and the performance

ecreases compared with what is achieved with the exact excita-

ion force. Hence, the loss in the accuracy of predictive algorithms

imits the length of the prediction window for practical real-time

sage ( Fusco & Ringwood, 2010 ). However, there is a natural syn-

rgy between the prediction requirement for a device, and the pre-

ictability of the sea in which it is designed to operate ( Fusco &

ingwood, 2012 ). 

Although most studies assume that the future wave ex-

itation force is known over the time horizon considered

ostensibly to focus on the control problem, in the spirit of the
eparation principle Bertsekas, 20 0 0 ), several authors employing

PC strategies cited in this review also developed and imple-

ented combined estimation and forecasting methodologies. Such

s the case of, for example, Hals et al. (2011) , where the excita-

ion force is predicted using an augmented Kalman filter based

n a time-varying damped harmonic oscillator model of the wave

rocess. An example of the predictor’s performance ( Hals et al.,

011 ) can be found in Fig. 13 . The same study presents perfor-

ance results on a MPC controller, with exact and predicted ex-

itation force. Brekken (2011) , uses a linear Kalman filter to ob-

ain an estimate of the excitation force and an auto-regressive (AR)

odel, with an adaptive least squares strategy ( Fusco & Ringwood,

010 ), is used for predict future values of F exc (t) . A combination

f a Kalman filter and an AR model is also presented in Andersen

t al. (2015) . In Li and Belmont (2014a) ; Li et al. (2012) and Li and

elmont (2014b) a different approach is used, based on determin-

stic sea wave prediction (DSWP) ( Morris, Zienkiewicz, & Belmont,

998 ). In both de la Villa Jaén et al. (2014) and Tona et al. (2015) ,

n AR model is used to predict F exc (t) . Finally, in Cavaglieri, Be-

ley, and Previsic (2015) , an alternative approach is considered,

here an ensemble Kalman filter (which assimilates data from a

oppler wave radar), combined with a pseudospectral wave model,

s used to forecast the excitation force (see also the author’s thesis

 Cavaglieri, 2016 ) for a detailed description of the method). 

In summary, since future knowledge of the excitation force F exc 

s required in order to compute the optimal control policy within

he optimisation horizon, different forecasting methodologies have

een reported. We note that the requirement for future values

f F exc for the computation of the optimal control sequence, cre-

tes a downward pressure on the allowable length of the optimi-

ation window. Most of the studies assume perfect knowledge of

he excitation force over the time horizon considered (somewhat

kin to the separation principle used in traditional optimal con-

rol/estimation problems), leading to possibly non-realistic results.

herefore, some degree of uncertainty on F exc should be consid-

red in order to evaluate the performance of any WEC optimal con-

roller with a higher accuracy. The impact of forecast errors in F exc 

n WEC control has been, to some extent, considered in Fusco and

ingwood (2011) . 

.7. Optimisation 

Most of the studies reviewed represent the optimisation proce-

ure as a Quadratic Programming (QP) problem. A quadratic pro-

ramming problem is a special case of Nonlinear Programming

NLP) problems, in which the objective functional is a quadratic

orm and the constraints are linear ( Boyd & Vandenberghe,

004 ). Examples of this approach are Andersen et al. (2015) ;
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Brekken (2011) ; Cretel et al. (2010) ; Cretel et al. (2011) ; Hals et al.

(2011) ; Jama et al. (2013) ; 2014 ); Li and Belmont (2014a) ; 2014b );

Oetinger et al. (2014) ; Olaya et al. (2014) ; 2015 ); Richter et al.

(2014) and de la Villa Jaén et al. (2014) . In such a case, the problem

can be solved iteratively by active set strategies or interior point

methods, where each iteration requires the solution of an equality-

constrained QP problem ( Boyd & Vandenberghe, 2004 ). A few ex-

ceptions should be noted, where the optimisation problem is no

longer regarded as a QP problem. In Amann et al. (2015) ; Richter

et al. (2013) ; Tom and Yeung (2014) and Tona et al. (2015) , the

problem is regarded as NLP. Authors in Richter et al. (2013) claim

that a nonlinear interior-point strategy ( Wächter & Biegler, 2006 )

can be used to solve such an optimisation problem. They also re-

port that online computation is not possible with the solver used

in their study, although they declare that the objective of their ap-

proach is not focused on real-time applicability, but rather to the

qualitative performance of NMPC using a nonlinear WEC model. A

similar approach is also used in Amann et al. (2015) ; Tom and Ye-

ung (2014) and Tona et al. (2015) . 

