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Abstract

We study stochastic stability of centralized Kalman filtering for linear time-varying systems equipped with wireless sensors. Transmission
is over fading channels where variable channel gains are counteracted by power control to alleviate the effects of packet drops. We
establish sufficient conditions for the expected value of the Kalman filter covariance matrix to be exponentially bounded in norm. The
conditions obtained are then used to formulate stabilizing power control policies which minimize the total sensor power budget. In deriving
the optimal power control laws, both statistical channel information and full channel information are considered. The effect of system
instability on the power budget is also investigated for both these cases.
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1 Introduction

The interest in estimation and control over wireless com-
munication channels has increased tremendously. The rapid
evolution of wireless sensor networks, see e.g., [10, 14, 18,
39] has made wireless sensors (WSs) cheap and reliable
enough to be brought into commercial use. WSs offer several
advantages for industrial control systems, such as, flexibil-
ity, low cost, and fast deployment. Furthermore, with WSs
electrical contact problems, often regarded as a nuisance in
wired systems, are no longer an issue. Furthermore, WSs
and actuators can be placed where wires cannot go, or where
power sockets are unavailable. The use of wireless commu-
nications for state estimation and closed loop control, how-
ever, also brings new challenges in system design. In fact,
wireless communication channels are frequently subject to
time-varying fading and interference, which may lead to
packet errors; see, e.g., [15, 32, 38].
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A key aspect is that fading channels can partially be com-
pensated for by adjusting the transmission power levels;
higher transmission power giving less packet errors. Power
control has been shown to be a key enabling technology
whenever wireless links are used, constituting a versatile
means to guarantee quality of service to individual users
[3, 6, 11, 13, 16]. Since in most WS applications, energy is
severely limited, power control design involves trading en-
ergy consumption for accuracy [4, 29, 30, 44, 46].

Kalman filters are widespread in estimation and control ap-
plications and the effect of random measurement losses on
filter stability has received considerable attention in recent
literature. In particular, [41] studied a single-link estimation
setup for LTI plants where dropout processes are indepen-
dent and identically distributed (i.i.d.). Thus, in this mod-
eling paradigm it is assumed that the probability of drops
is the same from one transmission to the next. By using
a fixed-point argument, [41] established that there exists a
critical dropout probability value which separates situations
where the expected value of the covariance matrix remains
bounded from instances where it diverges, see also [21, 31]
and [23]. 1 The latter work examines a state estimation ar-

1 If rather than the expected value of the covariance matrix, other
metrics are used, then different critical dropout probabilities will be
obtained, see also [5,17,36]. Alternatively, the works [5,9,20,40]
directly examine the distribution of the covariance matrix.
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chitecture with two channels affected by i.i.d. dropouts. The
case of Kalman filtering with a single link and where the
dropouts are described by a time-homogeneous two-state
Markov chain was investigated in [17, 19, 40, 45], whereas
in the recent work [5] also semi-Markov chains are consid-
ered. Given the fundamental importance of power control
in wireless communications, it is surprising that the role of
power control on stability of Kalman filters with random
packet dropouts has not yet been investigated. In fact, to the
best of the authors’ knowledge, the only works which have
examined power control design for Kalman filtering with
packet dropouts are our own; see, e.g., [28,35]. These works
examine the trade-off between energy use and estimation
accuracy, but do not investigate stability issues.

In the present work we study state estimation for linear time-
varying systems via a Kalman filter performing optimal cen-
tralized state estimation at a single gateway. To keep WSs
simple, only raw measurements are transmitted to the gate-
way; c.f., [12, 15, 37, 40]. The wireless transmission chan-
nels are block-fading and generate random packet loss. The
packet loss probabilities depend, in a nonlinear fashion, upon
the time-varying channel gains and power levels used by the
sensors. The gateway has knowledge on whether received
data is error-free or not. Our main purpose is to investigate
the role of power control of the transmission power levels
to be used by each WS. We establish sufficient conditions
which ensure that the Kalman filter covariance matrix is ex-
ponentially bounded in norm. The conditions obtained are
then used to formulate stabilizing optimal power allocation
laws which minimize the total power used by the sensors.

The remainder of this paper is organized as follows: Sec-
tion 2 introduces the system setup and revises basic aspects
on state estimation with packet drops and power control.
A sufficient condition for stochastic stability of the estima-
tor is then obtained in Section 3. Section 4 studies decen-
tralized power control laws. Robustness issues are investi-
gated in Section 5. The stability results are used to perform
optimum power allocation in Section 6. Numerical studies
are included in Section 7. Section 8 draws conclusions. All
proofs of technical results are included in appendices.

Notation: We write R≥0 for the nonnegative real numbers
and N0 for {0, 1, 2, . . .}. For sequences, we use {ν}N0 for
{ν(0), ν(1), . . . }, and {ν}k

0 for {ν(0), . . . , ν(k)}. Given a
vector v, diag(v) is the corresponding diagonal matrix; its
Euclidean norm is |v| =

√
vT v, where the superscript T

refers to transposition. The eigenvalues of a square matrixM
are denoted via eigs(M), its trace via trM , and its spectral
norm by ||M || ,

√
max eigs(MTM). If M is positive

definite (semi definite), then we write M � 0 (M � 0). The
L×L identity matrix is denoted via IL; its `-th row is denoted
via δ`

L. Given two sets A and B, A\B , {a ∈ A : a /∈ B}.

y2(k)

Gateway

Sensor 1

Sensor 2

Sensor 3Process

x(k)

u1(k), u2(k), u3(k)

y1(k)

y3(k)

w(k)

x(k)

Fig. 1. State estimation with transmission power control of 3 WSs.

The indicator function of a set A is denoted via 1A, i.e.,

1A(a) =
{

1 if a ∈ A,
0 if a /∈ A.

(1)

A function θ : R≥0 → R≥0 is of class-K, if it is continuous,
zero at zero and strictly increasing. We write Pr{Ω |∆} for
the conditional probability of Ω given ∆ and Pr{Ω} for the
unconditional probability. The cumulative distribution func-
tion (cdf) of a random variable ν is Fν(v) , Pr{ν ≤ v}.
The expected value of ν is, thus, given by the Lebesgue-
Stieltjes integral E{ν} =

∫
Λ
z dFν(z), where Λ is the sup-

port of ν; E{ν |∆} refers to conditional expectation. A ran-
dom variable ν, which is Gaussian with mean value m and
covariance matrix Γ � 0 is denoted ν ∼ G(m,Γ). At times,
we use the same notation for random variables and their re-
alizations. What is meant will depend on the context.

