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Abstract Model predictive control (MPC) and pseudospec-
tral optimal control (PSC) have been proposed over the past
decade to maximise energy capture for wave energy devices.
Both philosophies share a similar cost function and both
can deal with constraints on system (displacement, velocity)
and control (force) variables. Recently, a receding horizon
version of the PSC method (RHPSC) has been developed,
permitting a direct comparison between MPC and RHPSC
formulations. This paper demonstrates that while the control
objectives are very similar, the numerical properties of both
algorithms are quite different, having implications for prac-
tical use, both in terms of performance and implementation
issues.

Keywords Wave energy control ·Model predictive control ·
Pseudospectral optimal control · Comparison

1 Introduction

The emergence of MPC in the process industries, particu-
larly in oil and petrochemical plants, occurred in the 80s;
the implemented algorithms were initially based on optimal
control methodologies developed by Richalet et al. (1978)
andCutler andRamaker (1980). Such applications, described
by slow dynamic models were, at that time, particularly
well suited for MPC algorithms. MPC offers an interesting
alternative to solve multivariable optimal control problems
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under path constraints through solving the open-loop opti-
mal control problem on line. Generalised Model predictive
control (GPC) was developed, based on a strong mathemat-
ical foundation, in parallel with the industry development of
MPC (Clarke et al. 1987). Stability, robustness and feasibil-
ity were later investigated (Lee and Yu 1997; Mayne et al.
2000), giving a strong mathematical background to the MPC
methodology (Lee 2011). Recent studies focused on decreas-
ing the computational time needed to run MPC algorithms
by adapting standard interior-point optimisation algorithms
(Rao et al. 1998), or exploiting the structure ofMPC problem
to compute control laws off-line (Wang and Boyd 2010).

MPChas recently been introduced in thewave energyfield
with the objective of maximising the extracted energy from
waves through controlling immersed wave energy converters
(WECs), while satisfying technological constraints, such as
stroke, control force or power limitations.

Several studies in the wave energy field adapted and opti-
mised MPC algorithms specifically for WECs (Hals et al.
2011). An improvement of the state-space order used to
model the WEC dynamics involved in the MPC algorithm
was presented in Cretel et al. (2011), allowing an increase
of the minimal time-step of the algorithm. Nonlinear MPC
was implemented on a wave energy device in Richter et al.
(2013), allowing a better description of the immersed sys-
tem dynamics. Finally, convexity of the quadratic problems
involved in the MPC algorithm applied to a WEC is studied
in Li and Belmont (2014a), and its application to an array of
WECs was then conducted in Li and Belmont (2014b).

An alternative approach to solve optimal control prob-
lems based on pseudospectral method has recently been
developed and widely used in various applications (Elna-
gar et al. 1995; Gong et al. 2007; Ross and Fahroo 2004;
Williams 2004a). Describing the state and control variables
via a set of orthogonal basis functions, such as orthog-
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onal polynomials (Williams 2004b) or Fourier functions
(Manita 2011; Nagurka and Yen 1990), pseudospectral opti-
mal control allows a fast resolution of optimal trajectories for
optimal control problems,while ensuring path constraints are
respected, and subject to nonlinear system dynamics.

Pseudospectral optimal control has recently been intro-
duced to the wave energy field, using Fourier basis functions
for periodic optimal control (Bacelli and Ringwood 2015;
Bacelli and Ringwood 2013). Applying a receding-horizon
control, with an outer-loop based on pseudospectral optimal
control, the optimal trajectories are determined and tracked in
real-time in order to maximise the energy production, while
respecting path constraints (Genest and Ringwood 2016).

These recent developments of advanced control strategies
applied to wave energy converters have been able to provide
real-time control algorithms that are able to handle realistic
constraints and maximising the energy production of WECs.
A comparison between a standardMPC and a pseudospectral
optimal control algorithm, applied to wave energy devices,
is presented in this paper. Their computational time and per-
formances are presented for regular waves and irregular sea
states under path constraints. This comparative study high-
lights the advantages and drawbacks of both methods and
more importantly, brings additional suggestions for further
research.

Section 2 introduces the standard optimal control problem
and the practical constraints involved in the energy maximi-
sation of a standard WEC described by linearised dynamical
ordinary differential equations. Sections 3 and 4 present,
respectively, the MPC and pseudospectral optimal control
algorithms implemented for the comparison. Performance
of the control strategies in regular and irregular waves is
presented, respectively, in Sects. 6 and 7. Finally, a discus-
sion, relating the advantages and drawbacks and the potential
improvements of each method, is contained in Sect. 8.

2 WEC model

2.1 Dynamical model

In this study, a one-degree of freedom system is considered
constrained to move in heave only. Referenced from its equi-
librium position in an undisturbed wave field, immersed in
an infinite-depth sea, the system is subject to fluid-structure
interactions. The fluid is assumed to be inviscid; therefore, no
viscous forces are considered in this study, and the motion of
the WEC is assumed to be small enough to apply linearised
potential flow theory for the determination of hydrodynamic
forces. A generic 5 m diameter spherical shape is chosen for
the WEC presented in Fig. 1.

