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Massive MIMO for Decentralized Estimation of a

Correlated Source
Amirpasha Shirazinia, Member, IEEE, Subhrakanti Dey, Senior Member, IEEE,

Domenico Ciuonzo, Member, IEEE, and Pierluigi Salvo Rossi, Senior Member, IEEE

Abstract—We consider a decentralized multi-sensor estima-
tion problem where L sensor nodes observe noisy versions of
a correlated random source vector. The sensors amplify and
forward their observations over a fading coherent multiple access
channel (MAC) to a fusion center (FC). The FC is equipped
with a large array of N antennas, and adopts a minimum mean
square error (MMSE) approach for estimating the source. We
optimize the amplification factor (or equivalently transmission
power) at each sensor node in two different scenarios: a) with
the objective of total power minimization subject to mean square
error (MSE) of source estimation constraint, and b) with the
objective of minimizing MSE subject to total power constraint.
For this purpose, based on the well-known favorable propagation
condition (when L ≪ N ) achieved in massive multiple-input
multiple-output (MIMO), we apply an asymptotic approximation
on the MSE, and use convex optimization techniques to solve for
the optimal sensor power allocation in a) and b). In a), we show
that the total power consumption at the sensors decays as 1/N ,
replicating the power savings obtained in massive MIMO mobile
communications literature. We also show several extensions of the
aforementioned scenarios to the cases where sensor-to-FC fading
channels are correlated, and channel coefficients are subject to
estimation error. Through numerical studies, we also illustrate
the superiority of the proposed optimal power allocation methods
over uniform power allocation.

Index Terms—Decentralized estimation, Wireless sensor net-
works, Massive MIMO, Coherent MAC, Convex optimization,
Power allocation.

I. INTRODUCTION

This section summarizes prior work in the field, and pro-

vides paper contributions as well as outline and mathematical

notations.

A. Background

Wireless sensor networks have recently attracted much re-

search interest due to their practical popularity in accomplish-

ing decentralized tasks, such as monitoring, sensing, computa-

tion and communication. In this field, many different schemes

for decentralized sensing and information transmission, detec-

tion and estimation of sources using multiple sensors have

A. Shirazinia (email: amirpasha.shirazinia@signal.uu.se) and S. Dey (email:
subhrakanti.dey@signal.uu.se) are with Signals and Systems Division, Depart-
ment of Engineering Sciences, Uppsala University, Uppsala Sweden.

D. Ciuonzo (e-mail: domenico.ciuonzo@ieee.org) is with University of
Naples “Federico II”, DIETI, I-80125 Naples, Italy.

P. Salvo Rossi (e-mail: salvorossi@ieee.org) is with the Department of
Electronics and Telecommunications, Norwegian University of Science and
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This work has been partially presented in [1].
Copyright (c) 2015 IEEE. Personal use of this material is permitted. However,
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the IEEE by sending a request to pubs-permissions@ieee.org.

been proposed, see, e.g., [2]–[15]. One popular transmission

technique in wireless sensor networks is analog amplify and

forwarding [16], where sensors transmit over fading channels a

scaled version of their analog measurements to a fusion center

(FC) for estimation or detection purposes. Analog amplify and

forwarding technique has been shown to be optimal in some

situations [17]. Therefore, this technique has been investigated

under different multiple access schemes such as coherent

multiple access [11], [12], [16], and orthogonal multiple access

[13]–[15]. Analog transmissions over coherent MAC normally

provide a better performance compared to orthogonal MAC

that requires more resources such as time and bandwidth;

however, this performance improvement is achieved at the

price of precise phase synchronization at sensor nodes.

Depending on the application area, the aforementioned

works can be also categorized into two different contexts:

decentralized detection [5], [7], [9], [10] and decentralized

estimation [2]–[4], [6], [11]–[15], [18] of either correlated or

uncorrelated sources. Moreover, from a technological point of

view, these works can be divided into two groups: when the

FC is equipped with a single antenna [5], [6], [13]–[15] or

multiple antennas [7]–[10], [12], [18]. It is well-known that

using multiple antennas can increase spectral efficiency of a

wireless system through spatial multiplexing. With respect to

these works, it should be highlighted that the focus of the

current paper is on decentralized estimation of a correlated

source over coherent MACs where the FC is equipped with

large arrays of antennas.

Indeed, there has been a vast interest recently to equip the

FC (or the base station in cellular communication framework)

with large arrays of antennas, also known as the massive

multiple-input multiple output (MIMO) framework [19]–[21].

The use of arrays with massive number of antennas in wireless

communication does not only increase spectral efficiency, but

it can also improve energy efficiency of MIMO system [22],

[23]. This improvement has been obtained at the expense of

employing a large arrays of antennas in a fixed volume, which

makes its practical hardware implementation rather complex.

However, recent research has shown that massive MIMO

arrays are quite realistic at typical radio frequencies [24], [25],

and low-complexity effective signal processing approaches

have been also proposed to deal with the large dimension of

antenna arrays [26].

With the assumption of employing large number of antenna

arrays, known results in MIMO communication systems can

be considerably simplified [21], [27]. As a result, it provides

analytical solutions to problems that would otherwise be math-

ematically intractable. In wireless sensor networks, the mas-
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sive MIMO framework has been also recently employed for

decentralized detection and estimation [28]–[30]. For example,

in [28], maximum likelihood (ML) estimation of a scalar

deterministic source is considered under the assumption of

massive MIMO. Further, while the work [29] mainly considers

a decentralized detection problem, the authors also show that

similar results can be achieved for decentralized estimation of

a random scalar source.

B. Contributions and Main Results

In the present paper, within the massive MIMO frame-

work, we focus on the decentralized estimation problem in

a more general case where the source is modeled as a vector

comprised of random and correlated components. Our main

objective is to optimally design the sensors’ amplification

factors with respect to minimizing sensor power consump-

tions or maximizing estimation accuracy subject to relevant

constraints. In our setting, L sensor nodes observe noisy

versions of a possibly correlated random source vector. The

sensor nodes amplify the observations according to their power

budget, and forward them over coherent fading MACs to a FC

equipped with a large number of antennas, denoted by N . The

FC estimates the source by adopting a minimum mean square

error (MMSE) estimator, which, by definition, gives the lowest

possible MSE.

We optimize the sensor amplification factor (or equivalently

the transmission power allocation) at each sensor node:

a) with the objective of total power minimization subject to a

maximum MSE constraint (incurred by using the MMSE

estimator), and

b) with the objective of minimizing MSE of source estimation

subject to a total power constraint.

For the purpose of optimization, we apply an asymptotic

approximation based on the favorable propagation conditions

in the massive MIMO literature in order to simplify the

MSE expression when N ≫ L [19]. Using the resulting

approximation, our contributions are as follows:

• We show that the power allocation optimization problems,

mentioned earlier, are convex, which, in general, can be

solved numerically using well-known convex optimiza-

tion techniques in polynomial time.

• We analyze the optimization problems, and under some

conditions derive closed-form solutions to them. Our

analysis reveals that, in the present framework, as the

number of antennas at the FC, N , increases, the sensors

can decrease their total power consumption with a factor

proportional to 1/N in order to satisfy a targeted MSE.

• It is also seen that using the massive MIMO approxima-

tion, the optimal sensor power allocation only depends

on the distance-based attenuation components and not on

the randomly-varying fading gains.

• We extend the optimal power allocation to three new

cases, where sensor-to-FC channel gains are correlated,

sensor-to-FC channel additive noise components are cor-

related, and channel gains are subject to estimation error.

