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a b s t r a c t

This paper considers stochastic consensus problems over lossy wireless networks. We first propose a
measurement model with a random link gain, additive noise, and Markovian lossy signal reception,
which captures uncertain operational conditions of practical networks. For consensus seeking, we
apply stochastic approximation and derive a Markovian mode dependent recursive algorithm. Mean
square and almost sure (i.e., probability one) convergence analysis is developed via a state space
decomposition approachwhen the coefficientmatrix in the algorithmsatisfies a zero rowand column sum
condition. Subsequently, we consider a model with arbitrary random switching and a common stochastic
Lyapunov function technique is used to prove convergence. Finally, our method is applied to models with
heterogeneous quantizers and packet losses, and convergence results are proved.

© 2010 Elsevier Ltd. All rights reserved.
1. Introduction

In distributed multi-agent systems, consensus problems have
become one of most focussed research areas due to their wide
application backgrounds; see the survey in Olfati-Saber, Fax, and
Murray (2007) and Ren, Beard, and Atkins (2005). While most
of past research has concentrated on deterministic models (see
Jadbabaie, Lin, and Morse (2003), Olfati-Saber and Murray (2004)
and Ren and Beard (2005), and references therein), recently,
there is a considerable growth of interest in stochastic models
addressing various uncertainty factors involved in the inter-
agent information exchange. For instance, the communication link
between the agents may be available only at random times, and
random graphs are suitable for network connectivity modelling
(Hatano & Mesbahi, 2005; Tahbaz-Salehi & Jadbabaie, 2008).
Another important aspect of consensus models is random noises
(Acemoglu, Nedić, & Ozdaglar, 2008; Aysal & Barner, 2009; Carli,
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in revised form by Associate Editor Hideaki Ishii under the direction of Editor Ian R.
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Fagnani, Frasca, Taylor, & Zampieri, 2007; Ren, Beard, & Kingston,
2005; Schizas, Ribeiro, &Giannakis, 2008; Xiao, Boyd, &Kim, 2007).
This is particularly importantwhen the agents exchange their state
information over communication channels (Schizas et al., 2008).
For noisy modelling for flocking, formation and rendezvous, the
reader is referred to Barooah and Hespanha (2007), Cucker and
Mordecki (2008) and Martínez (2007).
This paper considers consensus problems over unreliable net-

works. We aim to develop a unified modelling and analytic
framework addressing uncertainty aspects including measure-
ment noises, random link gains, random signal losses, and quan-
tization errors.
We begin with the signal reception modelling, where the

random link gain results from analog channels. The analog
signal transmission is motivated by specific sensor network
applications. In recent years, a promising scheme for distributed
detection/estimation in sensor networks has emerged based on
analog forwarding, where measurements of the sensors are
transmitted directly (possibly scaled) to a fusion center without
any coding, which is motivated by optimality results on uncoded
transmissions in point-to-point links (Gastpar, Rimoldi, & Vetterli,
2003; Goblick, 1965). It was shown in Gastpar and Vetterli (2003)
that for a Gaussian sensor network, where multiple sensors
measure a random scalar Gaussian field in noise and forward their
noisy measurements to a fusion center for reconstruction of the
source, the analog forwarding scheme is asymptotically optimal
and approaches the minimum distortion achievable at the rate of

http://www.elsevier.com/locate/automatica
http://www.elsevier.com/locate/automatica
mailto:mhuang@math.carleton.ca
mailto:sdey@unimelb.edu.au
mailto:gnair@unimelb.edu.au
mailto:jmanton@unimelb.edu.au
http://dx.doi.org/10.1016/j.automatica.2010.06.016
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1/M , where M is the number of sensors. Also, the simplicity and
low delay properties of uncoded analog forwarding make it an
attractive choice for large distributed sensor networks.
During signal exchange of the sensor nodes, an important un-

certainty feature is signal losses. This may be caused by the tempo-
rary extreme deterioration of the link quality, for instance, due to
blocking objects travelling between the transmitting and receiving
nodes, or simply by a temporary fault of the transmitter or receiver.
For randomconnectivitymodelling, there has existed a fair amount
of work adopting random graphs where the communication of a
pair of agents fails as independent processes; see, e.g., Hatano and
Mesbahi (2005). Tahbaz-Salehi and Jadbabaie (2008) considered
averaging with a sequence of independent coefficient matrices,
which indicates that the overall network topology evolves inde-
pendently; such modelling was also adopted for linear synchro-
nization (Wu, 2006). Fagnani and Zampieri (2009) studied average
consensus with independent packet dropping and analyzed the ef-
fect of the loss probability on performance. However, in practical
systems, the loss of connectivity usually occurs with correlations,
and for random graph based consensus models, this correlation ef-
fect has received relatively little attention. In this paper, wewill in-
troduce a Markovian modelling of the occurrence of the signal (or
packet) losses, so that the temporal correlation properties of the
channel functionality may be captured. Matei, Martins, and Baras
(2008) considered a consensus problemwithMarkovian switching,
but no measurement noise was involved; under a joint connectiv-
ity assumption they established almost sure convergence via ex-
ploiting the linear dynamics governing the evolution of the mean
square consensus error.
Compared to measurement noises and random link gains,

quantization is also a major source of signal distortion when high
data rates are not available. Indeed, in sensor network deployment,
due to limited on-board battery, sensors can only afford relatively
low data rates. In models with quantization, asymptotic analysis
of consensus algorithms is in general challenging and has
attracted significant research attention. Carli, Fagnani, Speranzon,
and Zampieri (2008) considered logarithmic quantization and
developed convergence analysis for average consensus after
assuming certain statistical properties of the quantization errors.
In an average-consensus setting, Aysal, Coates, and Rabbat
(2007, 2008) introduced probabilistic quantization for eliminating
bias of the quantization errors, and showed that probabilistic
quantization is equivalent to dithering. The authors have proven
that their algorithm achieves almost sure convergence. However,
their analysis relies on a key assumption that all the nodes use
the same set of quantizers so that the quantized state space, as
a lattice, contains points of consensus states. For heterogeneous
quantizers, the above approach in general fails since the quantized
state space may not contain any consensus state, and the
iterates may persistently oscillate without converging. Yildiz and
Scaglione (2008) analyzed data rate limited consensus models
via coding, but assumed that quantization noises are temporally
and spatially uncorrelated and that each node knows the
network topology. Kashyap, Basar, and Srikant (2007) developed
randomized algorithms to achieve nearly average consensuswhere
each node takes values from a set of integers.
In Huang and Manton (2008, 2009, 2010), consensus problems

were considered when agents obtain noisy measurements of the
states of neighbors, and a stochastic approximation approach
was applied to obtain mean square and almost sure convergence
in models with fixed network topologies or with independent
communications failures (Huang & Manton, 2008). General
stochastic gradient based algorithms were introduced in Tsitsiklis,
Bertsekas, and Athans (1986) for consensus problems arising
in distributed function optimization. Stankovic, Stankovic, and
Stipanovic (2007) considered decentralized parameter estimation
by combining stochastic approximation of individual nodes with a
consensus rule.
In this paper, for developing a unified analytic framework,

we first introduce noisy measurements through uncoded analog
forwarding to their neighbors via slow fading channels. We
assume perfect phase synchronization such that the receiver
obtains a scaled (by the fading envelope (amplitude) only)
version of the transmitted data in noise when the link functions
properly; see Fig. 1. Under this analog channel modelling, we first
develop stochastic approximation type algorithms for consensus
seeking over noisy networks with Markovian signal losses.
This modelling leads to a consensus algorithm with Markovian
switches. Compared to the independent communication failure
considered in Huang and Manton (2008), the temporal correlation
properties of the network switchesmake the convergence analysis
more difficult since the method of viewing the coefficient matrix
for averaging as a constant matrix subject to independent
perturbations is no longer applicable. Our analysis will depend
on more involved Lyapunov energy estimates. In particular, when
only a joint connectivity condition is assumed for the noisy
network, some special care must be taken to show a persistent
decay of the energy. Next, we consider a model with arbitrary
switches, for which our method for convergence analysis is to
identify a suitable common stochastic Lyapunov function. The
interested reader is referred to Olfati-Saber and Murray (2004)
on the use of a common Lyapunov function (defined via the so-
called disagreement function) in a deterministic setting. Finally,we
apply our algorithm to amodelwith heterogeneous quantizers and
packet losses. Convergence is obtained by combining probabilistic
quantization Aysal et al. (2007, 2008) with a decreasing step size.
The organization of the paper is as follows. Section 2 describes

the lossy signal exchange model. The stochastic approximation
algorithm is introduced in Section 3. Convergence analysis is
developed in Sections 4 and 5 for models with Markovian
and arbitrary switches, respectively. Section 6 applies stochastic
approximation to models with quantized data and packet losses.
Section 7 presents simulation results and Section 8 concludes the
paper.

1.1. Notation

The index of an agentwill often be used as a superscript, but not
an exponent, of various random variables. Throughout the paper
we use C , C0, C1, etc. to denote generic positive constants whose
value may change from place to place. Below we provide a list of
the basic notation used in the paper.
G: the network topology as a directed graph.

N : the nodes in G.
E : the edges in G.
Ef : the failure-prone edges in G.
Ai: the ith agent or node.
Ni: the neighbors of Ai.
xit : the state at node i.
xt : the vector of individual states.
Ikit : the channel state on edge (k, i).
It : the overall channel state.
g ikt : the analog channel gain on edge (k, i).
gt : the vector of individual channel gains.
wikt : the measurement noise occurring at node i.
yikt : the signal received at Ai from Ak.
Gt : the network topology at time t .
G(k): the values that Gt may take.

