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Compressed Sensing With Prior Information:
Information-Theoretic Limits and Practical Decoders

Jonathan Scarlett, Jamie S. Evans, Member, IEEE, and Subhrakanti Dey, Senior Member, IEEE

Abstract—This paper considers the problem of sparse signal re-
covery when the decoder has prior information on the sparsity pat-
tern of the data. The data vector has a ran-
domly generated sparsity pattern, where the -th entry is non-zero
with probability . Given knowledge of these probabilities, the
decoder attempts to recover based on random noisy projec-
tions. Information-theoretic limits on the number ofmeasurements
needed to recover the support set of perfectly are given, and it
is shown that significantly fewer measurements can be used if the
prior distribution is sufficiently non-uniform. Furthermore, exten-
sions of Basis Pursuit, LASSO, and Orthogonal Matching Pursuit
which exploit the prior information are presented. The improved
performance of these methods over their standard counterparts is
demonstrated using simulations.

Index Terms—Basis pursuit, compressed sensing, compres-
sive sampling, information-theoretic bounds, Lasso, orthogonal
matching pursuit, prior information, sparsity pattern recovery,
support recovery.

I. INTRODUCTION

T HE problem of estimating an unknown vector from a
number of noisy linear projections arises frequently in

signal processing. Given a data vector and a known
measurement matrix , the observation vector

is of the form

(1)

where is additive noise. In the absence of any additional in-
formation on , this problem is well-posed only in the case that

, where techniques such as least squares can be used.
However, if is known to be sparse, i.e. where is
the number of non-zero elements of , then an accurate estimate
of can be obtained even with [1]. This phenomenon
is known as compressed sensing or compressive sampling. A
closely related problem is that of sparsity pattern recovery or
support recovery, where the aim is to recover the support set of
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, defined the be the positions of its non-zero entries. It is easy
to see that if this problem is solved then the problem of sparse
signal estimation is essentially solved as well, since one can then
apply least squares restricted to the known support set.
Recently there has been a great deal of work on the design

and analysis of both tractable and intractable methods for com-
pressed sensing and sparsity pattern recovery. The focus of this
paper is on developing and analyzing methods which exploit
prior information (other than being sparse). We are interested
in information-theoretic limits on the performance of any de-
coder, as well as the design of tractable methods. These are com-
plementary and both of great interest, with tractable methods
being useful for practical systems, and information-theoretic
limits being highly valuable for assessing the performance of
tractable methods and determining the level of further improve-
ment possible.
The motivation for our work is the availability of prior infor-

mation in several applications of compressed sensing. In sensor
networks [2] the information obtained via a particular sensor
could be used as information for another sensor. In functional
medical resonance imaging [3], the prior information may arise
from knowing which parts of the brain are usually associated
with various decision making processes. In other applications,
onemay be interested in performing compressed sensing at mul-
tiple time instants, where the support set is correlated between
times. This occurs, for example, in multipath channel estima-
tion [4] and real time video reconstruction [5]. Finally, in some
applications compressed sensing is one of several stages of an
estimation problem, and additional information can be passed
from an earlier stage [6].
The above applications involve many different types of prior

information, making it difficult to obtain a tractable mathemat-
ical model which is suitable for each one. However, valuable
insight can still be gained by analyzing specific models. In this
paper, we assume prior information on the sparsity pattern of
, but not the values of the non-zero entries. Specifically, we
assume that the sparsity pattern is generated at random, with
each entry of being non-zero with a given probability which
is known at the decoder. A similar model is used in [7], and
in [6] it is shown that such a model can provide insight into
the compressed sensing problem even when prior information
is not available. Specifically, [6] proposes a two-step recovery
algorithm in which a hypothetical non-uniform sparsity model
is generated in the first step, and a compressed sensing technique
which exploits prior information is used in the second step.

A. Notation

We use the following notation throughout this paper.
denotes the probability of an event, and denotes statistical

expectation. means “distributed as”, means “approximately

1053-587X/$31.00 © 2012 IEEE
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distributed as”, and means “proportional to” in a probabilistic
sense. The Gaussian distribution is denoted by . The sup-
port of a vector is denoted by . All logarithms have base
, and is the binary entropy function in nats. denotes
magnitude when applied to a number, and denotes cardinality
when applied to a finite set. denotes the -norm of a vector
if , and the number of non-zero elements in a vector (com-
monly referred to as the -norm) if .
For an index set and matrix , denotes the submatrix

of containing the columns indexed by . Similarly, for a
vector , denotes the subvector of containing the elements
indexed by . The transpose of a vector or matrix is denoted by

. For two functions and , we write
if for some constant when is sufficiently large,

if , if ,
if , and if both and
hold.

