Stochastic consensus over noisy networks with Markovian and arbitrary switches

ARTICLE in AUTOMATICA · OCTOBER 2010
Impact Factor: 3.02 · DOI: 10.1016/j.automatica.2010.06.016 · Source: DBLP

4 AUTHORS, INCLUDING:

Minyi Huang
Carleton University
82 PUBLICATIONS 1,980 CITATIONS

Swayandipta Dey
University of Connecticut
36 PUBLICATIONS 683 CITATIONS
Stochastic consensus over noisy networks with Markovian and arbitrary switches

Minyi Huang a,∗, Subhrakanti Dey b, Girish N. Nair b, Jonathan H. Manton b

a School of Mathematics and Statistics, Carleton University, Ottawa, ON, K1S 5B6, Canada
b Department of Electrical and Electronic Engineering, University of Melbourne, Victoria 3010, Australia

ARTICLE INFO

Article history:
Received 5 November 2008
Received in revised form 3 December 2009
Accepted 25 May 2010
Available online 22 July 2010

Keywords:
Consensus
Measurement noises
Markovian lossy channels
Stochastic approximation
Quantized data
Packet losses

ABSTRACT

This paper considers stochastic consensus problems over lossy wireless networks. We first propose a measurement model with a random link gain, additive noise, and Markovian lossy signal reception, which captures uncertain operational conditions of practical networks. For consensus seeking, we apply stochastic approximation and derive a Markovian mode dependent recursive algorithm. Mean square and almost sure (i.e., probability one) convergence analysis is developed via a state space decomposition approach when the coefficient matrix in the algorithm satisfies a zero row and column sum condition. Subsequently, we consider a model with arbitrary random switching and a common stochastic Lyapunov function technique is used to prove convergence. Finally, our method is applied to models with heterogeneous quantizers and packet losses, and convergence results are proved.

1. Introduction

In distributed multi-agent systems, consensus problems have become one of most focussed research areas due to their wide application backgrounds; see the survey in Olfati-Saber, Fax, and Murray (2007) and Ren, Beard, and Atkins (2005). While most of past research has concentrated on deterministic models (see Jadabaie, Lin, and Morse (2003), Olfati-Saber and Murray (2004) and Ren and Beard (2005), and references therein), recently, there is a considerable growth of interest in stochastic models addressing various uncertainty factors involved in the inter-agent information exchange. For instance, the communication link between the agents may be available only at random times, and random graphs are suitable for network connectivity modelling (Hatano & Mesbahi, 2005; Tahbaz-Salehi & Jadabaie, 2008). Another important aspect of consensus models is random noises (Acemoglu, Nedić, & Ozdaglar, 2008; Aysal & Barner, 2009; Carli, Fagnani, Frasca, Taylor, & Zampieri, 2007; Ren, Beard, & Kingston, 2005; Schizas, Ribeiro, & Giannakis, 2008; Xiao, Boyd, & Kim, 2007). This is particularly important when the agents exchange their state information over communication channels (Schizas et al., 2008). For noisy modelling for flocking, formation and rendezvous, the reader is referred to Barooah and Hespanha (2007), Cucker and Mordecki (2008) and Martínez (2007).

This paper considers consensus problems over unreliable networks. We aim to develop a unified modelling and analytic framework addressing uncertainty aspects including measurement noises, random link gains, random signal losses, and quantization errors. We begin with the signal reception modelling, where the random link gain results from analog channels. The analog signal transmission is motivated by specific sensor network applications. In recent years, a promising scheme for distributed detection/estimation in sensor networks has emerged based on analog forwarding, where measurements of the sensors are transmitted directly (possibly scaled) to a fusion center without any coding, which is motivated by optimality results on uncoded transmissions in point-to-point links (Gastpar, Rimoldi, & Vetterli, 2003; Goblick, 1965). It was shown in Gastpar and Vetterli (2003) that for a Gaussian sensor network, where multiple sensors measure a random scalar Gaussian field in noise and forward their noisy measurements to a fusion center for reconstruction of the source, the analog forwarding scheme is asymptotically optimal and approaches the minimum distortion achievable at the rate of
1/M, where M is the number of sensors. Also, the simplicity and low delay properties of uncoded analog forwarding make it an attractive choice for large distributed sensor networks.