Fluid–structure interaction forces acting on the system’s
hull can be determined as a sum of a radiation force Fr , a

Fig. 1 Wave energy converter

hydrostatic force Fh and an excitation force Fe. Hydrostatic
forces for a floating device, i.e. buoyancy, is written as

Fh = ρgVix, (1)

where ρ corresponds to the water density, g is acceleration
due to gravity, x is the vertical unitary vector and Vi = V0 +
V (x) represents the immersed volume of the WEC, with V0
the immersed volume at the equilibrium position and V (x)
the additional immersed volume depending on the position
x of the system. The weight of the wave energy device is
W = −mgx, wherem = ρgV0 is the totalmass of the device.
The sum W + Fh = ρgV (x)x is linearised, assuming small
body’s displacements. The additional immersed volume is
approximated by the following formula, V (x) ≈ −Sx .

The radiation force Fr is modelled using linearised poten-
tial flow theory, as a sum of a convolution product between
the velocity of the device v = dx/dt and a kernel function
K , representing a memory term depending on past values
of the velocity, and an added mass term proportional to the
acceleration of the WEC’s hull, as presented in (2):

Fr (t) · x = −μ∞
dv

dt
(t) −

∫ t

0
K (t − τ)v(τ )dτ (2)

with μ∞ corresponding to the infinite frequency added mass
asymptote.

The excitation force Fe corresponds to the sum of the
integration, on theWEC’s hull, of the incident wave pressure
field, and the diffraction force generated by the waves on
the device. Fe can be determined, using linearised potential
flow theory, via a standard boundary element method, from
a convolution product between a kernel function and the free
surface elevation of incoming waves.

The linearised equation of motion of the WEC, or Cum-
mins’ equation (Cummins 1962), projected on the z axis, is
written as
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(m + μ∞)
dv

dt
+

∫ t

0
K (t − τ)v(τ )dτ + Shx = Fe + u, (3)

where u = FPTO→WEC is the control force applied on the
system, Sh = ρgS corresponds to the hydrostatic stiffness
and Fe = Fe · x. The linear second-order integro-differential
equation (3) describes the dynamical behaviour of the sys-
tem subject to fluid–structure interactions and is used in both
MPC and pseudospectral optimal control algorithms as a
dynamic constraint.

2.2 Path constraints

Realistic approaches take into account physical limitations
restraining the body’s motion and its technological capacity,
such as maximal actuator force and power. Path constraints
avoid unrealistic trajectories and control forces, since opti-
mal state and control variables, derived from the optimal
complex-conjugate control (Falnes 2002), are often imprac-
ticable due to their considerable requirements. Moreover,
practical aspects, such as the impact of actuator efficiency
on the energy absorption (Genest et al. 2014), represent an
additional justification for considering path constraints in the
design of the control algorithm. Path constraints are written
as

∀t ∈ R, (Xmax, Vmax,Umax) ∈ R
+3

,

⎧⎨
⎩

|x(t)| ≤ Xmax

|v(t)| ≤ Vmax

|u(t)| ≤ Umax,

(4)

where Xmax, Vmax,Umax correspond to the position, velocity
and control force practical limitations, respectively.

2.3 Optimal control problem formulation

The main objective of a WEC is to recover energy from the
incoming wave field in which the device is immersed. This
is done by applying a control force u on the system’s hull via
a power takeoff (PTO) . The role of the PTO is to convert the
kinetic and potential energy of the device’s motion into elec-
tric or mechanical energy. The power that fluctuates through
the PTO, PPTO→WEC, with all forces defined to be positive if
applied along the x direction, is

PPTO→WEC = FPTO→WECVWEC/R0 = uv (5)

Thus, the absorbed energy E of the WEC over a time period
T is

E =
∫ T

0
PWEC→PTO(t)dt = −

∫ T

0
u(t)v(t)dt (6)

The objective of the control algorithm is to maximise the
energy absorptionwhile ensuring the respect of the dynamics

of the system and the path constraints. The control objective
is formulated, on the interval I = [0, T ], as follows:

max
u,v∈C(I )

E(u, v) = −
∫
I
u(t)v(t)dτ (7)

subject to, for t ∈ I ,
⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

(m+μ∞) dvdt (t)+
∫ t
0 K (t−τ)v(τ )dτ +Shx(t)=Fe(t)+u(t)

v(t) = dx
dt (t)

|x(t)| ≤ Xmax

|v(t)| ≤ Vmax

|u(t)| ≤ Umax

(8)

MPC and RHPSC algorithms constitute different
approaches in the resolution of the optimal control problem,
maximising the energy absorption while ensuring path con-
straints and providing control and motion trajectories that
follow the linearised dynamics of the system. They are indi-
vidually described in Sects. 3 and 4, respectively.

3 Model predictive control

MPC has recently been applied to wave energy maximisa-
tion problems (Hals et al. 2011), allowing additional path
constraints while providing a control law that maximises
energy production. The convexity of the quadratic problem
(QP), solved by a standard optimisation algorithm involved
in MPC, has been studied in Li and Belmont (2014a) and
the proposed method was applied to an entire array of WECs
(Li and Belmont 2014b), illustrating the adaptability of the
method.

Other parallel developments proposed a higher accuracy
estimation of the dynamical equation by using a triangular
hold, instead of the more traditional zero-order hold (ZOH),
while defining the cost function used for the MPC (Cretel
et al. 2011). Nonlinear dynamical equations, providing more
realistic WEC behaviour, were implemented in Richter et al.
(2013), via nonlinear MPC (NMPC).

