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Abstract—Designing decentralized policies for wireless communication networks is a crucial problem, which has only been partially
solved in the literature so far. In this paper, we propose the Decentralized Markov Decision Process (Dec-MDP) framework to analyze a
wireless sensor network with multiple users which access a common wireless channel. We consider devices with energy harvesting
capabilities, so that they aim at balancing the energy arrivals with the data departures and with the probability of colliding with other
nodes. Randomly over time, an access point triggers a SYNC slot, wherein it recomputes the optimal transmission parameters of the
whole network, and distributes this information. Every node receives its own policy, which specifies how it should access the channel in
the future, and, thereafter, proceeds in a fully decentralized fashion, without interacting with other entities in the network. We propose a
multi-layer Markov model, where an external MDP manages the jumps between SYNC slots, and an internal Dec-MDP computes the
optimal policy in the near future. We numerically show that, because of the harvesting, a fully orthogonal scheme (e.g., TDMA-like) is
suboptimal in energy harvesting scenarios, and the optimal trade-off lies between an orthogonal and a random access system.
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1 INTRODUCTION

E NERGY Harvesting (EH) has been established as one of the
most prominent solutions for prolonging the lifetime and

enhancing the performance of Wireless Sensor Networks (WSNs)
and Internet of Things (IoT) scenarios. Although this topic has
been widely investigated in the literature so far, finding proper
energy management schemes is still an open issue in many cases
of interest. In particular, using decentralized policies, in which
every node in the network acts autonomously and independently of
the others, is a major problem of practical interest in WSNs where
a central controller may not be used all the time. Many decen-
tralized communication schemes (e.g., Aloha-like) can be found
in the literature; however, most of them were designed without a
principle of optimality, i.e., without explicitly trying to maximize
the network performance. Instead, in this work we characterize the
optimal decentralized policy in a WSN with EH constraints and
describe the related computational issues. Although this approach
intrinsically leads to a more complex protocol definition, it also
characterizes the maximum performance a network can achieve,
and may serve as a baseline for defining quasi-optimal low-
complexity protocols.

Energy harvesting related problems in WSNs have been ad-
dressed by several previous works (e.g., see [2] and the references
therein), which tried to redefine many aspects of the communi-
cation devices, from both hardware and software perspectives.
Indeed, EH devices need specialized equipment to harvest energy
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from the environment (e.g., a solar panel, or a rectenna) and
to store it (e.g., miniaturized batteries). Clearly, the amount of
harvested energy strongly depends on the EH source, therefore
many different options have been proposed so far, including piezo-
electric [3], temperature gradient [4], daily temperature variation,
vibrations [5], solar energy [6], indoor lights [7], and Radio-
Frequency (RF) energy [8].

From a communication perspective, many analytical studies
aimed at maximizing the performance of an energy harvesting
network in terms of throughput [9], [10], [11], [12], delay [13],
quality of service [14], or other metrics. In particular, the problem
of maximizing the average value of the reported data using a
device with a rechargeable battery was formulated in [15]. An
information theoretic analysis of an EH system can be found
in [12], where the authors presented the “save-and-transmit” and
the “best-effort-transmit” schemes to achieve the channel capacity
in the long run. Delay-aware strategies were presented in [13],
where a single energy harvesting node is equipped with a data
queue. Some researchers focused on batteryless devices [16],
[17]. In particular, [16] considered a traditional EH system with
amplitude constraints and found the channel capacity under causal
channel information knowledge. Other kinds of batteryless devices
are presented in [17], in which a more innovative use of EH that
exploits the RF waves as energy source is employed. Devices with
finite batteries were studied in our previous works [18], [19], but
also in [11], [20]. A common technique to model the batteries is
to approximate them with finite energy queues, in which energy
arrives and departs over time. Markov models are suitable for these
cases [21] and were largely adopted in the literature so far [9],
[10], [15], [18], [19], [20], [22]. For more references about energy
harvesting, we refer the readers to the surveys [2], [8].

However, differently from this paper, most of the protocols
proposed in the literature considered isolated nodes and did
not account for the interactions among devices, or focused on
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centralized policies, in which a controller coordinates all nodes
and knows the global state of the system over time. [23] ana-
lyzed decentralized policies with a particular focus on symmetric
systems, and proposed a game theoretic approach for solving the
problem. Instead, in this paper we use a different framework based
on decentralized Markov decision processes, which can handle
asymmetric scenarios. Decentralized theory was also used in [24]
for a wireless powered communication network. However, the
scenario proposed therein is different from ours and the authors
only focused on a narrow subclass of policies.

To model our energy harvesting system, we use the results
about decentralized control theory recently developed by Diban-
goye et al. [25], [26], [27]. In particular, [27] presented a detailed
study of Decentralized-Partially Observable Markov Decision
Processes (Dec-POMDPs) and proposed different approaches to
solve them. The notion of occupancy state was introduced as a
fundamental building block for Dec-POMDPs, and it was shown
that, differently from classic statistical descriptions (e.g., belief
states), it represents a sufficient statistic for control purposes.
Using the occupancy state, we can convert the Dec-POMDP in an
equivalent MDP with a continuous state space, namely occupancy-
MDP. Then, standard techniques to solve POMDPs and MDPs
can be applied; for example, an approach to solve a continuous
state space MDP is to define a grid of points (see Lovejoy’s grid
approximation [28]) and solve the MDP only in a subset of states.
Although several papers introduced more advanced techniques to
refine the grid [29], this approach may still be inefficient and
difficult to apply. Instead, in this paper we use a different scheme,
namely the Learning Real Time A∗ (LRTA∗) algorithm [30],
which has the key advantage of exploring only the states which are
actually visited by the process, without the difficulty of defining a
grid of points.

Converting the Dec-POMDP to an occupancy-MDP produces
a simpler formulation of the problem, which however does not
reduce its complexity. Indeed, for every occupancy state, it is
still required to perform the exhaustive backup operation, i.e.,
to compute a decentralized control policy. This is the most
critical operation in decentralized optimization, since it involves
solving a non-convex problem with many variables. Dibangoye et
al. proposed an alternate formulation of the exhaustive backup
operation as a Constraint Program [31], which can be solved,
e.g., using the bucket-elimination algorithm [32]. The problem
can be further simplified by imposing a predefined structure to
the policy [24], so that only few parameters need to be optimized.
While this may lead to suboptimal solutions, it greatly simplifies
the numerical evaluation and, if correctly designed, produces close
to optimal results. In our paper, we explore and compare both these
directions.

Problem Statement and Contributions. We consider a decen-
tralized network with multiple devices and an access point that
computes and distributes to all nodes the randomized transmission
policy. A multi-layer Markov model, in which an internal Dec-
MDP is nested inside an external MDP, is proposed and solved.
The external layer models the time instants, namely SYNC slots, at
which AP computes the policy, whereas the internal layer models
the system evolution between consecutive SYNC slots. To solve
the external layer, we use the Value Iteration Algorithm (see [33])
as in [19], [20]. However, differently from these papers, in our
model the transition probabilities between states are derived from
the optimization of the internal layer; moreover, the sojourn times
in every state are not deterministic. Instead, the internal layer is

Figure 1: Time evolution of the system. After the SYNC slots every user acts
independently of the others.

solved using the Markov Policy Search algorithm [25]. Because of
the complexity of the optimal approach, we introduce two simpler
schemes, which still exploit the structure of the optimal policy
but can be computed in practice. In our numerical results we
compare centralized and decentralized approaches, and discuss the
performance loss of using a decentralized scheme.

