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We propose a methodology for designing the local mapping

rule for fully synchronized but energy-limited sensors in a

distributed detection system, where sensors communicate with

the fusion center over multiaccess channels. Using the proposed

methodology, we come up with the modified detect-and-forward

scheme and the modified amplify-and-forward scheme. The

performance of the two schemes is analyzed. We show that

optimizing the local mapping rule can lead to a larger error

exponent under total power constraint.
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I. INTRODUCTION

Signal processing utilizing spatially distributed

sensors has become an important technology with

a wide range of applications, due to the relatively

low cost and the strong capability of sensor nodes.

The enhanced computational ability allows part

of the signal processing task to be done at local

sensors, which reduces communication bandwidth and

increases reliability. Detection with geographically

dispersed sensors has attracted considerable attention.

The state of nature to be detected, for example, could

be the presence of an enemy target or the leakage of

poisonous gas.

In a typical distributed detection system, each

sensor first makes an observation, which is dependent

on the true state of nature, locally processes it, and

then communicates the processing result to the fusion

center. Such a procedure is governed by a local

mapping rule which describes how the measurement

obtained by a sensor is processed and mapped to a

signal to be transmitted to the fusion center. This

mapping, which would probably be lossy (in terms

of the amount of information being preserved in

the mapping), is a major difference between the

distributed detection system and the centralized

detection system, where it is assumed that all raw

observations are available to the fusion center. Based

on the received signals, the fusion center will make a

decision on the true state of nature.

Most of the works mentioned in [1] and [2]

have not taken into consideration some features

and limitations of communication channels between

sensors and the fusion center. In a real distributed

detection system, sensors will have to communicate

with the fusion center over unreliable channels, which

will distort the signals transmitted by local sensors.

The design of distributed detection systems turns out

to be a challenging task when sensor nodes are subject

to harsh resource constraints. Power constraints will

normally be applied, for example, to prolong the

life time of the distributed system where sensors are

powered by small batteries. In addition, the operating

bandwidth of the system is usually limited which

calls for a bandwidth-efficient communication scheme

between sensors and the fusion center. In this paper

we are interested in the art of distributed system

design when we are given an unreliable channel and

limited power and bandwidth.

A. Related Works

Early studies on the impact of unreliable channels
can be found in [3] and [4]. Given nonideal channels,
the design of optimal fusion rules for distributed
detection systems utilizing binary sensors has been
investigated in [5]—[7]. The unreliable communication
channel is integrated into the joint optimization
of the decision fusion rule and the local sensor
quantizer in [8]. The asymptotic performance of
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distributed detection in energy-limited systems as
the total power available goes large is analyzed in
[9]. The performance of the amplify-and-forward
approach for Gaussian signal detection is examined
under a system power constraint in [10]. References
[11]—[13] consider the situation where a sensor
network is subject to transmission rate constraints.
A low-communication-rate scheme is proposed in
[14] where only informative sensor observations
are allowed to be reported to the fusion center.
This scheme is further developed in [15], and [16]
considers the setup where communication constraints
are replaced with some more general cost functions.
The unreliable channel and the deficiency in power
and bandwidth resources will normally induce a limit
on the performance. Also due to lossy mappings, the
performance of a distributed detection system can
never be better than that of a centralized detection
system.

However, it has been shown recently that for a

noisy channel we can still design an asymptotically

optimal distributed detection scheme for sensors under

individual power constraints (IPCs) in the sense that

the scheme can achieve the same error exponent as a

centralized system can. Such asymptotically optimal

schemes are reported in [17]—[19]. The key element

that contributes to the success of those schemes is

the use of multiple access when the channel gain

is a non-zero constant. In contrast, parallel access

is often adopted in traditional distributed detection

schemes. The impacts of multiple access and parallel

access on the performance have been evaluated

and compared in [17]—[19], where multiaccess

schemes demonstrate superior performance against

schemes with parallel access. For discrete or quantized

observations, motivated by the method of types

[20], Mergen, Naware, and Tong [17] as well as Liu

and Sayeed [18] proposed the type-based multiple

access (TBMA) scheme, where the information of

types is transmitted to the fusion center through a

noisy multiaccess channel. Unlike schemes with

the assumption that sensors have knowledge of the

statistics of their observations, the TBMA scheme is

suitable for sensors that are oblivious of observation

statistics [18]. In the TBMA scheme, the bandwidth

required is proportional to the number of types. The

performance of the type-based method with random

access is studied in [21]. For continuous sensor

observations, it has been shown in [18] that the fusion

of analog transmitted local log-likelihood ratio (LLR)

over a multiaccess channel is asymptotically optimal

with finite channel noise variances for conditionally

independent sensor observations. In [19] the author

proposed the fusion of amplified sensor observations.

In addition to the asymptotic optimality, these schemes

provide high efficiency in bandwidth and good

system scalability (since the required bandwidth is

fixed and does not depend on the number of sensors

incorporated in the system). Under total power

constraint (TPC), the TBMA scheme and the scheme

proposed in [18] can achieve exponentially decreasing

error probabilities. However, it is not clear whether

these schemes can still provide the largest error

exponents among all the schemes.

The multiaccess scheme also found its application

in distributed inference problems. The authors of [22]

study the scaling law of distributed inference when

identical local mapping rule is assumed. In [23] it is

shown that the Cramer-Rao bound on the asymptotic

estimation error can be achieved for the exponential

family of distributions using the sufficient-statistic

based multiple access (SSBMA).

B. Our Contributions

In this paper the design of distributed detection

systems with limited power and a stringent bandwidth

constraint, where only one time slot of a channel is

shared by all the sensors to communicate with the

fusion center, is considered. We propose a general

approach to design sensors’ local mapping rules for

such a distributed detection system. Under IPC it is

shown in [18] that it is asymptotically optimal for

sensors to transmit LLR of their observations when

these observations are conditionally independent.

The motivation for us to consider different local

mapping rules is that the asymptotically optimal local

mapping rule under IPC is not guaranteed to provide

either the largest error exponent under TPC or the

smallest error probabilities for a finite number of

sensors. It is worthwhile to examine the performance

of different local mapping rules and to understand

their advantages and drawbacks.

Following the proposed methodology, we

consider two particular designs, namely the

modified detect-and-forward (MDF) and modified

amplify-and-forward (MAF) schemes, under the

assumption of conditionally independent and

identically distributed (IID) sensor observations. The

MDF scheme is a scheme which fuses local hard

decisions over the multiaccess channel. A recent

work that considers the fusion of local decisions over

multiaccess channel is [24] where a RAKE receiver is

proposed to deal with unsynchronized sensors. In our

work we focus on a relative simple model, where we

assume that sensors are fully synchronized, and derive

some important theoretical results, which should

provide readers a better understanding of fusing

local decisions over a multiaccess channel. The MAF

scheme adopts the amplify-and-forward technique,

which has been widely studied in the research

of cooperative diversity [25] and source-channel

matching theory [26].