A real-time implementation of an MPC algorithm is pre-
sented in Fig. 2. It is decomposed into two parts, representing
the trajectory generation and the simulation evaluation. To
generate the trajectory, MPC solves the optimal control
problem under constraints and provides, at each time-step,
an optimal trajectory (future position, velocity and control
force) within a fixed control horizon of duration T . The tra-
jectory generation is updated at a predetermined fixed time
step �t . At each time-step, only the first output of the com-
puted optimal force trajectory is applied to the device. The
solution of the QP under constraints, therefore, becomes an
input for the simulation evaluation. The evolution of the posi-
tion and velocity of the device are determined in the real-time
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Fig. 2 MPC algorithm

loop in the simulation evaluation, using a Runge-Kutta tem-
poral discretization with a smaller time step �tRK. In order
to use the solution of the optimal control problem, the control
force is linearly interpolated between two consecutive values
provided by theMPC algorithm, allowing its implementation
in the simulation evaluation.

3.1 Continuous state-space model

In order to use anMPCmethodology, the dynamicalmodel of
theWEC is generally expressed as a state-space model, since
the state and control variables are expressed in a discrete-
time formulation. Various ways can be employed to generate
a state-space model from the Cummins’ equation (3), and
specifically to convert the convolution product in (2) involved
in the radiation force into a finite-order parametric discrete-
time form (Kristiansen et al. 2005; Pérez and Fossen 2008).

In this study, twodifferentmethods are employed to gener-
ate a state-space model of the radiation convolution product.
The first method realises a least-squares fitting of a trans-
fer function to the radiation force in the frequency domain
(Perez and Fossen 2009), while insuring the stability and pas-
sivity of the created state-space model. The second method
is based on Prony’s method (Duclos et al. 2001) and decom-
poses the radiation kernel function K into a sum of complex
exponential functions and uses this approximation to derive
a continuous state-space model.

These two strategies provide the matrix Ar ∈ R
n×n , Br ∈

R
n×1 and Cr ∈ R

1×n , as

ẋr (t) = Ar xr (t) + Brv(t) (9)∫ t

0
K (t − τ)v(τ )dτ ≈ Cr xr (t), (10)

where xr ∈ R
n×1 is a state-variable vector used to determine

the radiation force. Its dimension depends on the approxima-
tion order, called n, in Prony’s method (Duclos et al. 2001) or
in the NTNU toolbox (Perez and Fossen 2009). Therefore, a
continuous state-space model describing the complete Cum-
mins’ equation of (3) is defined in (12):

ẋc = Acxc(t) + BcF(t) (11)

yc(t) = Ccxc(t), (12)

where xc = [x, v, xTr ]T ∈ R
(n+2)×1 corresponds to the state-

variable vector for a continuous time state-space model and
the output vector yc(t) = [x(t), v(t)]T ∈ R

2×1 provides the
position and velocity of the WEC at the instant t . F cor-
responds to the sum of the control force u and the wave
excitation force Fe, normalized by the total mass of the sys-
tem mT = m + μ∞.

Ac =
⎡
⎢⎣
0 1 0
− Sh

mT
0 −Cr

0 Br
mT

Ar

⎤
⎥⎦ ∈ R

(n+2)×(n+2); (13)

and,

Bc =
⎡
⎣0
1
0

⎤
⎦ ∈ R

(n+2)×1; Cc =
[
1 0 0
0 1 0

]
∈ R

2×(n+2)

(14)

3.2 State-space model discretization

The chosen MPC algorithm is based on Cretel et al. (2011),
since the continuous to discrete time transformation is
realised using a first-order hold (FOH), or triangular hold.
The control force u and the wave excitation force Fe are
then considered linear piecewise functions, instead of con-
stant piecewise functions as with a standard ZOH. The FOH
generates a more precise model and allows larger simulation
time-steps and, therefore, reduces the computational time of
the MPC algorithm. The FOH used for the transformation
from continuous to discrete time is shown in (15):

xd [k + 1] = �(�t)xd [k]
+

∫ (k+1)�t

k�t
�((k+1)�t−τ)Bc(u(τ )+Fex (τ ))dτ,

(15)
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with �(t) = eAct and xd being the discrete-time quantities
derived from sampling the variable xc at a �t time period.
Using a FOH formulation for u and Fe, we get

xd [k + 1] = �(�t)xd [k] + �(ud [k] + Fe,d [k])
+�(�ud [k + 1] + �Fe,d [k + 1]), (16)

where

�ud [k + 1] = ud [k + 1] − ud [k] (17)

�Fe,d [k + 1] = Fe,d [k + 1] − Fe,d [k], (18)

and, with � = A−1
c (�(�t) − I )Bc and � = A−1

c (� −
�t Bt )/�t , the discrete-time state-spacemodel of the dynam-
ical system becomes

X [k + 1] = AX [k] + B�ud [k + 1] + F�Fe,d [k + 1]
(19)

Y [k + 1] = CX [k] (20)

with X = [xTd , ud , Fe,d ]T, Y = [yTd , ud ]T,

A =
⎡
⎣�(�t) � �

0 1 0
0 0 1

⎤
⎦ (21)

and,

B =
⎡
⎣�

1
0

⎤
⎦ , F =

⎡
⎣�

0
1

⎤
⎦ , C =

⎡
⎣1 0 0 ... 0 0
0 1 0 ... 0 0
0 0 0 ... 1 0

⎤
⎦ (22)

Using the discrete time state-space model, one can gen-
erate, for the N next time-steps,the prediction vector Ȳ ∈
R
3N×1 as

Ȳ =
⎡
⎢⎣
Y [k + 1|k]
...