For instance, our analysis reveals that under channel

correlation, the performance, in terms of total power or

MSE, can suffer from potential degradation.

• We illustrate, via numerical results, significant gains ob-

tained by the proposed optimal power allocation methods

compared to uniform power allocation.

The main contributions with respect to existing literature

on massive MIMO-based decentralized estimation can be

highlighted as follows. We consider decentralized estimation

of a general correlated random vector in a massive MIMO

framework over coherent MAC using the MMSE estimator,

whereas [28] studied ML estimation of a scalar deterministic

source and [29] considered MMSE estimation of a scalar

random source. It should be also mentioned that a similar

decentralized estimation problem with correlated noise and

multiple antennas at the FC was also considered in [12]. How-

ever, the following differences with respect to our formulation

are present: first, the unknown source to be estimated in [12]

is a random scalar. Second, a non-asymptotic analysis (i.e. not

massive MIMO) has been considered with coherent MAC, and

finally, the authors considered MSE of the best linear unbiased

estimator (BLUE) as the relevant metric.

C. Paper Outline

The remainder of the paper is organized as follows. In

Section II, we begin with system description, and then pro-

ceed with problem formulation in Section III. We analyze

power-minimization problem and MSE-minimization problem

in Section IV, where each consists of the study of uncorre-

lated source and correlated source cases. In Section V, we

will analyze optimal power allocations, where sensor-to-FC

channel gain and additive noise components are correlated,

and where MIMO channels are assumed to be a generic

model. Performance comparison of the proposed optimization

schemes with other methods via numerical simulations are

illustrated in Section VI, followed by concluding remarks in

Section VII.

D. Notation

We denote column vectors and matrices by bold lower-

case and upper-case letters, respectively. The matrix trace

is denoted by Tr(·), and matrix/vector conjugate-transpose

(resp. transpose) by (·)H (resp. (·)⊤). The notation

diag(a1, a2, . . . , an) is used for a diagonal matrix whose

diagonal elements are a1, . . . , an. We use E[·] to denote the

expectation operator. [A]ij means the element of the matrix A

at ith row and jth column. The vector of all zeros of size n,

and the identity matrix of size n×n are denoted by 0n and In,

respectively. The notation X ≻ 0 (resp. X � 0) means that the

matrix X is positive definite (resp. positive semi-definite). [·]+
denotes max{0, ·} and (·)⋆ means optimality in some sense.

The circularly-symmetric Gaussian distribution is denoted by

CN . Finally, we denote equality in an asymptotic sense by
a
=.

II. SYSTEM DESCRIPTION

We study the decentralized estimation task over a coherent

MAC shown in Figure 1. Based on the studied system model

in Figure 1, the received signal at the FC can be written as

y = HDθ +HDn+ v︸ ︷︷ ︸
,w

. (1)

2
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Fig. 1. System model for decentralized MMSE estimation over coherent MAC
with analog forwarding.

where each component of the vector y ∈ CN is a coherent

sum of received signals from all sensors. In (1), the source

is characterized by the vector θ = [θ1, . . . , θL]
⊤ ∈ CL,

where θ ∼ CN (0L,Cθ) and Cθ ∈ CL×L is the positive

definite source covariance matrix which is not necessarily

diagonal. The lth source-to-sensor noise component is denoted

by nl. Stacking up all the noise components, we denote the

source-to-sensor noise vector by n = [n1, . . . , nL]
⊤, where

n ∼ CN (0L,Cn) and Cn , diag(σ2
n1
, . . . , σ2

nL
) is the

source-to-sensor noise covariance matrix. Further, αl is the

complex amplification gain at the lth sensor node (to be

designed) and D , diag(α1, . . . , αL). We denote the channel

matrix between the L sensors and the FC equipped with N
antennas by H ∈ CN×L, where [H]il corresponds to the

channel gain between the lth sensor and the ith antenna at

the FC. The channel matrix H models independent fast fading

(small-scale fading) and log-normal shadow fading (large-scale

fading). The generic coefficient [H]il is then expressed as

[H]il =
1√
d2βl

[G]il, i = 1, . . . , N, l = 1, . . . , L, (2)

where dl is the distance between the lth sensor to the FC, and

2β is the pathloss exponent. Furthermore, [G]il are indepen-

dent and identically distributed (i.i.d.) random variables drawn

from CN (0, 1). Based on the above assumptions, we have

H = GΓ1/2, (3)

where Γ , diag (γ1, . . . , γL) such that γl , d−2β
l .

Note that the channel matrix H, comprising of complex

zero-mean Gaussian entries, implies that there are non-line

of sight wireless transmissions between sensors and the FC,

which arise due to obstacles (fixed or mobile) resulting in

multi-path fading propagation and a rich scattering envi-

ronment. Application examples for such a scenario include

outdoor (e.g. in distributed tracking) or residential wireless

sensor networks studied, e.g., in [31]–[33].

The additive Gaussian noise at the FC is denoted by

v = [v1, . . . , vN ]⊤ with distribution CN (0N ,Cv), where

Cv = σ2
vIN . The FC provides an estimate of the source

vector from the received signal vector y in (1). We assume

that the FC has perfect knowledge of the source and noise

statistics as well as the channel gain matrix H. This may

be, in principle, achieved by pilot transmissions from the

sensors at the beginning of each fading block or from the

FC followed by sensors informing the FC about their channel

estimates assuming time-division-duplex (TDD) transmission

and channel reciprocity. The perfect channel state assumption

at the FC may be unrealistic in large MIMO systems due

to pilot contamination problems or simply imperfect channel

estimation. For this reason, this assumption will be relaxed

later in Section V-D, where we will consider system design

with noisy channel estimates.

Remark 1. In coherent MAC – unlike orthogonal MAC which

requires more resources such as time or bandwidth – all sensor

transmissions occur simultaneously but require distributed

phase synchronization, also known as distributed beamforming

at the sensor transmitters. This implies that the sensors need

the knowledge of the phase of the complex channels so that

they can cancel it before transmission allowing coherent

reception at the FC. This synchronization might be difficult

to achieve in a sensor network with large number of sen-

sors/receive antennas due to the resulting large communication

overhead. However, challenges in distributed beamforming

involved in developing massive MIMO have been identified

in [34], and significant technical progress in design – such as

synchronization, reducing overhead, aggregate feedback etc. –

in order to achieve distributed beamforming has been reported.

Given the model under investigation, the minimum mean-

square error (MMSE) estimator can be applied in order to give

the lowest possible MSE. In the next section, we show the

resulting MSE and discuss our design method for optimally

allocating power to sensors.

III. PROBLEM FORMULATION

Exploiting the MMSE estimator at the FC, the estimated

vector θ̂ , [θ̂1, . . . , θ̂L]
⊤ is obtained as the conditional mean

[35, Chap. 15]

θ̂ = E[θ|H,y] =
(
C−1

θ +DHHHC−1
w HD

)−1
DHHHC−1

w y,
(4)

which gives the following MSE1

MSE , E

[
‖θ − θ̂‖22

∣∣H
]

= Tr
{(

C−1
θ +DHHHC−1

w HD
)−1
}
,

(5)

1We note that due to the Gaussian nature of the system (see e.g., (4)),
the linear MMSE (LMMSE) and the MMSE estimators are both linear and
equivalent under the setup of this work [35, Chap. 15].

3
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where Cw = E[wwH ] = HDCnD
HHH +Cv. By using the

matrix inversion lemma on C−1
w , (5) can be rewritten as

MSE = Tr

{(
C−1

θ + σ−2
v DHHHHD− σ−4

v DHHHHD

(
C−1

n + σ−2
v DHHHHD

)−1
DHHHHD

)−1
}
.