B. Problem Statement

The data vector and measurement vector are related by

(1). We assume that has entries and has en-

tries for and .1

The -th column of is denoted by . The data vector
is generated as follows. The -th entry of is

given by

(2)

where is a deterministic non-zero value, and
is a random variable indicating whether the entry is non-zero.
The probability of being equal to one is denoted by , and
we assume that the random variables are independent.
The support set of is therefore distributed
according to

(3)

The task of the decoder is to estimate from the observation
vector given in (1), using as prior infor-
mation.We refer to as the support probability of the -th entry
of .
We model the support probabilities as follows. For

a proportion of the coefficients have support
probability equal to , where and for
all . That is, the coefficients are divided into groups, where
the support probabilities of all coefficients in a given group
are equal. The number of coefficients in group is denoted
by . We define the average binary entropy of the
support probabilities as

(4)

where is the binary
entropy function.

1Some authors use different normalizations, such as each entry of and
having variance and respectively. This does not affect the results pro-
vided the SNR is the same.

TABLE I
SUMMARY OF DEFINITIONS

For a given support set , we denote the number of non-zero
entries by . The average of with respect to the
distribution in (3) is denoted by , i.e.

(5)

For a given data vector , the smallest and largest magnitudes
are denoted by and
respectively. The smallest and largest magnitudes of

are denoted by and
respectively. For reference, the definitions

of the main symbols used throughout the paper are summarized
in Table I.

C. Contributions and Previous Work

1) Overview of Standard Techniques: Before summarizing
our contributions, we outline the practical methods for com-
pressed sensing without prior information (other than being
sparse) most relevant to this paper. Two commonly used
-based methods are Basis Pursuit (BP) [8] and Least Abso-

lute Shrinkage and Selection Operator (LASSO) [9], which are
respectively described by

(6)

(7)

where is a parameter to LASSO which controls the tradeoff
between sparsity and goodness of fit. These techniques are
closely related, with BP being the convex relaxation of the
intractable minimization problem , and
LASSO being the convex relaxation of least squares with an
penalty. Both have been shown to give good performance in

practical systems, with the required number of measurements
generally ranging from to
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depending on the performance requirements; see [8], [10] for
details.
Orthogonal Matching Pursuit (OMP) uses a greedy approach

rather than optimization of an objective [11]. We outline the al-
gorithm here and refer the reader to [11] for details. The decoder
repeatedly adds to the support estimate the coefficient whose
column of is most highly correlated with a residual vector .
The first residual vector used is , and subsequent residuals are
computed as where is the least squares estimate
of restricted to the support set obtained so far. The algorithm
terminates when the number of iterations exceeds a threshold,
or when the norm of the residual falls below a threshold. This
technique is computationally efficient and has been shown to ex-
hibit performance which is comparable to BP and LASSO [12].
2) Contributions: A summary of our contributions is as fol-

lows:
• We extend the techniques of [13] to obtain both sufficient
and necessary conditions on the number of measurements
required for exact recovery of the support set as and
grow large, with known at the decoder. Sufficient condi-
tions are obtained via the analysis of a joint typicality de-
coder, and necessary conditions are obtained by an analogy
to a multiple input single output (MISO) communication
channel in which the decoder attempts to recover the sup-
port set. We show that the introduction of prior informa-
tion can significantly reduce the number of measurements
required. In particular, it is shown that measure-
ments suffice under various assumptions.

• We present three practical decoding techniques for com-
pressed sensing with prior information, which are exten-
sions of BP, LASSO and OMP. The idea is to introduce
weights which depend on the support probabilities, so that
coefficients with higher probability are favored. For the ex-
tensions of BP and LASSO, the term in the objective
is replaced by , and we motivate the use of
the weights . For the extension of OMP the
decoder greedily makes a decision based on the sum of a
correlation term and a weighting term, rather than just the
correlation term. We motivate the use of weights propor-
tional to .

• Using simulations, we demonstrate the improved perfor-
mance of our practical decoding techniques compared to
their standard counterparts. It is seen empirically that
has a significant effect on performance when using these
techniques. Furthermore, we explore the impact on perfor-
mance of noise and mismatch.

