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Massive MIMO Channel-Aware Decision Fusion
Domenico Ciuonzo, Member, IEEE, Pierluigi Salvo Rossi, Senior Member, IEEE,

and Subhrakanti Dey, Senior Member, IEEE

Abstract—In this paper we provide a study of channel-aware
decision fusion (DF) over a “virtual” multiple-input multiple-
output (MIMO) channel in the large-array regime at the DF
center (DFC). The considered scenario takes into account channel
estimation and inhomogeneous large-scale fading between the
sensors and the DFC. The aim is the development of (widely)
linear fusion rules, as opposed to the unsuitable optimum log-
likelihood ratio (LLR). The proposed rules can effectively benefit
from performance improvement via a large-array, differently
from existing sub-optimal alternatives. Performance evaluation,
along with theoretical achievable performance and complexity
analysis, is presented. Simulation results are provided to confirm
the findings. Analogies and differences with uplink communica-
tion in a multi-user (massive) MIMO scenario are underlined.

Index Terms—Decision fusion, distributed detection, large-
scale MIMO, wireless sensor networks.

I. INTRODUCTION

A. Motivation

DECISION Fusion (DF) in a wireless sensor network
(WSN) consists in transmitting local decisions about an

observed phenomenon from sensors to a DF center (DFC)
for a global decision, with the intent of surveillance and/or
situation awareness purposes [2]. Typically all the studies
had been focused on a parallel access channels (PACs) with
instantaneous or statistical channel-state information (CSI),
although some recent works extended to the case of multiple
access channels (MACs).

Recently, DF over MACs is becoming increasingly at-
tractive, since it exploits both the interfering nature of the
broadcast wireless medium (for spectral-efficiency purposes)
and the correlated nature of decisions, all regarding the same
unknown event being observed. Also, deep fading scenarios
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are typically overcome with the use of multiple antennas at
the DFC, thus determining a “virtual” multiple-input multiple-
output (MIMO) channel. The latter architectural choice only
demands further complexity at the DFC side and does not
affect simplicity of sensors implementation. Indeed, the main
difficulty consists in the design of efficient (in terms of
complexity and performance) fusion rules at the DFC, since
complexity of the optimal fusion rule explodes because of the
interference created by the simultaneous transmission of each
sensor decision. We remark that the mentioned complexity
increase is only due to the MAC choice and does not depend
significantly on the number of DFC antennas.

Massive MIMO is an emerging technology for communi-
cation applications where antenna arrays with a few hundred
elements are placed at base stations, serving many tens of
terminals simultaneously [3], [4]. Its potential benefits consist
in: (i) significant increase of the capacity and the radiated
energy efficiency, (ii) reduced latency through deep-fading
mitigation, (iii) simplification of the multiple-access layer and
(iv) increased robustness to unintended man-made interference
and to intentional jamming [4]. From a mathematical point of
view, there are three main advantages in using a large antenna
array. Firstly, the effect of small-scale fading is averaged out.
Secondly, the random channel vectors between the users and
the base station become pairwise orthogonal as the array size
grows. Finally, massive MIMO systems allow for reduction of
transmitted energy/power.

In our opinion, the advantages offered by massive MIMO
may be beneficial in the context of WSNs, especially for DF
over MACs. The DFC may be equipped with a large antenna
array, thus giving rise to a “virtual” massive MIMO, similarly
to the uplink of a multiuser MIMO communication. The
proposed architecture, other than enjoying increased spectral
efficiency, will mitigate severe energy constraints given by
inexpensive sensor nodes (thus providing extended battery life)
and facilitate low-complexity (but near-optimal) fusion rules
design at the DFC. It is worth remarking that the proposed
study relies on the assumption that the number of antennas
at the DFC is much larger than the number of transmitting
sensors. The latter setup may be represented, analogously as
for uplink communications, by a WSNs with many sensors
reporting their decision to a DFC equipped with much more
antennas. Alternatively, this may be also verified in the case
of massively deployed sensor nodes, through the use of
appropriate sensor subset selection approaches [5].

B. Related Literature on Decision Fusion

Negative characteristics of the optimal fusion rule, i.e. the
log-likelihood ratio (LLR) test, such as numerical instability
and strong requirements on system knowledge, motivated the
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analysis of sub-optimal alternatives such as maximum ratio
combining (MRC), equal gain combining and Chair-Varshney
maximum likelihood over PACs [2], [6]. Max-Log rule has
been studied in [7] and shown to outperform other sub-
optimal rules though exhibiting higher requirements on system
knowledge.

Distributed detection over MACs was first studied in [8],
where perfect compensation of the fading coefficients is as-
sumed for each sensor. Non-coherent modulation and censor-
ing over PACs and MACs were analyzed in [9] with emphasis
on processing gain and combining loss. The same scenario
was studied in [10], focusing on the error exponents (obtained
through the large deviation principle) and the design of energy-
efficient modulations for Rayleigh and Rice fading. Optimality
of received-energy statistic in Rayleigh fading scenario was
demonstrated for diversity MACs with non-identical sensors
in [11]. Efficient DF over MACs only with knowledge of
the instantaneous channel gains and with the help of power-
control and phase-shifting techniques was studied in [12].
Techniques borrowed from direct-sequence spread-spectrum
systems were combined with on-off keying (OOK) modulation
and censoring for DF in scenarios with statistical CSI [13].

DF over a (virtual) MIMO was first studied in [14], with
focus on power-allocation design based on instantaneous CSI,
under the framework of J-divergence. Distributed detection
with ultra-wideband sensors over MAC was then studied in
[15]. The same model was adopted to study data fusion over
MIMO channels with amplify-and-forward sensors in [16],
[17]. A recent theoretical study on data fusion with amplify
and forward sensors and a large-array at the DFC is presented
in [18]. Design of several sub-optimal fusion rules for the
MIMO scenario was proposed in [19] and a theoretical study
on MRC was presented in [20]. Various sub-optimal fusion
rules (with reduced system knowledge) for channel-aware DF
in the MIMO scenario with instantaneous CSI have been
proposed in [19], where “decode-and-fuse” and “decode-then-
fuse” approaches are compared through simulation results in
the case of few antennas at the DFC. It is worth noticing that
in MIMO-DF scenario the LLR is not a viable solution, since
it suffers from the exponential growth of the computational
complexity with respect to (w.r.t.) the number of sensors and
a strong requirement on system knowledge.

C. Related Literature on Massive MIMO

The pioneering work of Marzetta [21] showed that the use
of unlimited number of antennas at the base station provides
novel interesting phenomena in the context of cellular systems:
the detrimental effects of uncorrelated noise and fast fading
vanish, the throughput is independent of the size of the cells,
the spectral efficiency is independent of the bandwidth, the
required transmitted energy per bit decreases, and the simplest
sort of precoders and detectors are permitted. Additionally, a
novel phenomenon due to inter-cell interference (namely pilot
contamination) emerges, and many works have focused on
such an issue [22].

In the context of very large size MIMO systems, unified
performance analysis for both uplink and downlink of non-

cooperative multi-cell systems with linear precoders and de-
tectors is proposed in [23], where the loss of realistic systems
due to finite number of antennas w.r.t. asymptotic theoretical
performance is evaluated. Performance of linear detectors
for the uplink in presence of imperfect CSI is analyzed in
[24] focusing on the tradeoff between energy and spectral
efficiency, while analytic results for the data rate, symbol error
rate and outage probability (in the case of perfect CSI and
zero-forcing (ZF) receiver) are derived both for single- and
multi-cell systems [25], [26]. A dual analysis for the dowlink
in the case of conjugate and ZF beamformers is given in [27].

D. Main Results and Paper Organization

The main contributions of this manuscript are related to
channel-aware DF over MIMO with instantaneous CSI and
more specifically are:
• The large-array regime at the DFC is analyzed, to the

best of our knowledge, for the first time. The aim is
the exploitation of the (approximate) orthogonality of
interfering sensors decisions observed from a DFC which
employs a massive array, with the intent of its process-
ing simplification. Differently from [19], the considered
model takes also into account path loss, shadowing and
uncertainty arising from estimated CSI;

• Sub-optimal fusion rules with reduced complexity are
derived, consisting of (i) linear-filters plus a soft/hard in-
put fusion scheme and (ii) deflection-maximizer widely-
linear (WL) rules, which are compared to existing alter-
natives, namely the standard MRC. We underline that the
derivation of the first class of rules heavily relies on the
advantages offered by large-arrays, and exploiting spe-
cific conditions (i.e. the favorable propagation discussed
in Sec. II-C) and approximations we are able to obtain
a result resembling [7] in a different context. Also, a
modified “large-MIMO” version of MRC is developed,
which can truly exploit linear SNR increase with array
size;

• Closed-form performance, in terms of system false-alarm
and detection probabilities, is derived when a large-
array is employed (analogously as in [24]), through the
saddlepoint approximation for linear filters and exactly
for WL rules and (modified) MRC. The proposed anal-
ysis underlines the “energy efficiency” of the present
approach: indeed, the transmitted energy of each sensor
can be reduced by a factor given by the number of
antennas in the perfect CSI case (resp. the square root
of the number of antennas, in the estimated CSI case)
without leading to zero performance. This holds true even
in the case of (linear) sub-optimal fusion rules;

• A detailed complexity analysis is presented for all the pre-
sented rules, along with efficient approximations which
(possibly) avoid time-consuming matrix inversion, fol-
lowing the same lines of research as in [28], [29];

• Extensive simulation studies are performed to compare
the considered rules and verify the theoretical findings.
Also, analogies with the uplink in multi-user massive
MIMO scenario are highlighted throughout the paper.
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Figure 1: DF model in presence of a (virtual) MIMO channel.