During signal exchange of the sensor nodes, an important uncertainty feature is signal losses. This may be caused by the temporary extreme deterioration of the link quality, for instance, due to blocking objects travelling between the transmitting and receiving nodes, or simply by a temporary fault of the transmitter or receiver. For random connectivity modelling, there has existed a fair amount of work adopting random graphs where the communication of a pair of agents fails as independent processes; see, e.g., Hatano and Mesbahi (2005). Tahbaz-Salehi and Jadbabaie (2008) considered averaging with a sequence of independent coefficient matrices, which indicates that the overall network topology evolves independently; such modelling was also adopted for linear synchronisation (Wu, 2006). Fagnani and Zampieri (2009) studied average consensus with independent packet dropping and analyzed the effect of the loss probability on performance. However, in practical systems, the loss of connectivity usually occurs with correlations, and for random graph based consensus models, this correlation effect has received relatively little attention. In this paper, we will introduce a Markovian modelling of the occurrence of the signal (or packet) losses, so that the temporal correlation properties of the channel functionality may be captured. Matei, Martins, and Baras (2008) considered a consensus problem with Markovian switching, but no measurement noise was involved; under a joint connectivity assumption they established almost sure convergence via exploiting the linear dynamics governing the evolution of the mean square consensus error.

Compared to measurement noises and random link gains, quantization is also a major source of signal distortion when high data rates are not available. Indeed, in sensor network deployment, due to limited on-board battery, sensors can only afford relatively low data rates. In models with quantization, asymptotic analysis of consensus algorithms is in general challenging and has attracted significant research attention. Carli, Fagnani, Speranzon, and Zampieri (2008) considered logarithmic quantization and developed convergence analysis for average consensus after assuming certain statistical properties of the quantization errors. In an average-consensus setting, Aysal, Coates, and Rabbat (2007, 2008) introduced probabilistic quantization for eliminating bias of the quantization errors, and showed that probabilistic quantization is equivalent to dithering. The authors have proven that their algorithm achieves almost sure convergence. However, their analysis relies on a key assumption that all the nodes use the same set of quantizers so that the quantized state space, as a lattice, contains points of consensus states. For heterogeneous quantizers, the above approach in general fails since the quantized state space may not contain any consensus state, and the iterates may persistently oscillate without converging. Yildiz and Scaglione (2008) analyzed data rate limited consensus models via coding, but assumed that quantization noises are temporally and spatially uncorrelated and that each node knows the network topology. Kashyap, Basar, and Srikant (2007) developed randomized algorithms to achieve nearly average consensus where each node takes values from a set of integers.

In Huang and Manton (2008, 2009, 2010), consensus problems were considered when agents obtain noisy measurements of the states of neighbors and a stochastic approximation approach was applied to obtain mean square and almost sure convergence in models with fixed network topologies or with independent communications failures (Huang & Manton, 2008). General stochastic gradient based algorithms were introduced in Tsitsiklis, Bertsekas, and Athans (1986) for consensus problems arising in distributed function optimization. Stankovic, Stankovic, and Stipanovic (2007) considered decentralized parameter estimation by combining stochastic approximation of individual nodes with a consensus rule.

In this paper, for developing a unified analytic framework, we first introduce noisy measurements through uncoded analog forwarding to their neighbors via slow fading channels. We assume perfect phase synchronization such that the receiver obtains a scaled (by the fading envelope (amplitude) only) version of the transmitted data in noise when the link functions properly; see Fig. 1. Under this analog channel modelling, we first develop stochastic approximation type algorithms for consensus seeking over noisy networks with Markovian signal losses. This modelling leads to a consensus algorithm with Markovian switches. Compared to the independent communication failure considered in Huang and Manton (2008), the temporal correlation properties of the network switches make the convergence analysis more difficult since the method of viewing the coefficient matrix for averaging as a constant matrix subject to independent perturbations is no longer applicable. Our analysis will depend on more involved Lyapunov energy estimates. In particular, when only a joint connectivity condition is assumed for the noisy network, some special care must be taken to show a persistent decay of the energy. Next, we consider a model with arbitrary switches, for which our method for convergence analysis is to identify a suitable common stochastic Lyapunov function. The interested reader is referred to Olfati-Saber and Murray (2004) on the use of a common Lyapunov function (defined via the so-called disagreement function) in a deterministic setting. Finally, we apply our algorithm to a model with heterogeneous quantizers and packet losses. Convergence is obtained by combining probabilistic quantization Aysal et al. (2007, 2008) with a decreasing step size.