N
(k)
i : the neighbors of Ai within G

(k).
Nit : the neighbors of Ai within Gt .
B(k): the stochastic approximation coefficient matrix when Gt

appears as G(k).
at : the step size of stochastic approximation.
ri,k: the quantization level at node i.
Qi(t): the output of the probabilistic quantizer at node i.
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2. Information exchange over unreliable networks

2.1. Preliminaries for network modelling

We begin by introducing some standard graphmodelling of the
network topology. A digraph G = (N , E ) consists of a set of nodes
N = {1, . . . , n} and a set of directed edges E ⊂ N ×N . A directed
edge will simply be called an edge. An edge from node i to node j is
denoted as an ordered pair (i, j), where i 6= j. A directed path (from
i1 to il) consists of a sequence of nodes i1, i2, . . . , il, l ≥ 2, such
that (ik, ik+1) ∈ E for k = 1, . . . , l− 1. The digraph G is said to be
strongly connected if there exists a directed path from each node
to any other node. A directed tree is a digraph where each node,
except the root, has exactly one parent node. The digraph G is said
to contain a spanning tree Gs = (Ns, Es) if Gs is a directed tree such
that Ns = N and Es ⊂ E . A strongly connected digraph always
contains a spanning tree. The two names, agent and node, will be
used interchangeably. The agent Ak (resp., node k) is a neighbor of
Ai (resp., node i) if (k, i) ∈ E , where k 6= i. Denote the neighbor set
Ni = {k|(k, i) ∈ E } ⊂ N .

2.2. Lossy signal reception at individual links

We use G = (N , E ) to model the maximal set of communi-
cation links when there is no communication failure (or signal
loss). Let Ef ⊂ E denote the set of links that are failure-
prone. When Ef = ∅ (the empty set), the associated model
has a fixed network topology. To avoid triviality, it is assumed
that Ef 6= ∅. The underlying probability space is denoted by
(Ω,F , P), where Ω is the sample space, F is the σ -algebra
consisting of all events, and P is the probability measure. The
link state associated with an edge (k, i)∈ E f is modelled by a
Markov chain Ikit with state space {0, 1} and stationary transition
probabilities, where t ≥ 0. The values 1 and 0, respectively,
denote the normal and loss states. The value of Ikit indicates
whether or not node i will successfully receive a measurement
from node k at time t . Note that if (k, i) 6∈ E f , I

ki
t is not introduced.

Compared with independent loss process modelling, the Markov
chain based modelling may give a more realistic characterization
of the temporal correlation property of the evolution of the link
status. We note that our signal loss modelling may be extended
to undirected graphs by using a Markov chain to describe the loss
state of a bidirectional failure-prone link.
For agentAi, denote its state at time t by xit ∈ R, where t ∈ Z+ =

{0, 1, 2, . . .}. We assume each Ai knows its own state xit exactly.
Denote the signal output model

ȳikt = g
ik
t x
k
t + w

ik
t , k∈ N i 6= ∅, (1)

where g ikt is a random link gain and w
ik
t ∈ R is the additive noise.

We use (1) to describe the attempted signal transmission from Ak
to Ai. Concerning each node’s information on the channel, neither
Ai nor Ak is required to know the value of g ikt . Instead, Ai only
knows themean of g ikk . In other words, the node only has statistical
information on the link gain.
If either (k, i) ∈ E \E f (i.e., it is a lossless link) or (k, i)∈ E f

but the channel operates in a normal condition, i.e., Ikit = 1, the
received signal at Ai is

yikt = ȳ
ik
t . (2)

See Fig. 1 for illustration. If (k, i)∈ E f and a signal loss occurs, i.e.,
Ikit = 0, we make the convention that Ai receives

yikt ≡ 0. (3)

Similar loss models have been studied in distributed filtering
problems; see, e.g., Huang and Dey (2007), Sinopoli et al. (2004)
and Smith and Seiler (2003).
Fig. 1. Measurement with link gain g ikt and additive noisew
ik
t .

The generic noisy and lossy signal reception model (1)–(3)
may be used to describe analog signal transmission. But it is also
applicable to certain digital channel based systems. The related
detail will be presented in Section 6.
It should be noted that in Eq. (1), g ikt and w

ik
t are defined at

all times for all (k, i) ∈ E . In certain models, Ikit = 0, where
(k, i)∈ E f , may mean that g ikt or w

ik
t , or both are not physically

realized, for instance due to a temporary disorder of either the
transmitter or the receiver. In such scenarios, we still keep them
as dummy random variables, and their use gives a more unified
model specification.
For the Markov chains Ikit , we may use a fixed ordering of all

(k, i)∈ E f to list Ikit into a vector process It . By suitable relabeling,
the state space of It may be denoted by SI = {1, . . . , K0}, where
K0 = 2|Ef |. If It = k ∈ SI , the real-time network topology,
consisting of functioning links at time t , may be determined
accordingly. Let thenetwork topologies corresponding to the states
in SI be denoted by G(1), . . . ,G(K0), each being a subgraph of G.
Without loss of generality,we assumeG(1) = G, which corresponds
to It = 1 andmeans all links are functioning. The network at time t
is given as a digraph Gt = (N , E t), where Gt takes one value from
G = {G(1), . . . ,G(K0)} determined by It .
For each t ∈ Z+, the set of noises {wikt , i ∈ N and k∈ N i 6= ∅}

is listed into a vectorwt in which the position ofwikt depends only
on (i, k) and does not change with t . Similarly, the random vector
gt is defined by listing g ikt by a fixed ordering of all (i, k). Define the
state vector

xt = [x1t , . . . , x
n
t ]
T , t ≥ 0.

3. The stochastic algorithm

We will describe the algorithm by individual nodes to indicate
the local implementation. LetN (k)

i denote the neighbor set of node
iwithin G(k). We form a matrix B(k) = (b(k)ij )1≤i,j≤n as follows.

Case 1. IfN (k)
i 6= ∅, define

b(k)ij > 0, if j∈ N
(k)
i ,

b(k)ij = 0, if j 6∈ N
(k)
i ∪{i},

b(k)ii = −
∑
j∈N (k)

i

b(k)ij .
(4)

Case 2. IfN (k)
i = ∅, define

b(k)ij ≡ 0, for all j ∈ N . (5)

By (4)–(5), each row sum of B(k) is 0. For agent i, denote its
neighbor set by Nit when the instantaneous network topology is
Gt . For (j, i) ∈ E , we assume that the associated channel link gain
g ijt has a constant mean λij 6= 0 for all t ≥ 0. The state of agent i is
updated by the rule

xit+1 = [1+ atbii(t)]x
i
t + at

∑
j∈N it

bij(t)(y
ij
t /λ

ij), (6)
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where the coefficients bij(t) are determined by Gt and at > 0 is the
step size at time t . If Gt = G(k), the coefficients bij(t) are obtained
from B(k), i.e., Bt = (bij(t))1≤i,j≤n = B(k). We adopt the convention:∑
k∈∅ = 0 regardless of the summand. IfNit = ∅, (6) is interpreted

as xit+1 = x
i
t .

Definition 1 (Weak Consensus). The agents are said to reach weak
consensus if E|xt |2 <∞ for all t ≥ 0, and limt→∞ E|xit − x

j
t |
2
= 0

for all i, j ∈ N . �

Definition 2 (Mean Square Consensus). The agents are said to reach
mean square consensus if E|xt |2 < ∞ for all t ≥ 0, and there
exists a random variable x∗ such that limt→∞ E|xit − x

∗
|
2
= 0 for

all i ∈ N . �

Definition 3 (Strong Consensus). The agents are said to reach
strong consensus if there exists a random variable x∗ such that
limt→∞ xit = x

∗, a.s., for all i ∈ N . �

Note that algorithm (6) is based on the assumption that if the
channel from Ak to Ai fails, Ai assigns no weight to Ak. When no
nodes have the ability to distinguish a neighbor’s noisy state from
a background noise during a signal loss, aweightmight be assigned
to a pure noise term. This scenario may be formulated as a leader-
following problem by adding an artificial leader node A0 with a
fixed zero state. An edge appears from A0 to Ai if and only if a signal
loss occurs along (k, i)∈ E f . It is of interest to identify conditions
for convergence. In fact, for the case of i.i.d. losses, undermild noise
conditionswemay use themethod of perturbed Lyapunov analysis
in Huang and Manton (2010) to show that all the individual states
will converge to zero, which is the state of the leader.