2 System Setup

Consider a linear time-varying n-dimensional plant model

x(k+1) = A(k)x(k)+w(k) ∈ Rn, x(0) ∼ G(x0, P0). (2)

The driving noise process {w}N0 is white, where each
w(k) ∼ G(0, Q(k)).

To remotely estimate the state sequence {x}N0 , L ≥ n wire-
less sensors are used. Each sensor ` ∈ {1, 2, . . . , L} pro-
vides a noisy measurement sequence, say {y`}N0 , where

y`(k) = C`x(k) + v`(k) ∈ Rm` , m` ∈ N (3)

and {v`}N0 are white with v`(k) ∼ G(0, R`(k)). 2

Throughout this work, we assume that {A}N0 , {Q}N0 and
{R`(k) : k ∈ N0, ` ∈ {1, 2, . . . , L}} are deterministic and
bounded sequences, which are known at the gateway.

The L measurements in (3) are to be transmitted to a single
gateway via wireless links. Upon receipt, the signals are used
to remotely estimate the state of the system (2), see Fig. 1.

2 In addition to measurement noise, v`(k) may also describe
quantization effects, here modeled as Gaussian and introducing
possibly time-varying distortion [27, 35].
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2.1 Effects of Channel Fading

In the present work, we will adopt a block-fading channel
gain model, which is a common information theoretic model
for fading wireless channels where the channel power gains
remain invariant over a block (equivalent to the coherence
time of the channel) and may change from block to block [4].
We furthermore assume single measurements y`(k) to be a
packet, thus, the block length equals the packet transmission
time. The associated channel gain processes are denoted via

h`(k) ∈ Ω` ⊆ R≥0, ` ∈ {1, 2, . . . , L}. (4)

Since the L links are wireless, transmission errors are likely.
Faulty packets will be discarded when estimating {x}N0 ;
c.f. [26]. To model transmission effects we introduce the L
binary stochastic arrival processes {γ`}N0 , where:

γ`(k) =
{

1 if y`(k) arrives error-free at time k,
0 if y`(k) does not arrive error-free at time k.

The success probabilities of {γ`}N0 are determined by the
propagation environment and transmission power

u`(k) ∈ [0, umax
` ], (5)

where umax
` is the peak power level. More precisely, we have

Pr
{
γ`(k) = 1

∣∣h`(k) = h, u`(k) = u
}

= f`(hu), (6)

where the functions f`(·) : R≥0 → [0, 1] are monotonically
increasing and differentiable, and depend upon the modula-
tion scheme employed; see, e.g., [32, 35].

We introduce {γ}N0 , {h}N0 and {u}N0 , where, ∀k ∈ N0:

γ(k) ,


γ1(k)

γ2(k)
...

γL(k)

, h(k) ,


h1(k)

h2(k)
...

hL(k)

, u(k) ,


u1(k)

u2(k)
...

uL(k)

. (7)

Example 1 (BPSK with Rayleigh fading) Suppose that
binary phase shift keying transmission over i.i.d. block fad-
ing additive white Gaussian noise channels is used. Each
sensor measurement consists of a packet containing b bits.
Since the bit errors are independent within a packet, the
success probabilities can be written as, see [32],

f`(hu) =

(∫ √
hu

0

1√
2π
e−t2/2 dt

)b

and the gains, h`(k), are exponentially distributed with cdf

Fh`(k)(h) =
{

1− e−λ`h, if h ∈ R≥0,
0, if h < 0,

where λ` > 0. For other transmission schemes, see [7]. �

2.2 Control of transmission powers

The main purpose of this work is to study the role of power
control for state estimation over wireless channels. It follows
from (6) that one can improve transmission reliability and,
thus, state estimation accuracy for a given wireless propa-
gation environment, by increasing the transmission powers.
However, with WSs, it is of fundamental importance to save
energy. Thus, power control design involves a trade-off be-
tween transmission error probabilities (and, thus, state es-
timation accuracy) and energy consumption, see also [35].
We focus on non-linear feedback policies which are imple-
mented at the gateway, see Fig. 1, and are of the form

κ` : Ω1 × · · · × ΩL → [0, umax
` ]

ĥ(k) 7→ u`(k) = κ`(ĥ(k)),
(8)

where

ĥ(k) ,
[
ĥ1(k) ĥ2(k) . . . ĥL(k)

]T
. (9)

are channel gain estimates. 3 These satisfy

ĥ`(k) = (1 + ε`(k))h`(k), ` ∈ {1, . . . , L}, (10)

where ε`(k) are the relative estimation errors, with support
Λ` ⊂ R. If we define

ε(k) ,
[
ε1(k) ε2(k) . . . εL(k)

]T
∈ Λ

Λ , Λ1 × . . .ΛL

(11)

then (9) can be written in compact form as

ĥ(k) =
(
IL + diag

(
ε(k)

))
h(k). (12)

2.3 Kalman filtering with Packet Drop-outs

Throughout this work, we will assume that the packets trans-
mitted from the sensors to the gateway incorporate error de-
tection coding [32]. Hence, the gateway knows whether re-
ceived packets are correct or not. Thus, at any time k, past
and present realizations of the process {γ}N0 are available

3 For example, one could use ĥ(k) = E{h(k)}, see also, [8].
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at the gateway. For state estimation purposes, the system
amounts to sampling (2), (3) with stochastic output matrix

C(k) = C(γ(k)) ,


γ1(k)C1

γ2(k)C2

...

γL(k)CL

, (13)

and measurements

y(k) , C(k)x(k) +
[
v1(k)T v2(k)T . . . vL(k)T

]T
.