The manuscript is organized as follows: Sec. II introduces the
system model; in Sec. III we derive the proposed fusion rules;
Sec. IV presents a corresponding theoretical analysis while
Sec. V contains a discussion on computational complexity;
the results are verified in Sec. VI via simulations; finally,
in Sec. VII we draw some concluding remarks; proofs and
derivations are deferred to the appendices.

II. SYSTEM MODEL

A. WSN model

In this section we briefly describe the system model1,
illustrated in Fig. 1. We consider a decentralized binary
hypothesis test, where K sensors are used to discriminate
between the hypotheses of the set H , {H0,H1}. For
example H0 and H1 may represent the absence and the
presence of a specific target of interest, respectively. The kth
sensor, k ∈ K , {1, 2, . . . ,K}, takes a binary local decision
bk ∈ H about the observed phenomenon on the basis of its
own measurements. Until otherwise stated, here we do not
make any conditional (given Hi ∈ H) mutual independence
assumption on bk. Each decision bk is mapped to a symbol
xk ∈ X = {−1,+1} representing a binary phase-shift keying
(BPSK) modulation2: without loss of generality (w.l.o.g.) we
assume that bk = Hi maps into xk = (2i − 1), i ∈ {0, 1}.
The quality of the kth sensor decisions is characterized by
the conditional probabilities P (xk|Hi). More specifically, we

1Notation - Lower-case (resp. Upper-case) bold letters denote vectors (resp.
matrices), with an (resp. an,m) being the nth (resp. the (n,m)th) element
of a (resp. A); upper-case calligraphic letters denote finite sets, with AK

representing the k-ary Cartesian power of A; ON×K (resp. IN ) denotes the
N ×K (resp. N × N ) null (resp. identity) matrix; 0N (resp. 1N ) denotes
the null (resp. ones) vector of length N ; E{·}, var{·}, (·)t, (·)†, < (·), =(·)
and ‖·‖ denote expectation, variance, transpose, conjugate transpose, real part,
imaginary part and Euclidean norm operators, respectively; diag(A) denotes
the diagonal matrix extracted from A; a (resp. A) denotes the augmented
vector (resp. matrix) of a (resp. A), that is a ,

[
at a†

]t (resp. A ,[
At A†

]t); P (·) and p(·) denote probability mass functions (pmf) and
probability density functions (pdf), while P (·|·) and p(·|·) their corresponding
conditional counterparts; Σx (resp. Σ̄x) denotes the covariance (resp. the
complementary covariance) matrix of the complex-valued random vector x;
NC(µ,Σ) (resp. N (µ,Σ)) denotes a proper complex (resp. real) normal
distribution with mean vector µ and covariance matrix Σ, while NU(·) and
Q(·) denote the pdf and the complementary cumulative distribution function
of a standard normal random variable; finally the symbols ∝, →, d→ and ∼
(resp. a∼) mean “proportional to”, “tends to”, “tends in distribution to” and
“distributed as” (resp. “approximately distributed as”), respectively.

2In the case of an absence/presence task, whereH0 is much more probable,
OOK can be employed for energy-efficiency purposes. Hereinafter we will
only consider BPSK; the extension of the presented results to OOK will be
object of future work.

denote PD,k , P (xk = 1|H1) and PF,k , P (xk = 1|H0)
the probability of detection and false alarm of the kth sensor,
respectively.

Sensors communicate with a DFC equipped with N receive
antennas over a wireless flat-fading MAC in order to exploit
diversity and combat signal attenuation due to small-scale
fading; this setup determines a distributed or “virtual” MIMO
channel [14], [19]. A large-array configuration is considered
in this paper, that is N � K; nonetheless we will emphasize
the results which still apply in the generic MIMO-DF setup.
Also, perfect synchronization3, as in [8], [11], [14], [19], is
assumed at the DFC.

We denote: yn the signal at the nth receive antenna of the
DFC after matched filtering and sampling; gn,k the fading
coefficient between the kth sensor and the nth receive antenna
of the DFC; wn the additive white Gaussian noise at the nth
receive antenna of the DFC. The vector model at the DFC is:

y =
√
ρGx+w (1)

where y ∈ CN , G ∈ CN×K , x ∈ XK , w ∼
NC(0N , σ

2
wIN ) are the received-signal vector, the channel

matrix, the transmitted-signal vector and the noise vector,
respectively. In Eq. (1) the constant ρ is used to control the
energy spent from the generic sensor during the reporting
phase. The matrix G models independent fast fading, geo-
metric attenuation and log-normal shadow fading. The generic
coefficient gn,k is then expressed as:

gn,k =
√
βk hn,k, n = 1, . . . , N (2)

where the known (since it is assumed constant over many co-
herence intervals) term

√
βk models the geometric attenuation

and shadow fading4 and hn,k denotes the fast fading coefficient
between the kth sensor and the nth receive antenna. All
the coefficients hn,k are assumed independent and identically
distributed (i.i.d.) random variables, with hn,k ∼ NC(0, 1).
Based on these assumptions we have

G = HD1/2, (3)

with H ∈ CN×K denoting the matrix of fast fading coeffi-
cients and D ∈ CK×K a diagonal matrix where dk,k = βk.

B. Channel training and estimation

We consider here the general case where the DFC has
available estimated instantaneous CSI. We assume that a part
of the coherence interval is used for channel training. Let be
τ ∈ N the number of symbols used as pilots and (τc − τ)
symbols are used for DF task, where τc is the number of
symbols within the channel coherence interval. During the
training phase, all sensors simultaneously transmit mutually
orthogonal pilot sequences of length τ . The pilot sequences
are collected in a matrix (

√
τρP Φ) ∈ Cτ×K (with τ ≥ K),

3Multiple antennas at the DFC do not make these assumptions harder to
verify w.r.t. a single-antenna MAC.

4We assume that βk is constant over n. This assumption is justified since the
sensor-DFC distance is typically much higher w.r.t. the inter-antenna distance.
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where ρP controls pilot energy, such that Φ†Φ = IK . Then,
the received signal matrix model of the training phase is:

YP =
√
τρPGΦt +WP (4)

where YP ∈ CN×τ and WP ∈ CN×τ has i.i.d. elements
wP,i,j ∼ NC(0, σ2

w). Given the model in Eq. (4), the minimum
mean-square error (MMSE) estimator of G given YP is [30]

Ĝ = YPΦ∗
1
√
τρP

D̃ (5)

where D̃ , (
σ2
w

τρP
D−1 + IK)−1 and can be expressed, after

some standard manipulations, in the alternative form

Ĝ = (G+
1
√
τρP

WPΦ∗)D̃. (6)

Also, we define the error matrix as Ξ , (Ĝ − G). It can
be shown that Ĝ is independent on Ξ (also the columns of
both Ĝ and Ξ are mutually independent) and that both kth
columns of the aforementioned matrices (denoted with ĝk and
ξk, respectively) are proper complex-valued Gaussian vectors
with the following moments5:

E{ĝk} = E{ξk} = 0N ; (7)

E{ĝk ĝ†k} = dĝ,k IN , dĝ,k ,
(τρP)β2

k

(τρP)βk + σ2
w

; (8)

E{ξk ξ†k} = de,k IN , de,k ,
σ2
wβk

(τρP)βk + σ2
w

. (9)

We remark that as τ → +∞, the perfect instantaneous CSI
case is approached.

Finally, it is worth noticing that the overall energy spent by
the kth sensor is given by (φk denotes the kth column of Φ)

Ek , (τc − τ)ρE{x2
k}+ τ ρP E{‖φk‖2} = (τc − τ)ρ+ τ ρP

(10)
which accounts for both training and transmitting phases,
while the energy spent from the whole WSN is E = K · Ek.

C. Favorable propagation

From Sec. II-B we know that ĝk ∼ NC(0N , dĝ,k IN ). Also,
the vectors ĝk, k ∈ K, are mutually independent. Thus, the
so-called favorable propagation conditions hold [24]:

1

N
Ĝ†Ĝ ≈Dĝ, N � K; (11)

where Dĝ is a diagonal matrix whose kth element equals dĝ,k
(cf. Eq. (8)). Recent experimental results [3] have shown that
practical large arrays approximate well the aforementioned
propagation assumption.

5Independence of Ξ and Ĝ follows since: (i) both matrices are Gaussian
distributed (since they are linearly dependent on WP); (ii) their columns are
zero-mean and (iii) E{ĝk ξ̂†`} = ON×N .