The organization of the paper is as follows. Section 2 describes the lossy signal exchange model. The stochastic approximation algorithm is introduced in Section 3. Convergence analysis is developed in Sections 4 and 5 for models with Markovian and arbitrary switches, respectively. Section 6 applies stochastic approximation to models with quantized data and packet losses. Section 7 presents simulation results and Section 8 concludes the paper.

1.1. Notation

The index of an agent will often be used as a superscript, but not an exponent, of various random variables. Throughout the paper we use C, C0, C1, etc. to denote generic positive constants whose value may change from place to place. Below we provide a list of the basic notation used in the paper.

\(G \): the network topology as a directed graph.
\(A \): the nodes in \(G \).
\(E \): the edges in \(G \).
\(E_r \): the failure-prone edges in \(G \).
\(A_i \): the \(i \)th agent or node.
\(G_{ij} \): the neighbors of \(A_i \).
\(x_i \): the state at node \(i \).
\(y_i \): the vector of individual states.
\(p_{ij}^{(k)} \): the channel state on edge \((k, i)\).
\(I_i \): the overall channel state.
\(g_{ij}^{(k)} \): the analog channel gain on edge \((k, i)\).
\(w_i \): the vector of individual channel gains.
\(u_i \): the measurement noise occurring at node \(i \).
\(v_i \): the signal received at \(A_i \) from \(A_k \).
\(C_i \): the network topology at time \(t \).
\(b_i \): the values that \(C_i \) may take.
\(A_{ij}^{(k)} \): the neighbors of \(A_i \) within \(C_i^{(k)} \).
\(A_{ij}^{(k)} \): the neighbors of \(A_i \) within \(C_i^{(k)} \).
\(B^{(k)} \): the stochastic approximation coefficient matrix when \(C_i \) appears as \(C_i^{(k)} \).
\(\alpha \): the step size of stochastic approximation.
\(r_i \): the quantization level at node \(i \).
\(Q_i \): the output of the probabilistic quantizer at node \(i \).
2. Information exchange over unreliable networks

2.1. Preliminaries for network modelling

We begin by introducing some standard graph modelling of the network topology. A digraph $\mathcal{G} = (\mathcal{N}, \mathcal{E})$ consists of a set of nodes $\mathcal{N} = \{1, \ldots, n\}$ and a set of directed edges $\mathcal{E} \subseteq \mathcal{N} \times \mathcal{N}$. A directed edge will simply be called an edge. An edge from node i to node j is denoted as an ordered pair (i, j), where $i \neq j$. A directed path (from i_1 to i_k) consists of a sequence of nodes i_1, i_2, \ldots, i_k, $i_1 \neq i_k$, such that $(i_1, i_2), \ldots, (i_{k-1}, i_k) \in \mathcal{E}$ for $k = 1, \ldots, l$. The digraph \mathcal{G} is said to be strongly connected if there exists a directed path from each node to any other node. A directed tree is a digraph where each node, except the root, has exactly one parent node. The digraph \mathcal{G} is said to contain a spanning tree $G_i = (\mathcal{N}_i, \mathcal{E}_i)$ if G_i is a directed tree such that $\mathcal{N}_i = \mathcal{N}$ and $\mathcal{E}_i \subseteq \mathcal{E}$. A strongly connected digraph always contains a spanning tree. The two names, agent and node, will be used interchangeably. The agent A_k (resp., node k) is a neighbor of A_i (resp., node i) if $(k, i) \in \mathcal{E}$, where $k \neq i$. Denote the neighbor set $\mathcal{N}_k = \{k | (k, i) \in \mathcal{E} \} \subseteq \mathcal{N}$.