The conditional probability distribution of x(k), given {γ}k
0

and correctly received packets with sensor measurements up
to time k, i.e., {y}k

0 , is Gaussian. Consequently,

x̂(k) , E
{
x(k)

∣∣ {y, γ}k
0

}
x̌(k) , E

{
x(k)

∣∣ {y, γ}k−1
0

}
P (k) , E

{(
x(k)− x̌(k)

)(
x(k)− x̌(k)

)T ∣∣ {y, γ}k−1
0

}
,

satisfy the Kalman filter recursions (see, e.g., [22]):

x̂(k) = x̌(k) +K(k)
(
y(k)− C(k)x̌(k)

)
x̌(k) = A(k − 1)x̂(k − 1) (14)

P (k + 1) = A(k)
(
In −K(k)C(k)

)
P (k)A(k)T +Q(k)

with initial values P (0) = P0 and x̂(−1) = x0, and where

K(k) , P (k)C(k)T
(
C(k)P (k)C(k)T +R(k)

)−1

R(k) , diag
(
R1(k), R2(k), . . . , RL(k)

)
� 0.

Note that C(k) takes one of 2L possible values. The dis-
tribution of C(k) depends upon the current channel gains
h`(k) and the power levels used; see (6) and (13). Thus,
{C}N0 is a random process, the recursion (14) is stochastic
and the error covariance {P}N0 becomes a random process.

3 Stability with Power Controlled Radio-Links

Due to random packet dropouts, {P}N0 in (14) will in gen-
eral not converge to a unique value as k → ∞. Depending
upon properties of (2) and {γ}N0 , E{‖P (k)‖} may remain
bounded or diverge. This issue of stability of the Kalman fil-
ter is of fundamental importance to characterize estimation
quality. The special case of Kalman filtering for LTI sys-
tems with one or two links and where arrival processes are
i.i.d. Bernoulli with fixed success probabilities has been ex-
tensively studied; see, e.g., [23, 38]. A data-fusion strategy
with multiple sensors is studied in [43].

We next examine stability of the estimator for more complex
cases where the packet dropout processes are time-varying

and governed by power controlled fading channels. For that
purpose, we make the following assumption:

Assumption 2 The joint process {ξ}N0 , where

ξ(k) =

[
h(k)

ε(k)

]
, k ∈ N0 (15)

is white, i.e., the random variables {ξ(k) : k ∈ N0} are
independent (but not necessarily identically distributed). �

Channel gains are temporally uncorrelated for fading chan-
nels for which coherence times (times for which the channel
remains invariant) are shorter than the packet transmission
times. This assumption will hold in many practical applica-
tions, and was considered, e.g., also in [26]. If Assumption 2
holds, then {γ`}N0 are white. In addition, it follows from (6)
and (8) that

Pr{γ`(k) = 1} =
∫

Ω×Λ

ϕ`(ξ) dFξ(k)(ξ), (16)

where Ω , Ω1 × · · · × ΩL and

ϕ`(ξ) = f`

(
δ`
Lhκ`

(
(IL + diag(ε))h

))
ξT =

[
hT εT

]
, h ∈ Ω, ε ∈ Λ.

(17)

Theorem 3, stated below, establishes sufficient conditions
for convergence of E{‖P (k)‖}, k ∈ N0. To state our result,
we introduce the random process {s}N0 , where

s(k) =
{

1, if C(k) has full column-rank,
0, otherwise.

(18)

Theorem 3 Consider state estimation with power con-
trolled radio links as described in Section 2 and suppose
that Assumption 2 holds. If there exists ρ ∈ [0, 1), such that:

Pr{s(k) = 1} ≥ 1− ρ

‖A(k)‖2
, ∀k ∈ N0, (19)

then, {P}N0 is exponentially bounded in norm, i.e.,

E
{
‖P (k)‖

}
≤ αρk + β, ∀k ∈ N0. (20)

for some α, β ∈ R≥0. �

Under the hypotheses of the above theorem, (a specific form
of) stochastic stability of Kalman filtering when used for
state estimation over wireless fading channels with power
control of the form (8) will hold.

The process s(k) is a logical function of γ(k). In fact, we
have

s(k) = 1J(γ(k)), (21)
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using (1), and where

J ,
{
Γ ∈ {0, 1}L⊂ RL : C(Γ) has column-rank n

}
, (22)

see (13). Alas, Pr{s(k) = 1}may be hard to quantify since,
due to power control, the individual transmission outcomes
γ`(k), ` ∈ {1, 2, . . . , L} may be correlated. However, as
stated in Lemma 5 below, if the transmission outcomes sat-
isfy the following assumption, then Pr{s(k) = 1} can be
stated in terms of the conditional success probabilities ϕ`.

Assumption 4 The transmission outcomes γ`(k) are con-
ditionally independent given (h(k), u(k)), i.e.,

Pr
{
γ`(k) = i, γp(k) = j

∣∣h(k) = h, u(k) = u
}

= Pr
{
γ`(k) = i

∣∣h(k) = h, u(k) = u
}

×Pr
{
γp(k) = j

∣∣h(k) = h, u(k) = u
}
,

(23)

for all k ∈ N0, ∀i, j ∈ {0, 1} and ∀`, p in {1, 2, . . . , L}. �

Lemma 5 Suppose that Assumptions 2 and 4 hold, then

Pr{s(k) = 1} =
∫

Ω×Λ

∑
Γ∈J

L∏
`=1

((
1− δ`

LΓ
)(

1− ϕ`(ξ)
)

+ δ`
LΓϕ`(ξ)

)
dFξ(k)(ξ), (24)

where ϕ`(ξ) are defined in (17) and J, in (22).

Remark 6 As already discussed in Section 1, situations
where success probabilities are the same from one instant
to the next have been extensively studied in the literature.
In particular, [20, 21, 40] have mainly focused on the case
whereC` has full rank. Our result in Theorem 3 complements
existing stability results, in that it considers transmission
over multiple power controlled wireless channels with time-
varying (but white) success probabilities. Naturally, since
Theorem 3 is applicable for time-varying systems, it requires
strong conditions, namely (19) needs to hold at all instances
k ∈ N0. �

Remark 7 It follows from (18) that Theorem 3 disregards
the role of measurement updates where C(k) is not full-rank
towards reducing the estimation error covariance. Overcom-
ing this limitation remains a topic for future research. �

Example 8 Consider a plant model (2) with state dimension
n = 2 and L = 2 sensors, with m1 = 1, m2 = 2, and where

C1 =
[
1 0
]
, C2 =

[
1 0

1 1

]
=⇒ C(k) =


γ1(k) 0

γ2(k) 0

γ2(k) γ2(k)

 .
Thus, J =

{
[0 1]T , [1 1]T

}
and s(k) = γ2(k). If we sup-

pose that the controller has access to perfect channel esti-

mates and that Assumption 2 holds, then Pr{s(k) = 1} =∫
Ω×{0} ϕ2(ξ) dFξ(k)(ξ), where ξ = [h1 h2 ε1 ε2]T , and

ξ(k) = [h1(k) h2(k) ε1(k) ε2(k)]T . Thus, the sufficient
condition for stability established in Theorem 3 becomes:∫
Ω
f2
(
[0 1]hκ2(h)

)
dFh(k)(h) ≥ 1−ρ/‖A(k)‖2, ∀k ∈ N0,

where h = [h1 h2]T and h(k) = [h1(k) h2(k)]T. �

In the sequel, we will take a closer look at how Theorem 3
can be used in various power control architectures.