III. FUSION RULES

A. Optimum Rule

The optimal test [31] for this problem6 is formulated as{
Λopt , ln

[
p(y|Ĝ,H1)

p(y|Ĝ,H0)

]}
Ĥ=H1

≷
Ĥ=H0

γ (12)

where Ĥ, Λopt and γ denote the estimated hypothesis, the LLR
and the threshold which the LLR is compared to. The threshold
γ can be determined to assure a fixed system false-alarm rate
(Neyman-Pearson approach), or can be chosen to minimize the
probability of error (Bayesian approach) [31]. Exploiting the
independence7 of y from Hi, given x, an explicit expression
of the LLR in Eq. (12) is obtained as

Λopt = ln

[∑
x∈XK p(y|Ĝ,x)P (x|H1)∑
x∈XK p(y|Ĝ,x)P (x|H0)

]

= ln

∑x∈XK exp
(
−‖y−√ρ Ĝx‖2

σ2
e

)
P (x|H1)∑

x∈XK exp
(
−‖y−√ρ Ĝx‖2

σ2
e

)
P (x|H0)

 (13)

where we have replaced G = (Ĝ−Ξ) in Eq. (1) and defined
σ2
e , (ρ

∑K
k=1 de,k + σ2

w). Unfortunately, the optimal rule
in Eq. (13) presents several difficulties in its implementation,
such as: (i) availability of Ĝ, P (x|Hi) and σ2

w and (ii)
numerical instability of the expression, due to the presence
of exponential functions with large dynamics [7], [19]. More
importantly, the exponential growth of the complexity with K
is prohibitive for a practical design. Design of sub-optimal
DF rules with simpler implementation and (possibly) reduced
system knowledge is then extremely desirable. A first study
in the latter direction is provided in [19] where sub-optimal
fusion rules in the standard MIMO-DF scenario (i.e. with only
a few antennas at the DFC) were presented and compared.
Also, even though in [19] it was shown that Max-Log rule
has the closest performance to the LLR, we discard it from the
comparison, since in a WSN with a medium to high number
of sensors its exponential complexity remains impractical.

B. MIMO linear filters plus fusion

Large-array pdfs of linear filters: Here we show how Λopt

is well-approximated by a nice two-step architecture when
N grows large. More specifically, the mentioned scheme is
composed of a first step (a linear filter) which recovers the
soft decision from each sensor and a second step involved in
fusing them and obtaining a final decision, as shown in Fig. 2
(details will be clarified hereinafter). First, consider the model
in Eq. (1) and the linear processing z , A†y, closely related

6In this paper we consider the optimal test conditioned on the estimated
matrix Ĝ. However, the optimal statistic in absolute sense would be one jointly
processing {y,YP }, as studied in [32]. Unfortunately, the complexity for
processing such statistic is impractical, then the need for separation between
the “channel-estimation” and the “channel-aware fusion” blocks.

7Indeed the directed triple formed by hypothesis, the transmitted-signal
vector and the received-signal vector satisfies the Markov property.
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Linear  Filter 

+ 
… 

… 
k-th sensor 
 processing 

K-th sensor 
 processing 

1st sensor 
 processing 

Figure 2: Large-array architecture for conditionally indepen-
dent decisions. Max-Log based (resp. CV based) fusion refers
to symbols outside (inside) the parentheses.

to matched filter (MF), ZF and MMSE processing, that is:

A ,


Ĝ MF

Ĝ (Ĝ†Ĝ)−1 ZF

Ĝ (Ĝ†Ĝ+
σ2
e

ρ IK)−1 MMSE

(14)

We observe that compression given by z (since we are
assuming N � K) does not entail loss of detection power for
the considered hypothesis testing, as proved by the following
lemma.

Lemma 1. The vector z is a sufficient statistic for the
considered hypothesis testing, in the cases of MF, ZF (iff
K ≤ N ) and MMSE processing.

Proof: The proof is given in Appendix A.
It is also straightforward to show that z|Ĝ,x is Gaussian-

distributed as shown in Eq. (15) at the top of the next page.
Exploiting favorable propagation conditions in Eq. (11),

z|Ĝ,x is approximately distributed (N � K) as follows:

z|Ĝ,x a∼

{
NC(NDĝ

√
ρx, σ2

eNDĝ) MF

NC(
√
ρx,

σ2
e

ND
−1
ĝ ) ZF/MMSE

(16)

It is apparent from Eq. (16) that all the filters show the de-
sirable independence property p(z|Ĝ,x) ≈

∏K
k=1 ϕ(zk|xk),

where

ϕ(zk|xk) ,

{
NC(Ndĝ,k

√
ρ xk, σ

2
eN dĝ,k) MF

NC(
√
ρ xk,

σ2
e

N dĝ,k
) ZF/MMSE

,

(17)

in the large-array regime. We will now consider a fusion
step which is based either on the complex-valued filter out-
put (i.e. z) or the estimated (BPSK) transmitted vector, i.e.
zq , sign(<{z}) (zq ∈ XK), where:

ϕ̄(zq,k|xk) ,

{
Pe,k zq,k 6= xk

1− Pe,k zq,k = xk
; (18)

and we have denoted Pe,k , Q(

√
2ρNdĝ,k
σe

). The latter is
referred to as a decode-then-fuse approach [19]; obviously as
N grows large, also P (zq|Ĝ,x) ≈

∏K
k=1 ϕ̄(zq,k|xk) holds.

Fusion with conditionally independent decisions: Asymp-
totic large-array pdfs in Eq. (16) can be effectively exploited as
follows. Here, we assume conditionally independent decisions,
i.e. P (x|Hi) =

∏K
k=1 P (xk|Hi); this assumption is frequently

used in DF and is used either as a simplifying assumption or a

requirement to be satisfied by placing appropriate requirements
on the WSN [33]. Then, we adopt the Max-Log approximation
[34] which leads to the simple rule Λu ,

∑K
k=1 λu,k, where

λu,k is obtained with the following linear structure with
saturation:

λu,k ,


c1,k, fk < a1,k

2 fk + c2,k, a1,k ≤ fk < a2,k

c3,k, fk ≥ a2,k

; (19)

where c1,k , ln[
1−PD,k

1−PF,k
], c2,k , ln[

PD,k

1−PF,k
], c3,k , ln[

PD,k

PF,k
],

a1,k , 1
2 ln[

1−PD,k

PD,k
] and a2,k , 1

2 ln[
1−PF,k

PF,k
]. Furthermore,

fk is easily obtained from zk as follows:

fk ,

{
2
√
ρ<{zk}
σ2
e

MF
2
√
ρ dĝ,k N <{zk}

σ2
e

ZF/MMSE
. (20)

The derivation is reported in Appendix B.
On the other hand, when only the quantized vector output

zq is available, we exploit the Chair-Varshney rule [6] (i.e.
the LLR ln

[
P (zq|Ĝ,H1)

P (zq|Ĝ,H0)

]
, obtained by exploiting large array

pdfs in Eq. (16) and assuming P (x|Hi) =
∏K
k=1 P (xk|Hi)),

in order to obtain the fusion statistic Λq ,
∑K
k=1 λq,k, where

λq,k , b̂k ln

[
αk(PD,k)

αk(PF,k)

]
+ (1− b̂k) ln

[
ηk(PD,k)

ηk(PF,k)

]
(21)

with b̂k , (1+zq,k)
2 , αk(P ) , (P · (1−Pe,k) + (1−P ) ·Pe,k)

and ηk(P ) , (1− αk(P )). Also this derivation is confined to
Appendix B. We remark that Eq. (21) differs from CV-based
rules used in [19] through the addition of correction terms
which takes into account the non-ideality of the equivalent
communication channel. This is the reason for the loss w.r.t.
the Max-Log is less than expected, as shown in Sec. VI. In
Fig. 2 we illustrate a schematic structure of both proposed
fusion rules.

Extension to dependent decisions: Here we discuss how
the presented approach based on linear MIMO filters can be
extended to the case P (x|Hi) 6=

∏K
k=1 P (xk|Hi). Starting

from the results in Eqs. (16) and (17), as N grows, we have
p(z|Ĝ,x) ≈

∏K
k=1 ϕ(zk|xk). Thus the approximation

p(z|Ĝ,Hi) ≈
∑

x∈XK

K∏
k=1

ϕ(zk|xk)P (x|Hi), (22)

holds for conditionally dependent decisions. Eq. (22) repre-
sents a DF model where conditionally dependent decisions
are sent over PAC. However, although each sensor decision
is “recovered” at the DFC, growth of complexity is still
exponential with K.