We show that the optimal fusion rule of the

MDF scheme can be reduced to a threshold test

on the received signal. Notice that the optimal

decision fusion rule at the fusion center can always
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be expressed as a threshold test on the likelihood
ratio of the received signal. However, it is not
true that such an optimal likelihood ratio test can
always be reduced to a threshold test on the received
signal even if the local mapping rule is designed
such that the magnitude of the transmitted signal
monotonically increases with the likelihood ratio of
the sensor’s observation. The performance of the
MDF and MAF schemes is analyzed in terms of
error probabilities and error exponents. The most
difficult part is to obtain the error exponents of both
schemes under TPC. Although TPC is considered
in [18] and [19], neither of the papers calculates the
error exponents of their proposed distributed detection
schemes under TPC. They either provide a bound
on the error probability or derive the error exponent
associated with a suboptimal decision fusion rule.
We derive the error exponent of the MAF scheme
under TPC analytically. With the help of the large
deviation principle (LDP) and the discovery that
the optimal decision fusion rule can be reduced to
a simple threshold test on the received signal, we
are able to numerically calculate the error exponent
of the MDF scheme under TPC. An algorithm is
provided and its output will eventually converge to
the actual error exponent. The performance of the
two schemes is compared under different situations
and the question of whether to detect or to amplify
is answered by these comparisons. An important
observation is that the MAF scheme, which is proven
to be asymptotically optimal under IPC, may result in
a smaller error exponent than the MDF scheme under
certain circumstances when TPC is imposed. This
result simply suggests that the asymptotically optimal
scheme under IPC is not guaranteed to provide the
largest error exponent under TPC.
Different from the traditional detect-and-forward

and amplify-and-forward schemes, the modified
schemes offers higher energy efficiency by
introducing a bias term to the sensor’s local mapping
rule (traditionally, only amplitude scaling is performed
to satisfy a given power constraint, see [18] and [19]).
Such an approach is considered in a slightly different
context in [27]. But the author doesn’t make any
detailed analysis of the impact of the bias term on
performance improvement. In our work we show that
including the bias term will not help to increase the
error exponent when IPC is considered but will lead
to an increment in the error exponent when TPC is
considered.
The rest of the paper is organized as follows. The

problem formulation, together with the proposed
design methodology, is provided in the next section.
The MDF and MAF schemes are introduced
in Section III and Section IV. The asymptotic
performance of the two schemes is analyzed in
Section V. The comparison of different schemes
can be found in Section VI and we conclude in
Section VII.

II. PROBLEM FORMULATION

Consider a binary hypothesis testing problem

where a fusion center needs to decide between the

two hypotheses (H0 and H1) with the help of N

distributed sensors. The prior probabilities of both

hypotheses (denoted by P0 and P1, respectively) are

assumed known and none of them is equal to zero.

The observation obtained by the ith sensor is given

by

vi =

½
s+ ni when H1 is true

ni when H0 is true
(1)

where s is a known constant (without loss of

generality, we assume s is positive). For simplicity we

assume [n1, : : : ,nN]
T follows a Gaussian distribution

with mean zero and covariance matrix ¾2s I (¾s > 0),

where I is the identity matrix. When vi is available,

the ith sensor will report it to the fusion center by

transmitting a modulated signal. Use Mi(vi), a function

of observation vi, to denote the baseband signal to

be modulated onto the carrier. Such a mapping from

observation vi to Mi(vi) is determined by the local

mapping rule Mi(¢).
Here, we make the same assumption as made

in [17] and [18] that all the sensors are fully

synchronized. The communication channel between

local sensors and the fusion center is modeled as an

additive white Gaussian noise (AWGN) channel and

coherent demodulation is adopted by the receiver

of the fusion center. Under these assumptions we

are able to perform distributed beamforming, which

could help us to alleviate the performance degradation

caused by the noisy channel. Geometrically distributed

sensors are not perfectly synchronized by their

nature. However, there have been proposed several

schemes to synchronize distributed sensors. For

example, a master-slave synchronization scheme is

proposed in [28], which requires very little interaction

between sensors and the fusion center. For a detailed

summary of recent progress on distributed transmit

beamforming technologies and algorithms, readers

are referred to [29]. It is also demonstrated in [19]

that slight mismatch in phases will have little impact

on the performance. The case where unsynchronized

sensors communicate local decisions to the fusion

center over a Rayleigh fading multiaccess channel is

considered in our paper [30] and the energy-efficient

local mapping rule is also derived. The lack of

channel knowledge and the loss of synchronization

will introduce a detection error floor. However, the

multiaccess scheme can still offer better performance

than the parallel access scheme, when a relatively

small number of sensors is deployed and the sensor’s

transmission power is low [30].

In the single-slot multiaccess scheme considered

in this paper, all the sensors are required to transmit

simultaneously. The baseband signal w received
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Fig. 1. System diagram.

by the fusion center will be a noisy version of the

superposition of all Mi(vi), which can be expressed as

w =

NX
i=1

Mi(vi)+ n (2)

where n is the additive Gaussian noise with mean zero

and variance ¾2c . This is illustrated in Fig. 1. Given

w, a final decision u (u= j 2 f0,1g indicates that the
fusion center decides Hj) will be made by the fusion

center according to a certain fusion rule ¡ . For the

purpose of energy conservation, power constraints

will be imposed. Both IPC and TPC are considered

in this paper. IPC requires the following condition to

be satisfied

E[Mi(vi)
2]· CI , i= 1, : : : ,N (3)

where CI is the power budget for each individual

sensor and E[¢] denotes the expectation operation,
while TPC demands

NX
i=1

E[Mi(vi)
2]· CT (4)

where CT is the power budget for the whole system.

Our purpose is to design local mapping rule Mi(¢)
which will provide low detection error probability

under the given power constraint.

Some asymptotically optimal schemes may not be

energy efficient (i.e., for any given N, we can find

another scheme which is also asymptotically optimal

but could achieve the same error probability with

less power consumption). Moreover, asymptotically

optimal schemes under IPC will not necessarily

be optimal under TPC. This drives us to propose a

general methodology to design and optimize local

mapping rules for energy-limited sensors.

Suppose there exists a set of functions

ff1(¢),f2(¢), : : : ,fN(¢)g such that ª =
PN
i=1fi(vi) is a

sufficient statistic for final decision making assuming

that the fusion center can obtain each fi(vi) without

error. Here fi(vi) could be viewed as a processed

observation and can take either discrete or continuous

value. Thus we can set Mi(vi) to be
p
®fi(vi) for all i,

where ® is a scaling factor to ensure that the power

constraint (3) or (4) is satisfied. The received signal at

the fusion center will be

w =

NX
i=1

p
®fi(vi)+ n: (5)

Notice that for conditionally independent sensor
observations, we can always find such a set of
functions by setting fi(¢) to be the LLR of the
observation vi. This guarantees the best error exponent
under IPC [18]. When the IPC is imposed, it is
clear that the noise n will be suppressed when we
have a large number of sensors. Such a distributed
beamforming may effectively suppress the noise at
the receiver even under TPC. Consider a simple case
where we have identical sensors (i.e., f1(¢) = ¢ ¢ ¢=
fN(¢) = f̃(¢)). The maximum power that each sensor
can get under TPC is CT=N. Denote the second-order

moment of f̃(vi) by S (i.e., E[f̃
2(vi)] = S). If all

the sensors use the maximum power, we have

E[®f̃2(vi)] = CT=N, which suggests that ®= CT=NS.

Now let’s examine the power of
PN
i=1

p
®f̃(vi). We

have

E

24Ã NX
i=1

p
®f̃(vi)

!235
=

NX
i=1

®E[f̃2(vi)]+2

NX
i=1

NX
j=i+1

®E[f̃(vi)f̃(vj)]

= CT+2

NX
i=1

NX
j=i+1

®E[f̃(vi)f̃(vj) jH0]P0

+2

NX
i=1

NX
j=i+1

®E[f̃(vi)f̃(vj) jH1]P1

= CT+2

NX
i=1

NX
j=i+1

®E[f̃(vi) jH0]E[f̃(vj) jH0]P0

+2

NX
i=1

NX
j=i+1

®E[f̃(vi) jH1]E[f̃(vj) jH1]P1

= CT+
CT
S
(E[f̃(vi) jH0])2P0(N ¡ 1)

+
CT
S
(E[f̃(vi) jH1])2P1(N ¡ 1): (6)

As can be observed from (6), the power ofPN
i=1

p
®f̃(vi) increases as the number of sensors

increases.
We can further optimize the local mapping rule by

setting Mi(vi) =
p
®(fi(vi)¡ l) where l is a bias. This

will give us

w =

NX
i=1

p
®(fi(vi)¡ l)+ n: (7)

For identical fi(vi) considered in this paper, it can

be proven that having all Mi(vi) adopt the same bias
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is actually optimal. For the more general case, we

can set Mi(vi) =
p
®(fi(vi)¡ li). We now compare

(5) and (7). For any fixed ®, we will not degrade

the performance by adopting (7) simply because

the fusion center can add a constant amount N
p
®l

to compensate for the bias effect. Since the power

constraint depends on Mi(vi), we will be able to reduce

the energy consumption by choosing a proper value

for the bias. As a result, setting fi(vi) to be the LLR of

the ith sensor’s observation and making li = 0 for all

i as in [18] will generally not be efficient in energy

usage. To obtain the optimal value for the scaling

factor and the bias, we have to find solutions for the

following optimization problems

min Pe

s.t. E[Mi(vi)
2]· CI , i= 1, : : : ,N

(8)

and
min Pe

s.t.