Y [k + N |k]

⎤
⎥⎦ , (23)

where Y [k+i |k] corresponds to the prediction of the variable
Y at the i-th future time-step, knowing the current value of
Y [k]. Based on such estimations of the state and control vari-
ables, one can derive the optimal control solution that will
maximise the energy production while ensuring the respect
of the path constraints on a given number of iterations. For
further information about the quadratic problem formulation
from the discrete state-space formulation, the reader may
refer to the MPC study presented in (Cretel et al. 2011). In
the present work, the exact same methodology is employed
to implement the MPC algorithm.

3.3 Cost function and optimisation

The cost function J , involved in the absorbed energy max-
imisation, is quadratic and represents the actual energy
absorption made by the WEC for a given control trajectory
ud , assuming the future values of the excitation force are
known over the control horizon.

J (Ȳ ) = 1

2
Ȳ THȲ , (24)

where H is a matrix determined from the discrete-time state-
space model of the considered system, in our linear case
involving only constant coefficients, and being the Hessian
of the cost function J . As shown in Li and Belmont (2014a),
the quadratic cost function J is not always convex, leading to
an increase of the computational time and potential multiple
local solutions. The cost function can be convexified, with-
out significantly penalising the power absorption, by adding
diagonal terms to the matrix H weighted by the absolute
value of its smallest eigenvalue λmin(H) (Li and Belmont
2014a). The resulting convex cost function can then be writ-
ten as follows:

J (Ȳ ) = 1

2
Ȳ THȲ + |λmin(H)|Ȳ TȲ (25)

In order to obtain the profile of the control force ud ∈
R

N×1 over the N next time-steps, the following constrained
quadratic solved:

Ȳ ∗ = max
Ȳ∈R(3N×1)

(
J (Ȳ )

)
(26)

s.t.

[
Ȳ
−Ȳ

]
≤ I2N ⊗

⎡
⎣ Xmax

Vmax

Umax

⎤
⎦ (27)

where ⊗ represents the Kronecker product and I2N =
[1, . . . , 1]T ∈ R

2N×1. One can notice that, in the MPC for-
mulation, the ordinary differential equations describing the
WEC dynamics are not considered as constraints, but are
already implicitly expressed inside the cost function J . Stan-
dard algorithms, such as interior-point or active-set methods,
can be employed to solve such quadratic problems under
inequality constraints. The optimisation algorithm will give,

at each time-step �t , an optimal vector Ȳ ∗. Only the first
value of the control force derived from Ȳ ∗ will be applied
to the WEC. The procedure is then repeated to give a linear
piecewise control force on-line.

4 Receding horizon pseudospectral control

Previous studies on pseudospectral control applied to wave
energy devices were presented in Bacelli and Ringwood
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Fig. 3 RHPSC algorithm

(2013, 2015) and use truncated Fourier series to approxi-
mate state and control variables. This method was presented
for periodic signals over one or several periods, in regular
or irregular waves, and shows promising results in maximis-
ing the energy production under path constraints within a
short computational time. The Fourier basis used is particu-
larly adapted for the approximation of periodic signals, but
presents drawbacks when employed for non-periodic func-
tions. Since the state and control variables are non-periodic,
i.e. they do not have necessarily the same initial and final val-
ues over the control horizon, using truncated Fourier series
to approximate state variables induces the well-knownGibbs
phenomenon (Jerri 2013), since discontinuities will exist at
the boundaries of the control horizon.

In order to circumvent theGibbs phenomenon, the approx-
imation of the state and control variables by their truncated
Fourier series is replaced by their projections on a fam-
ily of orthogonal polynomials, called Half-range Chebyshev
Fourier (HRCF), defined in Huybrechs (2010). Following
the development in Genest and Ringwood (2016), state and
control variables are approximated in (28).

x(t) ≈
N∑
i=0

akT
h
k

(
cos

π t

2

)
+

N−1∑
i=0

bkU
h
k

(
cos

π t

2

)
sin

π t

2
,

(28)

where the coefficients ak and bk correspond to the orthogonal
projections of the function x on to the half-range Chebyshev
Fourier basis

ak =
∫ 1

−1
x(t)T h

k

(
cos

π t

2

)
dt (29)

and

bk =
∫ 1

−1
x(t)Uh

k

(
cos

π t

2

)
sin

π t

2
dt (30)

The continuous function x , approximated by the sum
of its 2N + 1 projections, is replaced in the optimal con-
trol problem, simplifying calculation of the optimal values

of the ak and bk coefficients. The state and control vari-
ables are then represented by the vectors of their respective
projections, e.g. in the case of the continuous x function,
x̂ = [a0, . . . , aN , b0, . . . , bN−1]T.

A receding horizon pseudospectral optimal control
(RHPSC) was presented in Genest and Ringwood (2016),
introducing a real-time control algorithm based on the
pseudospectral method. The algorithm is used to control the
wave energy device presented in Fig. 3. The optimal trajecto-
ries of x, v and u are determined via a pseudospectral method
and tracked in real-time by a backstepping method (Krstic
et al. 1995). In the same way as for the MPC algorithm,
a Runge-Kutta temporal discretization, with a smaller time
step �tRK than the one used for the trajectory generation,
is performed to obtain the real position and velocity of the
device regardless of the model employed inside the control
algorithm. This ensures a common simulation platform to
allow a fair comparison of MPC and RHPSC performance.