Therefore, several approaches have been proposed in the
literature in order to deal with exponential complexity arising
from a non-factorizable P (x|Hi), such as: (i) neglecting (only
at design stage) the conditional dependence of decisions8, i.e.
P (x|Hi) ≈

∏K
k=1 P (xk|Hi) (and thus exploiting the results

obtained in the conditionally independent scenario) or (ii)

8We recall that the approximation P (x|Hi) ≈
∏K

k=1 P (xk|Hi) is the
Kullback-Leibler minimizer between the joint pdf P (x|Hi) and a desirable
factorizable model [35].
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z|Ĝ,x ∼


NC

(
Ĝ†Ĝ

√
ρx, σ2

eĜ
†Ĝ
)

for MF

NC

(√
ρx, σ2

e(Ĝ†Ĝ)−1
)

for ZF

NC

(
(Ĝ†Ĝ+

σ2
e

ρ IK)−1Ĝ†Ĝ
√
ρx, σ2

e(Ĝ†Ĝ+
σ2
e

ρ IK)−1Ĝ†Ĝ(Ĝ†Ĝ+
σ2
e

ρ IK)−1
)

for MMSE

(15)

(partially) exploiting the conditional dependence via efficient
models, such as in [36] via Copula theory. This topic falls
outside the scope of this paper and we refer the interested
reader to the survey (and references therein) [37].

C. Widely-linear (WL) rules

A second approach consists in adopting a WL statistic
(which is then compared to γ, as for Λopt in Eq. (12)), that
is ΛWL , a†y. The WL approach is motivated by reduced
complexity and y|Ĝ,Hi being an improper9 complex-valued
random vector, that is Σ̄y|Ĝ,Hi

6= ON×N .
Additionally, several optimization metrics may be consid-

ered for obtaining a. The best choice (in a Neyman-Pearson
sense) would be searching for the WL rule maximizing
the global detection probability subject to a global false-
alarm rate constraint, as proposed in [38] for a distributed
detection problem. Unfortunately, the optimized a presents
the following drawbacks: (i) it is not in closed-form, (ii) it
requires a non-trivial optimization and (iii) it depends on the
prescribed false-alarm constraint. Additionally, the problem
under investigation is not a multivariate Gauss-Gauss test
(i.e. y|Ĝ,Hi ∼ NC(µi,Σi)) but a test between mixtures of
complex GMs (cf. Eq. (13)). This would further complicate
the optimization problem tackled in [38].

Differently, in this paper we choose a as the maximizer of
the so-called deflection measure [39], [40], that is:

a
WL,i , arg max

a: ‖a ‖2=1
Di (a ) (23)

where Di (a ) ,
(E{ΛWL|H1} − E{ΛWL|H0})2

var{ΛWL|Hi}
D0(a ) and D1(a ) correspond to the normal [39] and modi-
fied [40] deflections, respectively. Hereinafter we will denote
ΛWL,i , (a†

WL,i y) the WL statistic maximizing Di(a ).
The explicit expression for aWL,i is given in the following
proposition.

Proposition 1. The vector a
WL,i, being the optimal solution

of the optimization problem in Eq. (23), is given by:

aWL,i = (Σ−1

y|Ĝ,Hi
Ĝµ1,0)× ||Σ−1

y|Ĝ,Hi
Ĝµ1,0||−1 (24)

where:

µ1,0 , 2
[

(PD,1 − PF,1) · · · (PD,K − PF,K)
]t

; (25)

Σy|Ĝ,Hi
= (ρ ĜΣx|Hi

Ĝ
†

+ σ2
e I2N ). (26)

Proof: The proof is given as supplementary material.
Maximization of deflection measures is widely used in

the design of (widely) linear rules for DF, since a
WL,i is

9The proof is given as supplementary material of this manuscript.

always in closed-form and also literature has shown acceptable
performance loss w.r.t. the LLR in analogous DF setups [40],
[41]. Additionally, WL rules take into account the general case
of conditionally dependent decisions, while requiring only the
first and second order moments of x|Hi.

Finally, it is worth remarking that deflection-optimization
is optimal only for a mean-shifted Gauss-Gauss hypothesis
testing (i.e. y|Ĝ,Hi ∼ NC(µi,Σ)) [31], where normal
and modified deflections coincide and they both represent
the SNR of the statistic under Neyman-Pearson framework
(remarkably in the latter case the LLR is a linear function of
measurements). Therefore, we cannot claim any (asymptotic)
optimality property for the proposed WL rules.

D. (Modified) MRC

The LLR in Eq. (13) can be simplified under the assumption
of perfect sensors [7], [13], [19], [20], i.e. P (x = 1K |H1) =
P (x = −1K |H0) = 1. In this case x ∈ {1K ,−1K} and
Eq. (13) reduces to [19]:

ln

exp
(
−‖y−

√
ρ Ĝ1K‖2
σ2
e

)
exp

(
−‖y+

√
ρ Ĝ1K‖2
σ2
e

)
 ∝ < (a†MRCy

)
, ΛMRC (27)

where aMRC , (Ĝ1K) and terms independent from y have
been incorporated in γ as in Eq. (12). It is worth noticing that
the MRC is a sub-optimal rule since, in the practice, the sensor
local decisions are far from being perfect. However, it has been
proved in [19] that MRC is the low-SNR approximation of the
optimum test in Eq. (13) when local performances of sensors
are identical and Ĝ = G = H . Also, it is interesting to note
that the MRC in the case of estimated CSI is simply obtained
by replacing G in the MRC formula with perfect CSI [20]
with its estimate Ĝ, i.e. knowledge of error statistics is not
needed.

Additionally, in order to exploit the linear SNR increase
with N , which would inevitably make the fusion process
mainly dependent on the “sensing” errors (and consequently
MRC rule becomes clearly inappropriate, since its design is
unaware of sensing errors), we devise an alternative form of
MRC, denoted as modified MRC (mMRC), which is given by:

ΛmMRC , <
(
a†mMRC y

)
(28)

where amMRC ,
(
ĜD−1

ĝ 1K

)
. It can be observed that

mMRC applies a sort of “static” zero-forcing (via D−1
ĝ )

in order to remove rule dependence on large-scale fading
coefficients (which becomes detrimental as the SNR grows).
Also, it can be shown that Eq. (28) asymptotically approaches
(as N grows large) the performance of the counting rule, which
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has been shown to be robust even with heterogeneous sensors
[42]. In fact, exploiting Eq. (11) as N grows, we have:

(ΛmMRC/N) ≈ √ρ
K∑
k=1

xk + <{wm} (29)

where wm ∼ NC(0,
σ2
e

N

∑K
k=1 d

−1
ĝ,k). We will show in Sec. VI

that mMRC significantly outperforms MRC in the large-array
regime, since it enjoys the same asymptotic form as the
standard MRC in the scenario βk = β, k ∈ K (cf. [20]).

Remarks on terminology: it is worth noticing that the
terminology in this paper slightly differs from that used in
massive MIMO literature. In fact, we refer to MRC as the sub-
optimal (fusion) rule which assumes x ∈ {−1K ,1K} and thus
resembles a MIMO-MRC combiner [43]. Differently, the term
matched filter (MF) is here used to denote the classical linear
filter operating on x studied in Sec. III-B. Thus, in view of
the mentioned reasons, the terms will refer to different fusion
rules and are not to be seen as synonymous.

IV. LARGE-ARRAY PERFORMANCE ANALYSIS

A. Performance measures

In this manuscript we compare the performance of the
proposed rules both in terms of instantaneous channel (IC)
system false alarm and detection probabilities, defined as

PF0
(γ, Ĝ) , Pr{Λ > γ|Ĝ,H0}, (30)

PD0
(γ, Ĝ) , Pr{Λ > γ|Ĝ,H1}, (31)

and the corresponding channel-averaged (CA) counterparts

PF0
(γ) , EĜ{PF0

(γ, Ĝ)} = Pr{Λ > γ|H0}, (32)

PD0
(γ) , EĜ{PD0

(γ, Ĝ)} = Pr{Λ > γ|H1}, (33)

where Λ is the generic statistic employed at the DFC.
Hereinafter we will analyze the asymptotic performance (i.e.

under the limit N → +∞) and we will show that the IC and
CA system probabilities approach the same value in the two
cases being considered. The two scenarios analyzed in this
paper are the same as in [21] and consist of: (a) either taking
the limit N → +∞ and considering an energy cut in both
training and reporting phases as ρ = ρ̄√

N
and ρP = ρ̄P√

N
or

(b) taking the limit N → +∞ and considering an energy cut
only in the reporting phase as ρ = ρ̄

N . Scenario (a) refers to
a setup with a fast-fading channel, where the energy spent in
the training phase is not negligible, while scenario (b) refers
to a case where the energy used for training is negligible and
thus transmit energy can be scaled down aggressively [21].

Finally, we remark that both scenarios are of clear sig-
nificance for WSN applications, since the results presented
hereinafter are achieved in a regime where each sensor keeps
reducing the energy spent as the number of antennas at the
DFC grows. Therefore each sensor behaves “efficiently” (in
terms of consumed energy) and consequently prolongs its
expected battery life.