NX
i=1

E[Mi(vi)
2]· CT

(9)

where Pe = Prfu= 1 jH0g£P0 +Prfu= 0 jH1g£P1 is
the detection error probability. The analysis methods

used in this paper can also be applied when our

objective is to minimize some Bayes risk other than

the error probability or when the Neyman-Pearson

approach is adopted (rather than the Bayesian

approach).

III. MODIFIED DETECT AND FORWARD

For identical local decision rules and conditionally

IID sensor observations, it is well known that when

0/1 hard decisions are made at local sensors, the

total number of positive decisions will be a sufficient

statistic for final decision making [32]. Inspired

by this result we propose the MDF scheme. First,

a local decision ui = °i(vi) (where ui = j 2 f0,1g
indicates that the local sensor decides Hj and °i(¢)
is the local decision rule) will be made. From two

possible signals, the ith sensor then chooses the one

corresponding to its decision ui and transmits it to

the fusion center. The local mapping rule of the MDF

scheme will have the following form

Mi(vi) =

½p
®(1¡ l) when °i(vi) = 1p
®(¡l) when °i(vi) = 0

: (10)

Finding optimal local decision rules is a difficult

task even for parallel access schemes with reliable

communication channels [1]. In our case it also turns

out to be hard to obtain the optimal f°1(¢), : : : ,°N(¢)g.
Here, for simplicity, we assume that sensors adopt the

following common local decision rule

ln
f(vi jH1)
f(vi jH0)

H1
?
H0

ln
P0
P1

(11)

which means that the local sensor will decide H1 to

be true if the left-hand side of (11) is greater than

its right-hand side and decide H0 otherwise. When

the decision rule (11) is used, the probability of local

detection error Prfui = 1 jH0gP0 +Prfui = 0 jH1gP1
will be minimized, and the detection probability

and the false alarm probability at a local sensor are

given by

Pd =Q

0BB@2¾
2
s ln

P0
P1
¡ s2

2s¾s

1CCA (12)

and

Pf =Q

0BB@2¾
2
s ln

P0
P1
+ s2

2s¾s

1CCA (13)

respectively, where Q(¢) is the complementary
cumulative distribution function of a standard

Gaussian. Since Q(¢) is a decreasing function, we have
0< Pf < Pd < 1: (14)

The conditional probability density functions of

the signal received at the fusion center w (see (2)),

under H0 and H1 are given by

f(w jH0) =
NX
i=0

μ
N

i

¶
Pif (1¡Pf)N¡ip

2¼¾2c

£ exp
Ã
¡
£
w¡ ¡ip®¡Np®l¢¤2

2¾2c

!
(15)and

f(w jH1) =
NX
i=0

μ
N

i

¶
Pid (1¡Pd)N¡ip

2¼¾2c

£ exp
Ã
¡
£
w¡ ¡ip®¡Np®l¢¤2

2¾2c

!
:

(16)

At the fusion center the optimal fusion rule will be the

following LLR test

ln
f(w jH1)
f(w jH0)

H1
?
H0

ln
P0
P1
: (17)

Define −1 to be the set in the domain of w which

contains all w that will make the left-hand side of (17)

greater than the right-hand side of (17) and −0 to be

the complement set of −1. −0 and −1 are also known

as the decision regions for H0 and H1, respectively.

Due to the continuity of f(w jH0) and f(w jH1), the
boundaries of −0 and −1 can be found by solving

g(w) = f(w jH0)P0¡f(w jH1)P1 = 0: (18)
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Substituting (15) and (16) into (18), we get

NX
i=0

(
[Pif (1¡Pf)N¡iP0¡Pid (1¡Pd)N¡iP1]

£
μ
N

i

¶
exp

Ã
¡
¡
i
p
®
¢2

2¾2c

!
xi

)
= 0 (19)

where

x= exp

Ãp
®
¡
w+N

p
®l
¢

¾2c

!
: (20)

Before exploring the optimal fusion rule, we

provide one theorem.

LEMMA 1 Let A0 and A1 be two positive real

numbers, K be a positive integer, 0< p< 1 and 0< q <

1. The sequence Sk = A0p
k(1¡p)K¡k ¡A1qk(1¡ q)K¡k

with k = 0,1, : : : ,K will change its sign at most once.

PROOF The proof can be found in Appendix I.

THEOREM 1 The optimal fusion rule will be a

threshold test on w.

PROOF Since the combination and the exponential

function are always positive, the coefficients of xi

on the left-hand side of (19) will change sign at

most once according to Lemma 1. If the sign doesn’t

change, the fusion center will either always decide

H0 or always decide H1. So the threshold of the test

will be either 1 or ¡1. If the sign of the coefficients
changes once, (19) will have one positive root. To

see this, we need the Descartes’ rule of signs [33],

which states that a real polynomial with Nv variations

in the signs of its coefficients has Nv ¡ 2k positive
roots where k is a nonnegative integer. Since Nv in this

case equals one, k can only take the value of zero. It

follows that there exists only one positive root and the

left-hand side of (19) will change sign at this unique

root. Since x is a strictly increasing function of w as

shown by (20), (18) will also have one root and the

sign of the left-hand side of (18) will change at this

root. Thus (17) can be reduced to a threshold test

on w.

It is worth noting that even if the local mapping rule

Mi(¢) is designed such that for arbitrary v and ṽ we
have Mi(v)<Mi(ṽ) if f(v jH1)=f(v jH0)< f(ṽ jH1)=
f(ṽ jH0), the optimal fusion rule cannot always be
reduced to a threshold test on the received signal.

When the sign of the coefficients of xi in (19)

changes once, (19) has a unique positive root xr. The

threshold T for the test on w can then be derived from

(20) and is given by

T =
¾2c lnxrp

®
¡Np®l: (21)

Since Pd > Pf and the sign of the coefficients of x
i

only changes once, we must have PNf P0¡PNd P1 < 0.

Then for all sufficiently large x, the sign of the

polynomial on the left-hand side of (19) will be

negative. Therefore, g(w)< 0 for all sufficiently large

w and the optimal fusion rule can be written as

w
H1
?
H0

T: (22)

For test (22), the error probability can be expressed as

Pe = (1¡PD)P1 +PFP0

=

NX
i=0

(
[Pif (1¡Pf)N¡iP0¡Pid (1¡Pd)N¡iP1]

μ
N

i

¶

£Q
Ã
T¡ ¡ip®¡Np®l¢

¾c

!)
+P1 (23)

where PD and PF denote, respectively, the detection

probability and the false alarm probability of the

fusion center. We now establish the monotonic

property of Pe.

THEOREM 2 Let ´ =
p
®=¾c, Pe is a monotonically

decreasing function of ´.

PROOF The proof can be found in Appendix II.