4 Decentralized Control Policies

A special instance of the class of power control policies
considered in (8) is that of decentralized control. Here, the
power levels of each of the L transmitters are calculated at
the gateway, but depend only upon the channel gain estimate
of their links to the gateway:

u`(k) = κ`(ĥ`(k)), ∀k ∈ N0, ` ∈ {1, 2, . . . , L}, (25)

see (10). Such control laws are, in general, easier to im-
plement than centralized ones of the form (8), especially
when the number of transmitters is large. In the decentral-
ized case (25), ϕ`(ξ) in (17) becomes

ϕ`(ξ) = f`

(
δ`
Lhκ`((1 + δ`

Lε)δ
`
Lh)
)

(26)

so that, in contrast to (16) we have

Pr{γ`(k) = 1} =
∫

Ω`×Λ`

f`

(
h`κ`((1+ε`)h`)

)
dFξ`(k)(ξ`),

(27)
where

ξ`(k) =

[
h`(k)

ε`(k)

]
, ξ` =

[
h`

ε`

]
, ` ∈ {1, . . . , L}. (28)

As shown in Lemma 9 given below, in the decentralized case,
Pr{s(k) = 1} becomes a function of the unconditional link
probabilities Pr{γ`(k) = 1} and the result in Lemma 5
can be further simplified. Note that, as in the centralized
case (8), with decentralized control, the resulting stability
condition (19) involves, in general, more than one channel.

Lemma 9 Suppose that Assumptions 2 and 4 hold, that the
control laws are decentralized, see (25), and define

Φ`(k) , Pr{γ`(k) = 1}

Φ(k) ,
[
Φ1(k) Φ1(k) . . . ΦL(k)

]
(29)

ψ(Φ(k)) ,
∑
Γ∈J

L∏
`=1

((
1− δ`

LΓ
)(

1− Φ`(k)
)

+ δ`
LΓΦ`(k)

)
,

where J is as in (22). Then Pr{s(k) = 1} = ψ(Φ(k)). �
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A particularly simple decentralized control policy consists
in using saturated constant gain power controllers for each
channel. Here, the aim is to provide a constant success prob-
ability by inverting the channel gain, provided sufficient
power is available. Such a control policy is described via:

κ`(ĥ`(k)) ,

{
K`/ĥ`(k) if ĥ`(k) ≥ K`/u

max
` ,

umax
` if ĥ`(k) < K`/u

max
` ,

(30)

where K1,K2, . . . ,KL ∈ R≥0. Consequently, (27) gives
that if Assumption 2 holds, then

Pr{γ`(k) = 1} =
∫

Σ`

f`

(
K`/(1 + ε`)

)
dFξ`(k)(ξ`)

+
∫

(Ω`×Λ`)\Σ`

f`(h`u
max
` ) dFξ`(k)(ξ`),

(31)

where Σ` =
{
[h` ε`]T ∈ (Ω`×Λ`) : (1+ε`)h` ≥ K`/u

max
`

}
.

The above expressions can be used for robust control design,
i.e., control design which uses knowledge of the cdf Fε`(k).

Example 10 Consider the configuration in Fig. 1 with L =
3 scalar sensors and state dimension n = 2. Suppose that
the matrix C(k) ∈ R3×2 in (13) has full column-rank if
and only if at least two measurements are received. Then,
see (21),

J =
{
[0 1 1]T , [1 0 1]T , [1 1 0]T , [1 1 1]T

}
s(k) = (1− γ1(k))γ2(k)γ3(k) + γ1(k)(1− γ2(k))γ3(k)

+ γ1(k)γ2(k)(1− γ3(k)) + γ1(k)γ2(k)γ3(k).

Lemma 5 establishes that, if Assumptions 2 and 4 hold,

Pr{s(k) = 1} =
∫

Ω×Λ

(1− ϕ1(ξ))ϕ2(ξ)ϕ3(ξ) dFξ(k)(ξ)

+
∫

Ω×Λ

ϕ1(ξ)(1− ϕ2(ξ))ϕ3(ξ) dFξ(k)(ξ)

+
∫

Ω×Λ

ϕ1(ξ)ϕ2(ξ)(1− ϕ3(ξ)) dFξ(k)(ξ)

+
∫

Ω×Λ

ϕ1(ξ)ϕ2(ξ)ϕ3(ξ) dFξ(k)(ξ). (32)

If the control laws and channel estimators are decentralized,
then ϕ`(ξ) takes the form (26) and (32) simplifies to

Pr{s(k) = 1} =
∫

Ω1×Λ1

(1− ϕ1(ξ1)) dFξ1(k)(ξ1)

×
∫

Ω2×Λ2

ϕ2(ξ2) dFξ2(k)(ξ2)
∫

Ω3×Λ3

ϕ3(ξ3) dFξ3(k)(ξ3)

+ · · ·+ · · ·+ . . .

= (1− Φ1(k))Φ2(k)Φ3(k) + Φ1(k)(1− Φ2(k))Φ3(k)
+ Φ1(k)Φ2(k)(1− Φ3(k)) + Φ1(k)Φ2(k)Φ3(k),

in agreement with Lemma 9. �

5 Robustness to Uncertainty in Channel Gains

We will next turn our attention to nominal designs, i.e.,
where the control policy is chosen such that stability is guar-
anteed under the assumption that the channel estimates are
error-free. Thus, the control laws κ` are chosen by only tak-
ing into account the nominal quantities:

ϕ̂`(h) , f`

(
δ`
Lhκ`(h)

)
Φ̂`(k) ,

∫
Ω

ϕ̂`(h) dFh(k)(h)

Φ̂(k) ,
[
Φ̂1(k) Φ̂2(k) . . . Φ̂L(k)

]
.