3.1. Assumptions

(A1) The digraph G = (N , E ) is strongly connected. �
Denote the σ -algebra

Ft = σ(x0,w0, . . . ,wt , g0, . . . , gt , I0, . . . , It+1), (7)
(i.e., the set of all events induced by these random variables) for
t ≥ 0. ThenFt ⊂ Ft+1. DefineF−1 , σ(I0).
(A2) The sequence {wt , t ∈ Z+} satisfies the conditions: (i)
E[wt |Ft−1] = 0 for t ≥ 0, and (ii) supt≥0 E|wt |2 <∞. In addition,
E|x0|2 <∞. �
Since wt is adapted to Ft , (A2) implies that {wt , t ∈ Z+} is

a sequence of martingale differences (see definition in Hall and
Heyde (1980) and Stout (1974)) with bounded second moments.
The following assumption with independent noises holds as a
special case of (A2).
(A2°) The noises {wikt , t ∈ Z+, i ∈ N , k∈ N i 6= ∅} are
independent w.r.t. i, k, t and also independent of x0 and the
processes {It , t ≥ 0}, {gt , t ≥ 0}. Each wikt has zero mean and
variance Q ikt . In addition, E|x0|

2 <∞ and supi,k,t Q ikt <∞. �

(A3) The link gains g ikt aremutually independent (w.r.t. i, k, t). Each
gt is independent of {x0, gl, 0 ≤ l ≤ t − 1,wk, Ik, 0 ≤ k ≤ t}.
Furthermore, Eg ikt = λ

ik
6= 0, where λik does not depend on t , and

supi,k,t E|g ikt |
2 <∞. �

Remark. Note that although in general fading channels are
modelled as complex channels, due to the fading channel being
a slow fading channel, the phase can be estimated and canceled,
therefore the link amplitude gains g ikt are positive and the link
power gains are given by |g ikt |

2. �

(A4) The process It is an ergodic Markov chain with stationary
transition probability matrix (pij)1≤i,j≤K0 , and
P(It+1 = j|It = i, I0, . . . , It−1,w0, . . . ,wt , g0, . . . , gt) = pij.
Moreover, min1≤i≤K0 pi1 > 0. �
Remark. If the Markov chains I ikt are independent, It is also a
Markov chain. If, in addition, P(I ikt+1 = 1|I

ik
t = s) > 0 for all (i, k)

regardless of s being 0 or 1, the condition min1≤i≤K0 pi1 > 0 in (A4)
is satisfied. �

(A5) For each G(k) ∈ G, 1 ≤ k ≤ K0, the associated matrix B(k) has
zero row and column sums (ZRCS). �

(A6) (i) at > 0 for t ≥ 0, and (ii)
∑
∞

t=0 at = ∞,
∑
∞

t=0 a
2
t <∞. �

3.2. Discussions on the ZRCS condition

In an average-consensus setting, the ZRCS condition for
the coefficient matrices B(1), . . . , B(K0) is quite standard. More
specifically, in a deterministic average-consensus model

xt+1 = Atxt ,

where At has all row sums equal to one, the state average
(1/n)

∑n
i=1 x

i
t is an invariant if and only if all column sums of At

are equal to one. In fact, At may even be allowed to have negative
entries (Xiao et al., 2007). The reader is referred to Olfati-Saber and
Murray (2004) for the notion of balanced graphs which preserve
the initial state average as an invariant during averaging. Under
(A5), I + atBt always has all row and column sums equal to one.
Although our current formulation will not lead to average-

consensus due to the additive noise, it is possible to achieve
approximate average-consensus when certain conditions are
satisfied in terms of the noise level and the step size sequence, and
this will be of practical interest.

4. Consensus results with Markovian switches

4.1. The regime dependent recursion

In algorithm (6), the right hand side depends onNit . To facilitate
further analysis, we introduce a transformation so that it may be
expressed in terms of It instead ofNit . Notice that the evolution of
the network topology is completely characterized by It . We have
the following relation

wit ,
∑
j∈N it

bij(t)w
ij
t (λ

ij)−1

=

K0∑
k=1

1(It=k)
∑
j∈N (k)

i

b(k)ij w
ij
t (λ

ij)−1

=

K0∑
k=1

1(It=k)
∑
j∈N i

b(k)ij w
ij
t (λ

ij)−1, (8)

where (8) holds since N
(k)
i ⊂ N i and b

(k)
ij = 0 for j∈ N j \N

(k)
j .

Define w(It )t = [w1t , . . . , w
n
t ]
T . Under (A2)–(A3), we may use (8)

and the fact that It is adapted to Ft−1 to obtain a very useful
property

E[w(It )t |Ft−1] = 0. (9)

We further write

δbij(t) =
K0∑
k=1

1(It=k)b
(k)
ij (g

ij
t /λ

ij
− 1) (10)

if j∈ N i, and δbij(t) = 0 otherwise. Define the It dependentmatrix
1B(It ) = (δbij(t))1≤i,j≤n.
We may further write (6) in the vector form

xt+1 = xt + atB(It )xt + at1B(It )xt + atw
(It )
t , t ≥ 0, (11)
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where B(It ) and w(It )t are determined from Gt . Since xt depends
on (x0,w0, I0, g0, . . . ,wt−1, It−1, gt−1), it follows from (A3) that
E[1B(It )xt ] = 0. Thus the random channel gain contributes to the
unbiased perturbation term1B(It )xt in (11).
Owing to the ZRCS condition for B(k), a state space decompo-

sition technique may be applied for convergence analysis when
the network topology randomly switches. This decomposition ap-
proach has been developed in models with fixed topologies con-
taining a spanning tree (Huang & Manton, 2008, 2010); but for the
models considered there, due to fixed topologies, the decomposi-
tion method is feasible without the ZRCS condition.

4.2. Change of coordinates and convergence

Let 1n be a column vector with all n entries equal to 1. By
using Gram–Schmidt orthonormalization (Bellman, 1997), wemay
construct an orthogonal matrix of the form

Φ =
[(
1/
√
n
)
1n, φ

]
, (12)

where φ is an n× (n− 1)matrix. Hence ΦTΦ = I . The inverse of
Φ may be represented in the form

Φ−1 = ΦT =

[(
1/
√
n
)
1Tn

φT

]
. (13)

We introduce the transformation

zt = Φ−1xt . (14)

Denote zt = [z1t , z̃
T
t ]
T , and vt = [v1t , ṽ

T
t ]
T
= Φ−1w

(It )
t , where z1t

and v1t , are the first component in zt and vt , respectively.

Lemma 4. Suppose B(k) is defined by (4)–(5) and satisfies (A5), and
Φ is given by (12). We have the assertions.

(i) For each B(k), we have

Φ−1B(k)Φ =
[
0
B̃(k)

]
, (15)

where B̃(k) is an (n− 1)× (n− 1)matrix.
(ii) The matrix (B̃(k))T + B̃(k) ≤ 0.
(iii) There exists a fixed constant cB > 0 such that yT [B̃(k) +

(B̃(k))T ]y ≤ −cB|y|2 for all y ∈ Rn−1 if the associated digraph
G(k) is strongly connected.

Proof. (i) By using the ZRCS property of B(k), we may verify the
relation (15) directly and in fact, B̃(k) = φTB(k)φ, where φ is given
in (12).
(ii) Following the proof of Theorems 7 and 8 in Olfati-Saber and
Murray (2004), we define the adjacency matrix A(k) = (aij)n×n
for G(k) such that aij = b(k)ij for i 6= j, and aii = 0 for all i.
Then −B(k) may be identified as a Laplacian for G(k) (w.r.t. the
adjacencymatrix A(k)). Subsequently, by Theorem 7 in Olfati-Saber
and Murray (2004), −B(k) − (B(k))T may be interpreted as the
Laplacian of aweighted undirected graph Ĝ. Then (ii) follows easily.
(iii) Again, following Olfati-Saber and Murray (2004), when G(k)
is strongly connected, −B(k) − (B(k))T may be interpreted as the
Laplacian of a weighted undirected and connected graph Ĝ, so that
the nonnegative definite matrix −B(k) − (B(k))T has its null space
equal to span{1n}, which implies (iii). �

An alternative method for proving Lemma 4(ii)–(iii) is to
interpretB(k)+(B(k))T as the generator of a continuous timeMarkov
chain, which is ergodic when G(k) is strongly connected.
By (15), we may write

Φ−1B(It )Φ =
[
0
B̃(It )

]
. (16)

We also denote B̃t = B̃(It ).
By (13) and (16), Eq. (11) may be rewritten as

z1t+1 = z
1
t + at

[(
1/
√
n
)
1Tn1B

(It )Φ
]
zt + atv1t , (17)

z̃t+1 = z̃t + at B̃t z̃t + at [φT1B(It )Φ]zt + at ṽt , (18)
where t ≥ 0. Notice that v1t and ṽt both depend on It .

Lemma 5 (Tsitsiklis et al., 1986). Suppose the two sequences of
nonnegative random variables {ξt , t ≥ 0} and {ξ ′t , t ≥ 0} are both
adapted to the increasing sequence of σ -algebras {Gt , t ≥ 0}, and
for t ≥ 0,

E[ξt+1|Gt ] ≤ ξt + ξ ′t ,
∞∑
t=0

Eξ ′t <∞.

Then ξt converges a.s. to a random variable ξ∞. �

Theorem 6. Under (A1)–(A6), algorithm (11) ensures both mean
square and strong consensus.
Proof. See Appendix. �

Wegive some discussion on the relation between the individual
limit states x1

∞
= x2

∞
= · · · = xn

∞
and the initial state average.

Denote Ave(xt) = (1/n)1Tnxt . By (11) it follows that

Ave(xt+1) = Ave(xt)+ at(1/n)1Tn1B
(It )xt + at(1/n)1Tnw

(It )
t .

Hence for each k,

xk
∞
− Ave(x0) = (1/n)

∞∑
t=0

[at1Tn1B
(It )xt + at1Tnw

(It )
t ], (19)

where the right hand side converges in mean square. One may
reduce the deviation of xk

∞
from Ave(x0) by using a small step

size sequence, but this may also decrease the convergence rate.
Thus, it is practically important to have a good trade-off between
controlling this deviation and convergence rate.