4.1 Dynamical equation

In order to solve the optimal control problem via the
pseudospectral method, the dynamical equation, in this case
the Cummins’ equation (3), needs to be expressed as a func-
tion of the vectors x̂ , v̂, û and F̂e, corresponding to the
orthogonal projections of, respectively, the position, velocity,
control force and excitation force, on the half-range Cheby-
shev Fourier basis. In order to express the derivatives of
variables in Cummins’ equation (3), a differentiation matrix
D is necessary and defined in Orel and Perne (2012). Thus,
the relation between the velocity and the position of theWEC,
v = dx/dt , can be directly expressed with their projection
vectors v̂ and x̂ in (31).

v̂ = Dx̂, (31)

where D ∈ R
(2N+1)×(2N+1) is the differentiation matrix

defined in Orel and Perne (2012).
The samemethodology is employed to determine the con-

volution product arising in the expression of the radiation
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force. The projection vector of the convolution product ĉ,
between the velocity and the radiation kernel function, is
expressed as a product with a matrix P and v̂ in (32).

ĉ = P v̂ (32)

The matrix P contains the projections of the convolution
between each basis function and the radiation kernel function
K , for more details see (Genest and Ringwood 2016).

The Cummins’ equation (3) is rewritten as a function of
the projection vector of the state and control variables:

((m + μ∞)D + P) v̂ + Sh x̂ = û + F̂e (33)

4.2 Cost function and optimisation

The cost function J representing the absorbed energy is deter-
mined by integrating the product of the velocity v and the
control force u, J = − ∫ T

0 vudt over the control horizon.
Since all the basis functions are mutually orthogonal, the
cost function is then simplified when replacing the state and
control variables by their projections in the HRCF basis:

J (Y ) = −1

2
Y THY, (34)

where Y = [x̂T, v̂T, ûT]T,

H =
⎡
⎣0 0 0
0 0 I
0 I 0

⎤
⎦ ∈ R

3(2N+1)×3(2N+1) (35)

and I ∈ R
(2N+1)×(2N+1) representing the identity matrix.

The inequality constraints are also expressed, by replac-
ing the state and control variables by their projections in the
HRCF basis. Thus, the optimal control problem becomes a
quadratic optimisation problem under equality and inequal-
ity constraints and can be solved using standard algorithms,
such as interior-point or active-set methods. The equality
constraints correspond to Eqs. (31) and (33) and the inequal-
ity constraints are collocated at Nc Chebyshev points of the
second kind (Genest and Ringwood 2016).

5 Tuning of MPC and RHPSC algorithms

By modelling the dynamical equation of the WEC using a
state-space formulation, or by projection on a particular basis
of orthogonal functions, bothMPC andRHPSC formulations
lead to a quadratic optimisation problem under constraints
that can be solved using standard optimisation algorithms.
An active-set method is employed for MPC and RHPSC,
using the quadprog function from the optimisation toolbox
of the MATLAB software.

The interior-point method proposed in theMATLAB opti-
misation toolbox was also employed to solve the resulting
QPs derived from the RHPSC and MPC formulations. For
both controls, under path constraints, the active-set method
offers better performances in terms of computational time for
MPC and performance for RHPSC. Despite a drop of energy
absorption (around 10 %) for the RHPSC, while using the
interior-point method under path constraints, its computa-
tional time remains at least 3 times smaller than the MPC
one. No changes are observed in the unconstrained case. In
contrast, MPC shows a significant increase of its compu-
tational time while using the interior-point method without
path constraints. Thus, the active-set method was chosen to
solve the QP involved in both controllers.

One interesting difference between the two formulations
is the way the trajectory is computed during the optimisa-
tion process. The results shown for the MPC algorithm are
generated with a simulation evaluation using the exact same
model (state-space model) as the one employed to define the
control MPC algorithm. In this way, the presented conver-
gence curves do not depend on the quality of the state-space
model approximation.

For the MPC algorithm, the state-space is repeatedly
employed to derive estimations of future state variable val-
ues, leading to a matrix size that depends on the number
of future steps taken into account over the control hori-
zon. One should note that the accuracy of the MPC solution
essentially depends on the time-step used for the simula-
tion, keeping in mind that the excitation force is assumed
to be a linear piecewise function, due to the continuous to
discrete-time transformation. TheMPC algorithm, presented
here, is realised with two different methodologies to approx-
imate the convolution product involved in the radiation force
by a discrete state-space model. The first one, called here
NTNU Toolbox, provides a 4th order discrete state-space
model based on the algorithm presented in Perez and Fos-
sen (2009). The second one, based on the Prony’s method,
returns a sum of four complex exponential functions rep-
resenting the radiation kernel function K , as illustrated in
Babarit and Clément (2006).

The order of each approximation model is chosen to
strike a compromise between approximation accuracy and
the stability of the approximation model. The influence of
the approximation model order seems to be minimal, but a
specific study needs to be carried out to answer this specific
question that goes beyond the scope of the present paper.
However, the approximation orders chosen (effectively 4 fre-
quencies in both cases) are consistent with other reported
experiences, e.g. Cretel et al. use a 5th order Pronys method
(Cretel et al. 2011) andHals et al. 4th order (Hals et al. 2011).

In contrast, RHPSC considers the dynamical equation
as an equality constraint. The accuracy of the solution
obtained through the pseudospectral optimal control obvi-
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Fig. 4 Normalised absorbed power and QP computational time as a
function of the time-step for the MPC simulation

ously depends on the number of basis functions employed
in the approximation of the state and control variables. The
more the basis functions involved in the optimization process,
the better the trajectory definition accuracy. However, the
accuracy of the dynamical model is fixed, since it is com-
puted off-line via the calculation of the differentiation and
convolution matrix, i.e. D and P , respectively. Even if the
precise calculation of D and P takes an significant amount
of computational time, it has no effect on the on-line com-
putation of the RHPSC quantities.