(33)

Whilst assuming that channel gains are exactly known is
fairly common in the wireless communication community,
see also [7, 26], it is certainly of interest to investigate ro-
bustness of nominal designs to channel estimation errors. In
particular, with estimation errors, Φ̂(k) is only an approx-
imation of the actual success probabilities Φ(k) as defined
in (16) and (29). Robust stability, as per Theorem 3, in the
presence of channel estimation errors depends upon the suc-
cess probabilities of the individual channels. A simple bound
is established in Theorem 12 given below, which applies to
cases where the functions f` and κ` are continuous.

Assumption 11 There exist class-K functions θ` and σ`,
` ∈ {1, 2, . . . , L} such that the following are satisfied:

|f`(ν1)− f`(ν2)| ≤ θ`

(
|ν1 − ν2|

)
|κ`(υ1)− κ`(υ2)| ≤ σ`

(
|υ1 − υ2|

)
,

(34)

for all ν1, ν2 ∈ R≥0 and for all υ1, υ2 ∈ Ω`.

Theorem 12 Suppose that Assumption 11 holds, then

Φ`(k) ≥ Φ̂`(k)−∆`(k), ∀` ∈ {1, 2, . . . , L}, (35)

where ∆`(k) ,
∫

Ω×Λ

θ`

(
δ`
Lhσ`

(
|diag(ε)h|

))
dFξ(k)(ξ).

If, in addition, κ` is decentralized (and in (34), one takes
υ1, υ2 ∈ Ω`), then, see (29),

Pr{s(k) = 1} ≥ ψ
(
Φ̂(k)−∆(k)

)
, (36)

where ∆(k) ,
[
∆1(k) . . . ∆L(k)

]
. �

The bound established in Theorem 12 can be combined with
Theorem 3 to analyze robust stability of nominal control
laws. As shown below, if κ` are decentralized and non-
increasing, then smaller values for ∆`(k), thus giving tighter
bounds in (35) and (36), can be found:
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Lemma 13 If Assumption 11 holds and κ` are decentralized
and non-increasing, then (35) and (36) hold with

∆`(k) = ∆′
`(k) ,

∫
Ω`×Λ+

`

θ`

(
h`σ`

(
ε`h`

))
dFξ`(k)(ξ`),

where Λ+
` , Λ` ∩ R≥0. �

The following corollary to Theorem 12 can be used for ro-
bust design, i.e., control design which uses Fξ(k) to obtain
stabilizing control in the presence of channel estimation er-
rors. It uses the following definition:

D(k) , max
c∈[0,1]

∇ψ
(
Φ̂(k)− c∆(k)

)
∆(k)T , (37)

where ∇ψ(χ) is the gradient of ψ at χ, ∆(k) is as in The-
orem 12, and Φ̂(k) is defined in (33).

Corollary 14 Suppose that the hypotheses of Theorems 3
and 12 are satisfied, and that L decentralized control poli-
cies have been designed such that, for some ρ̃ ∈ [0, 1),

ψ
(
Φ̂(k)

)
≥ 1− ρ̃

‖A(k)‖2
, ∀k ∈ N0, (38)

i.e., the nominal system is stable, see Lemma 9 and Thm 3. If

ρ̃ < 1− ‖A(k)‖2D(k), ∀k ∈ N0, (39)

then (20) holds for some ρ ∈ [0, 1). �

Thus, designs which use Φ̂(k) giving ρ̃ < 1 in (38) have
inherent robustness with respect to small estimation errors.

Example 15 Suppose thatL = 2 and that Pr{s(k) = 1} =
Φ1(k)Φ2(k), both packets need to be successfully received
for C(k) to have full-rank. Direct calculations provide
∇ψ(Φ̂(k)− c∆(k)) =

[
Φ̂2(k) Φ̂1(k)

]
− c
[
∆2(k) ∆1(k)

]
.

Thus, D(k) = Φ̂2(k)∆1(k) + Φ̂1(k)∆2(k) can be used
in (39) as a sufficient condition for robust stochastic stabil-
ity of the Kalman filter with decentralized power control.�

6 Optimal Power Control Strategies

In general, state estimation accuracy can be improved by
increasing the power on the channels being in a fade. How-
ever, such a simple strategy may often waste energy. A bet-
ter idea is to allocate only as much power to the sensors as
is necessary to attain desired performance. A lower bound
would then be the allocation of power to the sensors that
is sufficient to maintain stability. The result in Theorem 3
motivates one to minimize the nominal average sum power

Ū(k) ,
L∑

`=1

∫
Ω

κ`(h) dFh(k)(h), (40)

subject to (19). In what follows we investigate three nom-
inally stabilizing power control laws which minimize (40)
and are of increasing complexity.

6.1 Constant Power Levels

The simplest decentralized power control method consists
in using constant power levels {u1, . . . , uL}. By Lemma 9,
the optimization problem for the nominal case becomes

min
(u1,...,uL)

L∑
`=1

u`, s.t. ψ(Φ̂(k)) ≥ 1− ρ

||A(k)||2
, (41)

where Φ̂`(k) =
∫
Ω`
f`(h`u`)dFh`(k)(h`), see (33).

Example 16 Consider a simple architecture with scalar
sensors, where L = n, and where the vectors {C1, . . . , CL}
are linearly independent. Thus, C(k) has full rank, if and
only if γ`(k) = 1, ∀` ∈ {1, 2, . . . , L}. In this case J ={
[1 1 . . . ]T

}
and (29) gives that ψ(Φ̂(k)) =

∏L
`=1 Φ̂`(k).

By taking logarithm of the constraint in (41), we obtain the
equivalent problem

min
{u1,...,uL}

L∑
`=1

u`

s.t.
L∑

`=1

log
(
Φ̂`(k)

)
≥ log

(
1− ρ

||A(k)||2

)
.

(42)

The following result shows that under BPSK transmission
and Rayleigh fading, in this simple case, the optimal power
levels can be found with standard optimization software.