3) Previous Work on Information-Theoretic Limits: Previous
work on information-theoretic limits on exact sparsity pattern
recovery is as follows. In [14], necessary conditions for the
maximum likelihood (ML) decoder are obtained, and a simple
maximum correlation decoder is analyzed. In [15] an analogy is
drawn between sparsity pattern recovery and the Gaussian mul-
tiple access channel in order to find both necessary and sufficient
conditions on . In [16], sufficient conditions are obtained for
the ML decoder, and necessary conditions are found based on
Fano’s inequality. These necessary conditions are tightened in
[17], and a comparison between dense and sparse ensembles is
performed. In [18], sufficient conditions are derived and shown
to be tight in a scaling-law sense by comparison to the necessary

conditions of [17]. For information-theoretic limits with respect
to other performance metrics, see [13], [19], [20]. In contrast to
our work, these papers consider the case that all support sets of
a given cardinality are equiprobable.
4) Previous Work on Exploiting Prior Information: In [21] a

method called Modified-CS is proposed, in which the objective
function only penalizes coefficients outside a partially known
support. In [7] a Grassman angle approach is used to provide a
comprehensive analysis of a weighted minimization problem,
focusing primarily on the case that there are only two different
probabilities, and hence only two weights. The authors provide
amethod for optimizing the weights with respect to various met-
rics, but due to the highly non-convex nature of the problem, sig-
nificant computation is needed. The introduction of weights into
LASSO and OMP is proposed in [22] for the dual problem of
sparse signal approximation with prior information. We present
a comparison of our techniques to those of [7], [21], [22] in
Section IV-D.
In [23] the method of model-based compressed sensing is

introduced, in which the support is known to have a partic-
ular structure. Specifically, only a subset of the supports
of a given cardinality can occur. Among others, this includes
block sparsity [24] and tree sparsity [25] as special cases; see
[23] for a complete set of references. While the framework of
[23] does not include our setup as a special case, we draw some
connections between the two in Section II-C-4.
In [26], a Kalman filter is used to exploit correlations between

the values of under the assumption that the support changes
very slowly. In [27], a Bayesian learning approach is used to
account for correlations in the measurement vectors, but again
the focus is on correlations between the values of , rather than
the support.

D. Paper Organization

In Section II we present a summary and discussion of our in-
formation-theoretic results, which are given in Theorems 1 and
2. In Section III we give proofs of these theorems. In Section IV
we present our practical decoding techniques and compare them
to existing methods, as well as analyzing their performance via
simulations. Conclusions are drawn in Section V.

II. INFORMATION-THEORETIC RESULTS

Before stating the main theorems, we give a precise definition
of the performance metric. For each , let the number of groups
and the corresponding and be given, along

with the gains . The support set is generated according
to (3), yielding the data vector . The measurement matrix
and noise vector are generated at random, yielding the ob-
servation vector . The decoder takes as input and forms an
estimate of the support set ; the quantities , , ,

and are assumed to be known. An error is said to
have occurred if .
For a given support set , we define the error probability

(8)

where the probability is taken with respect to statistics of and
. Similarly, we define

(9)
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where the probability is taken with respect to statistics of ,
and . That is, the quantity in (9) is obtained by averaging (8)
over the distribution of in (3).
The value in (4) represents the average uncertainty of

whether the coefficients are going to be non-zero or not. It plays
a major role in both the necessary and sufficient conditions of
the number of measurements, as we will see in Section II-B.
We remark that while can be independent of in the linear
regime , it tends to zero for large in the
sublinear regime , so the presence of the term
in the number of measurements does not imply that the overall
value is .
Throughout this section, we will sometimes use a superscript

to make the dependence of a variable on explicit (e.g. ).
The superscript will be omitted when no confusion arises from
doing so.

A. Typicality

We begin by introducing the notion of typicality with respect
to the support probabilities . We define to be the
number of non-zero coefficients in the set from group .
Definition 1: (Typicality) A support set

is -typical if

(10)

for all . The set of all -typical supports is de-
noted by .
The following proposition gives useful properties of the typ-

ical set.
Proposition 1:
(i) For any , the cardinality of satisfies

(11)

(ii) The cardinality of the typical set satisfies

(12)

(iii) If and for all
, then

(13)

Proof: These follow using standard proofs based on the
method of types, e.g. see [28]. For property (iii), the condition

implies that the law of large
numbers holds for each group, and thus (13) follows from the
condition .

B. Statement of Main Results

Here we present two theorems summarizing the asymptotic
bounds on the number of measurements needed under various
assumptions. It should be noted that the sufficient conditions are
based on a joint typicality decoder which is too complex to be
used in practice, whereas the necessary conditions bound the
performance of any decoder. In contrast to most of the existing

literature, we do not assume that the decoder has knowledge of
.

Theorem 1: (Sufficient Conditions) Fix , and

let , and be such that

is bounded away from 1, and
. Let be an arbi-

trary sequence of support sets satisfying . If

, then there exists a decoder such that

the error probability tends to zero as ,
provided that

(14)

for some .
Proof: See Section III-A.

Theorem 2: (Necessary Conditions) Fix ,

and let , and be such
that

. Let be an arbitrary sequence of support
sets satisfying , and let be the corre-
sponding data vector. Then the error probability
for any decoder is bounded away from zero as if

(15)

for some . Consequently, if

and then
measurements are necessary.