B. Large MIMO linear filters (cond. indep. decisions)

Here we derive asymptotic performance of MIMO linear
filters in the case of conditionally independent decisions;
the scenario with conditionally dependent decisions is more
cumbersome and will be tackled elsewhere. First, it can be
readily shown that MF/ZF/MMSE performance coincide in
both scenarios. Also, this clearly holds when either Max-
Log or CV is used in the fusion step. Indeed, asymptotically
Eqs. (20) and (18) yield

fk|xk ∼ N (mk xk, mk), Pe,k = Q(
√
mk), (34)

where mk , 2ρ̄ρ̄Pτβ
2
k

σ4
w

in scenario (a), while in scenario (b)

mk , 2ρ̄ dĝ,k
σ2
w

holds.
Also, it is apparent that false-alarm and system detec-

tion probabilities PF0,th(γ) , limN→+∞[PF0(γ, Ĝ)] and
PD0,th(γ) , limN→+∞[PD0(γ, Ĝ)] in scenarios (a) and
(b) have not a tractable form. Hence, we pass through the
evaluation of corresponding cumulant generating functions
(CGFs), denoted here as C(s|Hi), which have an easier form.
In fact, as N → +∞ the equivalent channel for DF model
is a PAC and thus C(s|Hi) is simply given by the sum of
the individual contributions related to each sensor. Finally,
PF0,th(γ) and PD0,th(γ) can be obtained (approximately)
starting from the corresponding CGFs with the use of the
saddlepoint-approach [44].

W.l.o.g. we derive hereinafter the CGF with reference to a
generic mk (performance in scenarios (a) and (b) are obtained
by using corresponding expressions reported after Eq. (34));
also, for simplicity we will use the notation (P1,k, P0,k) =
(PD,k, PF,k). First, we express the CGF as:

C(s|Hi) =

K∑
k=1

ln[Gk(s|Hi)] (35)

where Gk(s|Hi) is the moment generating function (MGF) of
the corresponding contribution (that is, λu,k or λq,k). In the
case of CV-based fusion this MGF is:

Gcv
k (s|Hi) = exp(s ξk)αk(Pi,k) + exp(sψk) ηk(Pi,k) (36)

On the other hand, in the case of Max-Log the MGF is more
complicated:

Gmlog
k (s|Hi) =

∑
xk∈X

Gmlog
k (s|xk) (Pi,k)bk (1− Pi,k)(1−bk)

(37)

where bk , ( 1+xk

2 ) and Gmlog
k (s|xk) is given at the top of

next page in Eq. (38). Also, in Eq. (38) we have denoted
ã1,k , (

a1,k−mk xk√
mk

), ã2,k , (
a2,k−mkxk√

mk
), ρk , [1−Q(ã1,k)]

and ϑk , Q(ã2,k), respectively.
Once the CGFs C(s|Hi) (Hi ∈ H) are obtained, the

probabilities PF0,th(γ) and PD0,th(γ) can be approximated
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Gmlog
k (s|xk) = ρk exp(c1,ks) + ϑk exp(c3,ks) + exp(c2,ks+ 2mk(xks+ s2)) [Q(ã1,k − 2

√
mks)−Q(ã2,k − 2

√
mks)]

(38)

respectively as [44]:

PF0,th(γ) ≈Q (r0[ŝ0(γ)]) +NU (r0[ŝ0(γ)])×[
1

g0[ŝ0(γ)]
− 1

r0[ŝ0(γ)]

]
(39)

[1− PD0,th(γ)] ≈Q (−r1[ŝ1(γ)])−NU (r1[ŝ1(γ)])×[
1

g1[ŝ1(γ)]
− 1

r1[ŝ1(γ)]

]
(40)

where we have denoted

ri[s] , sign(s)

√
2 [s

∂C(s|Hi)
∂s

− C(s|Hi)] (41)

gi[s] , s

√
∂2C(s|Hi)

∂s2
(42)

and ŝi(γ) is the unique solution of the so-called saddlepoint
equation10, that is ∂C(s|Hi)

∂s = γ.
For example, PF0,th(γ) approximation is obtained through

the following steps: (i) for a given γ, ∂C(s|H0)
∂s = γ is solved

w.r.t. s and the solution ŝ0(γ) is obtained; (ii) the terms r0[s]
and g0[s] in Eqs. (41-42) are evaluated at s = ŝ0(γ); (iii)
g0[ŝ0(γ)] and r0[ŝ0(γ)] are substituted in Eq. (39) for final
evaluation.

C. WL rules

Here, we first derive the exact IC system probabili-
ties for WL rules and then we consider the two asymp-
totic scenarios described in Sec. IV-A. Since ΛWL,i arises
from WL processing of y, we have ΛWL,i|Ĝ,x ∼
N (E{ΛWL,i|Ĝ,x}, var{ΛWL,i|Ĝ,x}), where:

E{ΛWL,i|Ĝ,x} =

√
ρµt1,0 Ĝ

†
Σ−1

y|Ĝ,Hi
Ĝ x∥∥∥∥Σ−1

y|Ĝ,Hi
Ĝµ1,0

∥∥∥∥ ; (43)

var{ΛWL,i|Ĝ,x} = σ2
e . (44)

It is apparent from Eq. (44) that var{ΛWL,i|Ĝ,x} does not
depend on x. Thus, w.l.o.g. we can define Λ◦

WL,i , ΛWL,i

σe

and evaluate the performance11 in terms of Λ◦
WL,i. Based on

Eqs. (43) and (44), Λ◦
WL,i|Ĝ,Hj is distributed as follows:

Λ◦WL,i|Ĝ,Hj ∼
∑

x∈XK

P (x|Hj)N (E{Λ◦WL,i|Ĝ,x}, 1); (45)

where

E{Λ◦WL,i|Ĝ,x} =

√
ρµt1,0 Ĝ

†
Σ−1

y|Ĝ,Hi
Ĝ x

σe

∥∥∥∥Σ−1

y|Ĝ,Hi
Ĝµ1,0

∥∥∥∥ . (46)

10Explicit expressions of first/second derivative of C(s|Hi), for both CV
and Max-Log based rules, are given as supplementary material.

11Indeed Λ◦WL,i is statistically equivalent to ΛWL,i, since a positive scaling
factor (independent on y) does not alter rule performance.

Eq. (45) denotes a mixture of 2K one-dimensional real-valued
Gaussians, all depending on Ĝ (which is random) through
their mean. A direct application of Eqs. (45) and (31) leads
to the following exact expression for PD0

(γ, Ĝ) of Λ◦
WL,i

(identical steps apply for evaluation of PF0(γ, Ĝ)):

PD0
(γ, Ĝ) =

∑
x∈XK

P (x|H1)Q(γ − E{Λ◦WL,i|Ĝ,x}). (47)

Such expression can now be evaluated in the asymptotic sce-
narios (a) and (b) described in Sec. IV-A. This is accomplished
by simply taking the limit N → +∞ of E{Λ◦

WL,i|Ĝ,x}
under the assumptions determining scenarios (a) and (b),
respectively. The reason is the dependence of PD0(γ, Ĝ) on N
is only through the means of the mixture components. Hence,
for scenario (a) we obtain

lim
N→+∞

(E{Λ◦WL,i|Ĝ,x})a =

√
2τ ρ̄ ρ̄P µ

t
1,0 V̄iD

2 x

σ2
w

√
µt1,0 V̄iD

2 V̄ t
i µ1,0

(48)

where S̄i , (
σ2
w

ρ̄ Σ−1
x|Hi

+ 2τρ̄P
σ2
w
D2) and V̄i , (IK −

2τρ̄P
σ2
w
D2S̄−1

i ). On the other hand, in the asymptotic sce-
nario (b) E{Λ◦

WL,i|Ĝ,x} converges to:

lim
N→+∞

(E{Λ◦WL,i|Ĝ,x})b =

√
2ρ̄µt1,0 V̆iDĝ x

σw

√
µt1,0 V̆iDĝ V̆ t

i µ1,0

(49)

where S̆i , (
σ2
w

ρ̄ Σ−1
x|Hi

+ 2Dĝ) and V̆i , (IK − 2Dĝ S̆
−1
i ).

Derivation of both Eqs. (48) and (49) is given as supplemen-
tary material. Based on the above results it is apparent that,
in both considered scenarios, Eq. (47) becomes a real-valued
Gaussian mixture with 2K components that can be evaluated
offline.

Finally, we remark that the latter equations are greatly
simplified in the case of conditionally uncorrelated decisions12,
E{xk xj |Hj} = E{xk|Hj} · E{x`|Hj}, k 6= `. In fact

lim
N→+∞

(E{Λ◦WL,i|Ĝ,x})a =

√
2 τ ρ̄ ρ̄P

σ2
w

∑K
k=1 β

2
k v̄i,k xk µ1,0,k√∑K

k=1 β
2
k v̄

2
i,k µ

2
1,0,k

(50)
in scenario (a), while scenario (b) yields:

lim
N→+∞

(E{Λ◦WL,i|Ĝ,x})b =

√
2ρ̄

σw

∑K
k=1 dĝ,k v̆i,k xk µ1,0,k√∑K

k=1 dĝ,k v̆
2
i,k µ

2
1,0,k

(51)
where we have denoted v̄i,k , σ4

w × (σ4
w +

2 τ ρ̄ ρ̄P β
2
k var{xk|Hi})−1 and v̆i,k , σ2

w × (σ2
w +

2 ρ̄ dĝ,k var{xk|Hi})−1, respectively.

12Even though, from a theoretical point of view, conditionally uncorrelated
decisions is a weaker assumption than conditional independence, it should
be understood that in many relevant cases in DF both properties are to be
considered as synonymous.