5.1 MPC tuning

Parameters involved in the computation of the MPC algo-
rithm are the time-step�t ∈ R

+, used to compute the on-line
control force, and the control window T ∈ R

+, i.e. the
time window over which the absorbed energy is maximised.
In order to determine the optimal parameter values, several
simulations were conducted in a regular wave field, without
any path constraints, and compared with the optimal solu-
tion determined analytically from complex-conjugate theory
(Falnes 2002).

Figure 4 shows the evolution of the normalised absorbed
power and the computational time needed to solve the
quadratic problem (QP) in equation (26), as a function of
the MPC time-step, �t . The convergence curves are pre-
sented for two types of regular waves, with a wave period of
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Fig. 5 Normalised absorbed power and QP computational time as a
function of the control horizon for the MPC simulation

5 and 15 s, corresponding, respectively, to the minimum and
maximum values of the range of more probable incoming
wave periods. The two methodologies used to approximate
the convolution product of the radiation force for the MPC
model, namely the NTNU Toolbox and Prony methods, are
compared.

To make it clear to the reader, the present paper is not
focused on a comparison of the state-space approximation
methodologies, but simply exhibits the variabilities one can
expect while using different state-space modelling methods.
No conclusion on the relative quality of the presented meth-
ods canbedrawn, since such a conclusion requires a complete
comparison that is beyond the scope of this paper.

The absorbed energy is normalised by the theoreticalmax-
imum derived from the complex-conjugate theory (Falnes
2002). BothMPC implementations, with either a Prony para-
metrization or theNTNUToolbox state-space approximation
of the radiation force, give the same results in terms of
computational time and energy absorption even if slight dif-
ferences can be expected for large wave periods. The optimal
value of the time-step is found to be around �t = 0.1 s,
giving the best compromise between accuracy and computa-
tional time.

The change of the normalised absorbed power and com-
putational time with the control horizon, or the time window
under which the QP maximizes the energy absorption, is
presented in Fig. 5. Similarly, the MPC with either Prony
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or NTNU-toolbox radiation force parametrization exhibits
similar results. One can notice that, as expected, the com-
putational time increases quadratically with an increase in
the control horizon. Obviously, for a given time-step �t , the
longer the control horizon, the more the variables involved
in the QP optimisation.

Some oscillations can be observed on the normalised
energy absorption in Fig. 5, particularly for small wave peri-
ods. One probable explanation is the fact that the MPC
algorithm, designed to maximise the absorbed energy over
a fixed time window, is also trying to maximise the kinetic
and potential energy absorption on the same control hori-
zon. Thus, the position and velocity are brought back to zero
by the QP optimisation algorithm at the end of the control
horizon. This phenomenon might cause these oscillations,
directly linked with the incoming wave period. A reasonable
value for the control horizon duration is found to be around
15 s, leading to an acceptable compromise between energy
absorption and control horizon duration.

5.2 RHPSC tuning

The performance of the RHPSC algorithm mainly depends
on two specific parameters: the number of basis functions
involved in the approximation of the state and control vari-
ables N ∈ N and the duration of the control horizon T ∈ R

+.
The optimal values of the RHPSC parameters are determined
to give the best compromise between accuracy and compu-
tational time, using the following considerations:

By way of comparison, the number of basis functions for
the RHPSC case is generally smaller than that required for a
similar level of approximation by the (effective) trapezoidal
basis functions employed byMPC.The number of basis func-
tions in the MPC case, however, is uniquely defined by the
prediction horizon and the sampling period (Number of basis
functions: Nb = Hp/�t). In this sense, MPC could be con-
sidered as a class of spectral method with trapezoidal basis
functions; for another example, see (Marzban and Razzaghi,
2010). The lower number of required basis functions for the
RHPSC method suggests that the HRCF is more customised
to the wave energy application than the trapezoidal function.

The change of the normalised absorbed energy and the QP
computational effort for a different number of basis functions
is presented in Fig. 6. The results are presented for regular
incomingwaves of 5 and 15 s periods. The small wave period
case represents, for theRHPSC, theworst case of approxima-
tion, since the ratio between the period of the waves and the
control horizon is small. Thus, more HRCF basis functions
are needed to correctly approximate the state and control
variables. One can see that after 21 basis functions, corre-
sponding to N = 10, the normalised absorbed energy has
already converged, whereas the computational time needed
to solve the QP is increasing. A reasonable choice for the
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Fig. 6 Normalised absorbed power and QP computational time as a
function of the number of HRCF basis functions in the RHPSC simu-
lation

number N is, therefore, found around 10, leading to 21HRCF
basis functions involved in the RHPSC algorithm.

Figure 7 presents the evolution of the normalised absorbed
energy and the QP computation time for the RHPSC, plot-
ted against the duration of the control horizon T . One can
observe that, in contrast with the MPC algorithm, the com-
putational time does not depend on the control horizon, since
the number of basis functions are fixed, and consequently the
size of the QP computational effort does not change as well.
A reasonable choice for the control horizonwill be a duration
of 20 seconds.