4.3. Relaxation of the connectivity condition

A further relaxation of the condition for the Markov chain It
and also network connectivity is possible. In general, when It is
only ergodic and there are no instances of strongly connected real-
time network topologies, unlike what is shown in the proof of
Theorem 6 there is no guarantee that after one step the energy
function E|z̃t |2, up to some higher order perturbation, will decay by
the rate (1− c0at) for some fixed c0 > 0. In this situation, a useful
strategy is to compare the energy function between l0(t + 1) and
l0t for an appropriately chosen l0 ≥ 1. This requires the so-called
joint connectivity condition and a better behaved sequence of step
sizes than merely assuming (A6).
In this subsection, we will reuse some notation previously

introduced and they in general take new values. This should cause
no risk of confusion. Denote the collection of digraphs

G = {G(1), . . . ,G(K
′
0)}, (20)

where K ′0 ≥ 1 indicates the number of network topologies which
may occur. Denote G(i) = (N , E (i)). Now we take

G = (N , E ) , (N ,∪
K ′0
i=1 E (i)) (21)

as the union graph of G(1), . . . ,G(K
′
0).

Suppose now the Markov chain It has the state space
{1, . . . , K ′0}. If It = i, the real-time network topology is determined
as Gt = G(i). Let the matrix B(i) still be constructed by the rule
(4)–(5) when the associated graph is G(i).
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As our convention, the link gain g jkt and noise w
jk
t are always

defined as long as (k, j) ∈ ∪
K ′0
i=1 E (i). When (k, j) 6∈ Gt , g

jk
t and w

jk
t

are introduced as dummy random variables. The vectorswt and gt
are formed accordingly as in Section 2.
We rewrite the associated algorithm

xt+1 = xt + atB(It )xt + at1B(It )xt + atw
(It )
t , t ≥ 0, (22)

where the determination of1B(It ) andw(It )t is in parallel to that in
(11). Now we make the assumption:
(A4′) {It , t ≥ 0} is an ergodic Markov chain with stationary
transition probability matrix (p′ij)1≤i,j≤K ′0 , and

P(It+1 = j|It = i, I0, . . . , It−1,w0, . . . ,wt , g0, . . . , gt) = p′ij. �

Theorem 7. Assume
(i) (A1) holds with G defined by (21) (joint connectivity);
(ii) (A2)–(A3), (A4′) and (A5) hold;
(iii) in addition to (A6), there exist 0 < α1 < α2 such that

α1at ≤ at+1 ≤ α2at , t ≥ 0. (23)

Then algorithm (22) ensures mean square and strong consensus.

Proof. See Appendix. �

5. Models with arbitrary switches

In this section, we consider arbitrary random switches. In
contrast to Sections 2 and 3, here we do not start from the
statistical modelling of individual communication links although
the coefficient matrix Bt used below may be interpreted via an
associated digraph Gt = (N , E t).
Let the algorithm be given as

xt+1 = xt + atBtxt + atwt , t ≥ 0, (24)

where xt is in Rn, wt is the additive noise and Bt takes values from
{B(1), . . . , B(k0)} for some k0 ≥ 1. The matrix Bt = (bij(t)) has zero
row sums and nonnegative off-diagonal entries. It is not required
to satisfy the ZRCS condition.
Define the class of symmetric matrices: D = {D|D ≥

0,Null(D) = 1n}. ThenD is a cone, i.e., for any D1 ∈ D and D2 ∈ D ,
we have αD1 ∈ D and αD1 + βD2 ∈ D for all α > 0 and β > 0.
(A7) There exists Q ∈ D such that the cone conditions

− {(B(i))TQ + QB(i)} ∈ D, i = 1, . . . , k0, (25)

are simultaneously satisfied by B(i), i = 1, . . . , k0. �
For a fixed B(i), the following lemma gives a characterization of

condition (25) in terms of an associated network topology when
the rule (4)–(5) is used for the construction of B(i).

Lemma 8. Suppose (i) B = (bij)1≤i,j≤n has zero row sums and
nonnegative off-diagonal entries, and (ii) B is obtained from a digraph
G such that bij > 0, j 6= i, if and only if (j, i) is an edge in G. Then
given any D ∈ D , the equation

BTQ + QB = −D (26)

has a unique solution Q ∈ D if and only if G contains a spanning tree.
The solutionQ , if existing, has the representationQ =

∫
∞

0 e
BT tDeBtdt.

Proof. See Appendix. �

5.1. An example

Let G(k), k = 1, 2, 3, be digraphs with the same set of nodes
N = {1, 2, 3}. Suppose G(1) has the edges E = {(1, 2), (1, 3),
(2, 1), (3, 2)}. We take theweightmatrix B(1) andD ∈ D as follows

B(1) =

[
−1 1 0
0.5 −1 0.5
1 0 −1

]
, D =

[ 2 −1 −1
−1 2 −1
−1 −1 2

]
.

For equation (B(1))TQ + QB(1) = −D, the solution is

Q =
∫
∞

0
e(B

(1))T tDeB
(1)tdt =

1
30

[17 −8 −9
−8 22 −14
−9 −14 23

]
. (27)

The eigenvalues of B(1) are 0, −1.5 ± 0.5i, and the eigenvalues of
Q are 0, 0.847741 and 1.218925.
LetG(2) have the edges E = {(1, 2), (1, 3), (2, 1)}, andG(3) have

the edges E = {(1, 2), (2, 1), (3, 2)}. Let the correspondingweight
matrices be given by

B(2) =

[
−1 1 0
1 −1 0
1 0 −1

]
, B(3) =

[
−1 1 0
0.5 −1 0.5
0 0 0

]
.

For Q given by (27), it may be verified that

−{(B(k))TQ + QB(k)} ∈ D

for k = 2, 3. Thus, for B(k), k = 1, 2, 3, (A7) is satisfied.

5.2. Convergence result

DenoteFt = σ(x0, wk, Bk, k ≤ t).

Theorem 9. Assume (i) (A6)–(A7) hold, and (ii) E|x0|2 <
∞, {wt , t ≥ 0} is a sequence of martingale differences w.r.t. the σ -
algebras Ft and supt≥0 E|wt |2 < ∞. Then algorithm (24) ensures
mean square consensus.

Proof. Letting Q be given by (A7), we have

xTt+1Qxt+1 = (xt + atBtxt + atwt)
TQ (xt + atBtxt + atwt)

= xTt Qxt + atx
T
t (B

T
t Q + QBt)xt + at(w

T
t Qxt

+ xTt Qwt)+ a
2
t x
T
t B
T
t QBtxt + a

2
tw
T
t Qwt . (28)

Given D1 and D2, both in D , since they have the same null space
span{1n}, by elementary linear algebra it may be shown that there
exist two constants 0 < c1 ≤ c2 such that

c1D1 ≤ D2 ≤ c2D1. (29)

See Huang and Manton (2009) for similar estimates. Since (A7)
holds and Bt takes values from a finite set, we may find c3 > 0
such that

BTt Q + QBt ≤ −c3Q (30)

for all t . Furthermore, we may find c4 > 0 such that

BTt QBt ≤ c4Q . (31)

Combining (28) with (30) and (31), wemay find a sufficiently large
T1 such that for all t ≥ T1 we have

E[xTt+1Qxt+1|Ft ] ≤ (1− τat)x
T
t Qxt + Ca

2
t E[|wt |

2
|Ft ]

for some τ > 0 and C > 0, which further implies

ExTt+1Qxt+1 ≤ (1− τat)Ex
T
t Qxt + Ca

2
t E|wt |

2.

Then by (A6), we obtain limt→∞ ExTt Qxt = 0, and using themethod
in Huang and Manton (2009, Section 5), we further obtain weak
consensus.
Next, we show mean square convergence of xt . Our method

is to show that xt is a fundamental sequence under the norm
‖xt‖ = (E|xt |2)1/2. Let ε > 0 be any given small constant. Define
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Πk,i =
∏k
j=i+1(I + ajBj), where k > i and I + ai+1Bi+1 is the most

right term in the successive matrix product. We denote Πk,k = I .
Select t0 > 0. For t ≥ t0, we have

xt+1 = Πt,t0−1xt0 +
t∑
k=t0

Πt,kakwk. (32)

By weak consensus, there exists T0 ≥ 0 such that for all t, t0
satisfying t ≥ t0 ≥ T0, we have E|x1t0 − x

k
t0 |
2
≤ ε, where 2 ≤ k ≤ n.

Without loss of generality we may assume that T0 is sufficiently
large such that each I + ajBj is a nonnegative matrix and hence a
stochastic matrix for all j ≥ T0. Then for all t ≥ t0 ≥ T0,Πt,t0−1 is
a stochastic matrix for any given sample ω ∈ Ω . We have

Πt,t0−1xt0 − xt0 = [Πt,t0−1 − I][x
1
t01n + xt0 − x

1
t01n]

= [Πt,t0−1 − I][xt0 − x
1
t01n], (33)

where x1t0 is the first component in xt0 . By (33), we have

E|Πt,t0−1xt0 − xt0 |
2
≤ n3ε,

for t ≥ t0 ≥ T0. Then by (32) it is straightforward to find a fixed
constant C0 independent of (t, t0) such that

E|xt+1 − xt0 |
2
≤ n3ε + C0

t∑
k=t0

a2k .