Proof: See Section III-B.
Theorems 1 and 2 give conditions on such that

for a given sequence of typical support sets . We can obtain
conditions on such that by writing

(16)

(17)

(18)

where (18) follows from (13).
Corollary 1: Let the assumptions of Theorem 1 be satisfied.

If , then there exists a decoder such that the

error probability tends to zero as , provided that

(19)

for some .
Proof: We obtain (19) by combining (14) and (18), and

noting that and can be chosen to be arbitrarily small. The
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condition in Theorem 1 is satisfied for all
since by definition.
Corollary 2: Let the assumptions of Theorem 2 be satisfied.

The error probability for any decoder is bounded away
from zero as if

(20)
for some .

Proof: For any , we have

(21)

(22)

where we have used (11) and the definition of . It follows
that the necessary number of measurements in (15) can be weak-
ened to

(23)

where . The corollary follows by combining (18)
and (23) and noting that , and therefore , can be chosen to
be arbitrarily small.

C. Discussion

Since Theorems 1 and 2 apply for any , it follows
from (11) that the corresponding are close to , and the re-
sulting necessary and sufficient conditions are unchanged in a
scaling-law sense when is replaced by . For the remainder
of the section, we express the results in terms of .
Theorem 1 implies that measure-

ments are sufficient. Theorem 2 states that under the same
conditions as Theorem 1, measure-
ments are necessary, meaning that there is a gap between the
scaling of the necessary and sufficient conditions. Nevertheless,
these bounds still provide valuable insight into the number of
measurements needed with prior information. In particular, we
show in Section II-C-3 that the sufficient number of measure-
ments with prior information can have a lower rate of growth
than the necessary number of measurements in the absence of
prior information. In the case that , our sufficient and
necessary conditions match those of [13]. This is unsurprising,
since our proofs are based on techniques used in [13].
1) Discussion of Assumptions: We make the following re-

marks on the assumptions of Theorems 1 and 2.

• The condition that in Theorem 1
is a generalization of the assumptions in [13] that

in the linear regime ,
and in the sublinear regime .
The reason such restrictions on are required is that
due to the presence of noise, perfect recovery of the sup-

port is not possible when the coefficients can be arbitrarily
small.

• The conditions that remains bounded away from 1 and
are mainly for technical reasons. The first is

very mild, since would mean that nearly all coeffi-
cients of are non-zero with high probability. The condi-
tion that states that number of groups does not
grow unbounded, hence limiting the growth rate of certain
expressions in the analysis.

• The condition
states that each group has an unbounded av-

erage number of both zero and non-zero coefficients. This
is for technical reasons relating to typicality (see Defini-
tion 1). Defining , we see
that is of limited interest, since it implies that
asymptotically either all or none of the coefficients of the
group are zero with probability approaching one. However,

could be of interest. For example, a group with
a large number of low probability coefficients leading to a
Poisson distribution would give . In this paper,
we assume there are no such groups.

2) Discussion of Linear Regime: A suitable model for the
linear regime is one in which the number of groups and their
associated probabilities are independent of . In this case
is constant and hence the necessary and sufficient number of
measurements is under the assumptions of Theorem 1,
thus matching the case that the prior information is absent [13].
However, prior information can decrease the constant factor in
the sufficient number of measurements. In particular, a simple
application of Jensen’s inequality in (4) yields ,
where the right-hand side recovers the case with no prior infor-
mation.
3) Discussion of Sublinear Regime: For the sublinear

regime, a comparison of our results to those without prior
information is presented in Table II under various scalings of

, where it is assumed that . We see that
depending on the scaling of , our sufficient conditions can
exhibit better scaling than the necessary and sufficient condi-
tions without prior information. For example, consider the case
that and , so that coefficients are in

group 1 and are in group 2. We let

for some . Using , it follows

that , and hence

(24)

(25)

where (25) follows by noting that the term
dominates in the sublinear regime and has the same rate of
growth as . Supposing now that , we see
that measurements are sufficient. From Table II, the
necessary number of measurements without prior information is

and for the cases

and respectively. We therefore achieve improved

scaling in the former case for any , and in

the latter case for any .
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TABLE II
NECESSARY AND SUFFICIENT NUMBER OF MEASUREMENTS IN THE SUBLINEAR REGIME WITH AND WITHOUT PRIOR INFORMATION

Connections With Model-Based CS: In [23] it is assumed that
the data vector’s support belongs to some set containing
supports of cardinality . It is shown that with

measurements, an error of is
possible, where is the decoder output and and are con-
stants. It is interesting to note that the scaling
matches the scaling given in Theorem 1 when we substitute

. However, Theorem 1 does not follow from this re-
sult, since the performance metrics differ and our setup allows
for to vary with different realizations of .