Our main contributions can be summarized as follows

1) We present a decentralized random access transmission
scheme derived using a principle of optimality, and
discuss which are the computational pitfalls of this ap-
proach;

2) We introduce two suboptimal policies, which are closely
related to the structure of the optimal policy but can
be numerically computed with reasonable complexity.
These can be used as a baseline for developing heuristic
schemes and real-time protocols. Moreover, although we
present these approaches for an EH scenario, they may
also be used in other contexts;

3) We show that a decentralized scheme, if correctly de-
signed, may achieve high performance, comparable with
that of centralized solutions, while greatly reducing the
signaling in the network;

4) Finally, our most important contribution is to show that,
differently from traditional networks (i.e., without energy
constraints), where orthogonal resource allocation is op-
timal, the best transmission policy with energy harvesting
is a hybrid approach between random and orthogonal
access.

The paper is organized as follows. Section 2 presents the
system model. The internal layer is described in Section 3,
whereas the external layer and the optimization problem are shown
in Section 4. Optimal and suboptimal solutions are derived in
Sections 5 and 6, respectively. The numerical results are shown
in Section 7. Finally, Section 8 concludes the paper.

Notation. Throughout this paper, superscripts indicate the
node indices, whereas subscripts are used for time indices. Bold-
face letters indicate global quantities (i.e., vectors referred to all
users), e.g., e , 〈e1, . . . , eN 〉.

2 SYSTEM MODEL

The network is composed of one Access Point (AP) and N
harvesting nodes (see Figure 1 for a graphical illustration). We
focus on an infinite time horizon framework, where a time slot
k corresponds to the time interval [k τ, (k + 1)τ), k = 0, 1, . . .,
where τ is the common duration of all slots. During a slot, every
node independently decides whether to access the uplink channel
and transmit a message to AP, or to remain idle. We adopt an
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on/off collision model in which overlapping packet transmissions
are always irrecoverable.

In slot k, node i harvests energy from the environment ac-
cording to a pdf B(k)

i (e.g., similarly to [34], [35], [36], in this
paper we will use a Bernoulli energy arrival process) and we
assume independent arrivals among nodes. However, the model
can be extended to the more general, correlated case (e.g., via an
underlying common Markov model as in [9]).

Every node is equipped with a rechargeable battery, so that
the energy stored in slot k can be used in a later slot. The global
energy level vector in slot k is ek = 〈e1

k, . . . , e
N
k 〉. Vector ek is

not known to the devices, which only see their own battery status,
and is known to AP only in certain slots, namely “SYNC slots”. In
particular, in slot k, with probability (w.p.) βk ∈ (0, 1], AP may
trigger a SYNC slot and request all nodes to share their energy
levels so that it can acquire ek.We neglect the energy costs of these
synchronization messages, which however, if considered, would
make the benefits of using decentralized policies even higher.
For example, when βk = 1, ∀k, AP has full knowledge of the
battery levels at every time slot, and our model degenerates to [10];
instead, if βk = β0, ∀k, where β0 is a constant value in (0, 1],
AP uses a fully stochastic approach and asks for ek with the same
probability in every slot.

AP uses the information about ek to initialize the transmission
parameters of the whole network. Therefore, every time ek is
acquired (a SYNC slot), a coordination phase is performed and AP
disseminates the policy to all nodes (the policy is decentralized, so
every node receives only its own policy).1 Thereafter, every device
acts independently of the others until the next SYNC slot.

Although the proposed framework is very simple, modeling
and solving it formally requires a complex mathematical structure.
In particular, we decompose the system in two nested layers:

• The external layer considers the jumps between consec-
utive SYNC slots. Indeed, since the global battery level
ek is completely known at every SYNC state, the system
follows a Markov evolution;

• The internal layer models the actions to take between
two SYNC slots and requires to compute a decentralized
policy given ek. This will be modeled as a Dec-MDP,
since multiple devices indirectly collaborate to achieve a
common goal.

The two layers will be analyzed in the following sections.

3 INTERNAL LAYER

We first consider the internal layer and present a mathematical tool
to model the actions of the devices between two SYNC slots. In
particular, we adopt the decentralized-Markov Decision Process
(Dec-MDP) framework [26], which in our context is formally
defined as follows.

3.1 Dececentralized–MDPs for EH Systems

An N -user Dec-MDP M = (k,E,A, pint, r, η0, β) is specified
by

• Initial Index. k represents the index of the SYNC slot that
triggers the beginning of the internal layer. Thus, all the

1. We note that, although a user may also receive the policy of other
devices, this information would not be useful. Indeed, the decentralized
transmission policy is jointly designed by AP, therefore it implicitly considers
the contributions of all nodes.

slots k < k are of no interest in this section. Note that,
since βk is a probability, the position of the next SYNC
slot is unknown a priori, therefore the time horizon of the
Dec-MDPM begins at k and may extend to +∞;

• Battery Level. E = E1 × · · · × EN is the set of global
battery levels ek = 〈e1

k, . . . , e
N
k 〉, with eik ∈ E i ,

{0, . . . , eimax} (device i can store up to eimax discrete
energy quanta according to Equation (3)). Throughout, the
terms “battery level” or “state” will be used interchange-
ably;

• Action. A = A1 × · · · × AN is the set of global
actions ak = 〈a1

k, . . . , a
N
k 〉, where aik ∈ Ai , [0, 1]

denotes the transmission probability. Although aik should
assume continuous values, we only consider Sa uniformly
distributed samples of the interval [0, 1] for numerical
tractability. Action aik is chosen by user i in slot k ≥ k
throughout a function σik : E i → Ai, and depends only
on the local state eik. Finding σik will be the objective of
the optimization problem;

• Transition Probability. pint is the probability transition
function pint : E × A × E → [0, 1] which defines the
probability pint(ē|e,a) of moving from a global battery
level e = 〈e1, . . . , eN 〉 ∈ E to a global battery level
ē = 〈ē1, . . . , ēN 〉 ∈ E under the global action a ∈ A.
When a transmission is performed, mi ≥ 1 energy quanta
are consumed;2

• Reward. r is the reward function r : E ×A → R+ that
maps the global action a ∈ A to the reward r(e,a) when
the global state is e ∈ E ;

• Initial State Distribution. ηk is the initial state distribu-
tion. In our scenario we take

ηk(e) =

{
1, if e = ek,

0, if e ∈ E \ {ek},
(1)

where ek is the global state in correspondence of the initial
SYNC slot and is fully known by AP;

• SYNC Probability. β represents the sequence βk,
βk+1, . . ., which are the probabilities that a SYNC slot
occurs.