Since
∑
∞

k=0 a
2
k < ∞, there exists a sufficiently large T1 such

that for all t0 ≥ T1, we have C0
∑t
k=t0
a2k ≤ ε. Hence, for all

t ≥ t0 ≥ T0 ∨ T1, we have E|xt+1 − xt0 |
2
≤ (n3 + 1)ε. Since

ε > 0 is arbitrary, there exists a random variable x∞ such that
limt→∞ E|xt − x∞|2 = 0, which combined with weak consensus
implies mean square consensus. �

6. Application to networks with quantized data and packet
losses

In this section, we consider models with quantized data
and packet losses. In particular, we will apply probabilistic
quantization,which is effective in eliminating biaswhen the agents
exchange state information by rate-limited digital communication
channels. This approach is recently introduced into consensus
problems in Aysal et al. (2007), and it is also applied in sensor
networks for data fusion with quantized information (Krasnopeev,
Xiao, & Luo, 2005; Xiao, Cui, Luo, & Goldsmith, 2006). We assume
that packets are transmitted from each node to its neighbors via
Markovian lossy channels.
Let the network topology be described by an undirected graph

G. For easing the distributed construction of the weight matrix for
averaging, we restrict our attention to undirected graphs. At time
t , denote the state of node i by xit . Let Ef be the set of failure-prone
links. At time t , the instantaneous network topology is denoted by
Gt , as a subgraph of G, and the neighbor set of node i is denoted by
Nit .When (k, i)∈ E f , denote the channel state between node k and
i by aMarkov chain Ikit taking values from {0, 1}, where k∈ N i. The
transition probability matrix of Ikit is (p

ki
lm)1≤l,m≤2, where P(I

ki
t+1 =

0|Ikit = 0) = p
ki
11. For k∈ N i, it is in Nit if and only if Ikit = 1.

If Ikit = 0, a packet loss occurs. Again, we form the process It by
stacking all Ikit , where (k, i)∈ E f .
At node i, suppose the real line R is partitioned by the

quantization levels ri,k, where k ∈ Z (the set of all integers), and
ri,k < ri,k+1 for all k. Since the set of quantization levels differ from
node to node, this gives heterogeneous quantizers.
6.1. A heuristic description of probabilistic quantizers

To better convey the idea of generating unbiased quantization
errors, we give a heuristic description of probabilistic quantization
first. If node i observes xit ∈ (ri,k, ri,k+1], the ‘‘randomized’’ output
Qi(t) of the quantizer is a random variable taking ri,k and ri,k+1,
respectively, with probabilities

pri,k = (ri,k+1 − x
i
t)/(ri,k+1 − ri,k), (34)

pri,k+1 = (x
i
t − ri,k)/(ri,k+1 − ri,k). (35)

At time t , if (k, i) ∈ E \E f , or (k, i)∈ E f but Ikit = 1, node i
obtains the data

yikt = Qk(t) = x
k
t + [Qk(t)− x

k
t ].

We write

yikt = x
k
t + w

k
t , k∈ N it , (36)

where wkt , Qk(t) − x
k
t is the quantization error. If I

ki
t = 0 for

(k, i)∈ E f , then yikt ≡ 0. Now (36) may be viewed as a special case
of (1)–(3) if we take g ikt , 1, w

ik
t , w

k
t .

Corresponding to (6), we apply the algorithm:

xit+1 = [1+ atbii(t)]x
i
t + at

∑
k∈N it

bik(t)yikt , t ≥ 0. (37)

The weight matrix Bt = (bij(t)) is now constructed using the
Metropolis weights as follows

bij(t) =


1

max{di(t), dj(t)} + 1
if (i, j)∈ E t ,

−

∑
k∈N it

bik(t) if j = i,

0 otherwise,

(38)

where di(t) is the number of neighbors of node i. So Bt takes values
from a finite set and satisfies the ZRCS condition.

6.2. Specification of the stochastic recursion

Belowwe focus on the central issue of how to characterizeQi(t),
so that the quantization error has desired properties for ensuring
convergence of algorithm (37). To have a rigorous specification of
the probabilistic quantizer, we need to ensure that (xt , It ,Q (t))
corresponds to a well defined random process, where Q (t) =
[Q1(t), . . . ,Qn(t)].
From the point of view of implementation, it will be convenient

to introduce the following new random variables Z it . Once x
i
t ∈

[ri,k, ri,k+1) is observed at node i, a random variable Z it is generated,
uniformly distributed on [ri,k, ri,k+1). Let F[ri,k,ri,k+1)(y), y ∈ R,
denote the distribution function of the uniform distribution on
[ri,k, ri,k+1). Denote Zt = [Z1t , . . . , Z

n
t ]
T . Let Ht denote an event

in the σ -algebra σ(xk, Ik, Zk−1, k ≤ t). We specify the conditional
probability distribution by the following rule

P

(
Z it ≤ z

i, I jit+1 = s
′

ji, all i ∈ N , all j∈ N i |Ht , xit ∈ [ri,k, ri,k+1),

I jit = sji, all i ∈ N , all j∈ N i

)

=

( ∏
i∈N ,j∈N i

pjisji,s′ji

) ∏
i∈N

F[ri,k,ri,k+1)(z
i),

when P(Ht ∩ {xit ∈ [ri,k, ri,k+1), I
ji
t = sji, all i ∈ N , j∈ N i}) >

0. In the above, sji and s′ji take values from {0, 1}. Then it is
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a b

Fig. 2. The network topology.

Fig. 3. Convergence with analog channels and Markovian switches.

straightforward to determine the joint distribution of xk, Ik+1, Zk
for k ≤ t . Next, we set Q it as follows. If x

i
t ∈ [ri,k, ri,k+1) and Z

i
t ≤ x

i
t ,

we define Q it = ri,k+1, and otherwise, Q
i
t = ri,k. After generating

Q it in this manner, we use (37) to generate xt+1 as a function of
xt , It ,Q it , i ∈ N . So the joint distribution of xk, Ik, Zk−1, k ≤ t + 1,
is determined. Thus, by starting with x0, I0, we may construct a
well defined process (xt , It , Zt ,Qt) in a suitable probability space.
Subsequently, we may show that {wkt , t ≥ 0} forms a sequence of
martingale differences, which is desired for eliminating the bias of
the quantization error.
Define the quantization resolution parameter for node i by

∆i = sup
−∞<k<∞

|ri,k+1 − ri,k|.

Wemake the following assumptions.
(A8) For each i ∈ N , limk→−∞ ri,k = −∞ and limk→∞ ri,k = ∞.
Moreover, maxi∈N ∆i <∞. �

(A9) The Markov chains Ikit , (k, i)∈ E f , are independent and
mins∈{0,1} P(Ikit+1 = 1|I

ki
t = s) > 0 for all (k, i). �

We state the following corollary on convergence.

Corollary 10. Suppose G is a connected undirected graph, E|x0|2 <
∞, and (A6), (A8)–(A9) hold. Then algorithm (37) achieves both
mean square and strong consensus.

Proof. Denote wt = [w1t , . . . , w
n
t ]
T for the quantization errors.

Under (A8), {wt , t ≥ 0} forms a sequence ofmartingale differences
w.r.t. the σ -algebras Ft = σ(x0, w0, . . . , wt , I0, . . . , It+1) and
has bounded second moments. Hence the corollary follows from
Theorem 6. �

7. Simulations

7.1. Simulation with analog channels

Let the network topology with the maximal set of communica-
tion links be denoted by G , G(1) as shown in Fig. 2(a). The edge
(1, 2) inG(1) is failure-prone, and theMarkov chain I12t has the tran-
sition probability matrix

P = (pij)1≤i,j≤2 =
[
0.9 0.1
0.1 0.9

]
,

Fig. 4. The channel gain g12t .

Fig. 5. Switches of the coefficient matrices.

Fig. 6. Convergence of the 3 trajectories with arbitrary switching.

where p11 = P(I12t+1 = 0|I
12
t = 0) and p22 = P(I

12
t+1 = 1|I

12
t = 1),

etc. The choice of these parameters in P suggests relatively slow
switches between the failure and recovery of the link. When I12t =
0, let the resulting graph be denoted by G(2); see Fig. 2(b). In the
output equation

ȳik = g ikt x
k
t + w

ik,

all link gains g ikt are i.i.d. and uniformly distributed on the interval
[0.07, 0.13]. All i.i.d. Gaussian noises wikt have zero mean and
variance σ 2w = 10

−4.
For G(1) and G(2), the associated coefficient matrices for

averaging are, respectively, given by

B(1) =

[
−1 1 0
0.5 −1 0.5
0.5 0 −0.5

]
, B(2) =

[
−1 1 0
0 −1 1
1 0 −1

]
,

which satisfy the ZRCS condition. By applying algorithm (6),
the convergence behavior of xt is shown in Fig. 3, where the
three trajectories converge to approximately 3.51. The associated
channel gain process g12t is displayed in Fig. 4 for the first 100 steps.
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Fig. 7. The undirected graph for the maximal set of communication links.

Fig. 8. Convergence with quantized data and decreasing step sizes.

Fig. 9. The packet loss process I12t along the edge (1, 2).

7.2. Simulation with arbitrary switches

We take B(1), B(2) and B(3) given in Section 5.1. Algorithm (24) is
appliedwherewt is an i.i.d. Gaussian noise processwith covariance
matrix 0.04I3×3, where I3×3 is the identity matrix. The initial state
vector x0 = [3, 1, 4]T . The step size at = 1/(t + 2)0.85 for t ≥ 0. In
the simulation, for a simple generation of the arbitrary switches
of Bt , they are mimicked by a sample path of a Markov chain Jt
taking values from {1, 2, 3} so that Bt = B(Jt ). The trajectory of Jt is
displayed in Fig. 5. The convergence of xt is shown in Fig. 6.