(6)

Now, since [G]il
i.i.d.∼ CN (0, 1), (l = 1, . . . , L, i =

1, . . . , N ), then using the massive MIMO framework, as

N → ∞ while L remains fixed (L ≪ N ) the so-called

favorable propagation conditions hold [20]. It is known that

under such a condition,

HHH = Γ1/2GHGΓ1/2 a
= NΓ. (7)

Next, we define Λ , DHΓD = diag (λ1, . . . , λL) where

λl , γl|αl|2, ∀l. Hence, the MSE in (6) can be asymptotically

approximated as

MSE
a
= Tr

{(
C−1

θ +Nσ−2
v Λ

−N2σ−4
v Λ

(
C−1

n +Nσ−2
v Λ

)−1
Λ
)−1

}
.

(8)

We note that, from now on, whenever we use the term MSE,

we refer to the asymptotic MSE expressed by (8).

Remark 2. Using the massive MIMO approximation (7), the

MSE formulation is simplified (cf. (8)). Further, under this

approximation, the optimal design of the sensor amplification

factors αl reduces to optimizing only the (squared) modulus

of αl, and not the complex-valued factor αl. This implies

that optimization of the phase shift component is irrelevant

in the large-array regime, which has been already observed

in [29] for a scalar source. Finally, as a byproduct, the

obtained power allocation problems (as we will see later in the

subsequent sections) become mathematically more tractable

and easier to solve given the simplifications arising from the

massive MIMO approximation.

Another central design criterion that needs to be considered

is the average total power consumed by sensors for transmis-

sion, which can be formulated as

Ptot = E[||D(θ + n)||22] =
L∑

l=1

|αl|2[Cθ +Cn]ll

=
L∑

l=1

λl

γl
[Cθ +Cn]ll.

(9)

In the following example, we offer insights into the accuracy

of the MSE approximation (8) when large number of antennas

are used at the FC.

Example 1. In Figure 2, we compare the actual MSE in

(6) and approximate MSE in (8) using (real) uniform power

allocation, i.e., α2
l [Cθ + Cn]ll =

Ptot

L , ∀l, with Ptot = 0.01
W. For this study, we consider L = 15 sensors, and assume a

homogenous scenario, where ∀l ∈ {1, . . . , L}, the source-to-

sensor noise variances σ2
nl

= 10−3 W. Further, σ2
v = 10−6

W. In order to determine the actual MSE, we draw the

entries of the matrix G from CN (0, 1), and then plot average

MSE over 100 realizations of G. We also set the pathloss

exponent to 2β = 2, and sensor-to-FC distances dl are

chosen randomly according to a uniform distribution ranging

from 20 to 70 meters. We consider two scenarios, where

the source is either correlated or uncorrelated. We use the

exponential correlation model (see later Section VI for details)

with correlation coefficient 0 ≤ ρθ < 1 in order to generate

the source covariance matrix. Therefore, ρθ = 0 refers to an

uncorrelated source, whereas ρθ = 0.95 refers to a highly

correlated source. We observe from Figure 2(a) that as N
increases the gap between the actual and approximate MSE

decreases such that at N = 150, the difference between

the actual and approximate MSEs is approximately 0.028 for

ρθ = 0, and approximately 0.012 for ρθ = 0.95. Hence, it

can be seen that source correlation not only decreases MSE,

but also increases convergence rate of the approximate MSE

to the actual MSE with respect to N . The latter feature is

illustrated in Figure 2(b), where the MSE convergence rate

is defined as the fraction of approximate MSE to the actual

MSE, and is upper-bounded by 1. The purpose of this figure

is to show how fast the curves approach to 1. For example, we

have numerically shown that the source correlation can speed

up the convergence rate.2

In what follows, we pose two optimization problems dealing

with sensor power allocation. The first problem minimizes

the total power consumption by the sensors subject to recon-

struction MSE constraint. Therefore, this optimization problem

is desirable when power is limited, due to sensors’ battery

limitations, and we are imposed to guarantee a worst-case

MSE. In the second problem, the MSE is minimized subject

to total power constraint. Hence, this problem formulation is

posed when the estimation accuracy, in terms of MSE, is more

demanding rather than power consumption of the sensors.

More specifically, the first optimization problem is stated as

follows 



minimize
{λl≥0}L

l=1

Ptot

subject to MSE ≤ d̄,
(P1)

where Ptot and MSE are specified by (9) and (8), respectively.

Further, d̄ is a maximum user-defined distortion threshold, and

has to be chosen such that Tr{(C−1
θ + C−1

n )−1} < d̄ ≤
Tr{Cθ}. Note that the lower-bound on d̄ corresponds to the

case of transmission over an ideal noiseless channel, i.e., all

measurements are directly available at the FC, however with

measurement noise at sensors still present.

Inspired by similar results in massive MIMO-based cellular

communication, it is straightforward to show3 as the number

of antennas N grows under the MSE constraint at the FC, then

the total optimal decays proportionally with 1/N . Thus, we

can conclude the following:

2It is worth-pointing out that the convergence rate may also depend on
several parameters such as source correlation, available power budget, noise
level, power allocation, etc.. For instance, in [36], the authors studied the
convergence of H

H
H to NΓ in a massive MIMO system under different

convergence criteria. However, a rigorous convergence rate analysis of MSE
falls beyond the scope of the current work.

3This can be shown easily by using a change of variable, e.g., λ̃l ,

Nλl/σ
2
v , and then by rewriting an equivalent optimization problem with the

new variable λ̃l.
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Fig. 2. Left: Comparison of actual MSE (6) (averaged over 100 realizations of the channel) and approximate MSE using massive MIMO approximation (8)
for two scenarios when the source is uncorrelated ρθ = 0, and highly correlated ρθ = 0.95. Right: Comparison of convergence rate of approximate MSE to
the actual MSE for the uncorrelated and correlated scenarios.

Remark 3. The optimal total power consumed by sensors

decays with a factor proportional to 1/N .

The second optimization problem which is investigated is

stated as follows




minimize
{λl≥0}L

l=1

MSE

subject to Ptot ≤ P̄ .
(P2)

We note that after solving the optimization problems (P1)

and (P2) for λl, one can recover the complex gain αl with am-

plitude |αl| and an arbitrary phase as discussed in Remark 2.

It can be easily shown (see e.g., [37, Problem 3.26] for the

convexity of the MSE and discussions on matrix concavity in

[37, p. 110]) that the optimization problems (P1) and (P2)

are convex in the variables λl, l = 1, . . . , L. Hence, they

can be solved numerically using standard convex optimization

techniques [37].

Remark 4. In (P2), only the total power consumption (for

all L sensors) has been constrained. In many wireless sensor

network applications, the total power constraint has some

physical implications. Typically, this constraint is imposed to

guarantee a fair comparison when the number of sensor nodes

can be variable, or there are strict constraints on how much

interference can the sensor network generate on other wire-

less networks operating within its transmission range. Other

application scenarios, where this constraint is critical, are

discussed in [3] as well. Instead, depending on applications,

one can constrain individual power consumption per sensor

in addition to the total power constraint. In this case, similar

analysis can be pursued to find optimal power allocations,

albeit at the expense of the additional complexity of L extra

power constraints rather than one total power constraint.

This kind of optimization problem, for a slightly different

decentralized estimation problem over orthogonal channels

with a single antenna at th FC, has already been studied,

e.g., in [13].