In Section 4.1 we will describe the optimization problem
related toM. Its solution provides a decentralized control policy,
which will be discussed in Sections 5 and 6.

Before presenting in more detail the previous bullet points, it
is important to emphasize the following key characteristics of the
Dec-MDP under investigation:

• M is jointly fully observable, i.e., if all nodes collaborated
and shared their local energy levels, the global state would
be completely known (actually, this is what differentiates
Dec-MDPs from Dec-POMDPs [37]);

• M is a transition independent Dec-MDP, i.e., the action
taken by node i influences only its own battery evolution
in that slot and not the others. Formally, the transition
probability function pint can be decomposed as

pint(ē|e,a) =
N∏
i=1

piint(ē
i|ei, ai). (2)

2. Quantitymi is associated with the physical parameters of the devices, and
relates the amount of harvested energy with the energy used for transmission.
Therefore, to transmit a single packet, in general, more than one energy
quantum may be required.
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This feature is important to develop compact represen-
tations of the transmission policies, and in particular to
derive Markovian policies as discussed in our Section 3.5
and in [25, Theorem 1].

3.2 Battery Level

We adopt a discrete model for the energy-related quantities, so
that every battery can be referred to as an energy queue, in
which arrivals coincide with the energy harvesting process, and
departures with packet transmissions. In particular, the battery
level of node i in slot k is eik and evolves as

eik+1 = min{eimax, e
i
k − sik + bik}, (3)

where the min accounts for the finite battery size, sik is the energy
used for transmission and bik is the energy arrived in slot k. sik is
equal to 0 w.p. 1− aik, and to mi w.p. aik.

Note that this model has been widely used in the EH litera-
ture [20], [23], [35], and represents a good approximation of a
real battery when eimax is sufficiently high.

3.3 Action

Node i in slot k can decide to access the channel w.p. aik =
σik(eik), or to remain idle w.p. 1 − aik. When a transmission is
performed, mi energy quanta are drained from the battery, and
a corresponding reward g(aik) is obtained. When eik < mi, no
transmission can be performed and aik = 0.

3.4 Transition Probability

The transition probability function of user i, namely piint (see
Equation (2)), is defined as follows (for presentation simplicity,
assume ēi < eimax and ei ≥ mi)

piint(ē
i|ei, ai)

=


(1− piB)ai, if ēi = ei −mi,

(1− piB)(1− ai) + piBa
i, if ēi = ei −mi + 1,

piB(1− ai), if ēi = ei + 1,

0, otherwise,

(4)

where piB is the probability that user i harvests one energy quan-
tum. More sophisticated models, in which an arbitrary number
of energy quanta can be simultaneously extracted, are described
in [18], and can be integrated into our model (involving, however,
higher computational costs).

3.5 Reward

We will use the term “global reward” to indicate the overall
performance of the system in a slot, and simply “single-user
reward” to refer to the performance of individual users.

Single-User Reward. Assume to study isolated users, which
do not suffer from interference, as in [9]. Data messages are
associated with a potential reward, described by a random variable
V i which evolves independently over time and among nodes. The
realization νik is perfectly known only at a time t ≥ k τ and only
to node i; for t < k τ , only a statistical knowledge is available.
Every node can decide to transmit (and accrue the potential reward
νik) or not in the current slot k according to its value νik. In
particular, it can be shown that a threshold transmission model
is optimal for this system [9]; thus, node i always transmits when
νik ≥ νith(ei) and does not otherwise. Note that νith(ei) depends
on the underlying state (battery level) of user i but not on the time
index k (thus a stationary scheduler can be developed).

On average, the reward of user i in a single slot when the
battery level is ei will be

g(νith(ei)) , E[χ(V i ≥ νith(ei))V i] =

∫ ∞
νi
th(ei)

νf iV (ν) dν,

(5)

where χ(·) is the indicator function and f iV (·) is the pdf of
the potential reward, V i. It is now clear that the transmission
probability ai is inherently dependent on the battery level as

ai = σi(ei) =

∫ ∞
νi
th(ei)

f iV (v) dv = F̄ iV (νith(ei)), (6)

where we explicitly introduced the function σi(ei), which maps
local observations (ei) to local actions σi(ei) = ai. Note that the
complementary cumulative distribution function F̄ iV (·) is strictly
decreasing and thus can be inverted. Therefore, there exists a one-
to-one mapping between the threshold values and the transmission
probabilities. In the following, we will always deal with ai instead
of νith(·), and write g(ai) with a slight abuse of notation.

It can be proved that g(ai) is increasing and concave in ai,
i.e., transmitting more often leads to higher rewards, but with
diminishing returns. Finally, note that this model is quite general
and, depending on the meaning of V i, can be adapted to different
scenarios. For example, in a standard communication system in
which the goal is the throughput maximization, V i can be inter-
preted as the transmission rate subject to fading fluctuations [34].

Global Reward. The global reward is zero when multiple
nodes transmit simultaneously, whereas it is equal to wiνik if only
node i transmits in slot k (wi is the weight of node i). On average,
since the potential rewards are independent among nodes, we have

r(νth,k(ek)) = E
[ N∑
i=1

wi V ik χ(V ik ≥ νith,k(eik))

×
∏
j 6=i

χ(V jk < νjth,k(ejk))

]
,

(7)

which can be rewritten as

r(ak) = r(σk(ek)) =
N∑
i=1

wig(aik)
∏
j 6=i

(1− ajk), (8)

where we used ak instead of νth,k(ek) for ease of notation,
and we introduced the vector function σk , 〈σ1

k, . . . , σ
N
k 〉. We

highlight that σk summarizes the actions of all users given every
battery level in slot k, i.e., it specifies all the following quantities

σ1
k(0) . . . σ1

k(e1
max),

...
σNk (0) . . . σNk (eNmax).

(9)

Finding σk,σk+1, . . . represents the biggest challenge when
solving a Dec-MDP.

An important observation is that the reward (8) is not neces-
sarily increasing nor convex in a, which significantly complicates
the solution. An example of r(a) for the two-user case can be
seen in Figure 2. Note that the maximum is achieved when only
one device transmits w.p. 1 and the other does not transmit. This
implies that, when the devices are not energy constrained (i.e., they
have enough energy for transmitting and the current transmission
policy does not influence the future), the optimal user allocation
should follow an orthogonal approach so as to avoid collisions
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Figure 2: Global reward r(a) when N = 2.

(the corner points 〈a1, a2〉 = 〈1, 0〉 and 〈a1, a2〉 = 〈0, 1〉
achieve the maximum reward). However, as we will discuss later,
this observation does not hold in EH scenarios, in which an
action in the current slot influences the future energy levels and,
consequently, the future rewards.

Note that, in the previous expressions, we have implicitly
restricted our study to Markovian policies, which map local
observations to local actions (i.e., σk(ek) = ak). In general
decentralized frameworks, tracking previous observations can be
used to optimally decide the current action (i.e., ak depends on
ek, . . . , ek). However, it can be proved [25] that under transition
independent conditions (which hold in our case, see Section 3.1),
Markovian policies are optimal and thus keeping track of previous
states is not necessary.