A distinction needs to be made at this point, since some stud-

ies do not consider the process of solving the optimisation prob-

lem (20) as a nonlinear program. The numerical optimisation pro-

cedure used in the MPC strategy to solve the optimal control prob-

lem (in this case, (20) ), can be categorised as a direct method . In a

direct method, the state and/or the control input are discretised

and the optimal control problem is transcribed to a NLP. MPC-like

algorithms, detailed in Section 6 , are also classified as direct meth-

ods. However, some receding horizon algorithms developed in the

literature, fall into the category of indirect methods . 

Indirect methods are based on the calculus of variations

( Liberzon, 2011 ) and Pontryagin’s maximum (or minimum) prin-

ciple, Pontryagin (1987) . The optimal solution is, in general, de-

rived in two steps: the first step formulates the optimal problem

as a Two-Point Boundary Value Problem (TPBVP) ( Liberzon, 2011 ),

while the second step solves the TPBVP, which can be carried out

analytically or numerically ( Liberzon, 2011 ). One of the most com-

mon approaches to solve the TPBVP numerically is the shooting

method ( Rao, 2009 ). The main difference between direct and indi-

rect methods is that direct methods attempt to directly minimise

(or maximise) the objective function J , whereas indirect meth-

ods attempt to solve the necessary conditions of optimality (which

must be derived analytically for each problem). Studies reviewed

that consider indirect methods (within a receding horizon strategy)

are Abraham and Kerrigan (2013) ; Li et al. (2012) and Kovaltchouk

et al. (2015) . In Li et al. (2012) , the authors do not assume (or guar-

antee) the convexity of the objective function. Pontryagin’s mini-

mum principle is used to conclude that a nearly optimal control for

the problem is of a bang–bang nature (see Liberzon, 2011 for more

details). The problem is solved using Dynamic Programming (DP),

which is a multi-stage decision process, based on Bellman’s princi-

ple of optimality ( Bellman, 1956; Larson & Casti, 1978 ). A forward

dynamic programming algorithm is implemented, within the reced-

ing horizon principle. In Abraham and Kerrigan (2013) , a compu-

tationally improved and globally convergent variation of the pro-

jected gradient method (see e.g. Bertsekas, 1999 ) is developed and

compared with an interior point solver to demonstrate its perfor-

mance. Finally, in Kovaltchouk et al. (2015) , a mixed state control

constraint is presented which complicates the application of Pon-

tryagin’s principle ( De Pinho, Vinter, & Zheng, 2001 ). In order to

avoid the mixed state control constraint, the authors use a bar-

rier function, retaining only the constraint on the control input.

After applying Pontryagin’s principle, a multishooting method is

used to compute the optimal control policy ( Diehl, Bock, Diedam,

& Wieber, 2006 ). 

In summary, the optimisation procedure involved in the optimal

control formulation (20) can be dealt with in a variety of ways.
espite the fact that most of the studies regard the problem

s a QP, several direct and indirect methods are also applied to

he wave energy control problem. The main disadvantage of in-

irect methods is that the necessary conditions for optimality

ust be derived analytically, (which increases in difficulty when,

or example, considering nonlinearities in the WEC model), while

irect methods transcribe the optimisation problem as a NLP,

nd attempt to minimise (20) directly. Indeed, indirect methods

or nonlinear systems can be applied to classical problems and

ome special weakly nonlinear low dimensional systems, as fur-

her described in Von Stryk and Bulirsch (1992) . Nevertheless, di-

ect methods, in general, produce less accurate solutions than in-

irect methods. The choice of an optimisation procedure is then

trictly related to the formulation of Eq. (20) , and is strongly de-

endent on the model of the WEC considered. 

. MPC-like algorithms: spectral and pseudospectral techniques 

Control algorithms based on spectral methods offer an interest-

ng alternative to MPC, as they can be used to solve optimal control

roblems under constraints using a specific parameterisation of the

olution ( Garg, Hager, & Rao, 2011 ). Spectral methods have shown

ave appealing computational aspects, offering the possibility of

caling in complexity/performance by changing the number of ap-

roximating basis functions. Both spectral and pseudospectral are

ncluded in the family of discretisation methods based on the Mean

eighted Residuals (MWR), where both state and control variables

re parameterised. The main idea behind MWR is to assume that

he state and the control input can be approximated by a linear

ombination of specific basis functions ξ u 
k 
(t) and ξ x 

k 
(t) (notation

dopted from Bacelli & Ringwood, 2015 ), as 

x i (t) ≈ x N x 
i 

. = 

N x ∑ 

k =1 

ˆ x ik ξ
x 
k (t) 