2.2. Lossy signal reception at individual links

We use $G = (\mathcal{N}, \mathcal{E})$ to model the maximal set of communication links when there is no communication failure (or signal loss). Let $\mathcal{E}_i \subseteq \mathcal{E}$ denote the set of links that are failure-prone. When $\mathcal{E}_i = \emptyset$ (the empty set), the associated model has a fixed network topology. To avoid triviality, it is assumed that $\mathcal{E}_i \neq \emptyset$. The underlying probability space is denoted by (Ω, \mathcal{F}, P), where Ω is the sample space, \mathcal{F} is the σ-algebra consisting of all events, and P is the probability measure. The link state associated with an edge $(k, i) \in \mathcal{E}_i$ is modelled by a Markov chain I_{ti}^{ki} with state space $\{0, 1\}$ and stationary transition probabilities, where $t \geq 0$. The values 0 and 1, respectively, denote the normal and loss states. The value of I_{ti}^{ki} indicates whether or not node i will successfully receive a measurement from node k at time t. Note that if $(k, i) \notin \mathcal{E}_i$, I_{ti}^{ki} is not introduced.

Compared with independent loss process modelling, the Markov chain based modelling may give a more realistic characterization of the temporal correlation property of the evolution of the link status. We note that our signal loss modelling may be extended to undirected graphs by using a Markov chain to describe the loss state of a bidirectional failure-prone link.

For agent A_i, denote its state at time t by $x_t^i \in \mathbb{R}$, where $t \in \mathbb{Z}^+ = \{0, 1, 2, \ldots\}$. We assume each A_i knows its own state x_t^i exactly. Denote the signal output model

$$ y_{ti}^{ki} = g_{ti}^{ki} x_t^i + w_{ti}^{ki}, \quad k \in \mathcal{N}_i \neq \emptyset, $$

where $g_{ti}^{ki} \in \mathbb{R}$ is a random link gain and $w_{ti}^{ki} \in \mathbb{R}$ is the additive noise. We use 1 to describe the attempted signal transmission from A_k to A_i. Concerning each node's information on the channel, neither A_i nor A_k is required to know the value of g_{ti}^{ki}. Instead, A_i only knows the mean of g_{ti}^{ki}. In other words, the node only has statistical information on the link gain.

If either $(k, i) \notin \mathcal{E}_i$ (i.e., it is a lossless link) or $(k, i) \in \mathcal{E}_i$ but the channel operates in a normal condition, i.e., $I_{ti}^{ki} = 1$, the received signal at A_i is

$$ y_{ti}^{ki} = g_{ti}^{ki} x_t^i. \quad (2) $$

See Fig. 1 for illustration. If $(k, i) \in \mathcal{E}_i$ and a signal loss occurs, i.e., $I_{ti}^{ki} = 0$, we make the convention that A_i receives

$$ y_{ti}^{ki} = 0. \quad (3) $$

Similar loss models have been studied in distributed filtering problems; see, e.g., Huang and Dey (2007), Sinopoli et al. (2004) and Smith and Sellars (2003).

The generic noisy and lossy signal reception model (1)–(3) may be used to describe analog signal transmission. But it is also applicable to certain digital channel based systems. The related detail will be presented in Section 6.

It should be noted that in Eq. (1), g_{ti}^{ki} and w_{ti}^{ki} are defined at all times for all $(k, i) \in \mathcal{E}$. In certain models, $I_{ti}^{ki} = 0$, where $(k, i) \notin \mathcal{E}_i$, may mean that g_{ti}^{ki} or w_{ti}^{ki}, or both are not physically realized, for instance due to a temporary disorder of either the transmitter or the receiver. In such scenarios, we still keep them as dummy random variables, and their use gives a more unified model specification.

For the Markov chains I_{ti}^{ki}, we may use a fixed ordering of all $(k, i) \notin \mathcal{E}_i$ to list I_{ti}^{ki} into a vector process I_t. By suitable relabeling, the state space of I_t may be denoted by $S_t = \{1, \ldots, K_0\}$, where $K_0 = 2^{N_i}$. If $I_t = k \in S_t$, the real-time network topology, consisting of functioning links at time t, may be determined accordingly. Let the network topologies corresponding to the states in S_t be denoted by $G^{(1)}, \ldots, G^{(K_0)}$, each being a subgraph of G. Without loss of generality, we assume $G^{(1)} = G$, which corresponds to $I_t = 1$ and means all links are functioning. The network at time t is given as a digraph $G = (\mathcal{N}, \mathcal{E}_t)$, where G_t takes one value from $G \in \{G^{(1)}, \ldots, G^{(K_0)}\}$.