CIUONZO et al.: MASSIVE MIMO CHANNEL-AWARE DECISION FUSION 9

D. (Modified) MRC

The IC system probabilities for MRC can be obtained in
closed form as follows. The derivation is analogous to the
expression obtained in the simpler case D = IK and Ĝ = G
(i.e. no shadowing/path loss and perfect CSI) contained in
[20] and it is not reported for the sake of brevity. We start
by recalling that y|Ĝ,x ∼ NC(

√
ρ Ĝx, σ2

eIN ) (cf. Eq. (13)).
From inspection of Eq. (27), we observe that ΛMRC arises
from WL processing of y. As an immediate consequence,
ΛMRC|Ĝ,x ∼ N

(
E{ΛMRC|Ĝ,x}, var{ΛMRC|Ĝ,x}

)
, where:

E{ΛMRC|Ĝ,x} =
√
ρ<{a†MRCĜx}; (52)

var{ΛMRC|Ĝ,x} =
1

2
σ2
e ‖aMRC‖2 . (53)

It is worth noticing that var{ΛMRC|Ĝ,x} does not depend
on x. Thus, w.l.o.g. we can define Λ◦MRC ,

√
2ΛMRC

σe‖aMRC‖ and
evaluate the performance in terms of Λ◦MRC. It is readily shown
that Λ◦MRC|Ĝ,Hj is distributed as

Λ◦MRC|Ĝ,Hj ∼
∑

x∈XK

P (x|Hj)N (E{Λ◦MRC|Ĝ,x}, 1) (54)

where E{Λ◦MRC|Ĝ,x} =
√

2ρ<{1t
KĜ†Ĝx}

σe

√
1t
KĜ†Ĝ1K

. Eq. (54) denotes

a mixture of 2K one-dimensional real-valued Gaussians, all
depending on Ĝ (which is random) through their mean. A
direct application of Eqs. (54) and (31) leads to the following
exact expression for PD0

(γ, Ĝ) of Λ◦MRC (identical steps apply
for evaluation of PF0

(γ, Ĝ)):

PD0(γ, Ĝ) =
∑

x∈XK

P (x|H1)Q(γ − E{Λ◦MRC|Ĝ,x}). (55)

The expression in Eq. (55) can now be evaluated in the large-
array regime for asymptotic scenarios (a) and (b), described
in Sec. IV-A. This is accomplished by simply taking the
limit N → +∞ of E{Λ◦MRC|Ĝ,x} under the assumptions
determining scenarios (a) and (b), respectively. The reason
is the dependence of PD0(γ, Ĝ) on N is only through the
means of the mixture components. Thus, considering scenario
(a) gives:

lim
N→+∞

(E{Λ◦MRC|Ĝ,x})a =

√
2τ ρ̄ρ̄P

∑K
k=1 β

2
kxk

σ2
w

√∑K
k=1 β

2
k

(56)

Differently, in the case of scenario (b) we obtain:

lim
N→+∞

(E{Λ◦MRC|Ĝ,x})b =

√
2ρ̄

σw

∑K
k=1 dĝ,k xk√∑K

k=1 dĝ,k

. (57)

Derivation of both Eqs. (56) and (57) is given as supplemen-
tary material. Based on the above results it is worth remarking
that, in the asymptotic scenarios considered, Eq. (55) is a
real-valued Gaussian mixture with 2K components that can
be evaluated offline.

By similar reasoning, we get the performance of mMRC in
the asymptotic scenarios (a) and (b). Indeed, it can be shown

that, after defining Λ◦mMRC ,
√

2ΛmMRC

σe‖amMRC‖ , asymptotic scenario
(a) gives

lim
N→+∞

(E{Λ◦mMRC|Ĝ,x})a =

√
2τ ρ̄ρ̄P

∑K
k=1 xk

σ2
w

√∑K
k=1 β

−2
k

, (58)

while scenario (b) yields

lim
N→+∞

(E{Λ◦mMRC|Ĝ,x})b =

√
2ρ̄

σw

∑K
k=1 xk√∑K
k=1 d

−1
ĝ,k

. (59)

V. COMPLEXITY ANALYSIS AND COMPUTATIONALLY
EFFICIENT APPROXIMATIONS

In Tab. I we compare the computational complexity13 of the
proposed rules, by separating the contribution related to Ĝ and
the computations required whenever each new x is transmitted
(but differently Ĝ does not change). It is worth noticing
that Tab. I takes into account also the complexity needed for
channel training (i.e. obtaining Ĝ), which is O(NτK) (we
remark that τ ≥ K, cf. Sec. II-B).

It is apparent that the optimum rule (i.e. the LLR) is
unfeasible, especially when K is very large. Differently, all
the proposed rules have polynomial complexity w.r.t both K
and N , becoming linear when slowly fading scenarios are con-
sidered (i.e. when the left column of complexity contribution
can be considered as a “static step”).

The computational complexities of MF, ZF and MMSE
with Max-Log (resp. CV) based rules are mainly given by
the computation of z (resp. zq), since the complexity of the
fusion step (O(K)) is negligible, thus leading to analogous
expressions as in the case of classic MIMO detection [3].
On the other hand, we remark that the complexity of ΛWL,i

has been evaluated by exploiting an alternative expression of
Eq. (24), which uses the Woodbury formula [45] applied to
Σ−1

y|Ĝ,Hi
. In fact, ΛWL,i can be recast equivalently as

aWL,i =

1
σ2
e
(I2N − ĜS−1

i Ĝ
†
)Ĝµ1,0∥∥∥ 1

σ2
e
(I2N − ĜS−1

i Ĝ
†
)Ĝµ1,0

∥∥∥ (60)

=

1
σ2
e
ĜS−1

i (Si − Ĝ
†
Ĝ)µ1,0∥∥∥ 1

σ2
e
ĜS−1

i (Si − Ĝ
†
Ĝ)µ1,0

∥∥∥ =
ĜS−1

i Σ−1
x|Hi

µ1,0∥∥∥ĜS−1
i Σ−1

x|Hi
µ1,0

∥∥∥
where Si , (

σ2
e

ρ Σ−1
x|Hi

+ Ĝ
†
Ĝ) and we observe that (Si −

Ĝ
†
Ĝ) =

σ2
e

ρ Σ−1
x|Hi

holds. Unfortunately, although the com-
plexity of ZF, MMSE and WL rules is substantially reduced
w.r.t. the optimum rule, the term O(K3) can become quite
dominant in a WSN of large size. Such a term arises from
the inversion of A for ZF/MMSE (cf. Eq. (14)) and Si for
WL rules. Aiming at mitigating the aforementioned issue, we
adopt the matrix approximation proposed in [28], [29]. More
specifically, we exploit the Neumann series [45] with the intent
of expressing the inverse of the generic matrix U ∈ CJ×J as

U−1 =

+∞∑
n=0

(
X−1(X −U)

)n
X−1, (61)

13Here O(·) indicates the Landau notation, i.e. the order of complexity.
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Table I: Computational complexity of the considered rules: N is the number of antennas at the DFC; K is the number of
sensors; τ ≥ K is the length of pilot sequences employed for channel estimation.

Fusion Rule Complexity for each realization of G Complexity for each realization of x

Optimum (LLR) O(NτK) O(NK2K)

MF + Max-Log / CV O(NτK) O(NK)

ZF/MMSE + Max-Log / CV O(NτK +NK2 +K3) (approx. inversion O(NτK +NK2)) O(NK)

WL rules O(NτK +NK2 +K3) (approx. inversion O(NτK +NK2)) O(N)

(m)MRC O(NτK +NK) O(N)
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N = 100

Figure 3: PD0
vs. µP (dB) for the massive MIMO linear rules,

PF0 = 0.01; comparison of CV and Max-Log based fusion;
WSN with K = 10 sensors, N ∈ {20, 100}, σP = 2 (dB).

where Eq. (61) holds only if U satisfies limn→+∞(IJ −
X−1U)n = OJ×J (X ∈ CJ×J is referred to as a “similar”
matrix). Truncating the series up to the second term leads to:

U−1 ≈X−1 +X−1(X −U)X−1. (62)

Eq. (62) requires onlyO(K2) operations as opposed toO(K3)
for the exact inversion. Hence, we use Eq. (62) by replacing
matrix X with diag(A) (resp. diag(S)) for computing A−1

(resp. S−1) approximately. Such choices are justified since
it can be easily verified that both A and S satisfy the
required limit condition. In fact, as N grows, they both become
diagonally dominant, i.e. 1

NA ≈
1
N diag(A) ≈ Dĝ (resp.

1
NS ≈

1
N diag(S) ≈ Dĝ). Performance loss arising from

approximate inversion in ZF/MMSE and WL rules is assessed
in Sec. VI via simulations.

Finally, the computational complexity of MRC (resp.
mMRC) is simply given by the computation of aMRC (resp.
am−MRC) whenever a new Ĝ is acquired (O(KN)) and a
scalar product (cf. Eq. (27)) whenever each x is observed.