 i (t) ≈ u 

N u 
i 

. = 

N u ∑ 

k =1 

ˆ u ik ξ
u 
k (t) (26)

here x i , x 
N x 
i 

, u i , u 
N u 
i 

are the i th components of the vectors x , x N x ,

 and u N u respectively. Assuming that the dynamics of the system

re given by ˙ x = f (x, u, t) , the resulting residual function is defined

s, 

 (X, U, t) = 

˙ x N x − f (X, U, t) (27)

here the vectors X and U contain the coefficients ˆ x ik and ˆ u ik re-

pectively. For any value of U , the corresponding vector X is ob-

ained by solving the following system of equations 

 R i (X, U, t) ;φ j (t) 〉 = 0 for i, j = 1 , . . . , N x (28)

here 〈 f, g〉 = 

∫ 
� f (t) g(t ) dt is the inner product with a unity

eight function and the test functions φj ( t ) are orthogonal under

he same inner product. If the test functions φj ( t ) are elements of

he same set as the basis functions approximating the state, that is

(t) j = ξ x 
k 
(t) , then the method is known as a spectral or Galerkin

ethod. If, on the other hand, the test functions are translated

irac-delta functions δ(t − t j ) , then the method takes the name

f pseudospectral or collocation method. Unlike MPC which, in

ost of the applications, effectively uses ZOH functions to approx-

mate the optimal solution, spectral and pseudospectral methods

re (generally) based on functions defined over the complete con-

rol horizon, i.e. have global, rather than local, support. Different

hoices for the basis functions are studied in Genest and Ringwood

2017) and can be appreciated in Fig. 14 . Another important as-

ect relating to spectral methods is that they provide a simplifica-

ion of the convolution integral associated with the radiation force

3) , when the velocity is approximated within the selected basis.
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a

b

Fig. 14. Approximation of a nonperiodic function using different sets of functions. 

ZOH: Zero-Order Hold; HRCF: Half-Range Chebyshev Fourier functions; Legendre: 

Legendre polynomials; Fourier: Trigonometric Fourier functions ( Genest & Ring- 

wood, 2017 ) - (b) Approximation errors for same sets of orthogonal function sets. 
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oreover, Bacelli and Ringwood (2015) show that the computa-

ion involving the numerical integration of the convolution integral

an be carried out offline, thus significantly reducing the computa-

ional load when solving the NLP. 

.1. Spectral methods 

The first application of spectral methods in wave energy can

e found in Bacelli et al. (2011) , where the device considered is

 self-reacting point absorber. The objective function adopted for

he optimisation procedure is the same as (19) . The orthonor-

al basis chosen 

(
ξ x,u 

k 
(t) 

)
is in terms of Fourier functions, in-

pired by the oscillatory nature of the problem. To solve the

onstrained optimisation problem, the algorithm uses the penalty

ethod ( Wright & Nocedal, 1999 ). Due to the properties of Fourier

unctions, Bacelli et al. (2011) also present a suboptimal solution

sing a 2-norm that is more efficient in computational terms.

urther development and analysis of constraints within the spec-

ral framework can be found in Bacelli and Ringwood (2011) . In

estphalen, Bacelli, Balitsky, and Ringwood (2011) , the same au-

hors use a similar approach to develop a control strategy for an

rray of single-body devices of cylindrical shape in heave motion

nly. Two control algorithms are tested: one operating on an in-

ividual device level, called the independent device controller (IC),
nd a global array controller (GC). IC does not take the interac-

ions from the other devices into account and optimises the mo-

ion based on the total incident and diffracted waves only, while

C explicitly takes the hydrodynamic coupling of all devices into

ccount and seeks a global optimum. The metric used to eval-

ate the performance of the strategy is the q-factor ( Thomas &

vans, 1981 ). Such results are extended by the same authors in

acelli and Ringwood (2013) , where several array configurations

nd different body geometries are studied. The procedure is de-

ned for a general WEC array ( n devices), with an objective func-

ion given by 

 J = −
n ∑ 

k =1 

∫ t+ T h 

t 

u (τ ) ̇ x k (τ ) dτ (29)