III. PROOFS OF INFORMATION-THEORETIC RESULTS

The proof of Theorem 1, given in Section III-A, uses a joint
typicality decoder which is suboptimal but simpler to analyze
than the optimal decoder. The proof of Theorem 2, given in
Section III-B, uses an analogy to a MISO communication
channel. Before presenting the proofs, we give bounds on the
term , which appears in the upper bound on the typical set
size in (12).
Proposition 2:
(i) If is bounded away from 1 then .

(ii) If and for all
, then .

Proof: For the first part, we apply Jensen’s inequality to
obtain

(26)

It is straightforward to show that this behaves as
by treating the linear and sublinear regimes separately and
using the condition that is bounded away from 1 in the linear
regime. For the second part, we write
and focus on the group with the largest . Since there are only

groups and coefficients in total, there must be at
least one group with coefficients. Assuming without loss
of generality that group 1 has the largest number of coefficients,
we write

(27)

(28)

where , and we have included in the numer-
ators and denominators inside the logarithms for convenience.
We show that this grows faster than by treating the cases

and separately. Starting with
the former, the right hand side of (27) is lower bounded by

. If we obtain

, which grows faster than
since . If we obtain

. Hence

in the case that . When , a similar
argument holds using and

, and treating the cases
and separately.

A. Proof of Theorem 1

Along with Definition 1, we will make use of the following
definition of joint typicality from [13].
Definition 2: [13] (Joint Typicality) The observation vector
and a set of indices are -jointly typical

if and

(29)

where is an orthogonal projec-
tion matrix. The set of all sequences which are -jointly typical
with is denoted by .
Using the notions of typicality in Definitions 1 and 2, the de-

coder estimates to be a support set in the intersection of
and . If no such support exists, an error is declared. If
multiple such supports exist, the decoder chooses the one with
the smallest cardinality, with ties broken arbitrarily.
We define the following events:
• : The true support is not jointly typical with

• : Another typical support is jointly typical with and
has a cardinality which does not exceed the true support
( for some , )

The overall error probability is then bounded as

(30)

To perform the analysis, we make use of the following lemma
from [13]. We note that the bounds given in the lemma hold for
the given support set , with the associated probabilities denoted
by .
Lemma 1: [13] If is the true support set and
is another support set, then

(31)

(32)
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where and .
In particular, the following corollary will be useful.
Corollary 3: [13] Choosing for some ,

the bounds in Lemma 1 imply

(33)

(34)

where .
Since we are focusing on the case that and are both el-

ements of , we can further bound (33), (34) using the car-
dinality bound in (11), yielding

(35)

(36)

We begin by bounding . Using the bound on in

(14) and the assumption that , we have
. Since grows faster than by assumption,

it follows that . Substituting this
into (35), it follows that decays to zero for large .
The remainder of the proof shows that also decays

to zero for large , and thus the overall error probability
tends to zero. We define as the number of supports

with , and .
A trivial upper bound gives , and hence (12)
yields

(37)

Furthermore, a simple counting argument gives

(38)

which, using , implies that

(39)

Since the event requires , we can limit to our
attention to the case that , or equivalently

. Hence, from (39), we obtain

(40)
where we have bounded using (11). Combining (37) and (40)
with (36) and applying the union bound, we obtain

(41)

where

(42)

Again bounding using (11), it follows that

(43)

(44)

Thus, a sufficient condition for to decay to zero is that
tends to for all .

We show that this condition is satisfied by treating the cases
and separately. Starting with the

former, we have

(45)

(46)

(47)

(48)

where (45) follows from , (46) follows from the
bound on in (14) and since , and (47) follows from

, the assumption
of the theorem that grows faster than , and the
assumption that .

In the case that , the term asymp-
totically tends to 1, and we have

(49)

where we have used . By rearranging, it is
straightforward to show that this expression tends to for
any that satisfies (14) with .

B. Proof of Theorem 2

Throughout the proof, we will make use of the fact that the
support set cardinalities must satisfy (11), since

by assumption. We first prove the lower bound of

. With non-zero coefficients and groups, there must
exist a group with at least non-zero coefficients. Without loss
of generality, we assume group 1 is such a group. Suppose that
all other groups’ coefficients, as well as the realization of the ad-
ditive noise , are revealed to the decoder. The decoder is left
with the task of identifying which of the coefficients
of group 1 are non-zero. The problem is therefore reduced to
finding a sparsity pattern of coefficients for a vector of di-
mension in the absence of noise, and with no prior
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information. This requires measurements [14], and

hence using (11) we obtain that is neces-
sary.
To prove the other term in the lower bound in (15), we con-

sider a MISO channel which emulates support recovery with
additional information at the decoder. We note that this proof
is a more straightforward extension of [13] than that of the suf-
ficient conditions, but we describe the setup for completeness.
We assume that the decoder has access not only to the proba-
bility vector , but also to the support set size
and the coefficients corresponding to the true support .