Based on the selection of parameters for the MPC and
RHPSC methods, as described in Sects. 5.1 and 5.2, respec-
tively, comparisons between the presented methods are now
performed with both regular and irregular sea states. For the
remainder of the study, the chosen parameters and control
windows are fixed as shown in Table 1.

6 Relative performance in regular waves

Based on the parameters defined in Table 1, the MPC and
RHPSC algorithmswere tested for regularwaveswith awave
period varying from 5 to 15 s. The evolution of the absorbed
energy and the computational time involved in the QP
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Table 1 Values of the MPC and RHPSC parameters

Algorithm MPC RHPSC

Control horizon Hp = 15 s Hp = 20 s

Parameters �t = 0.1 s N = 10

optimisation, as a function of the wave period, is presented
in Fig. 8. The model used in the simulation evaluation loop is
different from the dynamical model used to define the control
algorithm, for bothMPC and RHPSC. In the simulation eval-
uation, the convolution product involved in the determination
of the radiation force is computed by a direct integration of
the product between the past values of the real WEC velocity
and the kernel function of radiation obtained froma boundary
element method, to ensure an even comparison with maxi-
mum fidelity of the radiation force.

Both MPC implementations lead to comparable results;
their energy absorption lies between 85 and 100% of the the-
oretical maximum. The computational time does not depend
on the wave period of the incoming waves and is around
15 ms. Since the time-step of the MPC algorithm is equal to
�t = 0.1 s, the control can be run in real-time.

RHPSC presents approximately the same energy absorp-
tion and recovers between 90 and 100 % of the theoretical
maximum. The computational time involved in the QP opti-
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Fig. 8 Normalised absorbed power and QP computational time for
MPC and RHPSC algorithm for different regular wave periods

mization does not vary with the wave period of incoming
regular waves and is found to be around 5 ms. The RHPSC
presents relatively fast convergence property and reaches the
same rate of energy absorption as a standardMPC algorithm,
with a computational time around three time smaller.

The energy absorption performance of both control algo-
rithms under path constraints is presented in Fig. 9. For these
simulations the position of the device is limited to ±0.1 m
and its velocity to±0.1m/s. The same control tuning defined
inTable 1 is employed and thewaves are regular, with periods
between 5 and 15 s.

The impact of the constraints on the energy absorption is
similar for both the MPC and the RHPSC. For small wave
periods, around 5 s, the motion of the device does not exceed
the constraints, and thus the constraints do not impact the
energy absorption, found to be around 95% of the theoretical
maximum.When the wave period increases, for a fixed wave
amplitude, the excitation force increases as well. Yet, the nat-
ural motion of the device purports to exceed the position and
velocity limitations, and the impact on the energy absorption
becomes more significant as the wave period increases. The
normalised energy absorption drops from 95% for a 5 s wave
period to 15 % for a 15 s wave period.

However, the focus of the study is not to present a qual-
itative estimation of the amount of energy loss due to path
constraints, but rather to illustrate the ability of both control
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Fig. 9 Normalised absorbed power andQP computation time forMPC
andRHPSCalgorithms for different regularwave periods under position
and velocity path constraints

algorithms to handle practical limitations, while maximizing
the energy production. The impact of path constraints on the
computational time to solve one particular QP with inequal-
ity constraints is shown in Fig. 9. Obviously, the presence of
constraints tends to increase the computational time, since
additional iterations will be needed in the active-set algo-
rithm to maximize the energy while respecting inequality
constraints. The MPC computational time seems to be more
sensitive to inequality constraints than the RHPSC, since its
computational time varies from 15 ms for a 5 s regular wave
period to 0.1 s for regularwaveswith a period greater than 9 s,
which puts it on the limit of real-time implementation (with
a MATLAB implementation). For the RHPSC, the compu-
tational time stays between 5 and 25 ms. The difference
in sensitivity under constraints between MPC and RHPSC
may come from the fact that constraints on the state or con-
trol variables have a global impact on the trajectory for the
pseudospectral method, since each basis function is defined
over the entire control horizon, while the basis functions for
MPC are defined locally.

7 Relative performance in irregular waves

The performance of the MPC and RHPSC are evaluated
in irregular waves in order to simulate more realistic sea

states. Results are presented for irregular waves generated
from aPierson-Moskowitz spectrumdiscretized in frequency
between 0.02 and 0.5Hz, corresponding (respectively) to 50s
and 2s periods, with a frequency step of d f = 5.10−3 Hz.
Each spectral component is phase shifted randomly between
0 and 2π , and the absorbed energy is computed over a 200s
time window. The results are presented in Fig. 10, for irregu-
lar sea states with peak periods varying between Tp = 5 s to
Tp = 15 s. One can see that the relative performance is simi-
lar to the regularwave case, since the absorbed energy and the
computational time do.One can notice a slight decrease in the
energy absorption for large peak periods, around Tp = 15 s.
This is due to the fact that the MPC and RHPSC tunings are
based on performance determined under regular wave con-
straints in a [5 s,15 s] period range.

To illustrate the ability of the MPC of RHPSC algorithms
tomaximize the energy production under unconstrained con-
ditions, time series of the position, velocity, control force and
absorbed energy are presented in Fig. 11, for an irregular sea
state with a peak period of 10 s. Both MPC and RHPSC
trajectories are compared to the theoretical optimal one and
present a relatively acceptable agreement. Oscillations can
be noticed, in particular for the RHPSC, at the beginning
of the simulation. The control algorithms starts to drive the
WECwith an initial condition of zero, i.e. position and veloc-
ity null at the origin of time, while the theoretical optimal
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Fig. 10 Normalised absorbed power and QP computational time for
MPC and RHPSC algorithm for different irregular sea states
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Fig. 11 Normalised absorbed
power and QP computational
time for MPC and RHPSC
algorithms for different irregular
sea states
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trajectory begins with non-null initial conditions. This dif-
ference induces a transient state necessary for the RHPSC
control algorithm to reach the optimal trajectory from null
initial conditions.