erfect knowledge of future wave elevation is assumed, in order

o isolate the effects of control on the total energy produced. Also,

n adaptive constraint approach is used in the case of IC, in order

o avoid violations caused by the control model, which neglects

art of the hydrodynamic interaction between WECs. Both IC and

C are regarded as a QP, and are solved using an active set al-

orithm. The authors present three possible layouts and three dif-

erent geometries. A sensitivity analysis of the relative IC/GC per-

ormance with respect to position variation of an array element

s studied in Bacelli, Balitsky, and Ringwood (2013) . Also, the case

ith an incorrect estimation of the excitation force is considered

nder the same control strategy ( Bacelli et al., 2013 ). Another note-

orthy study, concerning arrays of WECs based on spectral meth-

ds, is Garcia-Rosa, Bacelli, and Ringwood (2015b) , where the in-

egration of optimal array design and control design is studied. Fi-

ally, in Garcia-Rosa, Bacelli, and Ringwood (2015a) , the impact of

evice motion and input constraints in the optimised design of a

EC is studied, using spectral techniques and following the proce-

ures from Bacelli and Ringwood (2015) . 

.2. Pseudospectral methods 

An early appearance of pseudospectral techniques in the con-

ext of control of WECs can be found in Herber and Allison (2013) .

 co-design approach, with PTO restrictions, is considered. The di-

ect transcription method used is the Radau pseudospectral method

ith Legrende–Gauss–Radau collocation points and a hp -adaptive

esh refinement algorithm ( Fahroo & Ross, 2008 ), where specific

eneral Pseudospectral Optimisation Software ( Rao et al., 2010 ) is

sed. The objective function selected in the optimisation process is

he same as in (19) . Later on, Bacelli and Ringwood (2015) present

 general mathematical framework for the solution of the WEC

ontrol problem, using both spectral and pseudospectral meth-

ds, where the Galerkin method (in conjunction with trigonomet-

ic polynomials), applied to a heaving point absorber, is extensively

iscussed. Simulations of the strategy, with both regular and irreg-

lar waves, are given. In Bacelli and Ringwood (2014) , a nonlinear

pplication of the pseudospectral method is studied for a flap-type

evice. The nonlinearity is due to the moment of the drag force

 Journée & Massie, 20 0 0 ). The objective function, for the case of a

otating flap, involves the angular momentum θ ( t ) and the torque

pplied by the PTO: 

J = 

∫ t+ T h 

t 

u (τ ) ˙ θ (τ ) dτ (30)

he basis for the pseudospectral expansion is a zero-mean trigono-

etric polynomial (truncated Fourier series). The optimisation

roblem is solved using Sequential Quadratic Programming (SQP)

 Nocedal & Wright, 2006 ). The study developed in Bacelli, Gen-

st, and Ringwood (2015) expands these result further, consider-

ng constraints and a non-ideal PTO model. A generic efficiency
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Fig. 15. QP computational time for MPC ( ◦, �) and RHPSC algorithm ( • ) for differ- 

ent regular wave periods. Different approximations for the radiation forces are used 

for this comparison namely NTNU Toolbox ( �) and Prony’s method ( ◦) ( Genest & 

Ringwood, 2016a ). 

W  

n  

t  

a  

I  

i  

b  

m  

S  

d  

v  

s  

t  

t  

t  

o  

w  

R  

b  

c  

e  

s  

a  

a  

i  

P  

i  

(  

e  

(  

c  

s  

l  

b  

f  

(  

t  

2  

T  

f  

w  

j

 

f  

i  

t  
curve is used in this study (which is a function of the load fac-

tor only), adding nonlinear terms to the objective function (30) .

In Paparella and Ringwood (2017a) , pseudospectral methods, based

on Bacelli and Ringwood (2015) , are applied to a hinge-barge wave

energy converter ( Fig. 7 ), for which the dynamical model is orig-

inally derived and validated by the same authors as in Paparella

et al. (2016) . In their study ( Paparella & Ringwood, 2017a ), the lin-

ear dynamical model of the device is derived with two different

formulations: a Differential and Algebraic Equation (DAE) formula-

tion and an Ordinary Differential Equations (ODE) representation.

The basis chosen for the expansion is a truncated Fourier series.

The optimisation process in Paparella et al. (2016) considers the

energy-maximising objective function as defined in (19) . Due to

the non-convex formulation obtained, Paparella et al. (2016) de-

scribes a method to convexify the objective function, by introduc-

ing a weight on the control power inside the objective function.

Constraints are considered in relation to both the motion of the

device, and the control inputs. Results are presented using both

the DAE and ODE representations for regular and irregular waves.

Moreover, a pseudospectral passive controller (i.e. incorporating a

unidirectional power flow constraint) is developed and compared

to the original active (bidirectional power flow) formulation. 