Although it is more desirable to address the convex op-

timization problems (P1) and (P2) analytically, or provide

closed-form solutions, this is not, however, feasible in some

cases. Therefore, in such situations, it is more convenient to

rewrite the optimization problems in a way to be solved in a

computationally more efficient manner. A typical approach is

to use the semidefinite programming (SDP) method that can

be solved via the low, polynomial complexity interior point

method [38]. The optimizations (P1) and (P2) can be expressed

as SDPs by introducing slack random variables and by using

Schur’s complement [11], [37]. More precisely, optimization

problem (P1) can be equivalently solved as

minimize
{λl≥0}L

l=1
,X,Y

L∑

l=1

λl
1

γl
[Cθ +Cn]ll

subject to Tr{Y} ≤ d̄[
C−1

θ +Nσ−2
v Λ−N2σ−4

v X IL
IL Y

]
� 0

[
X Λ

Λ C−1
n +Nσ−2

v Λ

]
� 0,

(10)

where X � 0 is a L × L diagonal matrix, and Y � 0 is a

Hermitian L× L matrix. Further, Λ = diag(λ1, . . . , λL).

Similarly, the optimization problem (P2) can be equivalently

5
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solved as the following SDP

minimize
{λl≥0}L

l=1
,X̃,Ỹ

Tr{X̃}

subject to

L∑

l=1

λl
1

γl
[Cθ +Cn]ll ≤ P̄

[
C−1

θ +Nσ−2
v Λ−N2σ−4

v Ỹ IL

IL X̃

]
� 0

[
Ỹ Λ

Λ C−1
n +Nσ−2

v Λ

]
� 0,

(11)

where X̃ � 0 is a Hermitian L × L matrix, and Ỹ � 0 is a

L× L diagonal matrix.

In the next sections, we analyze the optimization problems

(P1) and (P2).

IV. ANALYSIS OF (P1) AND (P2)

We analyze the problems (P1) and (P2) in two cases

where the source is either correlated or uncorrelated. In the

correlated case, we offer an approach which yields to a set of

non-linear equations. Moreover, we relax the original problem

which leads to an approximate closed-form solution. In the

uncorrelated case, we also give a closed-form solution to the

optimization problem.

A. Analysis of (P1): Correlated Source

1) Exact Analysis: First, we consider the general case

where the elements of the source vector are correlated, i.e.,

Cθ is not necessarily diagonal. In order to solve for λl in

(P1), we write the Karush-Kuhn-Tucker (KKT) conditions

[37]. It should be mentioned that a similar approach has been

taken in [5], [14], [14] for solving an optimization problem

with a single antenna FC. However, here we provide an

analytical approach to the problem of interest for the sake of

completeness. Moreover, the structure of the optimal power

allocation that we derive in this subsection offers insight into

its dependence on the design variables and parameters.

We first introduce the Lagrange multiplier µ ≥ 0, and then

write the Lagrangian (by neglecting the constraints λl ≥ 0 for

the moment) as

L(Λ, µ) =
L
∑

l=1

λl

γl
[Cθ +Cn]ll+

µ

(

Tr

{

(

C
−1

θ
+Nσ−2

v Λ−N2σ−4

v Λ
(

C
−1

n +Nσ−2

v Λ
)

−1

Λ
)

−1
}

− d̄

)

(12)

Taking the partial derivative of (12) with respect to λl (l =
1, . . . , L), we obtain

∂L(Λ, µ)

∂λl

= −µTr

{

(

C
−1

θ
+ diag

(

. . . ,
Nλl

σ2
v +Nσ2

nl
λl

, . . .

))

−2

diag

(

0, . . . , 0,
Nσ2

v

(σ2
v+Nσ2

nl
λl)2

, 0, . . . , 0

)}

+
1

γl
[Cθ+Cn]ll

(13)

where we used the fact that for A ≻ 0, we have dA−1

dt =
−A−1 dA

dt A
−1 in which t is an element of the matrix A.

Letting (13) equal zero, and reconsidering λl ≥ 0, it yields

the following set of implicit non-linear equations for l =
1, 2, . . . , L

λl =

[{
µσ2

vσ
−4
nl

N/γl[Cθ +Cn]ll
×

[(
C−1

θ + diag

(
. . . ,

Nλl

σ2
v+Nσ2

nl
λl

, . . .

))−2
]

ll

}1/2

− σ2
v

Nσ2
nl



+

(14)

Since Cθ is not diagonal, for an arbitrary Lagrange multiplier

µ, (14) can be solved using non-linear iterative numerical

methods, or computer solvers (e.g., fsolve in MATLAB).

These methods are typically faster than standard convex

solvers (e.g., CVX [39]) for solving SDP-type programming as

developed in (10). The optimal µ is determined such that the

MSE constraint in (P1) is satisfied with equality at the optimal

solution which can be proved by complementary slackness

theorem [37].

2) Approximate Analysis: We propose an approximate ap-

proach in order to solve {λl}Ll=1 when N is sufficiently large.

For this purpose, we first assume that λl > 0, ∀l. Hence, using

the matrix inversion lemma, we write the MSE in (8) as

MSE = Tr





(
C−1

θ +

(
Cn +

1

N
σ2
vΛ

−1

)−1
)−1



 .

Next, we expand the above MSE expression via Taylor series

as a function of 1
N around 1

N = 0, which yields

MSE = Tr
{
(C−1

θ +C−1
n )−1

}

+
1

N
Tr

{
(C−1

θ +C−1
n )−2diag

(
. . . ,

σ2
v

σ4
nl
λl

, . . .

)}
+O

(
1

N2

)
,

(15)

where the first term represents the MSE expression at 1
N = 0,

and the coefficient of 1/N in the second term represents the

first-order partial derivative of the MSE, with respect to 1/N ,

at 1/N = 0. Note that we have implicitly assumed that sensors

always amplify their observations with positive (non-zero)

gains, i.e., λl > 0. The reason for expanding the Taylor series

around 1/N = 0 is due to the massive MIMO framework with

a large number of antennas N , and when N is sufficiently

large, we can neglect the second and higher order terms in the

series.

Note that Cn = diag
(
σ2
n1
, . . . , σ2

nL

)
, and for brevity, we

define Q,(C−1
θ +C−1

n )−1. Then, by neglecting second-order

moments (in 1
N ) of (15) onwards, and plugging it back into

the constraint in (P1), we denote the approximate MSE by

M̃SE , Tr{Q}+ 1

N
Tr

{
Q2diag

(
. . . ,

σ2
v

σ4
nl
λl

, . . .

)}
. (16)

Now, we solve the following optimization problem for {λl}Ll=1

minimize
{λl>0}L

l=1

L∑

l=1

λl
1

γl
[Cθ +Cn]ll

subject to M̃SE ≤ d̄,

(P3)

which has the closed-form solution stated as follows.

6
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Theorem 1. The optimal solution to Problem (P3) is given by

λ⋆
l =

1

N




[Q2]
1/2
ll σ2

v

√
γl

σ2
nl

[Cθ+Cn]
1/2
ll

∑L
m=1

dβ
m[Cθ+Cn]

1/2
mm[Q2]1/2mm

σ2
nm

d̄−∑L
m=1[Q]mm


 .

(17)

Proof. The proof is given in Appendix A.

In Section VI, we will numerically illustrate that such an

approximate solution is nearly-optimal. By studying (17) in

Theorem 1, it can be observed that the total power consumed

by sensors decays with a factor proportional to 1/N , which

conforms with our finding in Remark 3. It should be noted

that since an approximation of MSE, i.e., M̃SE, is used in

the constraint of (P3), λl, ∀l, might not satisfy the exact MSE

by equality. In this case, we can easily rescale the resulting

λ⋆
l in (17) in order to satisfy the original MSE constraint by

equality.