Finally, we note that using a stationary scheduler is suboptimal
in the multi-user case (this will be very clear from our numerical
evaluation, e.g., see Figure 4); that is, even if we had eik′ = eik′′
for k′ 6= k′′ (same energy level in two different slots), using
σik′(e

i
k′) = σik′′(e

i
k′′) (same policy in two different slots) would

not be optimal. Unfortunately, this implies that the decentralized
optimization is much more challenging than the centralized one,
since the optimal policy should be computed for every slot k ≥ k.3

3.6 Occupancy State

Before formulating the optimization problem in the next section,
we first introduce the concept of occupancy state.

The occupancy state ηk is defined as

ηk(ē) , P(ek = ē|ηk,σk, . . . ,σk−1), k ≥ k (10)

and represents a probability distribution over the battery levels
given the initial distribution ηk (introduced in Equation (1)) and
all decentralized decision rules prior to k.

It can be shown that the occupancy state represents a sufficient
statistic for control purposes in Dec-MDPs,4 and can be easily
updated at every slot using old occupancy states (k>k):

ηk(ē) = ω(ηk−1,σk−1) =
∑
e

p(ē|e,σk−1(e))ηk−1(e),

(11)

where ω is the occupancy update function.
Occupancy-MDP. Dibangoye et al. [27] developed a technique

to solve Dec-MDPs by recasting them in equivalent continuous
state MDPs. Similarly to the reduction techniques of POMDPs,
in which the belief is used as the state in an equivalent MDP, for
Dec-MDPs the occupancy state will represent the building block
of the equivalent MDP (called occupancy-MDP). In particular, the

3. In theory, the policy should be computed for an infinite number of slots.
However, as will be explained in Equation (19), when k � k the rewards
obtained will be very small; therefore, it will not be necessary to compute the
policy optimally for every k ≥ k.

4. Intuitively, the occupancy state replaces the state of the system in
centralized MDPs, or the belief in POMDPs.

state space of the occupancy-MDP is the occupancy simplex, the
transition rule is given by (11), the action space is A, and the
instantaneous reward corresponding to decentralized decision rule
σk is

ρ(ηk,σk) =
∑
ē∈E

ηk(ē)r(σk(ē)), (12)

Note that ρ(ηk,σk) ≤ maxē r(σk(ē)), i.e., the loss of informa-
tion corresponds to a lower reward. Moreover, note that if k were
a SYNC slot, we would have ρ(ηk,σk) = r(σk(ek)).

The complete structure of the occupancy-MDP will be given
in Section 5.1.

4 EXTERNAL LAYER AND OPTIMIZATION PROB-
LEM

So far, we have described how the system evolves between two
SYNC slots. We now introduce the external Markov Chain, which
models the long-term evolution of the network by considering the
subset of all slots composed only by the SYNC slots.

Assume that, without loss of generality, the first SYNC slot
occurs at k = 0, and that the state of the system is e0. According
to Section 3, AP uses e0 to compute and distribute to all nodes a
decentralized policy σ0,σ1, . . .. Moreover, the initial occupancy
state η0 is defined in (1), whereas the occupancy states η1, η2, . . .
are evaluated as in Section 3.6.

Assume now that the first SYNC slot after k = 0 is slot k′;
thus, when the new SYNC slot occurs, we know that the transition
probability from the initial global state e0 to the final global state ē
is ηk′(ē) (i.e., it is given by the occupancy state by its definition),
with ηk = η0 = χ{e = e0}.

Using ηk′(ē), we can compute the probability of going from
e0 to ē. Since k′ is a random quantity (β represents a sequence
of probabilities), we provide the expression of the probability
averaged over k′ (this models the jumps of the external MC
between SYNC states)

pext(ē|e0) =
∞∑
k′=1

βk′

( k′−1∏
k′′=1

(1− βk′′)
)
ηk′(ē). (13)

In the previous expression, k′ represents the index > 0 of the
first SYNC slot; βk′ is the probability that k′ is a SYNC slot;
the product

∏k′−1
k′′=1(1− βk′′) is the probability that no slots prior

to k′ are SYNC slots; ηk′(ē) is the transition probability, which
implicitly depends on e0. We remark that, to evaluate (13), we
need the sequence σ0,σ1, . . . in order to compute all the future
occupancy states η1, η2, . . .. In Section 4.1, we will specify how
to define σ0,σ1, . . ..

Observation 1. The sequence of SYNC slots satisfies the Markov
property, i.e., if k′ is a SYNC slot, the system evolution for k ≥ k′
is conditionally independent of past states given ek′ .

We now formally define the optimization problem and link the
internal and external layers.

4.1 Optimization Problem

Define ρk|k , ρ(ηk,σk) as the decentralized reward given the
SYNC slot k. Then, prior to the next SYNC slot, the reward
of the system will be: ρk|k w.p. βk+1, ρk|k + ρk+1|k w.p.
(1− βk+1)βk+2, ρk|k + ρk+1|k + ρk+2|k w.p. (1− βk+1)(1−
βk+2)βk+3, and so forth. Summing together the previous terms,
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and taking the average over the energy harvesting processes, we
obtain the normalized average reward

Rk , E
[ ∞∑
k=k

ρk|k

∞∑
k′=k+1

βk′
k′−1∏

k′′=k+1

(1− βk′′)
]
. (14)

The final goal of the system is to maximize the cumulative
weighted undiscounted long-term reward,5 defined as

G(Π, e0) = lim inf
K→∞

1

K

K−1∑
k=0

βk ·Rk(πk, ek). (15)

Rk(πk, ek) is given in (14) when the initial state of the system is
ek and a policy πk , (σ

πk

k ,σ
πk

k+1, . . .) is employed. Policy πk
is decentralized, and it is drawn from Π, which includes all the
decentralized transmission policies πk, πk+1, . . ..

Since the sequence β is a design parameter and its choice is
arbitrary, we restrict our attention to the following case.

Assumption 1. The SYNC probability sequence is periodic with
period q (i.e., βk = βk+q, ∀k).

For example, the simplest case is q = 1, and βk = β0 for every
k. Under Assumption 1, it can be shown that (15) is equivalent to

G(Π) =

q−1∑
k=0

∑
e∈E

βk ·Rk(πe, e) · sspk(e), (16)

where sspk(e) is the steady-state probability of the global energy
level e associated with βk, and, instead of iterating over all k,
we take the sum over the energy levels (i.e., we iterate over the
states of the external MC). Note that, in this case, the long-term
undiscounted reward does not depend on the initial state of the
system, therefore G(Π, e0) = G(Π) for every e0. The optimal
solution of the external problem will be

Π? = arg max
Π

G(Π), (17)

which is a Markov Decision Process (MDP). The underlying
MC states are all the elements of E , whereas the actions, which
influence the transition probabilities (Equation (13)), are given by
the evolution of the internal Dec-MDP. In the following, for the
sake of presentation simplicity, we impose βk = β0, ∀k (i.e.,
q = 1). However, the results can be straightforwardly extended to
the more general case.