A recent study, presenting an alternative to pseudospectral

methods, termed a Shape-Based (SB) approach , can be found in

Abdelkhalik et al. (2016) . The main difference between SB and

pseudospectral methods is that SB only approximates one of the

states of the system (velocity ˙ x ) rather than all the states and

the control input, as in the pseudospectral approach, reducing the

computational cost involved in the optimisation process. SB as-

sumes a Fourier basis expansion only for the velocity of the buoy,

with unknown coefficients. The frequencies in the velocity expan-

sion are extracted from a (assumed available) prediction of the ex-

citation force. In this study, two models are considered: a simpli-

fied version, using the same dynamical model as Li et al. (2012) ;

and a “performance model” with a more accurate radiation force

description (detailed in Coe & Bull (2014) ). The objective function

considered is the same as in (19) and the optimisation algorithm,

to obtain the optimal shape of the state, is the interior point algo-

rithm. In their results, several comparisons with different strategies

(developed in Cretel et al. (2011) ; Li et al. (2012) and Bacelli and

Ringwood (2015) ) are given, in order to test the proposed strategy.

6.3. Summary of spectral and pseudospectral methods 

In summary, spectral and pseudospectral methods have shown

to be appealing for the wave energy control formulation since both

propose a specific parameterisation of the solution, which is well

matched to the oscillatory nature of the problem. As can be appre-

ciated in Fig. 14 , (and already mentioned in Section 5.4 ), spectral

and pseudospectral methods capture the dynamics of the system

in an efficient and precise way, using a basis function expansion.

This efficiency facilitates the use of the original objective function

(19) in the optimisation process, while maintaining real-time ca-

pabilities. Nevertheless, most formulations are based on trigono-

metric polynomials and, hence, compute periodic solutions, which

represents a drawback in a receding-horizon context. 

6.4. Receding horizon pseudospectral control 

Motivated by the fact that the aforementioned spectral and

pseudospectral algorithms all calculate periodic solutions, wave en-

ergy researchers began to apply Receding Horizon Pseudospectral

Control (RHPSC) in order to overcome this limitation. Moreover, re-

cent studies have shown the utility of developing a RHPSC strategy

to solve optimal control problems in real-time such as Williams

(2004) and Fahroo and Ross (2008) . A first approach, within the
EC context, can be found in Li (2015) , where the differential flat-

ess of the WEC model is combined with pseudospectral methods

o develop a RHPSC strategy. In this study, the convolution is not

pproximated in pseudospectral form, as mentioned in Section 6 .

nstead, the classical approach, by means of a state-space approx-

mation (16) , as documented in Section 5.3 , is used. The chosen

asis functions for the RHPSC framework are Lagrangian polyno-

ials. Using the differential flatness property of the model (see

ira-Ramirez and Agrawal, 2004 for a differential flatness formal

efinition), the objective function is approximated with a noncon-

ex function with a differentially flat output as the only optimi-

ation variable. Simulations are performed to test the computa-

ional burden of the algorithm developed in Li (2015) , considering

he differential flatness of the system, combined with pseudospec-

ral methods. The corresponding NLP is solved using SQP meth-

ds. Another study can be found in Genest and Ringwood (2017) ,

here a real-time RHPSC formulation is developed based on Half-

ange Chebyshev Fourier (HCRF) polynomials ( Huybrechs, 2010 ) as

asis functions, which can represent harmonic signals in the appli-

ation domain, and also deal efficiently with the signal truncation

ffects associated with a receding horizon formulation. Moreover,

uch a basis fulfils the requirements to simulate both the transient

nd steady-state responses of the device. The WEC used in Genest

nd Ringwood (2017) is a flap-type device. The NLP is solved us-

ng SQP. Finally, a comparison between an MPC strategy and a RH-

SC formulation, for a heaving point absorber, is given in two stud-

es, namely ( Genest & Ringwood, 2016a ) and Genest and Ringwood

2016b) , where the chosen MPC algorithm is the same as in Cretel

t al. (2011) and the RHPSC strategy is as in Genest and Ringwood

2017) . In Genest and Ringwood (2016a) , the difference between

omputational time of both strategies, under constrained optimi-

ation, is compared. Simulations are given with regular and irregu-

ar waves. Their results (see Fig. 15 ) suggest that the computational

urden is at least 3 times smaller for the RHPSC algorithm than

or an MPC strategy. For the comparison, Genest and Ringwood

2016a) uses different algorithms for the radiation force computa-

ion in MPC strategies, namely the NTNU Toolbox ( Perez & Fossen,

009 ) and Prony’s method ( Duclos, Clément, Chatry et al., 2001 ).

ime series of the position, velocity and control input obtained

rom the WEC, controlled with both MPC and RHPSC algorithms,

ithout path constraints, can be seen in Fig. 16 . All proposed tra-

ectories follow the optimal path determined in Falnes (2002) . 