Following from Theorem 2, (8) is equivalent to

max ®

s.t. E[Mi(vi)
2]· CI , i= 1, : : : ,N:

The constraints can be written as

CI ¸ E[Mi(vi)2]
= (PdP1 +PfP0)®(1¡ l)2 + (1¡PdP1¡PfP0)®(¡l)2

= ®[(l¡Pa)2 +Pa¡P2a ]
where Pa = PdP1 +PfP0. By setting l = Pa, the

maximum of ® can be achieved. The optimal local

mapping rule under IPC can be expressed as

Mi(vi) =

8<:
p
®¤DI(1¡Pa) when ln

f(vi jH1)
f(vi jH0)

> ln
P0
P1p

®¤DI(¡Pa) otherwise

(24)

where ®¤DI = CI=(Pa¡P2a ). Under TPC, the optimal
scaling factor will be ®¤DT = CT=N(Pa¡P2a ).
Now we look at a special case where N = 1 and

we consider IPC (TPC is equivalent to IPC when there

is only one sensor). If we substitute f(w jH0) and
f(w jH1) with N = 1 into (18), we get

[PdP1¡PfP0]exp
Ã
¡
£
w¡p®¤DI(1¡Pa)¤2

2¾2c

!

= [(1¡Pf)P0¡ (1¡Pd)P1]exp
Ã
¡
£
w+

p
®¤DIPa

¤2
2¾2c

!
:

(25)
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We assume that a finite T exists. This implies PdP1 >
PfP0 and (1¡Pf)P0 > (1¡Pd)P1. So we can take
logarithm at both sides of (25) and get a closed-form
expression for T

T =

®¤DI(1¡ 2Pa)+2¾2c ln
(1¡Pf)P0¡ (1¡Pd)P1

PdP1¡PfP0
2
p
®¤DI

:

Hence, the closed-form expression for Pe will be
available for the case where N = 1.
Consider another special case where P0 = P1 = 0:5;

we have Pd =Q(¡s=2¾s)> 0:5 and Pf =Q(s=2¾s)<
0:5. Since Q(¡s=2¾s) = 1¡Q(s=2¾s), we have

Pd = 1¡Pf: (26)

Equation (26) suggests that Pa = 0:5. When the
optimal local mapping rule is used (the optimal local
mapping rule under IPC is given by (24) and we
can get the optimal local mapping rule under TPC
by replacing ®¤DI with ®

¤
DT in (24)), we have the

following lemma.

LEMMA 2 When P0 = P1 = 0:5, the optimal fusion
rule is

w
H1
?
H0

0: (27)

PROOF The proof can be found in Appendix III.

IV. MODIFIED AMPLIFY AND FORWARD

In a centralized detection system, where all
the sensor observations are available to the fusion
center, the optimal fusion rule corresponding to the
observation model (1) is an LLR test

ln
f(v1, : : : ,vN jH1)
f(v1, : : : ,vN jH0)

H1
?
H0

ln
P0
P1
: (28)

The assumption of conditionally independent
observations allows us to simplify (28) to

NX
i=1

vi

H1
?
H0

2¾2s ln
P0
P1
+Ns2

2s

which suggests that ª =
PN
i=1 vi is a sufficient statistic

for final decision making in this case.
Motivated by the above result, we propose the

MAF scheme where the local mapping rule has the
following form

Mi(vi) =
p
®(vi¡ l) (29)

where ® and l are to be optimized. Substituting (1)
and (29) into (2), we have

w =

8>>>><>>>>:

NX
i=1

p
®[(s+ ni)¡ l] +n when H1 is true

NX
i=1

p
®(ni¡ l) +n when H0 is true

:

(30)

At the fusion center, the optimal fusion rule

is the LLR test (17). According to (30),

w vN (¡Np®l,N®¾2s +¾2c ) under H0 and
w vN (Np®(s¡ l),N®¾2s +¾2c ) under H1 where
N (¹,¾2) represents a Gaussian distribution with mean
¹ and variance ¾2. Hence, (17) becomes

¡ [w¡N
p
®(s¡ l)]2

2(N®¾2s +¾
2
c )

+
(w+N

p
®l)2

2(N®¾2s +¾
2
c )

H1
?
H0

ln
P0
P1
:

(31)

We can simplify (31) to a threshold test on w which

has the form (22) with threshold

T =

2(N®¾2s +¾
2
c ) ln

P0
P1
+N2®s2¡2N2®sl

2N
p
®s

: (32)

The error probability can now be written as

Pe =Q

Ã
T+N

p
®lp

N®¾2s +¾
2
c

!
P0

+

"
1¡Q

Ã
T¡Np®(s¡ l)p
N®¾2s +¾

2
c

!#
P1 (33)

where T is given by (32). We now establish the

monotonic property for the error probability of the

MAF scheme as given in (33).

LEMMA 3 Let ³ =
p
(N®¾2s +¾

2
c )=N

2®s2, Pe is a

monotonically increasing function of ³.

PROOF It is easy to show that dPe=d³ > 0 and the

lemma follows.

Due to Lemma 3, the minimum of Pe can be found

by minimizing ³ with the constraint (3) when IPC is

considered. Problem (8) is equivalent to

min

r
N®¾2s +¾

2
c

N2®s2

s.t. E[Mi(vi)
2]· CI , i= 1, : : : ,N:

(34)

A quick glance tells us that ³ is a monotonically

decreasing function of ® and (34) is thus equivalent to

max ®

s.t. E[Mi(vi)
2]· CI , i= 1, : : : ,N:

Since the power constraint can be written as

E[Mi(vi)
2] = P1E[®(s+ ni¡ l)2] +P0E[®(ni¡ l)2]
= ®[(l¡P1s)2 +P1P0s2 +¾2s ]

the maximum of ® is achieved by setting l = P1s

and the optimized local mapping rule under IPC is

given by

Mi(vi) =
p
®¤AI(vi¡P1s) (35)

where ®¤AI = CI=(¾
2
s +P1P0s

2). Under TPC, the optimal

scaling factor will be ®¤AT = CT=N(¾
2
s +P1P0s

2). Note
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Fig. 2. Comparison of error exponents under IPC.

that the traditional amplify-and-forward scheme with

l = 0 is by no means optimal, because the optimal

value for bias l will never be 0 if P1 6= 0.

V. ASYMPTOTIC PERFORMANCE

In this section we examine the asymptotic

behaviors of both schemes under IPC and TPC. We

define the signal-to-noise ratio (SNR) at the local

sensor to be ½S = s
2=¾2s . We also define ½I = CI=¾

2
c

which is the ratio of the power budget for each sensor

to the channel noise power and ½T = CT=¾
2
c which is

the ratio of the total power budget for the distributed

system to the channel noise power.

A. Under IPC

We now calculate the error exponents of the MDF

and MAF schemes under IPC. Although the optimal

fusion rule of the MDF scheme turns out to be a

threshold test on w for any given N, it is difficult

to find the closed-form expression for the error

probability when N 6= 1. But this does not prevent us
from evaluating the asymptotic behavior of the MDF

scheme and a theorem is provided below.

THEOREM 3 The error exponent EDI of the MDF

scheme under IPC is given by

EDI =¡ ln
24Pf

Ã
Pd
Pf

!¸¤
+(1¡Pf)

Ã
1¡Pd
1¡Pf

!¸¤35
(36)

where

¸¤ =

ln

·
(1¡Pf) ln

1¡Pf
1¡Pd

¸
¡ ln

"
Pf ln

Pd
Pf

#

ln
Pd(1¡Pf)
Pf(1¡Pd)

: (37)

PROOF The proof can be found in Appendix IV.

In Fig. 2 we plot the error exponents of the MDF

scheme for different P1 and ½S . In the low SNR

region, the prior probability P1 will have a strong

impact on the error exponent of the MDF scheme.

However, the influence of P1 on EDI becomes smaller

and smaller as ½S increases and EDI increases almost

linearly in the high SNR region.