Clearly the error probability in this scenario is no higher than
that of the original sparsity pattern recovery problem.
The encoder maps the support to the codeword

which is transmitted over a -input MISO channel in
uses. The channel is specified by , so that

the received signal is . Based on , the decoder con-
structs the support estimate . For a given , the sum capacity
of the channel is given2 by [13]

(50)

Necessary conditions on are obtained by comparing (50) to
the amount of information which must be transmitted over the
channel. Specifically, if nats must be transmitted over the
channel, then a necessary condition on is

(51)

The following proposition shows that the number of nats re-
quired is essentially .
Proposition 3: For sufficiently large , the number of nats

required to identify the support set with vanishing probability
of error satisfies

(52)

for any .
Proof: We let denote the number of non-zero co-

efficients in the set from group . We lower bound by
counting the number of supports for which
for all . Writing as a shorthand for , we have

(53)

(54)

where (54) follows from . Taking
the logarithm of (54) gives

(55)

2Compared to [13], an extra factor of 1/2 appears in our expression because
we are considering the real case.

From (10), differs from by no more than . From the as-

sumption that , it follows that differs from

by no more than ; this can be seen graphically by
noting that the difference is maximized at the endpoints. Con-
tinuing, and also applying , we obtain

(56)

Finally, applying (see Proposition 2) and
yields

(57)

Applying Proposition 3 to (51), the main part of the the-
orem is proved. To prove the second part of the theorem, we

show that and

imply . It follows from

, and that

, so it remains to show that

. We rewrite as

, and substitute from

Proposition 2 to obtain , or equivalently

. Since , it

follows that .

IV. PRACTICAL DECODING TECHNIQUES

Motivated by practical systems, we present extensions to
three common techniques for sparse signal recovery, namely
Basis Pursuit, LASSO and Orthogonal Matching Pursuit. In
order to exploit the prior information, we introduce weights
dependent on the support probabilities into each of these
techniques, so that the decoder is more inclined to declare a
coefficient to be non-zero when it has a higher probability.

A. Extensions of BP and LASSO

Our extensions of BP and LASSO are respectively given by

(58)

(59)

We call these Log-Weighted Basis Pursuit (LW-BP) and Log-
Weighted LASSO (LW-LASSO) respectively. As is the case in
LASSO, is a parameter which controls the tradeoff between
sparsity and goodness of fit.
It is well known that BP is the convex relaxation of min-

imization in the absence of noise [8]. We similarly motivate
LW-BP as the convex relaxation of a problem which maxi-
mizes a combination of sparsity and probability in the absence
of noise. From (3), the most probable signal consistent with
is given by

(60)
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since maximizing a probability is equivalent to maximizing its
logarithm. The objective in (60) contains two summations; the
first favors the inclusion of higher probability coefficients in the
support, while the second favors the exclusion of lower proba-
bility coefficients. For the purposes of promoting sparsity, and
also to allow a convex relaxation of the problem, we consider
the problem containing only the former summation, given by

(61)

For example, in the case that each is equal, the objective in
(61) is proportional to . Relaxing to the

concave function , we obtain LW-BP in (58).
The weights of have the desirable properties of being
continuous and decreasing, with an infinite penalty when the
probability is zero and no penalty when the probability is 1.
Using a similar argument, LW-LASSO can be mo-

tivated by starting with the problem of maximizing
when the noise term

contains independent Gaussian entries with variance . In this
case, using the definition of the Gaussian probability density
function, we have

(62)

and hence maximizing is equivalent to min-

imizing . Assuming that the only knowl-
edge of is the support probabilities, a similar argument to the
one above gives the equation for LW-LASSO in (59).