In Paparella and Ringwood (2017b) , a RHSPC strategy with HRCF

unctions is applied to a multibody hinge-barge WEC (as shown

n Fig. 7 ), originally derived in Paparella and Ringwood (2017a) . In

his study, the authors develop an equivalent reduced dynamical
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Fig. 16. Normalised absorbed power and QP computational time for MPC and RH- 

PSC algorithms for a given irregular sea state ( Genest & Ringwood, 2016a ). 
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odel for the control formulation, which is described in terms of

he relative pitch rotations, reducing the number of variables in-

olved and, therefore, reducing the computational effort required

o compute the optimal control policy. An alternative convex for-

ulation of the optimisation problem, where the objective func-

ion is expressed in terms of the difference between the excita-

ion force power and the dissipated power from radiated waves

nd viscous forces, is presented. This approach is similar to that

onsidered in Hals et al. (2011) and, therefore, specific to the ob-

ective function in (25) . An active and a passive controller are de-

eloped using RHSPC methods in Paparella and Ringwood (2017b) .

erformance of both controllers are presented in the results, for

oth monochromatic and polychromatic waves. 

In summary, several studies consider pseudospectral methods

ithin a receding-horizon framework, by adopting non-periodic

roblem-specific basis functions, such as HRCF functions. The use

f HRCF functions shows a major improvement regarding the com-

utational burden associated with the optimisation process, as can

e seen in Fig. 15 , where the computational time is at least 3 times

maller for the RHSPC formulation compared to MPC. 

A perspective might be considered where both MPC, which

ses time domain discretisation of a state-space model, and pseu-

ospectral (or spectral) control, which expands the system vari-

bles onto an orthonormal basis, involve the discretisation of a

ontinuous-time problem into a discrete space, in which the op-

imisation problem can be computationally solved. Despite the fact

hat, at first glance, these disparate discretisation philosophies ap-

ear to be quite different, there are ways in which both approaches

an be viewed within an integrated framework. Key to such a per-

pective is Fig. 14 (a), where the ZOH approximation can be consid-

red as the use of a set of rectangular basis functions, within a

seudospectral framework. In fact, such rectangular functions, or

he trapezoidal ‘basis’ functions associated with a first-order hold,

onstitute an orthonormal basis ( Jiang, Schoufelberger, Thoma, &

yner, 1992 ). However, a dichotomy is observed that the “basis”

unctions associated with state-space discretisation provide only

ocal support, while the Fourier or HRCF functions associated with

he pseudospectral WEC controllers provide global support. This is

omewhat analogous to the case of nonlinear interpolation using
rtificial neural networks, where radial basis networks and sup-

ort vector machines provide local approximation capability while,

or example, multi-layer perceptrons utilise interpolating functions

ith global support ( Haykin, Haykin, Haykin, & Haykin, 2009 ). In

erms of choosing between the two broad families of discretisation,

t could be argued that the Fourier/HRCF function basis provides

 basis more suited to the WEC control application, given their

mproved computational properties (for at least a similar level of

nergy conversion) over rectangular/trapezoidal functions, as evi-

enced by Fig. 15 . However, the global support of Fourier functions

eads to difficulties with a receding-horizon formulation, necessi-

ating the alternative HRCF functions, which could also be deemed

o have relatively local support. 

. Discussion and further directions 

MPC strategies, as optimal formulations, have been successfully

mplemented in wave energy, for maximisation of converted en-

rgy. They have the enormous advantage of handling constraints

n a natural way, within the optimisation process, which is fun-

amental in order to ensure that the control strategy respects the

hysical limitations of the device. However, the computational bur-

en of MPC algorithms can render them unsuitable for real-time

pplications, potentially in the case of WEC arrays. Spectral and

seudospectral methods are slowly entering the field, in an at-

empt to diminish the computational time, with RHPSC. Never-

heless, much work has to be done to establish a real-time strat-

gy based on a repeated optimisation process. In order to provide

 critical comparison between studies, concerning both MPC and

PC-like algorithms, Table 4 provides the reader with a compre-

ensive summary of the main characteristics highlighted and dis-

ussed in this review study. A list of abbreviations, used in Table 4 ,

an be found in Table 3 . 