Value Iteration Algorithm (VIA). The optimization problem
of Equation (17) can be solved using VIA [33, Vol. 1, Sec. 7.4].
Since we focus on q = 1, thanks to Equation (16) we only examine
k = 0 (in the more general case q > 1, the procedure is analogous
but with q different equations). The Bellman equation (see [33])
to iteratively solve is

ziter(e)← max
πe

{
β0R0(πe, e) +

∑
ē∈E

pext(ē|e)ziter−1(ē)
}
,

(18)

where “iter” is the index of VIA; β0R0(πe, e) represents the
initial reward, whereas the other term is the expected future reward
(this is derived from the old values of the Bellman equation,
ziter−1(·)). After a number of iterations (typically only a few),
VIA converges, and the Bellman equations yield the optimal
solution G(Π?).

5. We consider the undiscounted throughput in the long run because WSNs
typically reach the steady-state conditions. The weights are used for fairness.

5 OPTIMAL SOLUTION OF THE INTERNAL LAYER

In the previous section we discussed the external optimization
problem and its solution via the value iteration algorithm. How-
ever, every iteration of VIA requires to solve the max in Equa-
tion (18). This is equivalent to solving the Dec-MDP of the internal
layer, since (18) depends on the decentralized policy sequence πe.
In this section, we discuss how to do that optimally, whereas in
Section 6 we discuss suboptimal solutions.

5.1 Bellman Equation

The Bellman Equation (18) can be rewritten using the definitions
of pext(ē|e0) (Equation (13)) and R0(·) (Equation (14)):

max
πe

{
β0 E

[ T∑
k=0

φk(ηk,σ
πe

k )
∣∣∣e]}, (19)

φk(ηk,σ) , (1− β0)k
(
ρ(ηk,σ) +

∑
ē∈E

ηk+1(ē)ziter−1(ē)
)
.

(20)

Equation (19) represents the occupancy-MDP under investigation.
For ease of notation, we used ηk+1 , ω(ηk,σ). Note that
(1 − β0)k decreases with k, whereas all the other terms are
bounded. Consequently, φk(·) decreases with k; thus, for large
k, its contribution will be negligible. Because of this, we approx-
imated the infinite sum with a finite sum from 0 to T , where T
is a sufficiently large natural number. We now specify how the
system behaves between 0 and T , whereas the policy for k > T
can be arbitrarily chosen without degrading the performance of
the system.

We can solve the max by rewriting it in a recursive form:

vk(ηk) = max
σ

{
φk(ηk,σ) + vk+1(ω(ηk,σ)), if k < T,

φT (ηT ,σ), if k = T,

(21)

where vk(·) is the cost-to-go function. Equation (19) is equivalent
to β0 ·v0(η0). The trivial solution to find πe is to apply VIA in the
finite horizon; however, this would require, for every k, to specify
vk(ηk) for every ηk, which is impossible in practice.

An alternate solution is to use techniques originally developed
for POMDPs which were later used for Dec-POMDPs. In partic-
ular, the Learning Real Time A∗ (LRTA∗) algorithm is suitable
for our case, since it explores only the occupancy states which
are actually visited during the planning horizon and avoids grid-
based approaches (e.g., as used in [28]). In [25], the Markov
Policy Search (MPS) algorithm was introduced as an adaptation
of LRTA∗ to decentralized scenarios.

In summary, MPS operates as follows

1) It starts at k = 0 and, for every k ≥ 0, it computes the
LHS of (21) with LRTA∗, i.e., the maximization problem
is solved only for the occupancy states which are actually
visited and not for every ηk;

2) It replaces vk+1 in the RHS with an upper bound, which
can be computed using the convexity of the cost-to-go
function. In Section 5.2 we will further discuss this point;

3) When k = T is reached, a lower bound of the optimal
cost-to-go function is evaluated in a backward direction
(see [25, Sec. 5.1]).

The procedure is repeated until upper and lower bounds
converge to the optimal solution. We refer the readers to [25],
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[26] for a full description of the algorithm. In the following, we
discuss how to find the upper bound of the cost-to-go function,
which will be used as a building block in Section 5.3.

5.2 Upper Bound of the Cost-to-go Function

It can be shown by induction that the optimal cost-to-go function
v?k is a convex function of the occupancy states and can be
approximated by piecewise linear functions [26, Theorem 4.2].
The upper bound v̄k of v?k can be written as

v̄k(ηk) = max
σ
{φk(ηk,σ) + C(Υk, ω(ηk,σ))}, (22)

where C interpolates the occupancy state ω(ηk, σ) using the
point set Υk, which contains the visited occupancy states along
with their upper bound values. Every time (22) is solved, a
new point (ηk, v̄k(ηk)) is added to Υk. The first points to be
put in Υk are the corners of the occupancy simplex (i.e., the
|E| points [1, 0, . . . , 0], . . . , [0, . . . , 0, 1]) with their upper bound
values obtained solving the following full knowledge MDP:

R0(πe, e) , E
[ ∞∑
k=0

r(σπe

k (ek)) (1− β0)k
∣∣∣e], (23)

which is equivalent to (14) but with r(·) instead of ρk|0 and with
q = 1. Expression (23) implicitly assumes that the state of the
system ek is globally known in slot k, i.e., a centralized-oriented
network. Since this is a standard MDP, it can be easily solved with
VIA.

Sawtooth Projection. Ideally, we could use a linear interpo-
lation as the function C (i.e., map ηk on the convex hull of
point set Υk), but this would incur high complexity. A faster
approach, which however has shown good performance in many
applications, is to replace C with the sawtooth projection:6

swt(Υk, η) =y0(η)−max
`∈L
{(y0(η`)− v`)ξ`}, (24)

where η is the occupancy state to interpolate, (η`, v`) is the `-th
element of Υk, L is the set of indices of Υk, ξ` is the interpolation
coefficient, and y0(·) is the upper bound computed using the
corner points of Υk, i.e.,

y0(η) =
∑
e∈E

η(e)Υk(e). (25)

In the previous expression, with a slight abuse of notation, Υk(e)
indicates the upper bound value at the corner e of the simplex.
The interpolation coefficient is defined as

ξ` , min
e : η`(e)>0

η(e)

η`(e)
, (26)

and can be derived geometrically (see Figure 3). Note that we use
the max in (24) so as to obtain the lowest (i.e., best) upper bound.
We now rewrite the sawtooth projection in a simpler form:

swt(Υk,η)
(a)
= y0(η)+min

`∈L

{
(v`−y0(η`)) min

e:η`(e)>0

η(e)

η`(e)

}
(b)
= y0(η)+min

`∈L
max

e:η`(e)>0

{ η(e)

η`(e)
(v`−y0(η`))

}
(c)
= min

`∈L

{
y0(η)+ max

e:η`(e)>0

{ η(e)

η`(e)
(v`−y0(η`))

}}
6. The term “sawtooth” comes from the shape of the interpolating function

in the two-dimensional case (see Figure 3). The idea of the approach is to
interpolate a point η using |E| − 1 corner points of the simplex, and one point
taken from Υk (` in Equation (24)).