For each $t \in \mathbb{Z}^+$, the set of noises $\{w_{ti}^{ki}, i \in \mathcal{N} \text{ and } k \in \mathcal{N}_i \neq \emptyset\}$ is listed into a vector w_t, in which the position of w_{ti}^{ki} depends only on (i, k) and does not change with t. Similarly, the random vector g_t is defined by listing g_{ti}^{ki} by a fixed ordering of all (i, k). Define the state vector

$$ x_t = [x_t^1, \ldots, x_t^n]^T, \quad t \geq 0. $$

3. The stochastic algorithm

We will describe the algorithm by individual nodes to indicate the local implementation. Let \mathcal{N}_i denote the neighbor set of node i within $G^{(k)}$. We form a matrix $B^{(k)} = (b_{ij}^{(k)})_{i \leq j \leq n}$ as follows.

Case 1. If $\mathcal{N}_i \neq \emptyset$, define

$$ b_{ij}^{(k)} = \begin{cases} b_{ij}^{(k)} > 0, & \text{if } j \in \mathcal{N}_i, \\ b_{ij}^{(k)} = 0, & \text{if } j \notin \mathcal{N}_i \cup \{i\}. \end{cases} $$

(4)

Case 2. If $\mathcal{N}_i = \emptyset$, define

$$ b_{ij}^{(k)} = 0, \quad \text{for all } j \in \mathcal{N}. \quad (5) $$

By (4)–(5), each row sum of $B^{(k)}$ is 0. For agent i, denote its neighbor set by \mathcal{N}_i when the instantaneous network topology is G_t. For $(i, j) \in \mathcal{E}$, we assume that the associated channel link gain g_{ti}^{ki} has a constant mean $\lambda_{ij}^{(k)} \neq 0$ for all $t \geq 0$. The state of agent i is updated by the rule

$$ x_{t+1} = [1 + a_t b_{ti}(t)] x_t^i + a_t \sum_{j \in \mathcal{N}_i} b_{ij}(t) (Q_t^i / \lambda_{ij}^{(k)}), $$

(6)
where the coefficients $b_j(t)$ are determined by G_t and $a_i > 0$ is the step size at time t. If $G_t = G^{(k)}$, the coefficients $b_j(t)$ are obtained from $B^{(k)}$, i.e., $b_j(t) = (b_j(t))_{1 \leq j \leq n} = B^{(k)}$. We adopt the convention: $\sum_{k \in I'} = 0$ regardless of the summand. If $I' = \emptyset$, (6) is interpreted as $x_{t+1} = x_t$.

Definition 1 (Weak Consensus). The agents are said to reach weak consensus if $E|x_t|^2 < \infty$ for all $t \geq 0$, and $\lim_{t \to \infty} E|x_t^2 - x^2|^2 = 0$ for all $i, j \in \mathcal{N}$.

Definition 2 (Mean Square Consensus). The agents are said to reach mean square consensus if $E|x_t|^2 < \infty$ for all $t \geq 0$, and there exists a random variable X^* such that $\lim_{t \to \infty} E|x_t^2 - X^*|^2 = 0$ for all $i \in I$.

Remark. If the Markov chains l_i^k are independent, l_i is also a Markov chain. If, in addition, $P(l_i^k = 1 | l_i^k = s) > 0$ for all (i, k) regardless of s being 0 or 1, the condition $\min_{1 \leq i \leq K_0} p_{1i} > 0$ in (A4) is satisfied.

(A5) For each $G^{(k)} \in \mathcal{G}$, $1 \leq k \leq K_0$, the associated matrix $B^{(k)}$ has zero row and column sums (ZRCS).

(A6) (i) $a_i > 0$ for $t \geq 0$, and (ii) $\sum_{i=0}^{\infty} a_i = \infty$, $\sum_{i=0}^{\infty} a_i^2 < \infty$.

3.2. Discussions on the ZRCS condition

In an average-consensus setting, the ZRCS condition for the coefficient matrices $B^{(1)}, \ldots, B^{(K_0)}$ is quite standard. More specifically, in a deterministic average-consensus model $x_{t+1} = A_i x_t$.

where A_i has all row sums equal to one, the state average $(1/n) \sum_{t=0}^{\infty} x_t$ is an invariant if and only if all column sums of A_i are equal to one. In fact, A_i may even be allowed to have negative entries (Xiao et al., 2007). The reader is referred to Olfati-Saber and Murray (2004) for the notion of balanced graphs which preserve the initial state average as an invariant during averaging. Under (A5), $1 + a_i b_i$ always has all row and column sums equal to one.