On the other hand, most of the results are based on linear hy-

rodynamic models, as can be seen in Fig. 17 ; NMPC must be fur-

her developed in order to apply such strategies successfully to

eal devices. A recent study, highlighting the importance of using

onlinear models, when computing the optimal control policy in

he wave energy context, can be found in Mérigaud and Ringwood

2017) . Another aspect that merits further development relates to

ptimisation of the entire energy conversion process, since it de-

ends on multiple power conversion stages ( Penalba Retes, Giorgi,

 Ringwood, 2015 ). Regarding the objective function, which is at

he heart of the optimisation process, several studies have added

erms in order to obtain a convex quadratic problem and reduce

he computational challenge to compute an optimal solution. One

ust notice that such a practice affects the original energy max-

mising optimal criterion, and such a trade-off has to be further

nalysed in practical situations. However, spectral techniques can

andle the original objective function with a relatively low com-

utational burden, making them a competitive alternative to MPC.

his can be further appreciated in Fig. 18 , where the percentage of

PC studies concerning the original energy-maximising objective

unction (19) is shown, and is considerably lower than in the case

f spectral or pseudospectral methods. 

Another aspect that requires further research in wave energy

pplications concerns stability. Despite lot of development re-

arding MPC stability for the classical reference tracking problem

 Rawlings & Muske, 1993; Rossiter & Kouvaritakis, 1993; Zheng &

orari, 1994 ), such results are not straightforwardly applicable to

he wave energy case, since the objective function is significantly

ifferent. Stability analysis is a fundamental property regarding the

esign of any real controller; therefore, such analysis should be

aken into account in future research studies. It is important to

otice that even when the optimisation algorithm finds a solution,
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Table 3 

Comparison between the main characteristics of studies reviewed. 

Reference Dynamical Model Constraints F exc conv. Discretisation Obj. Function Opt. Problem 

LTI LTV NL A V U DU P Ref E DU U Sv Ref T QP NLP IN 

S A 

Li et al. (2012) • • • Not considered ZOH • • 

Richter et al. (2014) • • • • Damping ZOH • • • • 

Richter et al. (2013) • • • • Damping Taylor 2 nd order • • • • 

Li and Belmont (2014a) • • • • Damping ZOH • • • See Section 5.5 • 

Li and Belmont (2014b) • • • • Damping ZOH • • • See Section 5.5 • 

Olaya et al. (2014) • • • • Implicit ZOH • • • 

Olaya et al. (2015) • • Implicit ZOH • • • 

Tom and Yeung (2014) • • • SS - 3 rd order Trapezoidal Rule • • (21) • 

Amann et al. (2015) • • • • Not considered Taylor 2 nd order • • • • 

Kovaltchouk et al. (2015) • • • SS - 4 th order Trapezoidal Rule • • See Section 5.5 • 

Oetinger et al. (2014) • • • • Not considered ZOH • • • • 

Andersen et al. (2015) • • Not specified ZOH • • • 

Tona et al. (2015) • • SS - 5 th order Tustin rule • • (24) • 

Nguyen et al. (2016) Experimental application of Tona et al. (2015) 

Brekken (2011) • • • • Damping Not specified • • 

Jama et al. (2014) • • • SS - 4 th order ZOH Laguerre F. (25) • • 

O’Sullivan and Lightbody (2017) • • • • See Section 2.2 SS - 4 th order FOH • • • • 