7.3. Simulation with quantized data and packet losses

The network topology is modelled as the undirected graph
G shown in Fig. 7. Each link in G is subject to packet losses.
The loss processes I ikt are modelled by 3 independent Markov
processes, with initial states I120 = 1, I

23
0 = 1 and I

24
0 = 0, respec-

tively. Each of the 3 Markov chains has the transition probability
matrix

P =
[
0.2 0.8
0.1 0.9

]
. (39)

So P(I12t+1 = 0|I
12
t = 0) = 0.2, etc. We take x0 = [1, 3, 2, 4]

T .
Fig. 10. The average state Ave(xt ) , (1/4)
∑4
i=1 x

i
t .

Fig. 11. Divergence of xt for the 4 agents with probabilistic quantizers and fixed
step sizes.

For implementing probabilistic quantizers, the two sets of
quantization levels are

L1 = {(k+ 1/2)∆ : k ∈ Z}, L2 = {k∆ : k ∈ Z}, (40)

where the constant ∆ > 0 is the quantization resolution
parameter and Z denotes all integers. When L1 is used, we have
the partitionR = ∪−∞<k<∞[(k−1/2)∆, (k+1/2)∆). In parallel,
when L2 is used, R = ∪−∞<k<∞[k∆, (k+ 1)∆).
In the simulation, we take ∆ = 0.1. We use L1 at nodes 1 and

2, and L2 at nodes 3 and 4. Fig. 8 shows a convergence behavior
when the step size at = 1/(t + 4)0.65 is used. The packet loss
process I12t is shown in Fig. 9. Fig. 10 shows that the state average is
maintainedwithin a small neighborhood of the initial state average
(1+ 3+ 2+ 4)/4 = 2.5.
Finally, for comparison, Fig. 11 shows divergence of xt when the

same set of probabilistic quantizers are applied with the constant
step size at ≡ 1, and in this case, the resulting coefficient matrix
I + atBt = I + Bt reduces to the standard Metropolis weights.
This divergence behavior is in sharp contrast to the convergence
behavior observed in Aysal et al. (2008), where a fixed weight
coefficient matrix and homogenous quantizers, which have the
same set of quantization levels, are used at all nodes.

7.4. A large random network

Let n = 100 nodes be independently and uniformly distributed
in a unit square; see Fig. 12. Each node has a sensing radii of
0.25, which further determines the underlying network topology
as an undirected graph G. Each node selects L1 and L2 in (40) with
equal probability, where ∆ = 0.1, and then retains the selected
quantizer.
Suppose each link in G is described by a Markov chain with

transition probability matrix P given in (39), and these Markov
chains are stationary and independent.
In the simulation, the initial states xi(0) are i.i.d. Gaussian

N(µ, σ 2) with µ = 6 and σ 2 = 4. In the initialization, the
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Fig. 12. The randomly distributed nodes with a sensing radii of 0.25.

Fig. 13. The trajectory of 4 representative agents and the upper/lower envelope of
the 100 state trajectories.

minimum andmaximum values of xi(0) are respectively, 1.244132
and 11.573608. The initial state average is Ave(x(0)) = (1/100)∑100
i=1 x

i(0) = 6.323485. We run algorithm (37) for 1200 iterates
with at = 2(t + 31)−0.65. At time t , denote the empirical mean
square error (with respect to Ave(x(0))) by

MSE(t) =
1
N

N∑
i=1

[xi(t)− Ave(x(0))]2,

which measures the deviation of xi(t)’s from the initial state av-
erage. We have MSE(0) = 4.898526. Denote xmin(t) = mini xi(t)
and xmax(t) = maxi xi(t), which, respectively, give the lower and
upper envelopes of all agents’ trajectories. Fig. 13 shows the tra-
jectories of xmin, xmax, x1, x3, x5 and x8. These four representative
nodes are marked by ‘‘∗’’ and displayed in Fig. 12. At the ter-
minal time T = 1200, xmin(1200) = 6.283269, xmax(1200) =
6.401205,MSE(1200) = 9.8× 10−4.
A large number of repeats of the simulation show similar

convergence behavior. The MSE at T = 1200 has noticeable
variability, but it is generally at the order of 10−3 or even smaller.
Also, it is observed that MSE(T ) is relatively insensitive to the
change of∆ from 0.1 to 0.025, 0.05 or 0.2.

8. Conclusions

This paper considers stochastic consensus problems where
agents exchange state information via lossy analog or digital com-
munication channels. Stochastic approximation type algorithms
are applied to obtain mean square and almost sure convergence.
We also consider consensus models with arbitrary switches, and
the convergence analysis is based on a common stochastic Lya-
punov function. Finally, we apply the algorithm to models with
quantized data and packet losses by combining probabilistic quan-
tization with a decreasing step size. For future work it will be
of interest to consider more general connectivity conditions in
switching networks.
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Appendix

Proof of Theorem 6. Let z1t and z̃t be given by (17)–(18). Belowwe
prove that there exists a mean square integrable random variable
z1
∞
such that

lim
t→∞

E|z1t − z
1
∞
|
2
= 0, lim

t→∞
E|z̃t |2 = 0.

Taking squares of the Euclidean norm on both sides of (18) gives

|z̃t+1|2 = |z̃t + at B̃t z̃t |2 + a2t |[φ
T1B(It )Φ]zt |2 + a2t |ṽt |

2

+ 2at(z̃t + at B̃t z̃t)T [φT1B(It )Φ]zt (,2atY1)

+ 2at(z̃t + at B̃t z̃t)T ṽt (,2atY2)

+ 2a2t ([φ
T1B(It )Φ]zt)T ṽt (,2a2t Y3). (A.1)

Denote the σ -algebra

F ′t = σ(x0,w0, . . . ,wt−1, g0, . . . , gt−1, I0, . . . , It−1).

In view of (17)–(18), it is evident that z1t and z̃t are adapted to F ′t .
Since (A3) ensures that g ijt /λij−1 contained in1B(It ) has zeromean
and is independent of (wk, Ik, zk, 0 ≤ k ≤ t), we may apply (10) to
show that

E[Y1|Ft ] = (z̃t + at B̃t z̃t)TφTE[1B(It )|Ft ]Φzt = 0.

SinceF ′t ⊂ Ft , it follows that

E[Y1|F ′t ] = E{E[Y1|Ft ]|F
′

t } = 0. (A.2)

Similarly, we apply (A2) to show that

E[Y2|F ′t ] = E[Y3|F
′

t ] = 0. (A.3)

By (A.1)–(A.3), it is straightforward to show that

E[|z̃t+1|2|F ′t ] ≤ |z̃t |
2
+ at z̃Tt E[(B̃

T
t + B̃t)|F

′

t ]z̃t

+ C1a2t (E[|wt |
2
|F ′t ] + |z

1
t |
2
+ |z̃t |2), (A.4)

where C1 is a constant independent of t and we have used the fact
that |ṽt |2 ≤ C |wt |2 for some constant C .
Since under (A4), It will take a value 1 ∈ {1, . . . , K0} (so that

G(It ) is strongly connected) with a positive probability irrespective
of It−1, it follows from Lemma 4(ii)–(iii) that

E[B̃Tt + B̃t |F
′

t ] ≤ −c0I, (A.5)

for some constant c0 > 0.
Denote st = E|z1t |

2 and Vt = E|z̃t |2. Then (A.4) gives

Vt+1 ≤ (1− c0at)Vt + C1a2t (1+ st + Vt), (A.6)

for all t ≥ 0. And furthermore, (17) gives

st+1 ≤ st + C2a2t (1+ st + Vt), (A.7)

for some C2 > 0. Then by (A.6), (A.7) and Lemma 12 in Huang and
Manton (2010), we obtain

lim
t→∞

st = s∞, lim
t→∞

Vt = 0, (A.8)

for some finite value s∞. Hence, z̃t converges to 0 in mean square.
And mean square convergence of z1t to a limit z

1
∞
follows readily

from (A.8) and (17).
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We proceed to prove the almost sure convergence of z1t and z̃t .
Denote ξt = |z̃t |2. By (A.4)–(A.5), it follows that

E[ξt+1|F ′t ] ≤ (1− c0at)ξt + Ca
2
t (E[|wt |

2
|F ′t ] + |z

1
t |
2
+ |z̃t |2)

for some C > 0 and all t ≥ 0. By Lemma 5 and
∞∑
t=0

a2t (E|wt |
2
+ st + Vt) <∞,

it follows that ξt = |z̃t |2 converges a.s. But on the other hand, it has
been shown that z̃t converges to 0 in mean square. Hence, both ξt
and z̃t necessarily converge to 0 a.s.
Next, by (A2) and (9), {v1t , t ≥ 0} is a martingale

difference sequence w.r.t. the σ -algebras Ft defined by (7). Also,
{1Tn1B

(It )Φzt , t ≥ 0} is a martingale difference sequence w.r.t. the
σ -algebras F ′′t = σ(x0,w0, . . . ,wt , g0, . . . , gt , I0, . . . , It). Since
supt≥0(E|v1t |

2
+ E|1Tn1B

(It )Φzt |2) < ∞ due to (A3) and (A.8),
the a.s. convergence of z1t follows from (17) and the martingale
convergence theorem (Hall & Heyde, 1980; Stout, 1974).
Finally, by the relation xt = Φzt =

(
1/
√
n
)
1nz1t + φz̃t and

(z1t , z̃t)→ (z1
∞
, 0), as t →∞, both in mean square and a.s., mean

square and strong consensus follows. �

Before proving Theorem 7, we give a technical lemma.