Although our current formulation will not lead to average-consensus due to the additive noise, it is possible to achieve average-consensus when certain conditions are satisfied in terms of the noise level and the step size sequence, and this will be of practical interest.

4. Consensus results with Markovian switches

4.1. The regime dependent recursion

In algorithm (6), the right hand side depends on s_i. To facilitate further analysis, we introduce a transformation so that it may be expressed in terms of l_i instead of s_i. Notice that the evolution of the network topology is completely characterized by l_i. We have the following relation

$$w_i^j = \sum_{j \in \mathcal{N}} b_{ij}(t) w_i^j(\lambda)^{-1}$$

where

$$\sum_{k=1}^{K_0} b_{ik}^{(k)} w_i^j(\lambda)^{-1}$$

(8)

(9)

Note that although in general fading channels are modelled as complex channels, due to the fading channel being a slow fading channel, the phase can be estimated and canceled, therefore the link amplitude gains g_i^k are positive and the link power gains are given by $|g_i^k|^2$.

(A4) The process l_i is an ergodic Markov chain with stationary transition probability matrix $(p_{ij})_{1 \leq j \leq K_0}$ and

$$P(l_{t+1} = j | l_t = i, l_0, \ldots, l_{t-1}, w_0, \ldots, w_t, g_0, \ldots, g_t) = p_{ij}.$$
where $B^{(k)}_t$ and $w^{(k)}_t$ are determined from G. Since x_k depends on $(x_0, w_0, l_0, b_0, \ldots, w_{t-1}, l_{t-1}, b_{t-1})$, it follows from (A3) that $E[\Delta B^{(k)}_t|x_1] = 0$. Thus the random channel gain contributes to the unbiased perturbation term $\Delta B^{(k)}_t|x_1$ in (11).

Owing to the ZRCS condition for $B^{(k)}$, a state space decomposition technique may be applied for convergence analysis when the network topology randomly switches. This decomposition approach has been developed in models with fixed topologies containing a spanning tree (Huang & Mantooth, 2008, 2010); but for the models considered there, due to fixed topologies, the decomposition method is feasible without the ZRCS condition.

4.2. Change of coordinates and convergence

Let 1_n be a column vector with all n entries equal to 1. By using Gram–Schmidt orthonormalization (Bellman, 1997), we may construct an orthogonal matrix of the form

$$
\Phi = \left[(1/\sqrt{n}) \, 1_n, \phi \right],
$$

where ϕ is an $n \times (n-1)$ matrix. Hence $\Phi^T \Phi = I$. The inverse of Φ may be represented in the form

$$
\Phi^{-1} = \Phi^T = \left[(1/\sqrt{n}) \, 1_n^T \phi^T \right].
$$

We introduce the transformation

$$
z_t = \Phi^{-1} x_t.
$$

Denote $z_t = [z_1^T, z_2^T]^T$, and $v_t = [v_1^T, v_2^T]^T = \Phi^{-1} w^{(k)}_t$, where z_1 and v_1 are the first component in z_t and v_t, respectively.

Lemma 4. Suppose $B^{(k)}$ is defined by (4)–(5) and satisfies (A5), and Φ is given by (12). We have the assertions.

(i) For each $B^{(k)}$, we have

$$
\Phi^{-1} B^{(k)} \Phi = \left[0 \, \tilde{B}^{(k)} \right],
$$

where $\tilde{B}^{(k)}$ is an $(n-1) \times (n-1)$ matrix.

(ii) The matrix $(\tilde{B}^{(k)})^2 + \tilde{B}^{(k)} \leq 0$.

(iii) There exists a fixed constant $\varepsilon_0 > 0$ such that $y^T [\tilde{B}^{(k)} + (\tilde{B}^{(k)})^2] y \leq -\varepsilon_0 |y|^2$ for all $y \in \mathbb{R}^{n-1}$ if the associated digraph $\mathcal{G}^{(k)}$ is strongly connected.

Proof. (i) By using the ZRCS property of $B^{(k)}$, we may verify the relation (15) directly and in fact, $B^{(k)} = \Phi^T B^{(k)} \Phi$, where Φ is given in (12).