Note that the error probability Pe,AI of the MAF

scheme under IPC can be obtained from (33) by

setting ®= ®¤AI . Since the closed-form expression for

error probability of the MAF scheme is available, the

error exponent EAI of the MAF scheme under IPC

can be calculated directly from the definition EAI =

limN!1¡(1=N) lnPe,AI and we give the following
theorem without proof.

THEOREM 4 The error exponent EAI of the MAF

scheme under IPC is given by

EAI =
s2

8¾2s
=
½S
8
: (38)

The error exponent of the MAF scheme increases

linearly with the SNR at the local sensor as shown

in (38).

B. Under TPC

We first analyze the asymptotic behavior of the

MDF scheme under TPC. Let

w̃ =
wp
N
=
1

N

Ã
NX
i=1

p
NMi(vi) +

p
Nn

!
(39)

where Mi(vi) is given by

Mi(vi) =

8<:
p
®¤DT(1¡Pa) when ln

f(vi jH1)
f(vi jH0)

> ln
P0
P1p

®¤DT(¡Pa) otherwise

:

Since w̃ is a linear transformation from w, the smallest

error probability resulting from distinguishing the two

hypotheses using w̃ will be the same as that using w.

We then construct N IID Gaussian random variables

n̂i (i= 1, : : : ,N) with mean zero and variance ¾
2
c .

Since
p
Nn in (39) follows N (0,N¾2c ), the distribution

of
PN

i=1 n̂i will be the same as that of
p
Nn. Define

ŵ = (1=N)
PN
i=1(
p
NMi(vi) + n̂i). Notice that ŵ will

have the same conditional distributions as w̃ under

both hypotheses. We treat w=
p
N as a realization

of ŵ. Recall that
p
®¤DT =

p
CT=N(Pa¡P2a ). The

distributions of
p
NMi(vi) under H0 and H1 are

governed by

Pr
np
NMi(vi) = x jH0

o
=

(
Pf x=

p
®̂(1¡Pa)

1¡Pf x=
p
®̂(¡Pa)

and

Pr
np
NMi(vi) = x jH1

o
=

½
Pd x=

p
®̂(1¡Pa)

1¡Pd x=
p
®̂(¡Pa)
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where ®̂= CT=(Pa¡P2a ). Obviously,
p
NMi(vi)+ n̂i are

conditionally IID By the strong law of large numbers,

we have PrflimN!1 ŵ =
p
®̂(Pf ¡Pa) jH0g= 1 and

PrflimN!1 ŵ =
p
®̂(Pd ¡Pa) jH1g= 1. Design the

fusion rule ¡̂¿ as

ŵ
H1
?
H0

¿ (40)

where ¿ is a fixed constant rather than a function of

N. Since (40) will not be optimal for all N, the error

exponent associated with the optimal fusion rule

ln
f(ŵ jH1)
f(ŵ jH0)

H1
?
H0

ln
P0
P1

will be lower bounded by

max
¿2(

p
®̂(Pf¡Pa),

p
®̂(Pd¡Pa))

E
¡̂¿

(41)

where E
¡̂¿
is the error exponent associated with

the fusion rule ¡̂¿ . Use ¤0(¸) and ¤1(¸) to denote

the logarithmic moment generating functions ofp
NM1(v1)+ n̂1 under H0 and H1, respectively. We

have

¤0(¸) = lnE
h
exp

³
¸
³p
NM1(v1)+ n̂1

´´
jH0

i
= ln

μ
Pf exp

μp
®̂(1¡Pa)¸+

¾2c ¸
2

2

¶
+(1¡Pf)exp

μ
¡
p
®̂Pa¸+

¾2c ¸
2

2

¶¶
:

Similarly,

¤1(¸) = lnE
h
exp

³
¸
³p
NM1(v1)+ n̂1

´´
jH1

i
= ln

μ
Pd exp

μp
®̂(1¡Pa)¸+

¾2c ¸
2

2

¶
+(1¡Pd)exp

μ
¡
p
®̂Pa¸+

¾2c ¸
2

2

¶¶
:

Use P
F,¡̂¿

and P
M,¡̂¿

to denote the false alarm

probability and the miss probability. Use E
F,¡̂¿

and

E
M,¡̂¿

to denote the exponents of the false alarm

probability and the miss probability. Applying the

LDP [31], we will have

E
M,¡̂¿

= lim
N!1

¡ 1
N
lnP

M,¡̂¿

= lim
N!1

¡ 1
N
lnPrfŵ · ¿ jH1g

= inf
x·¿
¤¤1(x)

= ¤¤1(¿ )

= sup
¸2R
[¸¿ ¡¤1(¸)]

=¡ inf
¸2R
[¤1(¸)¡¸¿]

where ¤¤1(x) is the Fenchel-Legendre transform of

¤1(¸). The third equality is due to the Cramer’s

Theorem [31] and the continuity of ¤¤1(x), and the
fourth equality comes from the fact that ¤¤1(x) is a
nonincreasing function of x when x <

p
®̂(Pd ¡Pa)

[31]. Similarly, we have

E
F,¡̂¿

= ¤¤0(¿ )

= sup
¸2R
[¸¿ ¡¤0(¸)]

=¡ inf
¸2R
[¤0(¸)¡¸¿ ]

where ¤¤0(x) is the Fenchel-Legendre transform of

¤0(¸). For a given threshold ¿ , the corresponding

error exponent E
¡̂¿
is determined by the minimum of

E
F,¡̂¿

and E
M,¡̂¿

. Hence, (41) becomes

max
¿2(

p
®̂(Pf¡Pa),

p
®̂(Pd¡Pa))

min(E
F,¡̂¿
,E
M,¡̂¿

):

Notice that ¤0(¸) and ¤1(¸) are both convex

functions of ¸ and that ¡¸¿ is a linear function
of ¸ for fixed ¿ . Thus, ¤0(¸)¡¸¿ and ¤1(¸)¡
¸¿ are both convex functions of ¸. So for any

given ¿ , E
F,¡̂¿

and E
M,¡̂¿

can be obtained by

using standard convex optimization techniques.

Since ¤¤0(¿ ) is a nondecreasing function of ¿ and
¤¤1(¿) is a nonincreasing function of ¿ when ¿ 2
(
p
®̂(Pf ¡Pa),

p
®̂(Pd¡Pa)), min(EF,¡̂¿ ,EM,¡̂¿ ) will be

a quasiconcave function and the maximum will be

achieved when
E
F,¡̂¿

= E
M ,¡̂¿

: (42)

As a result, the lower bound (41) can be calculated

numerically by using a two-stage optimization

algorithm. The first stage is solving the nonlinear

equation (42) by using the bisection method. For each

iteration in the first stage, we need to calculate E
F,¡̂¿

and E
M,¡̂¿

for a particular value of ¿ by solving two

convex optimization problems which forms the second

stage. We are able to show that the lower bound is

tight.

THEOREM 5 The error exponent EDT of the MDF

scheme under TPC is equal to that of a fixed threshold

scheme where the fixed threshold ¿̂ makes E
F,¡̂¿̂

=

E
M ,¡̂¿̂

.

PROOF The proof can be found in Appendix V.

The closed-form expression for the error

probability Pe,AT of the MAF scheme under TPC can

be obtained by setting ®= ®¤AT in (33). We give the
following theorem without proof.