Lemma 11. Let l0 be fixed and t ≥ l0, and assume (23). If each value
in G defined by (20) appears in the sequence Bt−l0 , . . . , Bt as least
once, then there exists c > 0 such that
t∑

k=t−l0

ak(B̃k + B̃Tk ) ≤ −cat I,

for all t ≥ l0, where B̃k is determined by Lemma 4, i.e., Φ−1BkΦ =
Diag[0, B̃k].

Proof. Denote

H =
t∑

k=t−l0

(ak/at)(Bk + BTk ) ,
t∑

k=t−l0

γk(Bk + BTk ).

Then H is the Laplacian of a strongly connected digraph. For given
coefficients (γt−l0 , . . . , γt), by Lemma 4, we have

t∑
k=t−l0

γk(B̃k + B̃Tk ) ≤ −c
′I

for some c ′ > 0. Since γ• , (γt−l0 , . . . , γt) is from a compact set
by (23), there exists c > 0 independent of γ• such that
t∑

k=t−l0

γk(B̃k + B̃Tk ) ≤ −cI.

Finally, cmaybe taken to be independent of the particular values of
Bt−l0 , . . . , Bt since there are only a finite number of such sequences
(not distinguished by the starting time t − l0) such that each value
in G appears at least once. �

Proof of Theorem 7. Let z1t and z̃t be given by (17)–(18). Denote
st = E|z1t |

2 and Vt = E|z̃t |2. Following the method in proving
Theorem 6, we can first show that

Vt+1 ≤ Vt + Ca2t (1+ st + Vt), (A.9)

which differs from (A.6) by removing 1 − c0at . Note that C is a
generic constant. In parallel, we may show that

st ≤ st+1 ≤ st + Ca2t (1+ st + Vt). (A.10)
Byusing (A.9)–(A.10) and adapting the proof of Lemma12 inHuang
andManton (2010), we obtain Vt+1 ≤ (1+Ca2t )max0≤i≤t Vi+Ca

2
t ,

which implies

max
0≤i≤t+1

Vi ≤ (1+ Ca2t )max0≤i≤t
Vi + Ca2t . (A.11)

By iterating (A.11), it may be shown that supi≥0 Vi < ∞, which
further implies that supi≥0 si <∞.
By (18), we obtain

E|z̃t+1|2 ≤ E|(I + at B̃t)z̃t |2 + Ca2t (1+ st + Vt)

≤ E|(I + at B̃t){(I + at−1B̃t−1)z̃t−1
+ at−1[φT1B(It−1)]zt−1 + at−1ṽt}|2

+ Ca2t (1+ st + Vt). (A.12)

Let

ξ1 = (I + at B̃t)(I + at−1B̃t−1)z̃t−1,

ξ2 = (I + at B̃t)at−1[φT1B(It−1)]zt−1,

ξ3 = (I + at B̃t)at−1ṽt .

Wemay use conditioning to show that the cross terms

Eξ T1 ξ2 = Eξ
T
2 ξ3 = Eξ

T
3 ξ1 = 0.

Then it follows from (A.12) that

E|z̃t+1|2 ≤ E|(I + at B̃t)(I + at−1B̃t−1)z̃t−1|2

+ Ca2t−1(1+ st−1 + Vt−1)+ Ca
2
t (1+ st + Vt).

Repeating this and using (23) and supt≥0(st +Vt) <∞, we obtain,

E|z̃t+1|2 ≤ E|(I + at B̃t) · · · (I + at−l0 B̃t−l0)z̃t−l0 |
2
+ Ca2t , (A.13)

where l0 > 0 is any fixed integer. It follows from (A.13) that

E|z̃t+1|2 ≤ E|z̃t−l0 |
2
+ E

[
z̃Tt−l0

t∑
k=t−l0

ak(B̃k + B̃Tk )z̃t−l0

]
+ Ca2t

+ Ca2t E|z̃t−l0 |
2

≤ E|z̃t−l0 |
2
+ E

[
z̃Tt−l0

t∑
k=t−l0

ak(B̃k + B̃Tk )z̃t−l0

]
+ Ca2t , (A.14)

where the second inequality follows from supt≥0 E|z̃t |2 <∞.
We choose a sufficiently large l0 such that regardless of the state

at time t − l0, the Markov chain It will visit all its states from t − l0
to t with probability at least ε0 > 0, where ε0 does not depend
on t . Then using conditioning and Lemma 11, we can show that for
some δ0 > 0,

E

[
z̃Tt−l0

t∑
k=t−l0

ak(B̃k + B̃Tk )z̃t−l0

]
≤ −δ0atE|z̃t−l0 |

2. (A.15)

By (A.14), (A.15) and (23), it follows that for some c0 > 0,

Vt+l0+1 ≤ (1− c0at)Vt + Ca
2
t .

Then by (A6), limt→∞ Vt = 0. By (A.10) we further obtain
limt→∞ st = s∞ for some finite s∞. Then mean square consensus
follows. Again, by a martingale convergence argument we obtain
almost sure convergence of the algorithm. �

Proof of Lemma 8. Since G contains a spanning tree, B has the
eigenvalue 0 and another n− 1 eigenvalues with strictly negative



1582 M. Huang et al. / Automatica 46 (2010) 1571–1583
real parts (Ren & Beard, 2005) and there exists a real matrix Φ ,
(1n, φn×n−1), where φn×(n−1) is an n× (n− 1)matrix, such that

Φ−1BΦ =
(
0 0
0 B̃n−1

)
, (A.16)

where the (n−1)×(n−1)matrix B̃n−1 isHurwitz (Huang&Manton,
2010). The rest part for showing the existence and uniqueness of a
solutionwith the integral representation follows the samemethod
as in proving Theorem 5 in Huang and Manton (2007).
To show necessity, we construct the deterministic consensus

algorithm zt+1 = (I + ε0B)zt , where zt = [z1t , . . . , z
n
t ]
T and t ≥ 0.

Take a sufficiently small ε0 > 0 such that I + ε0B is a stochastic
matrix with positive diagonal entries and zTt+1Qzt+1 ≤ (1 −
c0)zTt Qzt for some c0 > 0, which implies limt→∞maxi,j |z

i
t − z

j
t | →

0. Next, by zt+k = (I+ε0B)kzt , wemay show limt→∞ supk≥1 |zt+k−
zt | → 0, so that zt converges. Hence, we conclude that consensus
is achieved. By Ren and Beard (2005), G necessarily contains a
spanning tree. �

References

Acemoglu, D., Nedić, A., & Ozdaglar, A. (2008). Convergence of rule-of-thumb
learning rules in social networks. In Proc. the 47th IEEE conference on decision
and control, Cancun, Mexico, December (pp. 1714–1720).

Aysal, T. C., & Barner, K. E. (2009). On the convergence of perturbed non-stationary
consensus algorithms. In Proc. IEEE infocom, Rio de Janeiro, Brazil, April (pp.
2132–2140).

Aysal, T. C., Coates,M. J., & Rabbat,M. G. (2007). Distributed average consensus using
probabilistic quantization. In IEEE statistical signal processingworkshop.Madison,
Wisconsin, August (pp. 640–644).

Aysal, T. C., Coates, M. J., & Rabbat, M. G. (2008). Distributed average consensus
with dithered quantization. IEEE Transactions on Signal Processing , 56(10),
4905–4918.

Barooah, P., & Hespanha, J. P. (2007). Estimation on graphs from relative
measurements: distributed algorithms and fundamental limits. IEEE Control
Systems Magazine, 27, 57–74.

Bellman, R. (1997). Introduction to matrix analysis (2nd ed.). Philadelphia: SIAM.
Carli, R., Fagnani, F., Frasca, P., Taylor, T., & Zampieri, S. (2007). Average consensus
on networks with transmission noise or quantization. In Proc. European control
conf, Kos, Greece, July (pp. 1852–1857).

Carli, R., Fagnani, F., Speranzon, A., & Zampieri, S. (2008). Communication
constraints in the average consensus problem. Automatica, 44, 671–684.

Cucker, F., & Mordecki, E. (2008). Flocking in noisy environments. Journal de
Mathématiques Pures et Appliquées, 89(3), 278–296.

Fagnani, F., & Zampieri, S. (2009). Average consensus with packet drop communi-
cation. SIAM Journal on Control and Optimization, 48(1), 102–133.

Gastpar, M., Rimoldi, B., & Vetterli, M. (2003). To code, or not to code: lossy source-
channel communication revisited. IEEE Transactions on Information Theory,
49(5), 1147–1158.

Gastpar, M., & Vetterli, M. (2003). Source-channel communication in sensor
networks. In F. Zhao, & L. Guibas (Eds.), Springer lecture notes in computer science:
Vol. 2634 (pp. 162–177). Berlin: Springer-Verlag.

Goblick, T. J. (1965). Theoretical limitations on the transmission of data from analog
sources. IEEE Transactions on Information Theory, 11(4), 558–567.

Hall, P., & Heyde, C. C. (1980).Martingale limit theory and its application. New York:
Academic Press.

Hatano, Y., &Mesbahi, M. (2005). Agreement in randomnetworks. IEEE Transactions
on Automatic Control, 51(11), 1867–1872.