VI. NUMERICAL RESULTS

Simulation Parameters: We assume D is generated anal-
ogously as in [24]. More specifically, we consider sensors
deployed in a circular area around the DFC with radius
rmax = 1000 m. Sensors are located uniformly at random
and we assume that no sensor is closer to the DFC than
rmin = 100 m. The large-scale fading is modelled via βk =

pk( rmin

rk
)ν , where pk is a log-normal random variable, i.e.

10 log10(pk) ∼ N (µP, σ
2
P) where µP and σP are the mean

and standard deviation in dB, respectively. Also, rk is the
distance between the kth sensor and the DFC and ν denotes
the path-loss exponent. For our simulations, we choose ν = 2.
Hereinafter we assume estimated CSI and we set τ = K, cor-
responding to the minimum training-sequence length required
for a meaningful MMSE estimation. This choice aims at min-
imizing the energy spent by each sensor for channel training.
Furthermore, we assume conditionally i.i.d. decisions, that is
P (x|Hi) =

∏K
k=1 P (xk|Hi) with (PD, PF ) = (0.5, 0.05).

Finally, we set for simplicity ρP = ρ = 1 and σ2
w = 1 unless

differently specified.
In the following figures, for comparison purposes, we report

the (upper) “observation bound” [9], i.e. the optimum perfor-
mances over a noise-free channel, given by:

P obs
D0

(γD) =

K∑
i=γD

(
K

i

)
(PD)i(1− PD)K−i, (63)

P obs
F0

(γD) =

K∑
i=γD

(
K

i

)
(PF )i(1− PF )K−i. (64)

where γD ∈ {0, . . . ,K} denotes a discrete-valued threshold.
Max-Log vs CV based linear filters: In Fig. 3 we report

PD0
as a function of µP (in dB) while fixing σP = 2 (dB)

for MF, ZF and MMSE based either on Max-Log (solid) or
CV (dashed) fusion rules (cf. Eqs. (19) and (21), respectively),
assuming14 PF0

= 0.01. This is done in order to assess the
performance gain given by the availability of the complex-
valued output z. We consider a WSN with K = 10 sensors and
we show both scenarios with N = 20 (i.e. an array of moderate
size) and N = 100 (a large array). First, it is apparent that
when N = 100 Max-Log based rules achieve a slight perfor-
mance improvement w.r.t. corresponding CV-based rules. The
mentioned improvement is not always appreciated in the case
N = 20, since at low SNR the quantization loss of zq for CV-
based rules becomes less severe than imperfect match of Max-
Log approximation. Therefore, the availability of soft-ouput
values of the linear filters is beneficial only in the large-array
case. For the mentioned reasons we only keep rules based on
Max-Log in what follows.

Receiver operating characteristic (ROC): In Figs. 4a and
4b we show PD0

as a function of PF0
for two different

scenarios: (i) a scenario with a receive array of moderate size

14Aiming at a fair comparison, we use randomization whenever the discrete
nature of CV-based rules does not allow to meet the desired PF0

exactly.
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Figure 4: PD0
vs. PF0

for all the presented rules; WSN with K = 10 sensors, (µP, σP) = (4, 2) (dB).

(N = 20, Fig. 4a) and (ii) a scenario with a large array
(N = 100, Fig. 4b). It is apparent that when N = 20 the
MRC remains an appealing solution, due to substantially low
system knowledge requirement, while in the large array regime
(N = 100) its performance suffers from a significant loss w.r.t.
the LLR and it is outperformed by mMRC. Differently, all the
fusion rules based on MIMO linear filters exploit effectively
the dramatic increase of diversity and received SNR, and at
N = 100 they approach the performance of optimum fusion
rule. This is more pronounced in the case of linear-filters
plus Max-Log, since they are asymptotically optimal15. The
WL solutions perform quite well, but have a moderate loss
in performance; this is due to the reduced required system
knowledge (i.e. a mere second order characterization of x|Hi).
Finally, it is apparent that ΛWL,1 performs slightly better than
ΛWL,0. Unfortunately this is achieved at an increased difficulty
in the acquisition of required parameters (indeed Σx|H1

is
usually harder to obtain, due to the less predictable statistical
characterization of the unknown event observed).
PD0

vs. N : Analogous considerations can be drawn from
Fig. 5, where PD0

as a function of N is shown, assuming
PF0 = 0.01. We plot the scenario for a WSN with K = 10
sensors and {µP, σP} = {4, 2} (dB). From inspection of
the figure, we see that ZF+Max-Log and MMSE+Max-Log
approach the LLR as N grows, thus confirming the theoretical
findings. Differently, convergence of MF+Max-Log to the op-
timum performance is much slower and cannot be appreciated
from the figure. Furthermore, MRC performs poorly when N
is much higher than the number of sensors as opposed to
mMRC, the latter being capable of effectively exploiting the
linear SNR increase.
PD0

vs. µP: In Fig. 6 we show PD0
as a function of µP,

assuming PF0
= 0.01, in order to assess the performance

improvement w.r.t. the average SNR. We consider a WSN
with K = 10 sensors, N ∈ {50, 100} antennas at the DFC

15Here the term “asymptotically optimal” refers to optimality as the number
of antennas N grows large.

and σP = 2 (dB). It is apparent that ZF + Max-Log and
MMSE + Max-Log approach the optimum at µP ≈ 4 (dB)
when N = 100 (resp. µP ≈ 6 (dB) when N = 50). MF
+ Max-Log has a moderate loss in performance w.r.t. the
optimum, even at high SNR, due to the non-ideal separation
of sensors contributions (this is a consequence of non-nulled
residual interference, which causes performance loss when
the so-called “open-eye” condition [46] is not verified) and
it is outperformed by WL rules. As supported theoretically by
[20], MRC performs poorly at high SNR and it is appealing
only at very-low SNR, as opposed to mMRC. Furthermore,
all the proposed rules benefit from an increase of the number
of receive antennas at the DFC.

Also, in order to first investigate energy efficiency of the
WSN for finite values of N , the corresponding sensor energy
saving, when the array size is increased and the target per-
formance (in terms of (PF0

, PD0
)) is kept fixed, is analyzed.

To this end, Fig. 7 shows the reduction of µp (quantified as
the difference in dB) achieved when moving from N = 50 to
N = 100 antennas, by ensuring the same prescribed system
false-alarm rate (set to PF0

= 0.01) and system detection
probability (PD0

∈ [0.4, 0.8] in the plot). It is apparent that for
all the sub-optimal rules the energy reduction is remarkable.
As an example, transmitted SNR of MF+Max-Log can be
reduced by ≈ 3 dB when the target system performance is
(PF,0, PD,0) = (0.01, 0.6)). Also, mMRC and MF+Max-
Log present an increasing µp reduction with PD0

since their
performance at N = 50 is much worse than the case N = 100
in comparison with other rules, as also apparent in Fig. 6.

Large N theoretical performance for Max-Log/CV linear,
WL and (m)MRC rules: In Figs. 8, 9 and 10 we show PD0

vs. of PF0 in order to assess the theoretical convergence
of Max-Log/CV based MF/ZF/MMSE, WL and (m)MRC
rules, respectively, obtained in Sec. IV. Here we consider
performance convergence for the asymptotic scenario (a) (i.e.
N → +∞, where ρ = ρ̄√

N
and ρP = ρ̄P√

N
), namely we

assume an energy cut in both training and reporting phases.
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Figure 5: PD0 vs. N for all the considered rules, PF0 = 0.01;
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Figure 8: PD0
vs. PF0

for Max-Log (top) and CV based
(bottom) linear fusion rules; simulated (dashed) vs. theoretical
(solid, saddlepoint approx.) ROC in scenario (a) (ρ̄ = ρ̄P = 1).
WSN with K = 10 sensors, N ∈ {50, 100, 1000} antennas at
the DFC and (µP, σP) = (2, 4) (dB) (single instance of D
considered).

Both scenarios are clearly considered aiming at establishing
energy efficiency of the WSN when N grows unbounded [24].
We adopt a single realization of D (drawn from a log-normal
with (µP, σP) = (4, 2) (dB)), a WSN with K = 10 sensors
and N ∈ {50, 100, 1000}; finally we set ρ̄ = ρ̄P = 1. It
is apparent that MC-based ROCs approach the corresponding
theoretical ones as N grows, thus confirming the theoretical
findings. Therefore, the mentioned theoretical performance are
achieved even though the sensors are cutting their transmitted
energy in a way proportional to

√
N . This underlines the

energy-efficiency of the considered WSN with respect to all
the fusion rules being considered. Indeed, even though they
are sub-optimal (and have polynomial complexity, see Tab. I)
they all enjoy this desirable property. It is worth remarking
that the theoretical results hold exactly as N goes to infinity,
except for the Max-Log and CV based linear rules, where
the saddlepoint approximation is used to draw the theoretical
ROCs. Nonetheless there is a satisfactory match. Finally, we
notice that the absolute large-array performance of mMRC is
worse than MRC, since we are actually considering a very-
low SNR scenario (i.e. the transmit energy for both phases is
being cut proportionally to N ).