THEOREM 6 The error exponent EAT of the MAF

scheme under TPC is given by

EAT =
½S

8

·
1+

P1P0½S +1

½T

¸ : (43)
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Under TPC, the error exponent of the MAF scheme

will depend not only on the SNR at the local sensor

but also on the prior probabilities of both hypotheses

and ½T. Notice there is a close relationship between

(38) and (43). Under IPC, as the number of sensors

goes large, the total system power tends to infinity. If

we take the limit as ½T goes to infinity (thus CT goes

to infinity for fixed ¾2c ), we have

lim
½T!1

EAT =
½S
8
= EAI:

1) A Special Case: In the following, we consider

the special case where P0 = P1 = 0:5. For this special

case we can technically prove that under TPC the

error exponent of the MDF scheme is larger than

that of the MAF scheme when we have high quality

sensors (i.e., ½S is large) and low transmission power

(i.e., ½T is small). Since it is already shown that Pa =

0:5 for this special case, we have ®̂= 4CT. Lemma

2 suggests that a test (see (40)) on ŵ with fixed

threshold ¿ = 0 is indeed optimal. The error exponent

EDT, the exponent of the miss probability EM,¡̂0
, and

the exponent of the false alarm probability E
F,¡̂0

are

all equal to each other. Hence,

EDT = EF,¡̂0

=¡ inf
¸2R
ln

μ
Pf exp

μp
CT¸+

¾2c ¸
2

2

¶
+(1¡Pf)exp

μ
¡pCT¸+ ¾2c ¸22

¶¶
:

It is hard to obtain a closed-form expression for EDT.

However, we can find a closed-form expression for

the lower bound of EDT. Notice that
˜̧ =

p
CT=¾

2
c is

the minimizer of (1¡Pf)exp(¡
p
CT¸+¾

2
c ¸
2=2). The

lower bound of EDT is hence

LBDT =¡ ln
Ã
Pf exp

Ãp
CT
˜̧ +

¾2c
˜̧ 2

2

!

+(1¡Pf)exp
Ã
¡pCT ˜̧ + ¾2c ˜̧ 22

!!

=¡ ln
μ
Q

μp
½S

2

¶
exp

μ
3½T
2

¶
+Q

μ
¡
p
½S

2

¶
exp

³
¡½T
2

´¶
where we have utilized the fact Pf =Q(s=2¾s). For the

MAF scheme, the error exponent is given by

EAT =
½S½T

8½T+2½S +8
:

We are interested in comparing exp(¡LBDT) with
exp(¡EAT) under the scenario where ½S is large and

½T is small. Expanding exp(3½T=2), exp(¡½T=2), and
exp(¡EAT) around ½T = 0, we have

exp(¡LBDT) =Q
μp

½S

2

¶μ
1+

3½T
2
+ o1(½T)

¶
+Q

μ
¡
p
½S
2

¶³
1¡ ½T

2
+ o2(½T)

´
= 1+

·
2Q

μp
½S

2

¶
¡ 1
2

¸
½T

+Q

μp
½S

2

¶
o1(½T) +Q

μ
¡
p
½S

2

¶
o2(½T)

and

exp(¡EAT) = 1¡
½S

2(½S +4)
½T+o3(½T;½S)

where o1(½T), o2(½T), and o3(½T;½S) contain terms of

½T of second and higher orders. Hence,

exp(¡LBDT)¡ exp(¡EAT)

=

·
2Q

μp
½S
2

¶
¡ 1
2
+

½S
2(½S +4)

¸
½T

+Q

μp
½S

2

¶
o1(½T)

+Q

μ
¡
p
½S

2

¶
o2(½T)¡ o3(½T;½S):

If ½S is chosen such that

2Q

μp
½S
2

¶
¡ 1
2
+

½S
2(½S +4)

= 2Q

μp
½S

2

¶
¡ 2

½S +4
< 0 (44)

then for small enough ½T we have exp(¡LBDT)<
exp(¡EAT), which implies LBDT > EAT. If the
lower bound of EDT is greater then EAT, then EDT
must be greater than EAT. We now establish the

condition for (44) to hold. An upper bound for Q(x)

is given by Q(x)· 1
2
exp(¡x2=2). Hence, we have

2Q(
p
½S=2)· exp(¡½S=8). Since exp(¡½S=8) decreases

exponentially as ½S increases, for large ½S we must

have exp(¡½S=8)< 2=(½S +4), and (44) holds.

VI. COMPARISONS

In this section, the MDF and MAF schemes

are compared under both IPC and TPC. We first

consider the case where there is a finite number

of sensors deployed and then the case where there

is an infinite number of sensors. Instead of only

comparing the MDF scheme with the MAF scheme,

we would also like to include two other schemes into

the comparison which are the detect-and-forward and

amplify-and-forward schemes. The detect-and-forward

scheme uses the local mapping rule (10) with l = 0:5.

The amplify-and-forward scheme is the traditional
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Fig. 3. Comparison of different schemes (½S = 15 dB, ½I = 0 dB,

P1 = 0:25).

Fig. 4. Comparison of different schemes (½I = 5 dB, P1 = 0:25,

N = 2).

amplify-and-forward scheme which uses the local

mapping rule (29) with l = 0. To make it a fair

comparison, all the schemes are subject to the same

energy constraint.

A. Finite Number of Sensors

Due to the symmetry of the problem, for any given

N, TPC with power budget CT is equivalent to IPC

with power budget CI = CT=N. As a result we only

compare schemes under IPC for a finite number of

sensors. For the two modified schemes, we plot both

the simulation results and the numerically calculated

error probabilities (using (23) and (33)) in Fig. 3. The

simulation results agree very well with the theoretical

results. It is shown in Fig. 3 that the error probabilities

of all the four schemes decrease as the number of

sensors increases. Since the local mapping rules of the

MDF and MAF schemes are optimized for the given

power budget, they are able to make less errors than

their counterparts, which are the detect-and-forward

Fig. 5. Comparison of different schemes (½S = 10 dB, ½I = 0 dB,

P1 = 0:25).

and amplify-and-forward schemes, respectively. We

can also observe that the MDF scheme outperforms

the MAF scheme in this case. In Fig. 4 we keep the

number of sensors and ½I fixed and examine the

impact of the quality of sensor observations on the

detection performance. We find that the larger ½S is,

the smaller the error probability is. When ½S is small,

all the schemes will have similar performance. When

10 dB< ½S < 20 dB, the error probability of the MDF

scheme decreases at the fastest rate as ½S increases.

This is because in the MDF scheme sensors can easily

eliminate the noise contained in their observations by

making local decisions when ½S is large while sensors

in the amplify-and-forward and MAF schemes will

blindly forward the noise. This suggests that the MDF

scheme will be a good choice when the quality of

sensor observations is high.

B. Asymptotic Behavior under IPC

Notice that (38) does not depend on ¾2c . When

¾2c = 0, the fusion center receives the noise-free shifted

and scaled sum of observations (which is a sufficient

statistic for a centralized system). It follows that the

MAF scheme is asymptotically optimal under IPC.

Using similar approaches as used to establish

Theorem 3 and Theorem 4, we can calculate the

error exponents of the amplify-and-forward and

detect-and-forward schemes. It turns out that the

MAF and amplify-and-forward schemes have the

same error exponents under IPC. So do the MDF

and detect-and-forward schemes. This suggests that

optimizing ® and l under IPC will not give us a gain

in the error exponent.

As shown in Fig. 5 the error probabilities of all

the schemes decrease exponentially when the number

of sensors increases. Although the error probabilities

of the amplify-and-forward and MAF schemes

decrease at the same rate (i.e., the error exponents

of the amplify-and-forward and MAF schemes
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Fig. 6. Comparison of different schemes under TPC.

are the same), we can notice that there is always a

performance gap between the amplify-and-forward

and MAF schemes. Such a performance gap between

the detect-and-forward and MDF schemes can also

be found. Additionally, we can observe that the error

probability of the MDF scheme decreases slower than

that of the MAF scheme. This is because the MAF

scheme is asymptotically optimal under IPC and thus

has the largest error exponent. As a result, it will be

good to adopt the MAF scheme when a large number

of sensors with IPC are used.

C. Asymptotic Behavior under TPC

We can obtain the error exponent of the

amplify-and-forward scheme under TPC

using a similar approach as used to establish

Theorem 6. We find that the error exponent of

the amplify-and-forward scheme is smaller than

that of the MAF scheme. Next, we look at the

detect-and-forward and MDF schemes. Since

the values for ® and l in the detect-and-forward

scheme are different from those in the MDF scheme,

the logarithmic moment generating functions ofp
NM1(v1)+ n̂1 will be different for the two schemes.