MPC and RHPSC are particularly interesting and prac-
tical control algorithms since they can handle constraints,
or technological limitations, while maximizing the energy
production. To illustrate the ability of the MPC and RHPSC
algorithms under constrained conditions, the time series of
the control and state variables, and their technological limi-
tations, are show in Fig. 12 for an irregular sea state with a
peak period of 10 s.

8 Discussion

Based on the results presented in Sects. 6 and 7 for regular
and irregular waves, some insights and further improvements
can be deduced from these comparisons.

The MPC algorithm seems to present a sensitivity to the
way the state-space model is designed. Different radiation
force model were compared to achieve the most accurate
models possible from the NTNU Toolbox and the Prony’s
method . This issue might not be noticed if the model used

to evaluated the MPC algorithm is identical to that used to
design the control. For this reason, the time-domain simula-
tion was carried out with an exact calculation of the radiation
force, instead of using the state-space employed in the MPC
algorithm. The approximation of the radiation force by a
state-space model is not unique and leads to a variety of tech-
niques that might generate different performance and need
to be assessed. On the other hand, RHPSC give a unique pro-
cedure to estimate the expression of the dynamical equations
in terms of the projections of the state and control variables
into the half-range Chebyshev Fourier basis. However, both
MPC and RHPSC can be affected by inherent errors aris-
ing in the estimation of the radiation kernel function K . The
sensitivity of both algorithms still needs to be investigated,
since a recent experimental study (Kracht 2013) shows poor
performance of MPC compared to a much simpler control
algorithm (Fusco and Ringwood 2013). It is likely that the
radiation force approximation, in addition to any other sen-
sitivity to modelling error, played a significant part in this
performance degradation.

Both MPC and RHPSC are suitable for real-time appli-
cation, even if the RHPSC is around three times faster in
generating an optimal trajectory. Even a MATLAB imple-
mentation gives an execution time of circa 0.3s which, when
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Fig. 12 Normalised absorbed
power and QP computational
time for MPC and RHPSC
algorithms for different irregular
sea states under path constraints
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compared with the relatively slow dynamics of oceanWECs,
would result in real-time feasibility for a C implementation.
Furthermore, the possibility for computational optimisation
of both MPC (Wang and Boyd 2010) and RHPSC for the
wave energy application, with particular emphasis on the
constrained optimisation problem, can also be investigated.

9 Conclusion

Both MPC and RHPSC algorithms show a level of perfor-
mance approaching that of the theoretical optimum deter-
mined from the complex-conjugate optimal, for the uncon-
strained case. Across both unconstrained and constrained
scenarios, the performance of RHPSC and MPC is compa-
rable, when each is tuned optimally. However, the relative
computational burden for MPC is significantly greater than
for RHPSC, usually by a factor of 3. However, both MPC
and RHPSC exhibit computational properties that allow their
real-time implementation in a WEC application, at least
for linear hydrodynamic models, given the relatively slow
dynamics of WECs and that fact that significant speed-up
will be achieved in an embedded software realisation, com-

pared to the interpreted Matlab implementations compared
here. On the computational side, RHPSCmethods have been
shown to have useful properties in the application to complex
nonlinear problems (Bedrossian et al. 2009), which could
prove advantageous in more realistic WEC control. Though
beyond the scope of this paper, the comparative performance
of RHPSC and MPC utilising nonlinear WECmodels would
be an important next step. In this case, the control methods
would likely be presented with a more difficult optimisation
problem, as is the case for conventional MPC-like tracking
problems (Tenny et al. 2004). Indeed, the determination of
adequate hydrodynamic models is, of itself, a nontrivial task
(Penalba Retes et al. 2015) though some progress has been
made in robustifying WEC controllers to nonlinear effects
(Fusco and Ringwood 2014).

MPC appears to have a sensitivity to themanner inwhich a
finite-order parametrization of the radiation force is achieved,
and significant effort must be expended in obtaining an
acceptable approximation to give reasonable control results.
While RHPSC also involves a projection of the radiation
damping characteristics onto a basis function set, this process
appears to be simpler and provides better fidelity than the
state-space or Prony approximation required with MPC. In
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any case, the issue of the robustness of highly tuned numer-
ical optimal WEC controllers needs further study, since
additional modelling errors will arise due to unmodelled
dynamics, nonlinearity, etc. This robustness issue is espe-
cially pertinent, since WEC controllers (which ostensibly
operate in open loop) do not have the attractive sensitivity
properties that traditional feedback controllers enjoy.

While robust control is a relatively mature field for tradi-
tional tracking problems, including pseudo-spectral control
(Azhmyakov et al. 2015), robust control design forWECs has
received little attention [apart from, for example, Fusco and
Ringwood (2014)]. Given the relatively good performance
of a simple model-based controller against its MPC counter-
part under real modelling error conditions (Kracht 2013), the
flexibility in the selection of the basis function set of pseudo-
spectral methods may offer the control designer some useful
parametric freedom in directly addressing the robust control
problem for WECs.
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