Efficient approximate inversion: In Fig. 11 we assess the
performance loss given by the approximate inversion described
in Sec. V for ZF+Max-Log, MMSE+Max-Log and WL rules.
We show PD0

vs. N , assuming PF0
= 0.01. We consider

a WSN with K = 10 sensors, with µp ∈ {4, 8, 12} (dB)
and σP = 2 (dB). It is apparent that each approximated rule
approach the corresponding exact implementation as N grows
large. However, we observe that in general the lower µP is
(which is the expected operating scenario in a WSN), the less
is the performance degradation with a moderate-sized array.
Furthermore, in the considered scenario (i.e. with condition-



CIUONZO et al.: MASSIVE MIMO CHANNEL-AWARE DECISION FUSION 13

10
−3

10
−2

10
−1

10
0

0

0.2

0.4

0.6

0.8

1

P
F

0

P
D

0

 

 

10
−3

10
−2

10
−1

10
0

0

0.2

0.4

0.6

0.8

1

P
F

0

P
D

0

 

 

WL,0

WL,1

increasing N

increasing N

Figure 9: PD0
vs. PF0

for WL,1 (top) and WL,0 (bottom)
fusion rules; simulated (dashed) vs. theoretical (solid) ROC in
scenario (a) (ρ̄ = ρ̄P = 1). WSN with K = 10 sensors, N ∈
{50, 100, 1000} antennas at the DFC and (µP, σP) = (2, 4)
(dB) (single instance of D considered).
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Figure 10: PD0 vs. PF0 for MRC (top) and mMRC (bottom)
fusion rules; simulated (dashed) vs. theoretical (solid) ROC in
scenario (a) (ρ̄ = ρ̄P = 1). WSN with K = 10 sensors, N ∈
{50, 100, 1000} antennas at the DFC and (µP, σP) = (2, 4)
(dB) (single instance of D considered).

ally independent decisions) the performance loss is less pro-
nounced for MMSE+Max-Log and WL rules w.r.t. ZF+Max-
Log. This is expected since in the former case the matrices
AMMSE = (Ĝ†Ĝ+

σ2
e

ρ IK) and Si = (Ĝ
†
Ĝ+

σ2
e

ρ Σ−1
x|Hi

) need
to be inverted, respectively, which are diagonally dominant
(even for moderate N ) when µP is low (since both the right
terms are diagonal and are dominating the sum at low SNR).

VII. CONCLUSIONS

In this paper we studied channel-aware decision fusion over
MIMO channels, in the presence of a large antenna-array at

the DFC. We presented a wide choice of low-complexity sub-
optimal rules which efficiently exploit large-array benefits and
are able to achieve near-optimal performance. The proposed
rules were numerically compared with existing alternatives,
namely MRC, which was shown not to significantly exploit the
increase of the array size. Additionally, a theoretical analysis
of the proposed rules was provided under energy-reduction
laws commonly considered in massive MIMO literature. Fur-
thermore, a detailed discussion on computational complexity
of the mentioned rules was given. Accordingly, (further)
computationally-efficient versions of some of the proposed
rules, via the approximation of Neumann series of a matrix
inverse, were derived. Finally, the corresponding performance
loss was assessed via simulations and shown to be negligible
when a large-array is employed at DFC.
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APPENDIX A
PROOF OF LEMMA 1

We start by expanding p(y|Ĝ,Hi) as follows (cf. Eq. (13)):

p(y|Ĝ,Hi) =
(
πσ2

e

)−N
exp[−σ−2

e ‖y‖2]× (65)∑
x∈XK

exp

[
σ−2
e

(
−ρ
∥∥∥Ĝx∥∥∥2

+ 2
√
ρ<{xtĜ†y}

)]
P (x|Hi).

Eq. (65) is in the form p(y|Ĝ,Hi) = a(y)b (t(y)|Hi), where
t(y) ,

(
G†y

)
. Thus t = zMF represents a sufficient statistic

(independently on the relationship between K and N ) [47].
Furthermore, we notice that zZF (resp. zMMSE) is in one-to-one
correspondence with zMF, since (Ĝ†Ĝ) (resp. (Ĝ†Ĝ+

σ2
e

ρ IK)
is invertible (this assumption is valid iff K ≤ N for ZF).
Finally, exploiting the property stating that every one-to-one
transformation of a sufficient statistic is itself sufficient [47],
we prove the lemma for ZF and MMSE.

APPENDIX B
FUSION ARCHITECTURES WITH MIMO LINEAR FILTERS

(z available,conditionally independent decisions) - Here we
derive the fusion rules based on MIMO linear filters. We
first recall that, under a large array regime (N � K), we
have p(z|Ĝ,x) ≈

∏K
k=1 ϕ(zk|xk) (cf. Eq. (16)). Also, by

exploiting P (x|Hi) =
∏K
k=1 P (xk|Hi), ln[p(z|Ĝ,Hi)] is

approximated as

ln[p(z|Ĝ,Hi)] ≈
K∑
k=1

ln[
∑
xk∈X

ϕ(zk|xk)P (xk|Hi) ] (66)

The right hand side of Eq. (66) corresponds to a DF model
operating over PAC, whose properties have been studied in
detail in [6], [7]. Such a model has the advantage of being of
feasible complexity w.r.t. the model under investigation (i.e. a
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Figure 11: PD0
vs. N for ZF + Max-Log, MMSE + Max-Log and WL rules, PF0

= 0.01; exact (solid) vs approximate (dashed)
matrix inversion; WSN with K = 10 sensors, µp ∈ {4, 8, 12} (dB), σP = 2 (dB).

DF model over MIMO), since its complexity is simply O(K).
Based on Eq. (66), the LLR of z is approximated as follows:

Λz , ln

[
p(z|Ĝ,H1)

p(z|Ĝ,H0)

]
≈ (67)

K∑
k=1

ln

[
ϕ(zk|xk = 1)PD,k + ϕ(zk|xk = −1) (1− PD,k)

ϕ(zk|xk = 1)PF,k + ϕ(zk|xk = −1) (1− PF,k)

]
Although Eq. (67) has reduced computational complexity, it is
well known that is numerically unstable, due to the presence
of exponentials with large dynamics. For this reason, we
adopt the near-optimum rule proposed in [7], based on Max-
Log approximation. The latter originates from turbo-codes
literature [34] and states that

ln[

L∑
`=1

B` exp(A`)] ≈ max
`∈{1,2,...,L}

[A` + ln(B`)] (68)

where A` ∈ R and B` ∈ R+. The approximation in Eq. (68) is
accurate when one of the terms in the sum

∑L
`=1B` exp(A`)

dominates over the remaining terms. Second line of Eq. (67)
can be put in the same form of Eq. (68) as

Λz ≈
K∑
k=1

{ln [exp(fk) · PD,k + exp(−fk) · (1− PD,k)] −

ln [exp(fk) · PF,k + exp(−fk) · (1− PF,k)]} (69)

where we have defined:

fk ,

{
2
√
ρ<{zk}
σ2
e

MF
2
√
ρ dĝ,k N <{zk}

σ2
e

ZF/MMSE
. (70)

Using Eq. (68) leads to the simplified expression for Λz:

Λz ≈
K∑
k=1

(max { fk + ln [PD,k] , −fk + ln [1− PD,k] }−

max { fk + ln [PF,k] , −fk + ln [1− PF,k] }) (71)

Similarly to [7], Eq. (71) can be put in compact form as Λz ≈∑K
k=1 λu,k, with

λu,k ,


c1,k, fk < a1,k

2 fk + c2,k, a1,k ≤ fk < a2,k

c3,k, fk ≥ a2,k

, (72)

where c1,k , ln[
1−PD,k

1−PF,k
], c2,k , ln[

PD,k

1−PF,k
], c3,k , ln[

PD,k

PF,k
],

a1,k , 1
2 ln[

1−PD,k

PD,k
] and a2,k , 1

2 ln[
1−PF,k

PF,k
].

(zq available, conditionally independent decisions) - Here
we assume that we have available only the quantized out-
put zq. Similarly to the case of z, as N grows, we have
P (zq|Ĝ,x) ≈

∏K
k=1 ϕ̄(zq,k|xk) (cf. Eq. (18)). Therefore,

we can use the optimum rule over PAC in the case of
binary symmetric channels, namely the Chair-Varshney rule
[6], whose statistic is obtained as follows:

ln

[
P (zq|Ĝ,H1)

P (zq|Ĝ,H0)

]
≈

K∑
k=1

ln

[∑
xk∈X ϕ̄(zq,k|xk)P (xk|H1)∑
xk∈X ϕ̄(zq,k|xk)P (xk|H0)

]
=

K∑
k=1

{
λq,k , ln

[
αk(PD,k)b̂k ηk(PD,k)(1−b̂k)

αk(PF,k)b̂k ηk(PF,k)(1−b̂k)

]}
(73)

where we have defined αk(P ) , P ·(1−Pe,k)+(1−P )·(Pe,k),
ηk(P ) , (1− αk(P )) and b̂k , (

1+zq,k
2 ). Finally, exploiting

the standard properties of logarithms provides Eq. (21).
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