This will eventually lead to a difference in the error

exponents of the two schemes. Since the MDF

scheme is more energy efficient, it will have a larger

error exponent than the detect-and-forward scheme.

Different from the situations under IPC, we can

achieve a gain in the error exponent by optimizing

the local mapping rule under TPC.

We first investigate the scenario (called “scenario

1”) where ½S = 10 dB, ½T = 5 dB, P1 = 0:25. Fig. 6

shows the performance of the four schemes under

TPC under scenario 1. Thanks to the multiaccess

strategy, the error probabilities of the four schemes

still decrease exponentially even though the total

energy of the system is kept constant. The MAF

scheme has the largest error exponent compared

with the other three schemes. We can also find

Fig. 7. Comparison of MDF and MAF (½T = 0 dB, P1 = 0:25).

Fig. 8. Comparison of MDF and MAF (½S = 10 dB, P1 = 0:25).

that the MDF scheme (MAF scheme) has larger

error exponent than the detect-and-forward scheme

(amplify-and-forward scheme respectively), which

is different from Fig. 5 where the error probability

of the MDF scheme (MAF scheme) decreases at the

same rate as that of the detect-and-forward scheme

(amplify-and-forward scheme respectively). The

simulation results clearly show that we are able

to achieve a larger error exponent under TPC by

optimizing the local mapping rule. We then investigate

the scenario (called “scenario 2”) where ½S = 15 dB,

½T = 0 dB, P1 = 0:25. By increasing ½S by 5 dB and

decreasing ½T by 5 dB, the MDF scheme beats the

MAF schemes overwhelmingly as can be observed

from Fig. 6.

In Fig. 7 and Fig. 8, we compare the error

exponent of the MAF scheme with the error exponent

of the MDF scheme fixing ½S or ½T and varying

the value of the other parameter. We can observe

that the MDF scheme is suitable for high quality

sensors with low total transmission power even when
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a larger number of sensors are concerned. Notice

that this observation has been technically proven in

Section VB1 for the special case P0 = P1 = 0:5.

VII. CONCLUSIONS

We have considered the design of local mapping

rules for an energy-limited distributed detection

system. For a single-slot multiaccess channel, a design

methodology is proposed which is based on the idea

of communicating the noisy version of a sufficient

statistic of processed sensor observations to the fusion

center. Two energy-efficient schemes (the MDF

and MAF schemes) are designed according to the

proposed methodology. The optimal fusion rule of

the MDF scheme is shown to be a simple threshold

test on the received signal at the fusion center. Under

IPC, the MAF scheme is asymptotically optimal

while the MDF scheme is not. However, the MAF

scheme is not guaranteed to be optimal for a finite

number of sensors. Under TPC, the MDF scheme may

have a larger error exponent than the MAF scheme

when the system is composed of high quality sensors

with a low total transmission power. By optimizing

the local mapping rule, both the MDF and MAF

schemes could offer larger error exponents than the

unmodified schemes (i.e., the detect-and-forward and

amplify-and-forward schemes respectively) under

TPC.

APPENDIX I. PROOF OF LEMMA 1

Rewrite Sk as Sk = A0(p=(1¡p))k(1¡p)K ¡
A1(q=(1¡ q))k(1¡ q)K . Without loss of generality, we
assume 0< p< q < 1. We have

q

1¡ q >
p

1¡p: (45)

Suppose for a given · we have S· < 0. Then for

all k > · we have Sk < 0. This can be proved by

induction. First, we examine S·+1. S· < 0 implies that

A1(q=(1¡ q))·(1¡ q)K > A0(p=(1¡p))·(1¡p)K . Due
to (45) we have

A1

μ
q

1¡ q
¶(·+1)

(1¡ q)K

= A1

μ
q

1¡ q
¶·
(1¡q)K

μ
q

1¡ q
¶

> A0

μ
p

1¡p
¶·
(1¡p)K

μ
q

1¡ q
¶

> A0

μ
p

1¡p
¶·
(1¡p)K

μ
p

1¡p
¶

= A0

μ
p

1¡p
¶(·+1)

(1¡p)K:

As a result S·+1 is also smaller than zero.

Similarly, we can prove that S·+2 must be negative

and so on. From the above results, we know that Sk
will always be nonnegative, or always negative, or

first nonnegative and then negative. So the sign of Sk
will change at most once.

APPENDIX II. PROOF OF THEOREM 2

We prove the theorem by showing that the

first derivative of Pe with respect to ´ is negative.

Substituting (21) and ´ =
p
®=¾c into (23), we have

Pe =

NX
i=0

½
[Pif (1¡Pf)N¡iP0¡Pid (1¡Pd)N¡iP1]

£
μ
N

i

¶·
1

2
¡ 1
2
erf

μ
lnxrp
2´
¡ i´p

2

¶¸¾
+P1

where erf(¢) is the error function. Since the sign of
the coefficients of xi in (19) changes once, there

must be a · such that the coefficients of xi (i > ·) are

all negative and the coefficients of xi (i · ·) are all
nonnegative. We then have

@Pe
@´

=

NX
i=0

8>>>><>>>>:[P
i
f (1¡Pf)N¡iP0¡Pid (1¡Pd)N¡iP1]

μ
N

i

¶¡exp
Ã
¡
μ
lnxrp
2´
¡ i´p

2

¶2!
p
¼

d

μ
lnxrp
2´
¡ i´p

2

¶
d´

9>>>>=>>>>;

=

NX
i=0

8>><>>:[Pif (1¡Pf)N¡iP0¡Pid (1¡Pd)N¡iP1]
μ
N

i

¶
exp

μ
¡ i

2´2

2

¶
exp(i lnxr)

2664d
μ
lnxrp
2´

¶
d´

¡ ·p
2
+
·¡ ip
2

3775
9>>=>>;

£
¡exp

Ã
¡
μ
lnxrp
2´

¶2!
p
¼
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=

NX
i=0

½
[Pif (1¡Pf)N¡iP0¡Pid (1¡Pd)N¡iP1]

μ
N

i

¶
exp

μ
¡ i

2´2

2

¶
xir

¾¡exp
Ã
¡
μ
lnxrp
2´

¶2!
p
¼

0BB@d
μ
lnxrp
2´

¶
d´

¡ ·p
2

1CCA

+

NX
i=0

½
[Pif (1¡Pf)N¡iP0¡Pid (1¡Pd)N¡iP1]

μ
N

i

¶
exp

μ
¡ i

2´2

2

¶
xir
·¡ ip
2

¾¡exp
Ã
¡
μ
lnxrp
2´

¶2!
p
¼

=

NX
i=0

½
[Pif (1¡Pf)N¡iP0¡Pid (1¡Pd)N¡iP1]

μ
N

i

¶
exp

μ
¡ i

2´2

2

¶
xir
·¡ ip
2

¾¡exp
Ã
¡
μ
lnxrp
2´

¶2!
p
¼

:

Notice that

Pif (1¡Pf)N¡iP0¡Pid (1¡Pd)N¡iP1
½
< 0 when i > ·

¸ 0 when i · ·
and

·¡ i
(
< 0 when i > ·

¸ 0 when i· ·
:

As a result, we have

dPe
d´

< 0:

APPENDIX III. PROOF OF LEMMA 2

When the optimal local mapping rule is used

and Pd = 1¡Pf (see (26)), the left-hand side of (19)
becomes

NX
i=0

(·
(1¡Pd)iPN¡id

1

2
¡Pid (1¡Pd)N¡i

1

2

¸μ
N

i

¶

£exp
Ã
¡
¡
i
p
®
¢2

2¾2c

!
exp

Ã
i
p
®
¡
w+N

p
® 1
2

¢
¾2c

!)
(46)

where ®= ®¤DI for IPC and ®= ®
¤
DT for TPC. Set

w = 0 and (46) becomes

1

2

NX
i=0

(1¡Pd)iPN¡id

μ
N

i

¶
exp

μ
¡®i(i¡N)

2¾2c

¶

¡ 1
2

NX
i=0

Pid (1¡Pd)N¡i
μ
N

i

¶
exp

μ
¡®i(i¡N)

2¾2c

¶
:

(47)

Let j =N ¡ i. The second part of (47) becomes

1

2

NX
j=0

P
N¡j
d (1¡Pd)j

μ
N

j

¶
exp

μ
¡®(N ¡ j)(¡j)

2¾2c

¶

which is equal to the first part of (47). Hence w = 0

is the root of (46) (or in other words, the root of

f(w jH0)P0¡f(w jH1)P1). Since f(w jH0)P0¡f(w jH1)P1
has at most one root, w = 0 must be the unique root.