Lemma 17 Consider the communication setup in Exam-
ple 1. Then (42) is a convex optimization problem. �

6.2 Saturated Constant Gain Power Control

We will next investigate the saturated power control law
of (30), Here, we set Ω` = R≥0 for all ` ∈ {1, . . . , L}. In
this case it follows directly from (31) and (29) that

Φ̂`(k) =
∫ K`/umax

`

0

f`(h`u
max
` ) dFh`(k)(h`)

+
∫ ∞

K`/umax
`

f`(K`) dFh`(k)(h`), (43)

whereas the average sum power becomes

Ū(k) =
L∑

`=1

(∫ K`/umax
`

0

umax
` dFh`(k)(h`)

+
∫ ∞

K`/umax
`

K`

h`
dFh`(k)(h`)

)
.

(44)
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It is easy to see that, since f` are monotonically increas-
ing, for fixed maximum peak power levels {umax

1 , . . . , umax
L },

Φ̂`(k) and ψ(Φ̂(k)) are increasing functions of the gains
{K1, . . . ,KL}. Thus, a necessary condition on the maxi-
mum peak power levels so that (19) can be satisfied is that

ψ(Υ(k)) ≥ 1− ρ/‖A(k)‖2, for some ρ ∈ [0, 1), (45)

where

Υ(k) =


Υ1(k)

...

ΥL(k)

, Υ`(k) ,
∫ ∞

0

f`(h`u
max
` ) dFh`(k)(h`).

On the other hand, the average sum power Ū(k) in (44) is
also an increasing function of the gains and maximum peak
power levels. Consequently, when designing constant gain
saturated power control laws, there exists a trade-off between
energy use and satisfaction of the sufficient condition for
stability established in Theorem 3.

If {umax
1 , umax

2 , . . . , umax
L } are given, then the design problem

consists in choosing the control gains {K1, . . . ,KL}. The
optimization problem in (40) leads to:

min
{K1,...,KL}

Ū(k), s.t. ψ(Φ̂(k)) ≥ 1− ρ/‖A(k)‖2, (46)

with Φ̂`(k) as in (43). This problem is, in general, non-
convex, since the objective function Ū(k) is actually a con-
cave function of {K1, . . . ,KL}.

As an alternative to (46), one may also seek to optimize
both {K1, . . . ,KL} and {umax

1 , . . . , umax
L }, which is, again a

non-convex optimization problem. In our numerical results
documented in Section 7, these two optimization problems
are addressed by using the NMinimize routine in Mathe-
matica to find locally optimal solutions.

6.3 Centralized Control

With centralized control as in (8), the power levels u`(k)
depend on the instantaneous channel power gains h(k). The
optimization problem in (40) can then be stated as, see (24),

min
{κ1,...,κL}

∫
Ω

L∑
`=1

κ`(h)dFh(k)(h)

s.t.
∫

Ω

∑
Γ∈J

L∏
`=1

Ξ`(h,Γ)dFh(k)(h) ≥ 1− ρ

||A(k)||2

(47)

where Ξ`(h,Γ) , (1 − δ`
LΓ)(1 − ϕ̂`(h)) + δ`

LΓϕ̂`(h) and
ϕ̂`(h) is as in (33). The optimization problem (47) is not

convex. To compute (sub-optimal) solutions, we use the gen-
eralized Karush-Kuhn-Tucker (KKT) conditions [24], which
are necessary conditions for optimality. The Lagrangian is

L(κ1, κ2, . . . , κL, ν) =
L∑

`=1

κ`(h)

− ν

(∑
Γ∈J

L∏
`=1

Ξ`(h,Γ)−
(

1− ρ

||A(k)||2

))
.

Thus, the generalized KKT conditions become 4

1− νf ′`(h`κ`(h))h`

(∑
Γ∈J

(2δ`
LΓ− 1)

∏
j 6=`

Ξj(h,Γ)

)
= 0,

∫
Ω

∑
Γ∈J

L∏
`=1

Ξj(h,Γ)dFh(k)(h) = 1− ρ

||A(k)||2
,

ν ≥ 0,
(48)

where ` ∈ {1, . . . , L}. For given ν and h, we can solve the
system of L equations

1− νf ′`(h`κ`(ν, h))h`

(∑
Γ∈J

(2δ`
LΓ− 1)

∏
j 6=`

Ξj(h,Γ)

)
= 0

numerically for {κ1(ν, h), . . . , κL(ν, h)}. Amongst all pos-
sible values of ν, we then find a value ν∗ that satisfies
the constraint with equality. A sub-optimal solution to the
centralized control design problem (47) is then given by
{κ1(ν∗, h), . . . , κL(ν∗, h)}.

Remark 18 As the optimization problem is not convex, the
generalized KKT conditions (48) are necessary but not suf-
ficient conditions for optimality. As an example consider the
case of L = 1 channel, J = {1}, and BPSK transmission
with b = 16 bits per packet, see Example 1.The generalized
KKT conditions give that κ1(ν, h1) should satisfy

1− νf ′1(h1κ1(ν, h1))h1 = 0 (49)

Now suppose we have ν = 10, and h1 = 1. Then we find
that κ1(ν, h1) = 9.713 × 10−7, κ1(ν, h1) = 0.7438 and
κ1(ν, h1) = 4.9324 all satisfy (49). Thus, (49) cannot be
solved uniquely. �

7 Numerical Results

To illustrate properties of the power allocation strategies
discussed above, we next present some numerical results.

4 We write h` for δL
` h.
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Fig. 2. Average sum power required to meet the stability condition
(19) for the two-channel topology.

7.1 Two-channel Topology

Consider the estimation architecture described in Exam-
ple 16, with L = n = 2 Rayleigh fading channels with
λ1 = 1 and λ2 = 2, and BPSK transmission with b = 4
bits, see Example 1. Fig. 2 depicts the average sum power
required as a function of ||A(k)||2/ρ for the following con-
trol strategies: optimized constant power levels (see Sec-
tion 6.1), saturated constant gain power control for given
saturation values (see Section 6.2), and (sub)-optimal cen-
tralized control (see Section 6.3). Clearly, centralized power
control outperforms the simpler decentralized schemes. In-
terestingly, for small values of ||A(k)||2/ρ, the saturated gain
power controllers (with umax

1 = umax
2 = umax) perform worse

than using constant power levels, designed as per (42); for
larger values of ||A(k)||2/ρ, the saturated gain controllers
perform better. One possible interpretation of this observa-
tion could be that the stability condition is easier to be met
when ||A(k)||2/ρ is small, whereas doing channel inver-
sion in the saturated gain controller will result in increased
power usage. However, as ||A(k)||2/ρ approaches the max-
imum value where the stability condition can still be satis-
fied, see (45), the saturated gain power controllers again per-
form worse, since as K` → ∞, the policy (30) approaches
a policy with constant powers {umax

1 , . . . , umax
L }, but which

are not necessarily the optimal constant power levels.