B. Analysis of (P1): Uncorrelated Source

Here we assume that the elements of the source vector

θ are uncorrelated, such that the source covariance matrix

Cθ , diag(σ2
θ1
, . . . , σ2

θL
). In this case, the optimization

problem (P1) can be simplified into

minimize
{λl≥0}L

l=1

L∑

l=1

λl
1

γl
(σ2

θl + σ2
nl
)

subject to

L∑

l=1

1
1

σ2

θl

+ λl

σ2
nl

λl+σ2
v/N

≤ d̄

(P4)

The optimal solution for λl, l = 1, 2, . . . , L can be obtained

in closed-form analytically, and is stated as follows.

Theorem 2. Provided
σ2

θl

√
γl

(σ2

θl
+σ2

nl
)1/2

is ordered decreasingly in

l ∈ {1, . . . , L}, ∃ a unique M⋆ such that

M⋆ = max

{
M ∈ {1, . . . , L} :

σ2
θl

√
γl

(σ2
θl
+σ2

nl
)1/2

>

d̄−∑M
m=1

1
σ2

θm
+1/σ2

nm

−∑L
m=M+1 σ

2
θm

∑M
m=1

σ2

θm
dβ
m

(σ2

θm
+σ2

nm
)1/2





.

(18)

Then, the optimal solution is given by

λ⋆
l =

1

N




σ2

θl
σ2

v

√
γl

(σ2

θl
+σ2

nl
)3/2

∑M⋆

m=1

σ2

θm
dβ
m

(σ2

θm
+σ2

nm
)1/2

d̄−∑M⋆

m=1 1/[1/σ
2
θm

+ 1/σ2
nm

]−∑L
m=M⋆+1 σ

2
θm

− σ2
v

σ2
θl
+ σ2

nl

]
,

(19)

for l = 1, . . . ,M⋆, and λ⋆
l = 0 for l = M⋆+1, . . . , L. Further,

the amplitude of the optimal amplification gain for sensor l
becomes |α⋆

l | =
√
λ⋆
l /γl.

Proof. The proof follows by using KKT conditions, and from

similar steps as in [14, Example 2]. However, for the sake of

completeness, we give the details of the proof in Appendix B.

From Theorem 2, it can be also realized that the total power

consumed by all sensors decays with a factor proportional to

1/N whose decaying rate is determined by (19).

C. Analysis of (P2): Correlated Source

1) Exact Analysis: Similar to the analysis in Section IV-A1,

by introducing the Lagrange multiplier µ ≥ 0, we write the

Lagrangian as

L(Λ, µ)=µ

(
L∑

l=1

λl

γl
[Cθ +Cn]ll − P̄

)

+Tr

{(
C−1

θ +Nσ−2
v Λ−N2σ−4

v Λ
(
C−1

n +Nσ−2
v Λ

)−1
Λ
)−1}

.

(20)
Taking the partial derivative of (20) with respect to λl (l =
1, . . . , L), we obtain

∂L(Λ, µ)

∂λl

= −Tr

{

(

C
−1

θ
+ diag

(

. . . ,
Nλl

σ2
v +Nσ2

nl
λl

, . . .

))

−2

×

diag

(

0, . . . , 0,
Nσ2

v

(σ2
v+Nσ2

nl
λl)2

, 0, . . . , 0

)}

+
µ

γl
[Cθ+Cn]ll

(21)

and letting (21) equal zero, it yields (since λl ≥ 0)

λl =

[{
σ2
vσ

−4
nl

Nµ
γl

[Cθ +Cn]ll
×

[(
C−1

θ + diag

(
. . . ,

Nλl

σ2
v+Nσ2

nl
λl

, . . .

))−2
]

ll

}1/2

− σ2
v

Nσ2
nl



+

.

(22)

Finally, µ is determined in order to satisfy the power constraint

in (P2) with equality.

2) Approximate Analysis: Similar to the analysis in Sec-

tion IV-A2, we can derive approximate closed-form solution

for Problem (P2) when N is sufficiently large. To do so, we

follow the approximation of MSE in (15). Hence, the problem

can be shown to be simplified into

minimize
{λl>0}L

l=1

Tr

{
Q2diag

(
. . . ,

σ2
v

σ4
nl
λl

, . . .

)}

subject to

L∑

l=1

λl
1

γl
[Cθ +Cn]ll ≤ P̄ ,

(P5)

where Q = (C−1
θ +C−1

n )−1, Cn = diag(σ2
n1
, . . . , σ2

nL
) and

we have discarded Tr{Q} from M̃SE in (16), as it does not

depend on λl. We have the following result:

Theorem 3. The optimal solution to (P5) is given by

λ⋆
l =

P̄ [Q2]
1/2
ll

σ2
nl√
γl
[Cθ +Cn]

1/2
ll

∑
m

[Q2]
1/2
mmdβ

m[Cθ+Cn]
1/2
mm

σ2
nm

. (23)

Proof. The proof is omitted since it is analogous to the proof

of Theorem 1.

We have the following corollary regarding the MSE of the

optimal power allocations in (23).

7
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Corollary 1. As N → ∞, the MSE floor incurred by using

the optimal power allocation derived in (23) becomes

lim
N→∞

MSE = Tr
{(

C−1
θ +C−1

n

)−1
}
. (24)

Proof. Letting N → ∞ in (8) using the power allocations (23)

yields the result.

Remark 5. As suggested by Corollary 1, the MSE cannot

decay to zero as N → ∞. This is indeed expected since using

the favorable propagation condition, there exist N orthogonal

channels between the sensors and the FC, and it is well-known

(see, e.g., [11]) that the MSE for an orthogonal multiple access

channel cannot decay to zero as N → ∞.

D. Analysis of (P2): Uncorrelated Source

Now, we assume that the source vector θ is uncorrelated,

i.e., the source covariance matrix Cθ = diag(σ2
θ1
, . . . , σ2

θL
),

where we are able to derive closed-form solution. In this case,

the optimal solution to the sensor power allocation can be

found in closed-form as follows.

Theorem 4. Provided

√
γlσ

2

θl

(σ2

θl
+σ2

nl
)1/2

is ordered decreasingly in

l ∈ {1, . . . , L}, ∃ a unique M⋆ such that

M⋆ = max

{
M ∈ {1, . . . , L} :

(σ2
θl
+σ2

nl
)1/2

√
γlσ2

θl

<

NP̄/σ2
v +

∑M
m=1 d

β
m

∑M
m=1

σ2

θm
dβ
m

(σ2

θm
+σ2

nm
)1/2





.

(25)

Then, the optimal λl is given by

λ⋆
l =

1

N




σ2
vσ

2
θl

∑M⋆

m=1 d
2β
m

(σ2
θl
+

σ2
nl

)3/2
√
γl

∑M⋆

m=1

σ2

θm
dβ
m

(σ2

θm
+σ2

nm
)1/2

− σ2
v

σ2
θl
+ σ2

nl




+
P̄ σ2

θl

(σ2
θl
+

σ2
nl

)3/2
√
γl

∑M⋆

m=1

σ2

θm
dβ
m

(σ2

θm
+σ2

nm
)1/2

(26)

for l = 1, . . . ,M⋆, and λ⋆
l = 0 for l = M⋆+1, . . . , L. Further,

the amplitude of the optimal amplification gain for sensor l
becomes |α⋆

l | =
√
λ⋆
l /γl.

Proof. The proof is omitted since it is analogous to the proof

of Theorem 2.