Figure 3: Sawtooth projection in the two-dimensional case. The arrow identi-
fies the quantity max`∈L{(y0(η`)−v`)ξ`} when η = 〈0.5, 0.5〉.

(d)
= min

`∈L
swt`(Υk, η). (27)

Step (a) coincides with Definition (24); step (b) holds because v`

is not greater than y0(η`), since y0(η`) represents the interpola-
tion using only the corner points (see Figure 3); in step (c), we
move y0(η) inside the min`, since it does not depend on `; finally,
we define swt`(Υk, η) in step (d).
We also introduced swt`(Υk, η), which will be used in the next
subsection, as the sawtooth projection obtained using the `-th
element of Υk.

The sawtooth projection produces higher (i.e., worse) upper
bounds than the convex hull projection and thus MPS may
require more iterations to converge (however, a single iteration
can be performed much more quickly), but convergence is still
guaranteed [27].

5.3 Constraint Programming Formulation

The key step to perform to find the policy is solving the max
in (22). Although this would be possible by performing the
exhaustive backup, i.e., by inspecting all possible choices of σ,
it is more practical to introduce faster solutions. Constraint Pro-
gramming [31] is a technique to express hard and soft constraints
as an optimization problem. We now use it to reformulate (22)
with C = swt.

Using the notation of Dibangoye et al. [27], we define

Wk(ηk,σ, `) , φk(ηk,σ) + swt`(Υk, ω(ηk,σ)). (28)

Combining (27) and (28), we can rewrite Equation (22) as

v̄k(ηk) = max
σ
{φk(ηk,σ) + swt(Υk,, ω(ηk,σ))}

= max
σ
{φk(ηk,σ) + min

`∈L
swt`(Υk, ω(ηk,σ))}

= max
σ

min
`∈L

Wk(ηk,σ, `). (29)

To solve the previous equation, we split it in |L| separate
mixed-integer programs:

v̄k(ηk) = max
`∈L

v̄`k(ηk), (30)

with

v̄`k(ηk) , max
σ

Wk(ηk,σ, `), (31a)

subject to: W (ηk,σ, `) ≤Wk(ηk,σ, l), ∀l ∈ L. (31b)

Weighted Constraint Satisfaction Problem (WCSP). Focus
now on the optimization maxσW (ηk,σ, `) without any con-
straints. This can be formulated as a WCSP as follows. First, we
rewrite W (ηk,σ, `) using (12), (20), (25), (27), and (28):

Wk(ηk,σ, `) = (1− β0)k
∑
e∈E

ηk(e)r(σ(e)) (32)



8

+ (1− β0)k
∑
e′∈E

ηk+1(e′)ziter−1(e′)

+
∑
e′∈E

ηk+1(e′)Υk(e′)+ max
e′′:η`(e′′)>0

{ηk+1(e′′)

η`(e′′)
(v`−y0(η`))

}
,

where ηk+1 = ω(ηk,σ), and we used e, e′ and e′′ to differentiate
the indices. Note that, since ` is given, the term y0(η`) is fixed.
Using the occupancy update formula of Equation (11), we get

W (ηk,σ, `) = (1− β0)k
∑
e∈E

ηk(e)r(σ(e)) (33)

+ (1− β0)k
∑
e′∈E

∑
e∈E

ηk(e)p(e′|e,σ(e))ziter−1(e′)

+
∑
e′∈E

∑
e∈E

ηk(e)p(e′|e,σ(e))Υk(e′)

+ max
e′′:η`(e′′)>0

{∑
e∈E

ηk(e)p(e′′|e,σ(e))

η`(e′′)
(v` − y0(η`))

}
.

Since the first terms of (33) do not depend on e′′, we move them
inside the maxe′′ and take the common sum over e; then, we
note that all terms multiply ηk(e). Thus, by introducing a variable
w`(·), we obtain

W (ηk,σ, `) = max
e′′:η`(e′′)>0

∑
e∈E

ηk(e)w`(e,σ(e), e′′). (34)

For every fixed `, the WCSP is formally defined as follows.
The variables are defined by σ as in (9) (i.e., the actions a ∈ A
for every e ∈ E) plus the index e′′. The domains are the same as
in the original problem, i.e., A for σ and E for e′′. A WCSP is
fully specified by its constraints, which are of the form

constraint`(e) = M − ηk(e)w`(e,σ(e), e′′). (35)

The total number of constraints is at most |E|, one for every
possible battery level. M is a large number used to cast the
WCSP in its standard form. Standard WCSP solvers compute the
following quantity:

min
σi
k(ei), ∀ei, ∀i, and e′′∈E

∑
e∈E

constraint`(e), (36)

whose solution is equal to the solution of (31a). In practice, for
every e ∈ E , the quantity constraint`(e) is evaluated for all the
combinations of σ(e) ∈ A and e′′ ∈ E independently of the oth-
ers constraints. Then, they are summed together and the minimum
among all the solutions is chosen. However, a solution referred
to a constraint constraint`(e) may be related to other solutions.
For example, different states e have some common entries (e.g.,
both 〈0, 0〉 ∈ E and 〈0, 1〉 ∈ E have the first entry equal to 0);
in this case, the corresponding actions must have some common
element even if they are referring to different constraints (e.g.,
σ(〈0, 0〉) = 〈σ0(0), σ1(0)〉 and σ(〈0, 1〉) = 〈σ0(0), σ1(1)〉
must have the first entry in common).

The main advantage of using a WCSP solver is that the
decentralized policy does not need to be computed as a whole, but
can be divided in constraints which are later combined together.

So far, we have only focused on (31a) (i.e., on a single `).
To solve (30), we need to compute |L| different WCSPs (one
for every ` ∈ L) and take the maximum among all solutions.
However this approach presents one major drawback: for a fixed `,
solving a single WCSP may not be sufficient. Indeed, the solution
must also satisfy (31b), which has been completely neglected in

the definition of the WCSP. If a constraint were violated, then
the solution of the WCSP would be infeasible and should be
discarded. In this case, Dibangoye et al. (see [26, Section 3.4.2])
propose to formulate a new WCSP in which the previous infeasible
solution results in a very high cost constraint (and thus it is never
chosen in the solution process). If the new solution also turns out
to be infeasible, the procedure is repeated. The iterations stop if a
feasible solution is found or if all decentralized actions have been
examined.

Although the previous method formally leads to the opti-
mal solution, it may often degenerate in an exhaustive search
(i.e, examining all the decentralized policies). The corresponding
complexity would be O((Sa)emax×N ) if all users had the same
battery size emax (see the structure of σ(e) in Equation (9)), i.e.,
exponential in N . This operation is computationally infeasible
when lots of possibilities are involved. Thus, optimally solving
a Dec-MDP with guarantees on the worst case performance is
still an open issue. In the next section, we propose two suboptimal
approaches for handling the problem based on the previous results.