The sign of f(w jH0)P0¡f(w jH1)P1 changes at this
unique root. As a result, (27) is the optimal fusion

rule.

APPENDIX IV. PROOF OF THEOREM 3

To prove this theorem, an upper bound for the

error exponent will be derived first. If we assume that

the fusion center can obtain each Mi(vi) without error,

then the best achievable error exponent EC will be the

Chernoff information [20]

EC =¡ min
0·¸·1

lnE

"μ
p1(M1(v1))

p0(M1(v1))

¶¸
jH0

#
(48)

where p0(x) and p1(x) are probability mass functions

of Mi(vi) under H0 and H1, and are given by

p0(x) =

(
Pf x=

p
®¤DI(1¡Pa)

1¡Pf x=
p
®¤DI(¡Pa)

(49)

and

p1(x) =

(
Pd x=

p
®¤DI(1¡Pa)

1¡Pd x=
p
®¤DI(¡Pa)

: (50)

Substituting (49) and (50) into (48), we get

EC =¡ min
0·¸·1

ln

24Pf
Ã
Pd
Pf

!¸
+(1¡Pf)

Ã
1¡Pd
1¡Pf

!¸35 :
Since

h(¸) = Pf

Ã
Pd
Pf

!¸
+(1¡Pf)

Ã
1¡Pd
1¡Pf

!¸
is a strictly convex function of ¸ and h(0) = h(1)>

h(1=2), the ¸ that minimizes h(¸) must be in the

interval (0,1). As a result, the constraint 0· ¸· 1 can
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be removed and we have

EC =¡minln
24Pf

Ã
Pd
Pf

!¸
+(1¡Pf)

Ã
1¡Pd
1¡Pf

!¸35 :
(51)

The ¸¤ that satisfies dh(¸)=d¸= 0 is given by (37). So
the upper bound for the error exponent of the MDF

scheme is given by the right-hand side of (36).

For the local mapping rule (24), we design another

fusion rule _¡

ln
Pd(1¡Pf)
Pf(1¡Pd)p
®¤DIN

w
H1
?
H0

¡
Ã
ln
Pd(1¡Pf)
Pf(1¡Pd)

!
Pa¡ ln

1¡Pd
1¡Pf

:

(52)

We now show that the error exponent of the system S
with local mapping rule (24) and fusion rule (52) will

reach the upper bound we derived before. Using the

fact that

ln
p1
¡p
®¤DI(1¡Pa)

¢
p0
¡p
®¤DI(1¡Pa)

¢ = ln Pd
Pf

and

ln
p1
¡p
®¤DI(¡Pa)

¢
p0
¡p
®¤DI(¡Pa)

¢ = ln 1¡Pd
1¡Pf

we can reorganize (52) and get

! =

NX
i=1

ln
p1(Mi(vi))

p0(Mi(vi))
+

Ã
ln
Pd(1¡Pf)
Pf(1¡Pd)

!
np

®¤DI

H1
?
H0

0:

For any ¸ > 0, we have

PF,S = Prf! > 0 jH0g
· E[exp(¸!) jH0]

=

(
E

"μ
p1(M1(v1))

p0(M1(v1))

¶¸
jH0

#)N
E[exp(¸kn) jH0]

where

k =

ln
Pd(1¡Pf)
Pf(1¡Pd)p
®¤DI

and PF,S is the false alarm probability of system S.
The inequality comes from the Markov inequality and

the last equality is because Mi(vi) are conditionally IID

and n is independent of Mi(vi). Since ¸
¤ > 0, we have

¡ 1

N
lnPF,S ¸ ¡ lnE

"μ
p1(M1(v1))

p0(M1(v1))

¶¸¤
jH0

#

¡ 1

N
lnE[exp(¸¤kn) jH0]: (53)

For any ¸ < 0, we have

PM,S = Prf! · 0 jH1g

· E[exp(¸!) jH1]

=

(
E

"μ
p1(M1(v1))

p0(M1(v1))

¶¸
jH1

#)N
E[exp(¸kn) jH1]

where PM,S is the miss probability of system S. Since
¸¤ ¡ 1< 0,

¡ 1
N
lnPM,S ¸ ¡ lnE

"μ
p1(M1(v1))

p0(M1(v1))

¶¸¤¡1
jH1

#

¡ 1

N
lnE[exp((¸¤ ¡ 1)kn) jH1]

=¡ lnE
"μ
p1(M1(v1))

p0(M1(v1))

¶¸¤
jH0

#

¡ 1

N
lnE[exp((¸¤ ¡ 1)kn) jH1]:

(54)
Notice that

¡ lnE
"μ
p1(M1(v1))

p0(M1(v1))

¶¸¤
jH0

#
= EC (55)

and

lim
N!1

¡ 1
N
lnE[exp(¸¤kn) jH0] = 0 (56)

lim
N!1

¡ 1
N
lnE[exp((¸¤ ¡ 1)kn) jH1] = 0: (57)

We use ES to denote the error exponent of system S.
Due to (53)—(57) and the trivial upper bound EC ¸ ES ,
we can obtain EC = ES . Since the fusion rule (17) is
optimal for any given N while (52) is not, we will

have EDI ¸ ES . Thus the error exponent of the MDF
scheme will also be able to attain the upper bound EC.

The theorem follows.

APPENDIX V. PROOF OF THEOREM 5

Let ¿̂ be such that E
F,¡̂¿̂

= E
M,¡̂¿̂

. Threshold

¿̂ yields miss probability P
M,¡̂¿̂

and false alarm

probability P
F,¡̂¿̂
. As shown in Theorem 1, for any

given N the optimal test is also a threshold test with

optimal threshold ¿ ¤N and the resulting miss probability
and false alarm probability are given by P¤M =
Prfŵ · ¿¤N jH1g and P¤F = Prfŵ > ¿¤N jH0g, respectively.
If ¿ ¤N > ¿̂ , we will have P

¤
M ¸ PM ,¡̂¿̂ = Prfŵ · ¿̂ jH1g.

If ¿ ¤N < ¿̂ , we will have P
¤
F ¸ PF,¡̂¿̂ . Hence, P1P

¤
M+

P0P
¤
F ¸min(P0,P1) ¢min(PM,¡̂¿̂ ,PF,¡̂¿̂ ). Now we
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have

EDT = lim
N!1

¡ 1
N
ln(P1P

¤
M +P0P

¤
F )

· lim
N!1

¡ 1
N
lnmin(P0,P1)

+ lim
N!1

¡ 1
N
lnmin(P

M,¡̂¿̂
,P
F,¡̂¿̂
)

= E
M ,¡̂¿̂

(58)

where the last equality is because E
F,¡̂¿̂

= E
M,¡̂¿̂

.

Equation (58) suggests that EDT is less than or equal

to the error exponent of a test with constant threshold

¿̂ . However, the optimal test should have the largest

error exponent. As a result, we have EDT = EM,¡̂¿̂
. This

finishes the proof.
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