(ii) Following the proofs of Theorems 7 and 8 in Olfati-Saber and Murray (2004), we define the adjacency matrix $A^{(k)} = (a_k)_{n \times n}$ for $G^{(k)}$ such that $a_{ij} = b_{ij}^{(k)}$ for $i \neq j$, and $a_{ii} = 0$ for all i. Then $-B^{(k)}$ may be identified as a Laplacian for $G^{(k)}$ (w.r.t. the adjacency matrix $A^{(k)}$). Subsequently, by Theorem 7 in Olfati-Saber and Murray (2004), $-B^{(k)} = (\tilde{B}^{(k)})^2$ may be interpreted as the Laplacian of a weighted undirected graph \tilde{G}. Then (ii) follows easily.

(iii) Again, following Olfati-Saber and Murray (2004), when $G^{(k)}$ is strongly connected, $-B^{(k)} = (\tilde{B}^{(k)})^2$ may be interpreted as the Laplacian of a weighted undirected and connected graph \tilde{G}, so that the nonnegative definite matrix $-B^{(k)} = (\tilde{B}^{(k)})^2$ has its null space equal to span$[1_n]$, which implies (iii).

An alternative method for proving Lemma 4(ii)–(iii) is to interpret $B^{(k)} + (B^{(k)})^2$ as the generator of a continuous time Markov chain, which is ergodic when $G^{(k)}$ is strongly connected.

By (15), we may write

$$
\Phi^{-1} B^{(k)} \Phi = \tilde{B}^{(k)}.
$$

We also denote $\tilde{B}_t = \tilde{B}^{(k)}_t$, and $\tilde{z}_t = \Phi \tilde{z}_t$.

By (13) and (16), Eq. (11) may be rewritten as

$$
\tilde{z}_{t+1} = \tilde{z}_t + a_t \phi^T \tilde{B}^{(k)} \phi \tilde{z}_t + a_t \dot{v}_t,
$$

where $t \geq 0$. Notice that v_t and \dot{v}_t both depend on l_t.

Lemma 5 (Tsitsiklis et al., 1986). Suppose the two sequences of nonnegative random variables $\{\xi_k, t \geq 0\}$ and $\{\xi'_k, t \geq 0\}$ are both adapted to the increasing sequence of σ-algebras $\mathcal{F}_t, t \geq 0$, and for $t \geq 0$,

$$
E[\xi_{t+1}|\mathcal{F}_t] \leq \xi_t + \xi'_t, \quad \sum_{t=0}^{\infty} E[\xi'_t] < \infty.
$$

Then ξ_t converges a.s. to a random variable ξ_{∞}. □

Theorem 6. Under (A1)–(A6), algorithm (11) ensures both mean square and strong consensus.

Proof. See Appendix. □

We give some discussion on the relation between the individual limit states $x_{\infty} = x_{\infty}^1 = \cdots = x_{\infty}^n$ and the initial state average. Denote $\text{Ave}(x_t) = (1/n) 1_n^T x_t$. By (11) it follows that

$$
\text{Ave}(x_{t+1}) = \text{Ave}(x_t) + a_t (1/n) 1_n^T \Delta B^{(k)}_t x_t + a_t (1/n) 1_n^T w^{(k)}_t.
$$

Hence for each k,

$$
x_{\infty} - \text{Ave}(x_0) = (1/n) \sum_{t=0}^{\infty} \left[a_t 1_n^T \Delta B^{(k)}_t x_t + a_t 1_n^T w^{(k)}_t \right].
$$

where the right hand side converges in mean square. One may reduce the deviation of x_{∞}^k from $\text{Ave}(x_0)$ by using a small step size sequence, but this may also decrease the convergence rate. Thus, it is practically important to have a good trade-off between controlling this deviation and convergence rate.