Corollary 2. As N → ∞, the asymptotic MSE floor incurred

by using the optimal power allocation derived in (26) becomes

lim
N→∞

MSE =

L∑

l=1

1

1/σ2
θl
+ 1/σ2

nl

. (27)

Proof. First, it can be verified from (25) that as N → ∞,

M⋆ → L. Hence, ∀l, we obtain λl > 0. Then, we find the

limit of objective function as N → ∞, which yields (27).

Remark 6. We note that the expression in (27) coincides with

(24) when Cθ = diag(σ2
θ1
, . . . , σ2

θL
). As can be observed

from (24), as N → ∞, the MSE floor does not depend on

channel parameters, power allocation and noise at the FC,

rather depends on source and sensor noise parameters.

V. EXTENSIONS TO CORRELATED NOISE AND/OR

GENERIC CHANNEL

Up to this point, our analysis and design have been built

upon the assumption of uncorrelated channels and FC noise.

In massive MIMO, large arrays of antennas are deployed in

a fixed volume which may increase spatial correlation among

antennas and correlation among thermal noise components at

the FC. Therefore, in this section, we include the assumption

of correlated noise, i.e., non-diagonal Cv, and correlated

channels (the columns of the channel matrix H are correlated)

into our analysis.

A. Correlated Noise at FC

First, we consider the case of correlated noise and state the

following result. Let the covariance matrix of the noise at the

FC be denoted by Cv. Then, recalling that H = GΓ1/2, as

N → ∞, then using [40, Theorem 3.4] and [40, Theorem 3.7]

we can show that

HHC−1
v H

a
= Tr{C−1

v }Γ, (28)

where Γ is a diagonal matrix containing the attenuation

coefficients γl (cf. Section II).

It is interesting to investigate analytically how noise cor-

relation at the FC, and in particular Cv , affects the perfor-

mance. Let us first consider the power optimization problem

subject to an MSE constraint. Given the MSE expression

in (5), and applying the matrix inversion lemma on Cw,

we can then exploit (28) in order to find the asymptotic

expression (in N ) for the MSE. Next, we use a variable

change λ̃l , Tr{C−1
v }|αl|2γl, which yields the following

optimization problem for λ̃l, ∀l ∈ {1, . . . , L},

minimize
{λ̃l≥0}L

l=1

L∑

l=1

1

Tr{C−1
v }

λ̃l

γl
[Cθ +Cn]ll

subject to Tr

{(
C−1

θ + Λ̃− Λ̃(C−1
n + Λ̃)−1Λ̃

)−1
}

≤ d̄,

(29)

where Λ̃ , diag(λ̃1. . . . , λ̃L).
Note that the constant 1

Tr{C−1

v } can be pulled out of the

optimization problem since it is independent of the variables

λl. The solution to the resulting optimization problem is

therefore independent of the covariance matrix Cv due to

the same argument as used in Remark 3. This leads to the

following important conclusion:

Remark 7. Through (29) one can compare the total optimal

power associated with the correlated noise scenario and

that associated with the uncorrelated noise scenario. For

this purpose, if one assumes that in the correlated case the

diagonal elements of the matrix remain the same but the off-

diagonal elements become non-zero (this type of correlation

structure is used for example in the exponential model [41]),

then based on [42, theorem 1.2], it can be shown that

Tr{C−1
v } >

∑N
i=1 1/[Cv]ii as long as Cv is positive definite.

Hence, by studying the objective function in (29), it can be

observed that the total optimal power Ptot decreases in the

presence of noise correlation at the FC. Similar analysis can

be carried out to study the impact of noise correlation on MSE.

8
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In this case, it is straightforward to see that, using the same

change of variable to λ̃l, the available total power budget P̄
will be transformed into Tr{C−1

v }P̄ which affects the optimal

power allocations, and as a result, noise correlation would

improve the optimal MSE as well.

B. Generic Channel Model

Now, we study a generic MIMO channel. We let G =
[g1 g2 . . . gL], in the formulation introduced in (2), be a

random matrix with columns gl = UlΣ
1/2
l g̃l ∈ CN×1, where,

∀l, Ul is a N × r (with N ≥ r) unitary eigenvector matrix,

and Σl is a r× r diagonal eigenvalue matrix including r non-

zero eigenvalues. Further, the entries of g̃l ∈ Cr×1 are i.i.d.

random variables drawn from CN (0, 1). Hence, we denote

the covariance matrix associated with the lth column of G

by Cl , E[glg
H
l ] = UlΣlU

H
l ∈ CN×N . This correlation

model is used for example in [43], [44]. We also note that the

transmit-side (sensor-side) channel correlation, or correlation

among the rows of G is reasonably neglected due to the

favorable propagation condition. That is to say, the transmit-

side channels are decorrelated using reasonably large antenna

arrays at the FC (see, e.g., [45], [46]) and sufficient spatial

sensor separation.

We will make the assumption, as in [45], [47], that Tr{Cl}
scales with N . However, Cl can have any arbitrary structure,

thus accommodating generic spatial propagation environment

and arbitrary geometry. This assumption reflects that an

increase in the number of antennas N corresponds to an

increased number of degrees of freedom (i.e., richness of

scattering), as a consequence of improved spatial resolution

and array aperture. Clearly, the aforementioned condition

implies that the rank of Cl should grow linearly with N .

Of course, this rank scaling law includes both the cases of

full rank (r = N ) and rank-deficient channels (r = ρN ,

where 0 < ρ < 1), where the latter case might happen due to

insufficient richness of scattering for large arrays [45].

In the case of a generic MIMO channel, we can show the

following asymptotic result using the results in [40, Theorem

3.4] and [40, Theorem 3.7]. Let Cl denote the channel

covariance matrix between the lth sensor and the FC with N
antennas. Then, provided Tr{Cl} scales with N , as N → ∞,

it follows that

HHH
a
= diag (Tr{C1},Tr{C2}, . . . ,Tr{CL})Γ. (30)

Remark 8. In the correlated channel scenario, one can con-

sider diag (Tr{C1},Tr{C2}, . . . ,Tr{CL})Γ as an asymp-

totic (in N ) approximation for HHH in the MSE expression

(5). Therefore, since HHH is diagonalized, similar analysis

to the uncorrelated channel case can be carried out to derive

optimal sensor power allocations. For instance, by comparing

(30) with (7), the closed-form optimal power allocations in

(17), (19), (23) and (26) are modified by multiplying the

coefficients γl, by 1
NTr{Cl}, ∀l.

Let us now consider a special case, where ∀l, Cl = Cg, i.e.,

all channel covariance matrices are assumed to be equivalent.

Using a change of variable λ̃l , Tr{Cg}|αl|2γl/σ2
v and

defining Λ̃ , diag(λ̃1, . . . , λ̃L), carried out in (29), the

optimization problem (P1) becomes

minimize
{λ̃l≥0}L

l=1

L∑

l=1

σ2
v

Tr{Cg}
λ̃l

γl
[Cθ +Cn]ll

subject to Tr

{(
C−1

θ + Λ̃− Λ̃(C−1
n + Λ̃)−1Λ̃

)−1
}

≤ d̄,

(31)

which indicates that the optimization can be solved regardless

of the covariance matrix Cg, however, the value at the optimal

point would be inversely proportional to Tr{Cg}.

C. Generic Channel and Noise

In the case that both channel and noise correlations are

present, the above results can be constructed to form the

following general result which can be followed by using [40,

Theorem 3.4] and [40, Theorem 3.7]. Let Cl denote the

channel covariance matrix between the lth sensor and the FC

with N antennas, and let Cv be the noise covariance matrix

at the FC. Then, provided Tr{Cl} scales with N , as N → ∞,

it follows that

HHC−1
v H

a
= diag

(
Tr{C−1

v C1}, . . . ,Tr{C−1
v CL}

)
Γ.