7.2 Estimation with Three Sensors

We next consider the topology in Fig. 1 with BPSK trans-
mission and Rayleigh fading channels with λ1 = 1, λ2 = 2
and λ3 = 1.5, see Example 10. Fig. 3 compares the av-
erage sum power required under the three power control
schemes examined in Section 6. It is easy to see that, if the
power levels are allowed to depend upon the actual channel
gains, then less sum power is needed to preserve the stabil-
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Fig. 3. Average sum power required to meet the stability condition
(19) for the topology in Fig. 1.

ity condition given in Theorem 3. The performance of the
saturated gain power controller lies between the case with
static power levels and the case with channel gain dependent
power levels. Note that static power levels can be regarded
as a special case of the saturated gain controller by setting
K` = ∞, which explains why the jointly optimized satu-
rated gain power controller will perform better than the case
with static power levels. Note that, as the number of bits per
packet, b, and ‖A(k)‖2/ρ increase, the performance gains of
using time-varying power levels become more pronounced.
For example, in the situation examined, if ‖A(k)‖2/ρ = 4
and b = 8 bits, then using optimized constant power levels
requires more than 50% additional average sum power than
using centralized (sub)-optimal power control.

8 Conclusions

We have studied stability of a Kalman filter receiving sensor
data from a linear time-varying system over block fading
wireless channels governed by power control. By the use of
stochastic stability methods, we have established conditions
on system parameters which ensure that the Kalman filter co-
variance matrix is exponentially bounded in norm. The sta-
bility condition obtained was then used as a constraint to ob-
tain the minimum averaged sum power for different types of
power control policies. Numerical studies indicate that chan-
nel gain dependent power allocation can significantly outper-
form the allocation of static powers which depend upon the
channel statistics only. Future work could include further in-
vestigating optimal power control policies given different in-
formation available at the gateway. Also of interest would be
the incorporation of source coding effects and allowing for
correlated wireless channel models. Preliminary results on
the latter have been documented in [33]. It is also of interest
to consider more general wireless sensor network architec-
tures, including those where the sensors have local process-
ing capability as studied, e.g., in [12, 15, 27, 28, 37, 40, 42].
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A Proof of Theorem 3

By Assumption 2, {ξ}N0 defined in (15) is white. Thus, it
follows from (6), (8) and (13) that {C}N0 are independent,
so that {P}N0 in (14) is Markovian; see, e.g, [22, Chap.
2]. We next adopt a stochastic Lyapunov function approach
with candidate function Vk , trP (k) ≥ 0, ∀k ∈ N0, to
show that there exist β′ ∈ (0,∞) and ρ ∈ [0, 1) such that

E{Vk+1|P (k)} ≤ ρVk + β′, ∀k ∈ N0. (A.1)

For that purpose, we condition on s(k) and write:

E{Vk+1|P (k)} = E
{
E{Vk+1|P (k), s(k)}

}
= E{Vk+1|P (k), s(k) = 1}Pr{s(k) = 1}

+ E{Vk+1|P (k), s(k) = 0}Pr{s(k) = 0}.
(A.2)

For s(k) = 1, C(k) has full column-rank and a simple state
prediction is x̄(k + 1) = A(k)(C(k)TC(k))−1C(k)T y(k).
Since Q(k), R(k) and A(k) are assumed bounded, the co-
variance of x(k+1)−x̄(k+1) can be uniformly bounded by
WIn, for some W ∈ (0,∞). Since the Kalman filter gives
the minimum conditional estimation error covariance and
the expectation and the trace operators commute, it holds
that E{Vk+1|P (k), s(k) = 1} ≤ nW . Thus,

E{Vk+1|P (k), s(k) = 1}Pr{s(k) = 1} ≤ nW. (A.3)

If s(k) = 0, then P (k + 1) can be upper bounded by the
covariance matrix of the estimation error resulting from the
worst case, i.e., where γ`(k) = 0, for all ` ∈ {1, 2, . . . , L}:

E{Vk+1|P (k), s(k) = 0} ≤ E{Vk+1|P (k), C(k) = 0}}
= tr

(
A(k)P (k)A(k)T+Q(k)

)
≤ ‖A(k)‖2Vk + q, (A.4)

where we have used (14) and [1, Fact 8.12.29] and
where q , maxk∈N0 trQ(k). If we now substitute (A.3)
and (A.4) into (A.2) and set β′ = Wn + q, then we ob-
tain E{Vk+1|P (k)} ≤ Pr{s(k) = 0}‖A(k)‖2Vk + β′

and (19) gives (A.1). It now follows from [25, Prop. 3.2],
that E

{
Vk|P (0)

}
≤ ρkV0 + β′/(1− ρ). Since P (k) � 0,

we have Vk = trP (k) ≥ ‖P (k)‖ for all k ∈ N0. �

B Proof of Lemma 5

By (21), the event {s(k) = 1} can be written as the sum of
mutually exclusive events:

{s(k) = 1} =
∑
Γ∈J

{
γ(k) = Γ

}
. (B.1)

Now, Assumption 4 and Eq. (6) give that, for all Γ ∈ J,

Pr{γ(k) = Γ |h(k) = h, u(k) = u}

=
L∏

`=1

((
1− δ`

LΓ
)(

1− f`(h`u`)
)

+ δ`
LΓf`(h`u`)

)
,

where h` = δ`
Lh and u` = δ`

Lu. Expression (B.1) thus gives:

Pr{s(k) = 1 |h(k) = h, u(k) = u}

=
∑
Γ∈J

L∏
`=1

((
1− δ`

LΓ
)(

1− f`(h`u`)
)

+ δ`
LΓf`(h`u`)

)
.

The result follows from substitution of the control policy (8)
– (11), Assumption 2 and the law of total probability. �

C Proof of Lemma 9

Since the control laws and channel estimates are decentral-
ized, Equation (24) of Lemma 5 allows us to write:

Pr{s(k) = 1} =
∫

Ω×Λ

∑
Γ∈J

L∏
`=1

((
1− δ`

LΓ
)(

1− ϕ`(ξ`)
)

+ δ`
LΓϕ`(ξ`)

)
dFξ`(k)(ξ`)

=
∑
Γ∈J

L∏
`=1

∫
Ω`×Λ`

((
1− δ`

LΓ
)(

1− ϕ`(ξ`)
)

+ δ`
LΓϕ`(ξ`)

)
dFξ`(k)(ξ`).