B. Extension of Orthogonal Matching Pursuit

The idea of OMP is to repeatedly add the index which
has the highest correlation with a residual vector . We
introduce an algorithm which we call Logit-Weighted Orthog-
onal Matching Pursuit (LW-OMP), in which instead the highest

is added at each step, where is proportional to
the logit function . More precisely, in Appendix A we
show that among all additive weight functions,3 the choice

(63)

approximately minimizes the probability of incorrectly
choosing a zero coefficient over a non-zero coefficient in
the case that is the random noisy projection of a data
vector containing non-zero coefficients of equal amplitude
, and each term of the additive noise has variance .4 We
briefly discuss the resulting terms in the expression. The only
part containing is , which has the desirable properties
of being continuous and increasing, with an infinite penalty
when is zero and an infinite reward when is 1. The constant

3A justification for the use of an additive (rather than multiplicative) weight
function is given in Section IV-D.
4The resulting equations will vary when different normalizations are used for

the measurement matrix and noise vector, but these can be incorporated into the
values of and .

factor increases with , which can be

explained by the fact that if the measurements are more noisy
then they are less reliable, so the prior information is relied
on more. A similar argument applies for the dependence on
. Finally, the term merely scales the weights to match the

amplitude of the non-zero coefficients, making the decision
unchanged if, for example, and are both scaled by the same
amount.
The expression in (63) motivates the use of the a weight func-

tion which varies with the iteration number, with (63) being used
on the first iteration, but then substituting

(64)

on the -th iteration. In the case that is not known, one could
replace the right-hand side of (64) with
and terminate the algorithm when the norm of the residual falls
below a threshold. For simplicity, we focus on the case that
is known.
In the case that the non-zero coefficients do not have equal

amplitude but are instead independently drawn according to
some distribution , we can replace each occurrence of in (63)
with a suitable average , such as or . While
this is not necessarily optimal, it keeps the algorithm simple
while still effectively exploiting the prior information, as we
will see via simulations in the following subsection. An alter-
native approach would be to take the constant factors as design
parameters. The steps of LW-OMP are summarized in Algo-
rithm 1.

Algorithm 1: Logit Weighted Orthogonal Matching Pursuit

Inputs: , , , ,

Outputs: Support set estimate , data vector
estimate

Algorithm:
1) Initialize the residual vector and support estimate

, and set
2) While :

a) Set

b) Set , where the

maximum is over
c) Set and , where

is the empty matrix
d) Set and
e) Increment

3) Return and

C. Simulations

In this section we simulate LW-BP, LW-LASSO and
LW-OMP for various and with , ,
and runs per simulation. The non-zero gains are
randomly drawn according to N(0,1). We set and choose
the such that for all . That is, each group has
an average of four non-zero coefficients. We simulate four
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TABLE III
GROUP SIZES USED IN THE SIMULATIONS

different group arrangements each with different values of ,
as given in Table III.
Wemeasure the performance of each technique by comparing

the true support to , defined to contain the coeffi-
cients of with the largest magnitude, where is the estimate
of . The performance metric we study is the average propor-
tion of coefficients recovered, given by

(65)

where is the number of runs per simulation, is the true
support on the -th run and is the support estimate on the -th
run.
Fig. 1(a) shows the average proportion of coefficients recov-

ered using LW-BP for both and . Fig. 1(c)
shows the performance of LW-LASSO with where

is the average weight. Fig. 1(e) shows

the performance of LW-OMP using , which is the av-
erage magnitude of an N(0,1) random variable. Simulation 1
represents the case where there is no prior information, since in
this case all support probabilities are equal and the techniques
reduce to the standard versions on which they were based; the
corresponding curves are shown in bold. For all three tech-
niques, the weighted versions result in better performance, par-
ticularly when the prior distribution is far from uniform. Fur-
thermore, the improvement is evident using both and

.
Comparing the three methods, we see that LW-LASSO tends

to give the best performance. In comparison, the performance of
LW-BP is nearly identical with but slightly worse with

. The performance of LW-OMP is similar to LW-LASSO
for high values of , but worse at low values of .
The information-theoretic results of Section II give sufficient

and necessary conditions on for perfect support recovery
which are affine in . We now investigate whether a sim-
ilar dependence on exists for these practical decoding tech-
niques under less strict performance requirements. If the propor-
tion of coefficients recovered for given values of and de-
pends inversely on an affine function of , then we expect the
plots of vs. to be the same for each of the four
group arrangements, for some constant . Figs. 1(b) and 1(d)
plot this relationship for LW-BP and LW-LASSO respectively,
both with . Fig. 1(f) shows the relationship for LW-OMP
with . The plots align very closely for LW-BP and
LW-LASSO in the case that , indicating that does
have a significant effect on performance. Specifically, this sug-
gests that for given values of and , the minimum number
of measurements required to recover a certain proportion of the
coefficients is approximately proportional to . In the

noisier setting of the dependence is somewhat weaker.
For LW-OMP, the dependence is weaker at both values of .
Lastly, we examine the effect of mismatch on each technique.