(32)

D. Imperfect Channel Estimation

In practice, the knowledge of the state of the communi-

cation channel is very crucial in order to obtain promising

performance gains of MIMO communication systems. For

this purpose, channel gains need to be estimated, using, e.g.,

training sequences/pilot signals at the receiver or transmitter

and fed back to where this information is needed. The channel

gains are, therefore, subject to errors or imprecision, such as

estimation error, noise or quantization error, which need to be

considered throughout the design procedure.

Let us assume that the estimated channel matrix be modeled

as Ĥ = H + E, where H is the nominal channel matrix,

and E = [
√
ǫ1e

⊤
1

√
ǫ2e

⊤
2 . . .

√
ǫNe⊤N ]⊤ ∈ CN×L be the error

matrix, where ei ∈ C1×L (i = 1, . . . , N ) is a vector accounts

for the error from the channels between the L sensors and

the ith antenna at the FC. Furthermore, we assume that the

error matrix E is independent of H, and each element in ei
is drawn from CN (0, 1). Thus, ǫi ≥ 0 (i = 1, . . . , N ) is a

constant that denotes the variance of the error vector ei.

In this scenario, we need to adjust the MSE in (6) into the

case where channel estimation error exists in order to find the

optimal power allocations. We have

ĤHĤ = (H+E)H (H+E)

a
= NΓ+

(
N∑

i=1

ǫi

)
IL,

(33)

where the last asymptotic equality follows by the fact that

EHE = ÊHdiag(ǫ1, . . . , ǫN)Ê, where Ê , [e⊤1 . . .e⊤N ]⊤, and

from the favorable propagation condition, as N → ∞.

Letting λ̂l , (γl + 1
N

∑N
i=1 ǫi)|α̂l|2, where α̂l (l ∈

{1, . . . , L}) denotes the lth sensor amplification factor in

the case of imperfect channel estimates, and defining Λ̂ ,

9



1053-587X (c) 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSP.2016.2523459, IEEE
Transactions on Signal Processing

diag(λ̂1, . . . , λ̂L), the MSE in (6) can be asymptotically

approximated as

MSE
a
= Tr

{(
C−1

θ +Nσ−2
v Λ̂

−N2σ−4
v Λ̂

(
C−1

n +Nσ−2
v Λ̂

)−1

Λ̂

)−1
}
.

(34)

Moreover, the total power, considering channel estimation

error, is stated as

Ptot =

L∑

l=1

λ̂l[Cθ +Cn]ll

γl +
1
N

∑N
i=1 ǫi

. (35)

Using the MSE and total power formulations in (34) and

(35), respectively, the design procedure for optimal power

allocation can be pursued in a similar manner to those in

Section IV. We finalize this section with the following remark.

Remark 9. Note that when ǫi (i = 1, . . . , N ) is small, then

γl +
1
N

∑N
i=1 ǫi ≈ γl. Hence, the optimal power allocation

in the case of imperfect channel estimation would be very

close to that of the perfect channel estimation case. On the

other hand, when ǫi is large, such that γl gets dominated by
1
N

∑N
i=1 ǫi, then the optimal λ̂⋆

l incurred by minimizing the

total power subject to MSE constraint would not depend on ǫi
anymore (since 1

N

∑N
i=1 ǫi is independent of the index l and

can be pulled out of the objective function). As a result, the

total nominal power consumed by sensors would not depend

on ǫi, and the performance saturates as ǫi increases.

It is also possible to show that the optimal total power,

under the MSE constraint, would decrease proportionally with

1/N . First note that if ǫi (i = 1, . . . , N ) is a random

variable with a finite mean, then, for sufficiently large N ,
1
N

∑N
i=1 ǫi → E[ǫi]. This shows that the denominator in

(35) becomes a constant (i.e., independent of N ), and as

a result the optimal total power decreases proportionally

with 1/N . Analogously, if ǫi is deterministic and uniformly

bounded (i.e., 0 ≤ ǫi ≤ ǫmax), then it clearly follows that
1
N

∑N
i=1 ǫi = O(1). This shows that the optimal total power

decreases proportional with 1/N in this case also. Later, in

Section VI, we compare the scaling laws (in 1/N ) for the

two scenarios of perfect and imperfect channel estimation via

numerical simulations.

VI. NUMERICAL SIMULATIONS

In this section, we quantify the performance of the proposed

optimization methods. We basically evaluate the total power,

by solving the power allocation problem (P1), or MSE, by

solving the power allocation problem (P2).

A. Numerical Setups

In all simulation studies, we assume L = 15 number

of sensors. We also assume a homogenous scenario, where

∀l ∈ {1, . . . , L}, the source-to-sensor noise variances σ2
nl

=
10−3 W. Further, σ2

v = 10−6 W. Unless otherwise stated,

we assume that the source is uncorrelated, and the variance

of source entries is chosen the same and equal to σ2
θl

= 1.

We also set the pathloss exponent to 2β = 2 (a free-

space propagation scenario), and sensor-to-FC distances dl are

uniformly distributed ranging from 20 to 70 meters.

B. Numerical Results

In Figure 3, we plot total power consumed by sensors as a

function of number of antennas N (varying from 50 to 200 at a

step size of 10) using the optimized power allocation (19) and

uniform power allocation, for varying distortion threshold d̄.

For the uniform power allocation, we assume that all sensor

nodes consume equal power, i.e., |αl|2[Cθ + Cn]ll are the

same ∀l. It can be observed that the total power in dB-log

scale decays linearly in N for both methods. In all setups,

the optimal power allocation outperforms the uniform power

allocation.
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Fig. 3. Total power consumed by sensors as a function of number of antennas
N for different values of distortion threshold d̄ using optimized design and
uniform power allocation.

Next, in Figure 4, we plot the MSE as a function of number

of antennas N using the optimized power allocation (26) and

uniform power allocation. As observed, the optimal power

allocation gives a lower MSE compared to the uniform power

allocation. Also, as we provide a higher power to sensors

(corresponding to higher P̄ ), the resulting power allocation

leads to a lower MSE. We note that as N → ∞, all the curves,

irrespective of optimality and power levels P̄ , approach to an

MSE floor of 0.015 which is determined from (27).

Now, we study the correlated source case. We consider

the exponential covariance matrix model [41] for the source,

where each entry at row i and column j of the source

covariance matrix Cθ is chosen as ρ
|i−j|
θ in which 0 ≤ ρθ ≤ 1

is known as correlation coefficient. In Figure 5, MSE is plotted

as a function of number of antennas N for different values

of the correlation coefficient ρθ and for fixed P̄ = 0.1W .

The curves in Figure 5 are associated with the exact analysis

(by solving (P2) using CVX solver [39] or equivalently by

solving the KKT conditions in (22)) shown by solid line,

and the approximate analysis (23) shown by dashed line,

respectively. We observe that the approximate solution is tight

in all numerical setups. As can be also expected, higher source

correlation leads to lower MSE. This is due to the fact that

each source entry consists of information from other entries

as a result of correlation which yields to a more accurate

estimation. We note that each curve, associated with a different

10
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Fig. 4. MSE as a function of number of antennas N at the FC for different
values of power threshold P̄ using optimized design and uniform power
allocation.

ρθ, approaches to an MSE floor determined by (24). However,

since in this setting C−1
θ is dominated by C−1

n , the curves

reach to a more or less the same MSE floor of 0.015 as

N → ∞.
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Fig. 5. MSE as a function of number of antennas N at the FC for different
values of correlation parameter ρθ .