Huang, M., & Dey, S. (2007). Stability of Kalman filtering with Markovian packet
losses. Automatica, 43, 598–607.

Huang, M., & Manton, J. H. (2007). Stochastic approximation for consensus seeking:
mean square and almost sure convergence. In Proc. 46th IEEE CDC conference,
New Orleans, LA, December (pp. 306–311).

Huang, M., & Manton, J. H. (2008). Stochastic consensus seeking with measurement
noise: convergence and asymptotic normality. In Proc. American control conf,
Seattle, WA, June (pp. 1337–1342).

Huang, M., &Manton, J. H. (2009). Coordination and consensus of networked agents
with noisy measurements: stochastic algorithms and asymptotic behavior.
SIAM Journal on Control and Optimization, 48(1), 134–161.

Huang, M., & Manton, J. H. (2010). Stochastic consensus seeking with noisy and
directed inter-agent communication: fixed and randomly varying topologies.
IEEE Transactions on Automatic Control, 55(1), 235–241.

Jadbabaie, A., Lin, J., & Morse, A. S. (2003). Coordination of groups of mobile
autonomous agents using nearest neighbor rules. IEEE Transactions on Automatic
Control, 48, 988–1000.

Kashyap, A., Basar, T., & Srikant, R. (2007). Quantized consensus. Automatica, 43,
1192–1203.

Krasnopeev, A., Xiao, J.-J., & Luo, Z.-Q. (2005). Minimum energy decentralized
estimation in a wireless sensor network with correlated sensor noises. EURASIP
Journal on Wireless Communications and Networking , 2005(4), 473–482.
Martínez, S. (2007). Practical rendezvous through modified circumcenter algo-
rithms. In Proc. 46th IEEE conference on decision and control, New Orleans, LA,
December (pp. 2369–2374).

Matei, I., Martins, N., & Baras, J. S. (2008). Almost sure convergence to consensus in
Markovian random graphs. In Proc. 47th IEEE conference on decision and control,
Cancun, Mexico, December (pp. 3535–3540).

Olfati-Saber, R., Fax, J. A., & Murray, R. M. (2007). Consensus and cooperation in
networked multi-agent systems. Proceedings of the IEEE, 95(1), 215–233.

Olfati-Saber, R., & Murray, R. M. (2004). Consensus problems in networks of
agentswith switching topology and time-delays. IEEE Transactions on Automatic
Control, 49, 1520–1533.

Ren, W., & Beard, R. W. (2005). Consensus seeking in multiagent systems under
dynamically changing interaction topologies. IEEE Transactions on Automatic
Control, 50(5), 655–661.

Ren, W., Beard, R. W., & Kingston, D. B. (2005). Multi-agent Kalman consensus
with relative uncertainty. In Proc. American control conf, Portland, OR, June (pp.
1865–1870).

Ren, W., Beard, R. W., & Atkins, E. M. (2005). A survey of consensus problems in
multi-agent coordination. In Proc. American control conference, Portland, OR, June
(pp. 1859–1864).

Schizas, I. D., Ribeiro, A., & Giannakis, G. B. (2008). Consensus in ad hoc WSNs
with noisy links—part I: distributed estimation of deterministic signals. IEEE
Transactions on Signal Processing , 56, 350–364.

Sinopoli, B., Schenato, L., Franceschetti, M., Poolla, K., Jordan, M. I., & Sastry, S. S.
(2004). Kalman filtering with intermittent observations. IEEE Transactions on
Automatic Control, 49, 1453–1464.

Smith, S. C., & Seiler, P. (2003). Estimation with lossy measurements: jump
estimators for jump systems. IEEE Transactions on Automatic Control, 48,
2163–2171.

Stankovic, S. S., Stankovic,M. S., & Stipanovic, D.M. (2007). Decentralized parameter
estimation by consensus based stochastic approximation. In Proc. 46th IEEE
conference on decision and control, New Orleans, LA, December (pp. 1535–1540).

Stout, W. F. (1974). Almost sure convergence. New York: Academic Press.
Tahbaz-Salehi, A., & Jadbabaie, A. (2008). A necessary and sufficient condition for
consensus over randomnetworks. IEEE Transactions on Automatic Control, 53(3),
791–795.

Tsitsiklis, J. N., Bertsekas, D. P., & Athans, M. (1986). Distributed asynchronous de-
terministic and stochastic gradient optimization algorithms. IEEE Transactions
on Automatic Control, 31(9), 803–812.

Wu, C. W. (2006). Synchronization and convergence of linear dynamics in random
directed networks. IEEE Transactions on Automatic Control, 51(7), 1207–1210.

Xiao, L., Boyd, S., &Kim, S.-J. (2007). Distributed average consensuswith least-mean-
square deviation. Journal of Parallel and Distributed Computing , 67, 33–46.

Xiao, J.-J., Cui, S., Luo, Z.-Q., & Goldsmith, A. J. (2006). Power scheduling of
universal decentralized estimation in sensor networks. IEEE Transactions on
Signal Processing , 54(2), 413–422.

Yildiz, M. E., & Scaglione, A. (2008). Coding with side information for rate-
constrained consensus. IEEE Transactions on Signal Processing , 56(8), 3753–3764.

Minyi Huang received the B.Sc. degree from Shandong
University, Jinan, Shandong, China, in 1995, the M.Sc.
degree from the Institute of Systems Science, Chinese
Academy of Sciences, Beijing, China, in 1998, and the Ph.D.
degree from the Department of Electrical and Computer
Engineering, McGill University, Montreal, Canada, in 2003,
all in the area of systems and control.
From February 2004 to March 2006, he was a

Research Fellow with the Department of Electrical and
Electronic Engineering, the University of Melbourne,
Victoria, Australia. From April 2006 to June 2007, he was

a Research Fellow with the Department of Information Engineering, Research
School of Information Sciences and Engineering, the Australian National University,
Canberra, Australia. He joined CarletonUniversity, Ottawa, ON, Canada, in July 2007,
where he is an Assistant Professor in the School of Mathematics and Statistics.
His research interests include stochastic control and game theory, multiagent
stochastic systems, stochastic algorithms, and wireless networks.

Subhrakanti Dey was born in Calcutta, India, in 1968.
He received the B.Tech. and M.Tech. degrees from the
Department of Electronics and Electrical Communication
Engineering, Indian Institute of Technology, Kharagpur,
India, in 1991 and 1993, respectively, and the Ph.D.
degree from the Department of Systems Engineering,
Research School of Information Sciences and Engineering,
Australian National University, Canberra, Australia, in
1996.
He has been with the Department of Electrical and

Electronic Engineering, University ofMelbourne, Parkville,
Australia, since February 2000, where he is currently a full Professor. From
September 1995 to September 1997 and September 1998 to February 2000, he
was a postdoctoral Research Fellow with the Department of Systems Engineering,
Australian National University. From September 1997 to September 1998, he was a
postdoctoral Research Associatewith the Institute for Systems Research, University



M. Huang et al. / Automatica 46 (2010) 1571–1583 1583
of Maryland, College Park. His current research interests include networked control
systems, wireless communications and networks, signal processing for sensor
networks, and stochastic and adaptive estimation and control. Dr. Dey currently
serves on the Editorial Board of the IEEE Transactions on Signal Processing and
Elsevier Systems and Control Letters. Hewas also an Associate Editor for the IEEE
Transactions on Automatic Control during 2005–2007. He is a Senior Member of
IEEE.

Girish N. Nair was born in Petaling Jaya, Malaysia. He
obtained a B.E. (Electrical, 1st class honours) in 1994, B.Sc.
(Mathematics) in 1995, and Ph.D. (Electrical Engineering)
in 2000, on scholarships from the Australian government
and the University of Melbourne. He is currently an
associate professor in the Department of Electrical and
Electronic Engineering at the University of Melbourne and
has also held visiting positions at the University of Padova,
Italy and Boston University, USA. He has received several
prizes, including a SIAM Outstanding Paper Prize in 2006
and the Best Theory Paper Prize at theUKACC International

Conference on Control, Cambridge University, 2000. His research interests lie in
communications, information theory and control and he serves as an associate
editor for the SIAM Journal on Control and Optimization.
Jonathan H. Manton received his Bachelor of Science
(Mathematics) and Bachelor of Engineering (Electrical)
degrees in 1995 and his Ph.D. degree in 1998, all from the
University of Melbourne, Australia. From 1998 to 2004,
he was with the Department of Electrical and Electronic
Engineering at the University of Melbourne. During that
time, he held a Postdoctoral Research Fellowship then
subsequently a Queen Elizabeth II Fellowship, both from
the Australian Research Council. In 2005 he became a full
Professor in the Department of Information Engineering,
Research School of Information Sciences and Engineering

(RSISE) at the Australian National University. From July 2006 till May 2008, he
was on secondment to the Australian Research Council as Executive Director,
Mathematics, Information and Communication Sciences. Currently, he holds
a distinguished Chair at the University of Melbourne with the title Future
Generation Professor. He is also an Adjunct Professor in the Mathematical Sciences
Institute at the Australian National University. Professor Manton’s traditional
research interests range from pure mathematics (e.g. commutative algebra,
algebraic geometry, differential geometry) to engineering (e.g. signal processing,
wireless communications). Recently though, led by a desire to participate in the
convergence of the life sciences and the mathematical sciences, he has commenced
learning neuroscience. Professor Manton also has extensive experience in software
development.