Hals et al. (2011) • • • SS - 4 th order ZOH (25) • 

Cretel et al. (2010) • • SS - 6 th order ZOH • • • 

Cretel et al. (2011) • • • SS - 5 th order FOH • • • • 

de la Villa Jaén et al. (2014) • • • SS - 5 th order FOH • • • 

Cavaglieri et al. (2015) • • • • Not specified Not specified • • 

Soltani et al. (2014) • • Not specified ZOH • • 

Jama et al. (2013) • • SS - 4 th order Laguerre F. • • 

Abraham and Kerrigan (2013) • • SS - 3 rd order Implicit (22) • 

MPC-Like Algorithms 

Li (2015) • • • SS - 3 rd order PS (Lagrangian) • • 

Bacelli et al. (2011) • • SP (Fourier) SP (Fourier) • • 

Genest and Ringwood (2017) • • • • PS (HRCF) PS (HRCF) • • 

Herber and Allison (2013) • • • See Section 2.2 Damping PS (LGR) • • • 

Westphalen et al. (2011) • • SP (Fourier) SP (Fourier) • • 

Bacelli and Ringwood (2013) • • • SP (Fourier) SP (Fourier) • (29) • 

Bacelli et al. (2013) • • • SP (Fourier) SP (Fourier) • • 

Bacelli et al. (2015) • • • • • PS (Fourier) PS (Fourier) • • 

Abdelkhalik et al. (2016) • • • SS - 8 th order SB (Fourier) • • 

Bacelli and Ringwood (2015) • • • SP/PS (Fourier) SP/PS (Fourier) • • • 

Bacelli and Ringwood (2014) • PS (Fourier) PS (Fourier) • (30) • 

Garcia-Rosa et al. (2015b) • SP (Fourier) SP (Fourier) • • 

Garcia-Rosa et al. (2015a) • • • SP (Fourier) SP (Fourier) • • 

Genest and Ringwood (2016a) • • • • PS (HRCF) PS (HRCF) • • 

Genest and Ringwood (2016b) • • • • PS (HRCF) PS (HRCF) • • 

Paparella and Ringwood (2017a) • • • • PS (Fourier) PS (Fourier) • • 

Paparella and Ringwood (2017b) • • • • PS (HRCF) PS (HRCF) • • 

 

 

 

 

 

n  
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e  

t  
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e  
this does not guarantee stability of the overall system, that is, op-

timality does not imply stability . 

Robustness of MPC controllers for wave energy applications

needs to be considered, since little work has been done in this

area. Robust analysis of applied strategies must be considered,

since additional modelling errors will arise due to unmodelled dy-
amics, nonlinearities, etc., especially considering the challenge of

eveloping computationally tractable hydrodynamic models of ad-

quate fidelity ( Giorgi et al., 2016 ). While robust control is a ma-

ure field in tracking problems, it has received a little attention

apart from, for example Fusco & Ringwood, 2014 ) in the wave

nergy application. Naturally, a further possible direction may be
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Table 4 

List of abbreviations used in Table 3 . 

Section in table Term 

LTI Linear time-invariant 

LTV Linear time-varying 

Dynamical Model NL Nonlinear 

S Single device 

A Array configuration 

A Amplitude 

V Velocity 

Constraints U Control input 

DU Rate of change of the control input 

P Maximum power 

SS State-Space 

F exc conv. SP Spectral 

PS Pseudospectral 

Discretisation SB Shape-Based 

E Original energy-maximising objective function 

DU Penalty term related to rate of change of the 

control input 

Objective function U Penalty term related to the control input 

Sv Slack variables 

T Trajectory tracking objective function 

QP Quadratic programming 

Optimisation problem NLP Nonlinear programming 

IN Indirect method 

LTI Single

29

LTI Array

7
LTV

1
NL

5

Fig. 17. Type of dynamical model considered in literature reviewed. References: LTI 

≡ linear time-invariant; LTV ≡ linear time-varying; NL ≡ nonlinear. Data extracted 

from Table 4 . 

12%M

94%ML

88%M

6%ML

0% 100%

Fig. 18. Percentage of MPC (M) and MPC-Like (ML) algorithms in the literature re- 

viewed that: consider the original energy-maximising objective function (19) (rep- 

resented by grey coloured bars); consider a modified or different objective function 

(represented by green coloured bars). Data extracted from Table 4 . (For interpreta- 

tion of the references to colour in this figure legend, the reader is referred to the 

web version of this article.) 
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rovided by examining the applicability of robust MPC ( Camacho &

lba, 2013 ) controllers to wave energy conversion. 

To date, the majority of WEC controllers have been evaluated

n simulation, with varying degrees of simulation fidelity, with a

ew notable exceptions, such as the Pelamis WEC ( Yemm, Pizer,

 Retzler, 2002 ), the Wavestar WEC ( Kramer, Marquis, & Frigaard,

011 ) and the SEAREV WEC ( Cordonnier, Gorintin, De Cagny, Clé-
ent, & Babarit, 2015 ). One important issue is that, frequently,

EC controllers are simulated with a model identical to that upon

hich the controller is designed, completely masking (with the

xception of some minor numerical inaccuracies) any sensitivity

f the control system to modelling errors. However, ideally, WEC

ontrollers should be evaluated in more realistic wet tests, us-

ng a wave tank or, at the very least, a numerical wave tank

NWT) ( Davidson, Cathelain, Guillemet, Le Huec, & Ringwood, 2015 )

ith a high-fidelity hydrodynamic solver based on, for example,

omputational fluid dynamics (CFD) or smooth particle hydrody-

amics (SPH). One or two studies are now beginning to emerge

sing such high-fidelity simulations ( Davidson, Genest, Ringwood,

017 ) and some proposals are currently underway to compare WEC

ontrollers under a standardized tank-testing protocol ( Ringwood

t al., 2017 ). 
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