In Figure 6, we demonstrate the effect of channel correlation

on total power as a function of N using optimized (by solving

(31)) and uniform power allocations. We set d̄ = 0.05, and also

assume that the channel covariance matrices are the same,

i.e., Cl , Cg, ∀l. We study two cases (as discussed in

Section V-B):

1) Correlated channel, where r = rank(Cg) = ⌊N/2⌋. We

generate the covariance matrix as Cg =UΣUH , where

Σ is a r × r diagonal matrix whose diagonal elements

are chosen as eigenvalues of the exponential correlation

model with correlation coefficient 0.7, and the columns

of U as r eigenvectors associated with the eigenvalues.

2) Uncorrelated channel, where Cg = IN .
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Fig. 6. Total power consumption as a function of number of antennas N at the
FC for different channel correlation scenarios using optimized and uniform
power allocations.

We observe from the curves in Figure 6 that the channel

correlation degrades the performance as discussed earlier in

Section V-B for both power allocation methods. It can be easily

verified that, in this setting, if rank(Cg) = 1
cN for some

constant c > 1, then the total power increases by a factor c
(cf. (31)).

In the concept of MIMO channel capacity, it has been also

shown in [48] that a correlated channel provides a smaller

capacity due to less degrees of freedom with respect to

uncorrelated channels. It should be also mentioned if the

covariance matrix is full-rank, i.e., r = N , and generated

under the exponential model, then the performance would be

equivalent to the uncorrelated case since Tr{Cg} = N .

In our final experiments, we evaluate the performance of

the optimized design when channel estimation is erroneous.

In order to study how the channel estimation error affects

the performance, we solve the optimization problems cor-

responding to the design criteria (34) and (35), and then

insert their solutions (including the error variance ǫi) into

the original design criteria (8) and (9). In Figure 7, using a

double y−axis, we plot the effect of mean of error variance

E[ǫi] (i = 1, . . . , N ) both on the total power and on the

MSE. We randomly generate ǫi, ∀i, according to a non-

negative uniform distribution whose mean varies from 0 (no

estimation error) to 0.25 with a step size 0.01. We also set

N = 150, P̄ = 0.01 W, and d̄ = 0.05. As can be seen

from Figure 7, total power consumption and MSE are quite

sensitive to the channel estimation error, and by increasing ǫ,
power consumption increases and MSE degrades. Note that the

curve corresponding to the total-power minimization problem

(dotted line) finally saturates due to the reasons discussed in

Remark 9.

Finally, in Figure 8, we compare the scaling laws for the

optimal total power consumption as N increases in three cases:

when channel estimation is perfect, i.e., ǫi = 0, and when

channel estimation is imperfect, where we set E[ǫi] = 0.05

11
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Fig. 7. MSE and total power consumption as a function of mean channel
estimation error E[ǫi].

and E[ǫi] = 0.1. The remaining simulation setups are kept

as the same as those of the previous study. As can be seen,

in these cases, the total power (as discussed in Remark 9)

decays proportional with 1/N . However, in the imperfect

channel estimation scenario, the total power consumption

would increase by almost 0.5 dB compared to the perfect

channel estimation scenario. The small gap between the two

cases E[ǫi] = 0.05 and E[ǫi] = 0.1, as observed in Figure 8,

can be also explained from the saturation of the “total power”

curves in Figure 7.
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Fig. 8. Total power consumption as a function number of antennas N for
perfect and imperfect channel estimation scenarios.

VII. CONCLUSIONS

We have studied a decentralized multi-sensor estimation

estimation problem, where L sensor nodes amplify their obser-

vations and forward them over fading MACs to a FC equipped

with large arrays of antennas, denoted by N ≫ L. Under

this condition, we were able to obtain analytical results for

the MSE under the favorable propagation condition. We have

optimized the amplification factor at each sensor node with the

objectives of minimizing total power consumption or MSE

for source estimation, under a maximum distortion or total

power constraint, respectively. Our analysis revealed that as N
increases, the optimal total power consumption of the sensors

decay with a factor proportional to 1/N in order to satisfy a

targeted MSE. Numerical studies have demonstrated the effi-

ciency of the proposed optimal power allocation compared to

uniform power allocation. We have also investigated practical

scenarios, where channel gains or additive channel noise are

correlated, and further, where channel gains are subject to

estimation error. For instance, we analytically showed that un-

der rank-deficient channel correlation the performance cannot

be improved, and numerically quantified such performance

degradation. In these cases, we have numerically illustrated

that the MSE and power are adversely affected by increasing

correlation and channel estimation error.

APPENDIX A

PROOF OF THEOREM 1

It can be easily shown that the objective and the constraint

in (P3) are both convex, therefore, it can be solved by the

standard KKT condition technique. Introducing the Lagrange

multiplier µ ≥ 0, the Lagrangian can be written as

L({λl}
L

l=1, µ) =

L
∑

l=1

λl

1

γl
[Cθ +Cn]ll

+ µ

(

L
∑

l=1

[Q]ll +
1

N

L
∑

l=1

σ2

v

λlσ4
nl

[Q2]ll − d̄

)

.

Taking the derivative of the Lagrangian with respect to λl > 0,

and letting it equal zero, we have

λl =

√
µ
N

σv

σ2
nl

[Q2]
1/2
ll

[Cθ +Cn]
1/2
ll /

√
γl
. (36)

Then, plugging (36) back into the constraint in (P3), the

Lagrange multiplier µ is determined as

µ =
1

N




∑
l
σ2

v

√
γl

σ2
nl

[Q2]
1/2
ll [Cθ +Cn]

1/2
ll

d̄−∑l[Q]ll




2

. (37)

Finally, inserting (37) back into (36), the optimal λ⋆
l is given

by (17).

APPENDIX B

PROOF OF THEOREM 2

Using the KKT condition technique, and introducing the

Lagrange multiplier µ ≥ 0, the Lagrangian (by neglecting the

constraints λl ≥ 0 for the moment) can be written as

L({λl}
L

l=1, µ)=
L
∑

l=1

λl

1

γl
(σ2

θl
+σ2

nl
)+µ





L
∑

l=1

σ2

θl
σ2

nl
λl+

σ
2

θl
σ
2

v

N

(σ2

θl
+σ2

nl
)λl+

σ2
v

N

−d̄



 .
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Taking the first derivative of the Lagrangian L({λl}Ll=1, µ)
with respect to λl, and letting it equal zero, we obtain (also

noting that λl ≥ 0)

λl =

[√
µ
N σ2

θl
σv

√
γl

(σ2
θl
+ σ2

nl
)3/2

− σ2
v

N(σ2
θl
+ σ2

nl
)

]+
. (38)

Now, we define zl ,
σ2

θl

√
γl

(σ2

θl
+σ2

nl
)1/2

− σv√
Nµ

such that λl =

σv

√
µ/N

σ2

θl
+σ2

nl

[zl]
+. Hence, since z1 ≥ z2 ≥ . . . ≥ zL (based on the

statement in Theorem 2), we assume that the first M⋆ values

of zl, l = 1, . . . , L, are positive, and the remaining L −M⋆

values are zero, where M⋆ ≤ L. Due to the above assumption,

M⋆ is unique, since the threshold σv√
Nµ

for comparing zl only

depends on N , σv and µ, which are constant for a given

system. Plugging (38) back into the constraint in (P4), we

determine µ, and inserting back into (38) yields the optimal

values λ⋆
l in (19). Now, in order to determine M⋆, we let it

be equal to the maximum integer in the interval [1, L] such

that zl > 0, which yields (18).
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