Use of (27) and (29), thus gives

Pr{s(k) = 1} =
∑
Γ∈J

L∏
`=1

{
1− Φ`(k), if δ`

LΓ = 0
Φ`(k), if δ`

LΓ = 1.

This proves the result. �

D Proof of Theorem 12

By Assumption 11, one can bound∣∣f`

(
δ`
Lhκ`(h)

)
− f`

(
δ`
Lhκ`

(
(IL + diag(ε))h

))∣∣
≤ θ`

(
δ`
Lh
∣∣κ`(h)− κ`

(
(IL + diag(ε))h

)∣∣)
≤ θ`

(
δ`
Lhσ`

(
|h− (IL + diag(ε))h|

))
= θ`

(
δ`
Lhσ`

(
|diag(ε)h|

))
,

which directly gives

f`

(
δ`
Lhκ`

(
(IL + diag(ε))h

))
≥ f`

(
δ`
Lhκ`(h)

)
− θ`

(
δ`
Lhσ`

(
|diag(ε)h|

))
.

(D.1)

The bound (35) now follows from integrating (D.1) with
respect to dFξ(k) and noting that

∫
Λ

dFε(k) = 1.
For decentralized control policies, (36) follows directly
from (35) upon noting that Pr{s(k) = 1} is minimized
when Pr{γ`(k) = 1} are at their lowest values. �
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E Proof of Lemma 13

For non-increasing decentralized control policies κ` and
since f` are non-decreasing, f`

(
h`κ`((1 + ε`)h`)

)
≥

f`

(
h`κ`(h`)

)
, ∀ε` ≤ 0, i.e., underestimating the channel

gains does not reduce the success probabilities. Thus,

Φ`(k) ≥
∫

Ω`×(Λ`\Λ+
`

)

f`

(
h`κ`(h`)

)
dFξ`(k)(ξ`)

+
∫

Ω`×Λ+
`

f`

(
h`κ`((1 + ε`)h`)dFξ`(k)(ξ`)

= Φ̂`(k)
∫

Λ`\Λ+
`

dFε`(k) (E.1)

+
∫

Ω`×Λ+
`

f`

(
h`κ`((1 + ε`)h`)dFξ`(k)(ξ`).

On the other hand, (D.1) provides that∫
Ω`×Λ+

`

f`

(
h`κ`((1 + ε`)h`)dFξ`(k)(ξ)

≥
∫

Ω`×Λ+
`

f`

(
h`κ`(h`)

)
dFξ`(k)(ξ`) (E.2)

−
∫

Ω`×Λ+
`

θ`

(
h`σ`

(
|ε`h`|

))
dFξ`(k)(ξ`)

= Φ̂`(k)
∫

Λ+
`

dFε`(k) −
∫

Ω`×Λ+
`

θ`

(
h`σ`

(
ε`h`

))
dFξ`(k)(ξ`).

Substitution of (E.2) into (E.1) shows that (35) holds with
∆`(k) = ∆′

`(k). This proves the result. �

F Proof of Corollary 14

Expressions (38) and (36) give that

Pr{s(k) = 1} −ψ
(
Φ̂(k)

)
≥ ψ

(
Φ̂(k)−∆(k)

)
−ψ(Φ̂(k)).

Now, ψ in (29) is differentiable. Thus, we can use the mean-
value theorem to obtain:

Pr{s(k) = 1} − ψ
(
Φ̂(k)

)
≥ −∇ψ(Φ̃(k))∆(k)T ,

where Φ̃(k) = Φ̂(k) − c∆(k), for some c ∈ [0, 1]. Use
of (38) and (37), therefore provides

Pr{s(k) = 1} ≥ 1− ρ̃

‖A(k)‖2
−D(k),

Thus, the sufficient condition for exponential boundedness
established in Theorem 3 is satisfied if ∃ρ ∈ [0, 1) such that

1− ρ̃/‖A(k)‖2 −D(k) ≥ 1− ρ/‖A(k)‖2,

which is equivalent to (39). �

G Proof of Lemma 17

Since the objective function is linear, (42) is convex if each
of the functions Φ̂`(k) are log-concave functions of u`. By
properties of log-concave functions (see, e.g., [2, p.106]),
a sufficient condition for this is that both the functions
f̃`(h, u) , f`(hu) and the derivatives of Fh`(k)(h) are log-
concave functions in (h, u).

For BPSK transmission with Rayleigh fading as presented in
Example 1, the log-concavity of the derivative of Fh`(k)(h),
namely λ`e

−λ`h is obvious. Since log-concave functions
are closed under multiplication, it suffices to show that

g(h, u) , (1/
√

2π)
∫√hu

0
e−t2/2 dt is log-concave in (h, u)

for h, u ∈ R≥0. Now the second order condition for log-
concavity says that a function is log-concave if and only if

∇g∇gT−g∇2g =


(

∂g
∂h

)2

− g ∂2g
∂h2

∂g
∂h

∂g
∂u − g ∂2g

∂h∂u

∂g
∂u

∂g
∂h − g ∂2g

∂u∂h

(
∂g
∂u

)2

− g ∂2g
∂u2

≥ 0

After some computations, we can find that

(
∂g

∂h

)2

− g
∂2g

∂h2
=

e−huu2

16π(hu)3/2

×
(
2
√
hu+ ehu/2

√
2π(1 + hu)

(
1 + erf

(√
hu/2

)))
≥ 0,

where erf(x) , (2/
√
π)
∫ x

0
e−t2dt and

((
∂g

∂h

)2

− g
∂2g

∂h2

)((
∂g

∂u

)2

− g
∂2g

∂u2

)

−
(
∂g

∂h

∂g

∂u
− g

∂2g

∂h∂u

)2

=
e−3hu/2

(
1 + erf

(√
hu/2

))
32π2hu

×
(
ehu/2πhu+

√
2πhu+ ehu/2πhu erf

(√
hu/2

))
≥ 0.

Thus, Sylvester’s criterion gives that ∇g∇gT − g∇2g ≥ 0,
for all h, u ∈ R≥0. �
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