6 SUB-OPTIMAL SOLUTIONS OF THE INTERNAL
LAYER

Since the main issue of the exhaustive search is that the space
of variables in Problem (30)-(31) is exceedingly large, we aim
at reducing this space, so that σ cannot take all possible values
but is constrained to lie in a smaller subset. The problem now
is to define such a subset. In the next subsection we present an
approach based on WCSPs, whereas in Section 6.2 we introduce
a different scheme based on parametric policies.

6.1 WCSP-Based Policies

In this case, we exploit the results about WCSPs presented in
Section 5.3 to find a suboptimal policy. The proposed algorithm is
as follows.

Algorithm 1 (Suboptimal policy using WCSPs)

1: for ` ∈ L do
2: σ` ← Solve WCSP for ` given ηk
3: for l ∈ L do
4: Evaluate W (ηk,σ`, l)

5: l? ← arg minl∈LW (ηk,σ`, l)
6: v̄`k(ηk)←W (ηk,σ`, l

?)

7: `? ← max` v̄
`
k(ηk)

8: return σ`?

As required by the max in (30), we look at every ` ∈ L
(Line 1) and, at the end of the algorithm, we return the solution
with the maximum value (Lines 7-8). Lines 2-6 solve Problem (31)
suboptimally as described in the following.

First, we solve the WCSP for a fixed ` (i.e., we solve (31a)),
and find the corresponding solution σ`. Then, using σ`, we
evaluate W (ηk,σ`, l) for every index l. Two cases should now
be examined, which can be handled in a fully equivalent way, but
have different meanings:

• If W (ηk,σ`, `) ≤ W (ηk,σ`, l), ∀l ∈ L, then σ` would
be an optimal solution of (31), since it maximizes (31a)
(Line 2) and satisfies (31b). In this case, ` ≡ l? (Line 5),
and v̄`k(ηk) is the solution of (31);

• Instead, when there exists l 6= ` such that W (ηk,σ`, l) <
W (ηk,σ`, `), then σ` is not optimal for index `. In
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this case, the optimal approach would require the ex-
ecution of a new WCSP discarding the previous solu-
tion (in the new WCSP, σ` would become a very high
cost solution). Instead, in Algorithm 1, we implicitly
make the following observation: σ` is a feasible solution
(i.e., it satisfies (31b)) of v̄l

?

k (ηk), where l? is such
that W (ηk,σ`, l

?) ≤ W (ηk,σ`, l), ∀l ∈ L (Line (5)).
Therefore, solution W (ηk,σ`, l

?) is feasible; for simplic-
ity, we improperly save its value in v̄`k(ηk) (Line 6). By
doing so, at the end of Line 6, v̄`k(ηk) does not represent
the solution of (31) associated to index `, but it contains a
feasible solution for some index l?.

In practice, while executing Algorithm 1, the space of variables
of Problem (30) is defined by the solutions of WCSPs at every
iteration (thus, it is not determined a priori).

The proposed approach is faster than the optimal one, since it
completely avoids the exhaustive search; however, in general, it is
suboptimal and thus achieves worse performance.

6.2 Parametric Policies

Another possibility to avoid the exhaustive search step is to use
parametric policies and thus reduce the number of optimization
variables to few parameters. In particular, we force the actions of
user i to follow a predetermined structure:

σi(ei) = f ipar(Θ
i, ei) (37)

where ei is the independent variable and Θi is a set of parameters
which specify the structure of f ipar. For example, if we used
Θi = {θi}, and a simple linear function f ipar(Θ

i, ei) = θiei,
the only optimization variable of user i would be θi, and not
σi(0), . . . , σi(eimax) as in the original problem. In this case, for a
symmetric scenario, the complexity of the exhaustive search step
goes from O((Sa)emax×N ) to O((Sθ)

N ), therefore it remains
exponential in N but with a much smaller coefficient in the
exponent. Sθ is the number of values that θi can assume.7

In our scenario we force f ipar(Θ
i, ei) to be a non-decreasing

function of ei as in [9], which implies that higher energy levels
cannot correspond to lower transmission probabilities.

7 NUMERICAL EVALUATION

The numerical evaluation is performed using two nodes, since
the complexity grows super-exponentially with the number of
users. Indeed the size of the occupancy state evolves exponentially
with N , and the exhaustive search operation (exponential in
N ), or a suboptimal approach, is to be performed for every
element of the occupancy state. If not otherwise stated, we
adopt the following parameters: the batteries can contain up to
e1

max = e2
max = 8 energy quanta; the energy arrival processes

are i.i.d. over time and the probability of receiving one energy
quantum is p1

B = p2
B in every slot; when a transmission is

performed a reward V i = ln(1 + ΛiHi) is accrued, where V i

represents the normalized transmission rate in a slot, and Hi is an
exponentially distributed random variable with mean 1 (see [34]);
the transmission probabilities in [0, 1] are uniformly quantized
with Sa = 19 samples; the average normalized SNRs are Λ1 = 6
and Λ2 = 3; both devices have the same weight; to perform

7. We note that, although we did not reduce the theoretical complexity of the
exhaustive search (which is still exponential), using smaller coefficients allows
much faster numerical evaluations. The more general problem of developing
heuristic schemes with lower complexity is still open.

a transmission m1 = m2 = 2 energy quanta are drawn from
the battery; finally, β has period q = 1 (i.e., it is constant over
time). All the numerical evaluations were written in C++ and,
for solution of the weighted constraint satisfaction problems, we
used ToulBar2 [38], a highly efficient solver of WCSPs. We first
focus on the solution of the internal layer (i.e., we only look at
R0(πe0 , e0)), and discuss later how the external layer performs.

Transmission Probabilities. In Figures 4 (low energy arrival
rates) and 5 (high energy arrival rates) we show the transmission
probabilities of the parametric decentralized policy of Section 6.2,
where fpar is a linear function, Θi = {θi} and θi is such that
θieimax ∈ Ai. The dashed lines have been slightly manually
shifted to the right only for graphical purposes. In these figures, we
only focus on the internal layer, thus we study the system behavior
between two consecutive SYNC slots.

The main difference between Figures 4 and 5 is that, after
many slots, the transmission probabilities are both greater than
zero in the first case, whereas an almost pure time-orthogonal
approach is used in the latter, regardless of the initial energy levels.
Thus, when the energy resources are scarce (i.e., low energy ar-
rivals) then, if k is large, an orthogonal scheme in which collisions
are avoided is suboptimal. The trade-off between orthogonal and
random access schemes can be intuitively explained as follows. As
time goes on, nodes lose information about the global state of the
system, thus a device does not know the energy level of the other.
In this case, an orthogonal scheme might be highly inefficient:
if a slot were assigned only to Node 1, but this did not have
enough energy for transmission, then the slot would be unused.
Since the energy resources are scarce, it is likely that such a case
happens. Instead, when both have a lot of energy, it is easier to
estimate the energy level of the nodes, and thus pre-assigning the
slots is possible (and in fact optimal). This means that, in the low
energy case, it is better to transmit even if the collision probability
is non-negligible, to compensate the (likely) lack of energy of
the other user. This represents the main novelty of EH scenarios
over traditional ones in which, as explained in Section 3.5, an
orthogonal decentralized access scheme is optimal.