We focus on Simulation 3 with and assume that the
true value of is used in each method, but

is replaced by . For example, in LW-BP the
weights of are replaced by for .
Fig. 2 plots the performance of each technique as a function of .
The left-most points correspond to and therefore give the
performance when the prior information is ignored altogether.
We see that even with mismatch the performance is improved
for the entire range plotted. Furthermore, the performance of
each technique remains close to its peak for a wide range of
, suggesting a good robustness against mismatch. The peak in
each plot is not at , suggesting that weights are slightly
suboptimal. However, the performance at is close to
the peak for all three techniques, particularly for LW-BP and
LW-LASSO.

D. Comparisons to Existing Work

The Modified-CS technique [21] performs a similar min-
imization to BP, but with zero penalty on coefficients within a
partially known support. This can be viewed as an extreme case
of LW-BP, where for coefficients in the partially known
support, and all other are equal to some constant in the range
(0,1).
In [7], a similar minimization technique to LW-BP is pre-

sented, with the main focus being on the case that there are only
two different probabilities and hence two weights. A method is
given for optimizing the weights, but it involves searching the
space of potential weights and performing a significant amount
of computation to decide which to use. This makes LW-BPmore
suitable when there are a wide range of different probabilities,
or in the case that the probabilities are varying with time and a
such a search is not feasible (e.g. in online applications).
An iterative reweighted minimization technique is pro-

posed in [29], in which the estimate of on the -th iteration is
given by

(66)

for some non-negative weights . The weights are ini-

tialized as and then reweighted as ,

where is the -th entry of and is a positive constant.
While (66) bears a strong resemblance to LW-BP, the reason for
introducing the weights is different. Instead of exploiting infor-
mation which is known a priori, the weights in (66) serve to
reduce the dependence of the objective on the magnitudes of ,
hence making the optimization more similar to that of mini-
mization [29].
In [22], a similar technique to LW-LASSO appears under the

name Weighted Basis Pursuit Denoising (W-BPDN). Specifi-
cally, the objective function is where

is some measure of the a priori likelihood of each
term being non-zero, but not necessarily a probability measure.
Its use generally relies on already knowing a good choice of
weights, or being able to tune them via a parameter search. On
the other hand, in LW-LASSO the weights are a simple function
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Fig. 1. Algorithm performance without prior information (simulation 1) and with prior information (simulations 2–4). (a) LW-BP; (b) LW-BP (scaled); (c)
LW-LASSO; (d) LW-LASSO (scaled); (e) LW-OMP; (f) LW-OMP (scaled). The legends for (a), (c) and (e) are shown in (b), (d) and (f) respectively.

of the support probabilities, making it more suitable for appli-
cations where the prior information arises in this form.
Similarly, a technique called Weighted Matching Pursuit

(W-MP) appears in [22]. As discussed in [22], can
be viewed as a measure of when

and is Gaussian. The authors in [22] state that since
, prior information can be incorpo-

rated by instead adding the highest for some weight
. However, we argue that since actually arises as a

term in the logarithm of , additive weights are more
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Fig. 2. Proportion of coefficients recovered using a mismatched value of
in Simulation 3 with and . The case

indicates performance without prior information.

suitable than multiplicative weights. Furthermore, similarly to
LW-LASSO, an advantage of LW-OMP is that the weights are
a simple function of the corresponding support probabilities.

V. CONCLUSION

We have studied the problem of sparse signal recovery with
prior information on the sparsity pattern of the data. We have
presented information-theoretic limits on the number of mea-
surements required, with the main result being that
measurements are sufficient under various assumptions. In
many cases, this is a significant improvement over the number
of measurements required without prior information.
Extensions of BP, LASSO and OMP have been given, each

of which uses weights in order to exploit the prior information.
The proposed weights are simple functions of the corresponding
support probabilities, making the techniques practical and easy
to implement, while still giving good improvements in perfor-
mance compared to their standard counterparts.

APPENDIX

A. Derivation of LW-OMP Weights

We consider the simple case in which there are non-zero
coefficients in , each having a fixed value . Without loss of
generality it can be assumed that , and thus
the measurement vector is given by

(67)

Assuming is sufficiently large, by the law of large
numbers. For , where and
are independent random variables with a mean 0 and a variance
of 1, meaning their product also has a mean of 0 and a variance

of 1. Hence by the central limit theorem, .

Similarly, for any , . Therefore

(68)

Consider and , and let and
. Index is incorrectly favored over index when

. We denote the probability of this event
by . Using the expression in (68), we obtain

(69)

where is the probability that an N(0,1) random variable
exceeds . Similarly, we define as the probability of
being incorrectly favored over conditioned on and

. Our aim is to minimize the probability of exactly one of
the two indices being non-zero but the other one being preferred,
given by

(70)

(71)

where . Setting the partial derivative with respect
to to zero and simplifying, we obtain

(72)

Setting and taking the limit as and tend
to 0 yields

(73)

The derivation is concluded by integrating both sides of (73).
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