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We investigate whether or not quadratic Lyapunov functamspreserved under Padé approximations.
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1 Introduction

Determining whether or not a finite set of linear time-inaati (LTI) systems have a common quadratic Lyapunov function
(CQLF) is a problem that arises frequently [1]. In convegtinswitching system that is constructed from a set of LT leyst
into a discrete counterpart, or in transforming a set of ioadrinto a new set in which testing for the existence of a CQLF
iS more convenient, one is often interested in developiagstfiormations that preserve the existence of a CQLF. Ose ofa
transformations is given by the diagonal Padé approxinaif orderp to the matrix exponentia [2]:

(2p—Kk)!p!
(2p)IK! (p—K)!

whereA € R™" andh > 0 is a discrete time step. It is well known that such transtdioms preserve the stability of LTI
systems, and furthermore, that the first order transfoonati+ Ag)(l —Ag)*l, known as the bilinear or Tustin transform,
also preserves a CQLF for finite set of systems. Of princigtierest in this note is to establish whether this latter progpis
shared by higher order Padé approximations.

Comment : Properties that are invariant under Padé approximatieme hecently been the subject of attention in the
control engineering literature. For example, even for glsil.TI system, it was recently shown that non-quadraticiuyreov
functions may not be preserved under the bilinear transforhis fact was first demonstrated in [3], where it was proven
that unlike quadratic Lyapunov functions (QLFsxnorm and 1-norm type Lyapunov functions are not neceggamdserved
under the bilinear mapping. Furthermore, it has been sheaently in [4] that for certain linear time varying (LTV) ggsns
that are stable, but not quadratically stable, stability mat even be preserved under the bilinear transform.

Notation : In the following discussion we say that a real maRix PT > 0 is a Lyapunov matrix foA € R™" if it satisfies
the Lyapunov inequalitA” P+ PA < 0 for A andP is a common Lyapunov matrix (CLM) fo” = {Ay, ..., An} if it satisfies
the Lyapunov inequality for aly € 7. Moreover, we say that a real matiy = PdT > 0 is a Stein matrix foAq € R™"if it
satisfies the Stein inequalixﬁPdAd — Py < 0 for Ay andPy is a common Stein matrix (CSM) fary = {Aq1, ..., Adm} If it
satisfies the Stein inequality for &l € .«7g.

"~ Qp(AN)Q, ' (—Ah)  with Qp(Ah):gck(Ah)k and o= 1)
k=0

2 Quadratic stability and higher order Padé approximations ofe?n

The question we want to answer here is whether a given quadsapunov function for an LTI system is preserved under
Padé approximations.

Lemma 2.1 Suppose that & R™", h e R is positive and Ais the1 order diagonal Paé approximation of & (that is,
the bilinear transform of A). Then, P is a Lyapunov matrixAoif and only if P is a Stein matrix for A

Proof. The proofis obtained by substituting the expresiory = (1 + gA)(I — gA)*1 into the Stein inequality foAy.
Post- and pre-multiplying this inequality By gA and its transpose, respectively, and simplifying, redaolthe equivalent
inequalityAT P+ PA < 0 which is the Lyapunov inequality fak. O

An immediate consequence of Lemma 2.1 is that CQLFs aremegbander first order Padé approximations.

Corollary 2.1 P=PT > 0is a CLM for a set of matrices’ = {Aq,...,An} ifand only if P is CSM for the set of matrices
Ay = {Ad41,---,Adm}, where 4; is the first order diagonal Pa&lapproximation of A

Now we have the following result for second order diagonaé&approximations.
Lemma 2.2 Suppose that & R™", he R is positive and A is the2"® order diagonal Paé approximation of &".

* Corresponding author: e-mail: selim.solmaz@nuim.ie, Phone: +353 1 7084536, Fax: +353 1 7086269.
** On sabbatical leave from the School of Aeronautics & Astubica, Purdue University, West Lafayette, IN, USA.

Copyright line will be provided by the publisher



PAMM header will be provided by the publisher 2

(i) If Pis aLyapunov matrix for A then, P is also a Stein matrixAqr
(ii) If P is a Stein matrix for Athen,R=P-+ Q—ZZAT PA is a Lyapunov matrix for A.

Proof. Substitutéy = (I + A+ Q—ZZAZ)(I - 5A+ '{—ZZAZ)*1 into the Stein inequality foAq. Post- and pre-multiplying this
inequality byl — '—2‘A+ Q—ZZAZ and its transpose, respectively, and simplifying, resolthe equivalent inequality

2
ATP+PA+ Z—ZAT (ATP+PA)A< 0. (2)

Suppose tha is a Lyapunov matrix foA. ThenAT P+ PA< 0 and inequality (2) is satisfied. This implies th%tPAﬁ —-P<0,
that is, P is a Stein matrix fody, proving (i). Suppose now th#&t is a Stein matrix fodyq. Then it satisfies inequality (2)
which is equivalent to

h? h?

T AT T AT
AT(P+ A PAT + (P+ ATPAA < 0. 3)

DefiningP; =P+ T—ZAT PA, and noting® = PJ > 0, the last expression becomes a Lyapunov inequalitfproving (ii). [

The last lemma shows that when a mathils Hurwitz stable with a Lyapunov matri, the 2 order Padé approximation
of eAM is Schur stable with the Stein matix However, it does not state that the converse is true. Intfectonverse is
not true. If it were true then, as is the case for the bilineangform, CQLFs would be preserved under thé&der Padé
approximation. However, the following example shows thé heed not be the case.

Example 2.1 Consider the Hurwitz matrices:

156 —100 -1 0
Al:[o.l —4.44}’ AF{ 0 —0.1}

Since the matrix produd; A, has negative real eigenvalues it follows that there is no LM Now consider the matrices
Aq1,Ag2 obtained under the™® order diagonal Padé approximationgfi with the discrete time stefp= 2:

Agt— —0.039 04205 Agy— 01429 0
1= | —0.0004 -0.0138 |’ 2= 0 0.8187 |-

These matrices have a CSM

b _ [ 23294 00138
d= 1 _0.0138 27492 |-

Comment : Example 2.1, together with Lemma 2.2, illustrate the follayfacts. Leter = {A4,...,An} be a set of Hurwitz
matrices and#g = {Aqg1, - - - ,Adm} the corresponding set of Schur stable matrices obtaineer e 24 order diagonal Padé
approximation. IfP is a CLM for.«# thenP is a CSM for«7y. However, as the example demonstrates, the existence of a
CSM for theay does not imply the existence of a CLM faor.
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