The same effect can be observed in Figure 4 when the initial
energy levels are high. Indeed, when k is small, nodes still have
information about the state of the other device; therefore, an
orthogonal approach is optimal in this case also, and collisions
are avoided since it is very likely that a node has enough energy
to perform the transmission.

Note that when an orthogonal access scheme is employed,
Node 1 is advantaged with respect to Node 2 (this can be clearly
seen in Figure 5, where more slots are allocated to the first node).
Indeed, the SNR of the first node (Λ1) is greater than the SNR
of the other (Λ2), and therefore higher returns are obtained by
Node 1 when a transmission is performed. In this case, fairness is
not achieved because of the near-far effect (a node with a better
channel is advantaged over the other); however, the network could
be rebalanced by changing the weights w1, w2.

Finally, note that in Figure 4 the average transmission proba-
bilities in the long run almost coincide with the energy arrival rate
divided by mi, so as to achieve energy neutrality.

Energy Levels. Figure 6 shows another interesting, though
predictable, result: despite the initial energy level, in the long run
all the energy levels of the same device converge, approximately,
to the same value. This is because all the initial fluctuations have
been absorbed by the batteries. Note that the energy levels of
Node 2 are higher because Λ2 < Λ1, thus Node 2 transmits less
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Figure 4: Transmission probabilities as a function of time for two users when β0 = 0.05 and p1B = p2B = 0.1 for different initial battery levels.

Figure 5: Transmission probabilities as a function of time for two users when β0 = 0.05 and p1B = p2B = 0.9 for different initial battery levels.

frequently than the other and consumes less energy, on average.
Internal Reward. In Figure 7 we show the long-term dis-

counted reward as a function of the energy arrival rate for the
decentralized scheme solved using WCSPs (Section 6.1), the
decentralized parametric scheme (Section 6.2), a fully orthogonal
approach, and a fully symmetric scheme. The curves are normal-
ized with respect to the upper bound, given by the centralized
scheme of Equation (23) (which, however cannot be achieved in
decentralized scenarios, in general). To understand the trend of the
curves, it is important to remark that the first slots after the initial
SYNC slot are the most important ones for two reasons:

1) The decentralized reward φk(·) defined in (20) decreases
with k. Therefore, the initial slots have higher weights
and contribute more to the global reward;

2) There is more information about the state of the other
device in the initial slots.

Therefore, when the initial batteries are fully charged, the
centralized and decentralized schemes are closer. Indeed, since
e0 = emax, decentralized and centralized rewards in the first
slots are almost equivalent. Instead, if the batteries are initially
fully discharged, the gap between centralized and decentralized is
wider. In this case, the first slots do not play a fundamental role,

since there is not a lot of energy to exploit. Therefore, most of
the gain is obtained for higher k, which in turn leads to a less
informative situation about the state of the other device. In this
case, the centralized scheme may perform much better than the
decentralized one because of this lack of information.

Although it is not visible from Figure 7 because of the
normalization, the curves increase with p1

B = p2
B , because

more energy can be harvested (see [1, Section V]). The lowest
normalized reward for the WCSP-based policy is obtained around
p1
B = p2

B = 0.5; indeed, this corresponds to the least informative
case, since the battery fluctuations are not predictable at all.

Finally, note that the decentralized policy obtained using
WCSP outperforms the parametric policy in almost every case.
However, this is also strongly influenced by the number of pa-
rameters Θi we used, and using more parameters would lead to
better performance. Moreover, it can be clearly seen that the fully
orthogonal and the symmetric policies are strongly suboptimal in
this scenario, therefore using an optimized approach significantly
improves the throughput of the network. An interesting outcome
of Figure 7 is that the gap between centralized and decentralized
schemes may be small (< 15%), when the decentralized policy
is correctly designed. Therefore, using low values of β (e.g.,
β = 0.05) we are able to achieve the twofold goal of greatly re-
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Figure 6: Battery level evolution as a function of time for two users when
β0 = 0.05, and p1B = p2B = 0.1 or 0.9 for different initial battery levels.

Figure 7: Long-term rewards of the internal layer as a function of the energy
arrival rates p1B = p2B for two users when β0 = 0.2 for batteries initially
empty (left) or fully charged (right).

ducing the overhead in the network, since the policy is distributed
only during the SYNC slots, and of achieving good performance.

External Reward. We now describe the performance of the
complete system, i.e., of the external layer. First, we show the
iterations of VIA (Equation (18)) in Figure 8. Note that the
y-axis represents the difference between two consecutive steps
of VIA, which converges to G(Π?) (see the Relative Value
Iteration Algorithm in [33, Vol. 1, Sec. 7.4]). The case iter = 1
corresponds to the internal layer only (i.e., β0 ·R0(π0,0)), since
z0(e) = 0, ∀e ∈ E . We highlight that, to solve a single step of
VIA, many decentralized optimization steps are performed (one
for every e ∈ E). From the figure, it can be clearly seen that only
few iterations are required for convergence, especially for lower β0

(which are the most computationally expensive, since the intervals
between SYNC slots are longer). Note that, when VIA converges,

Figure 8: Transmission probabilities as a function of time for two users with
batteries initially empty when p1B = b2B = 0.05.

Figure 9: Long-term rewards as a function of the energy arrival rates for two
users when p1B = b2B = 0.05.

the higher β0, the higher the reward, as expected; moreover, the
upper bound curve (i.e., the centralized case) outperforms the
others (in this case, there is less uncertainty and more global
information). In Figure 9, we plot the reward G(Π) of the external
layer as a function of the energy arrival rates. The values reported
here are derived from the last step of VIA. As expected, G(Π)
increases with p1

B = p2
B (more energy available). It is interesting

to observe that the parametric policy is very close to the upper
bound, whereas the rewards of the other, simpler policies are much
lower.

8 CONCLUSIONS

In this paper, we studied a decentralized optimization framework
for an energy harvesting communication network with collisions.
We used a multi-layer Markov setup to model the system. An
external layer, that models the jumps between SYNC slots (the
time instants at which the policy is computed) is optimized as
a Markov Decision Process (MDP) whose actions are given by
an internal layer, modeled as a decentralized-MDP. To solve the
external layer we used the Value Iteration Algorithm, whereas the
Markov Policy Search algorithm was employed for the internal
layer. Because of the exponential complexity of the exhaustive
search used in the optimal policy, we presented two simpler
schemes, namely WCSP-based and parametric approaches. In
our numerical evaluations we described the trade-off between
accessing the channel and energy arrivals, and we showed that a
pure orthogonal access mechanism is suboptimal under harvesting
constraints. Moreover, we noted that decentralized schemes, if cor-
rectly designed, may achieve high performance while significantly
reducing the signaling overhead in the network.

Our work introduces a principle of optimality in decentralized
energy harvesting networks. However, because of the complexity
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burden of the optimal policy, additional studies are required for
proposing more practical schemes which inherit the key properties
of our framework while being less computationally demanding.
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