4.3. Relaxation of the connectivity condition

A further relaxation of the condition for the Markov chain l_t and also network connectivity is possible. In general, when l_t is only ergodic and there are no instances of strongly connected real-time network topologies, unlike what is shown in the proof of Theorem 6 there is no guarantee that after one step the energy function $E[|\tilde{z}_t|^2]$, up to some higher order perturbation, will decay by the rate $(1 - \varepsilon_0 a_t)$ for some fixed $\varepsilon_0 > 0$. In this situation, a useful strategy is to compare the energy function between $l_t(t + 1)$ and l_t, the appropriately chosen $l_t \geq 1$. This requires the so-called joint connectivity condition and a better behaved sequence of step sizes than merely assuming (A6). In this subsection, we will reuse some notation previously introduced and they in general take new values. This should cause no risk of confusion. Denote the collection of digraphs

$$
\mathcal{G} = \{ G^{(1)}, \ldots, G^{(K_0)} \},
$$

where $K_0 \geq 1$ indicates the number of network topologies which may occur. Denote $G^{(0)} = (V, e^{(0)})$. Now we take

$$
G = (V, e) \triangleq (V, \bigcup_{k=1}^{K_0} e^{(k)})
$$

as the union graph of $G^{(1)}, \ldots, G^{(K_0)}$.

Suppose now the Markov chain l_t has the state space $\{1, 2, \ldots, K_0\}$. If $l_t = i$, the real-time network topology is determined as $G_t = G^{(i)}$. Let the matrix $B^{(i)}$ still be constructed by the rule (4)–(5) when the associated graph is $G^{(i)}$.

1575
As our convention, the link gain g_{ij}^k and noise w_{ij}^k are always defined as long as $(k, j) \in \bigcup_{i=1}^{N} s(i)$. When $(k, j) \notin G_{ij}^k$ and w_i^k are introduced as dummy random variables. The vectors \mathbf{w}_i and \mathbf{g}_i are formed accordingly as in Section 2.

We rewrite the associated algorithm

$$x_{i+1} = x_i + a_i b_i x_i + a_i \Delta B_i^k x_i + a_i w_i^k, \quad t \geq 0,$$

where the determination of $\Delta B_i^k(x_i)$ and w_i^k is in parallel to that in (11). Now we make the assumption:

$$(A4') \{ l_i, \quad t \geq 0 \} \text{ is an ergodic Markov chain with stationary transition probability matrix } (p_{ij}^k)_{1 \leq i, j \leq k} \text{ and }$$

$$P(l_{i+1} = j | l_i = i, l_0, \ldots, l_{i-1}, \mathbf{w}_0, \ldots, \mathbf{w}_i, \mathbf{g}_0, \ldots, \mathbf{g}_i) = p_{ij}^k.$$ □

Theorem 7. Assume

(i) $B_i^{(k)}$ holds with G defined by (21) (joint connectivity);

(ii) $(A2)$–$(A3)$, $(A4')$ and $(A5)$ hold;

(iii) in addition to $(A6)$, there exist $0 < a_1 < a_2$ such that

$$\alpha a_1 \leq a_{i+1} \leq \alpha a_2, \quad t \geq 0.$$ (23)

Then algorithm (22) ensures mean square and strong consensus.

Proof. See Appendix. □

5. Models with arbitrary switches

In this section, we consider arbitrary random switches. In contrast to Sections 2 and 3, here we do not start from the statistical modelling of individual communication links although the digraph matrix G_i used below may be interpreted via an associated digraph $G_i = (\mathcal{N}, \mathcal{E}_i)$.

Let the algorithm be given as

$$x_{i+1} = x_i + a_i B_i x_i + a_i w_i, \quad t \geq 0,$$

where x_i is in \mathbb{R}^n, w_i is the additive noise and B_i takes values from $\{B^{(1)}, \ldots, B^{(k)}\}$ for some $k_0 \geq 1$. The matrix $B_i = (b_i(t))$ has zero row sums and nonnegative off-diagonal entries. It is not required to satisfy the ZCS condition. Define the class of symmetric matrices: $\mathcal{D} = \{ D | D \geq 0, \operatorname{Null}(D) = 1 \}$. Then \mathcal{D} is a cone, i.e., for any $D_1 \in \mathcal{D}$ and $D_2 \in \mathcal{D}$, we have $\alpha D_1 \in \mathcal{D}$ and $\alpha D_1 + \beta D_2 \in \mathcal{D}$ for all $\alpha > 0$ and $\beta > 0$.

(A7) There exists $Q \in \mathcal{D}$ such that the cone conditions

$-(B^{(k)})^T Q + Q B^{(k)} \in \mathcal{D}, \quad i = 1, \ldots, k_0,$

are simultaneously satisfied by $B^{(i)}$, $i = 1, \ldots, k_0$. □

For a fixed $D^{(i)}$, the following lemma gives a characterization of condition (25) in terms of an associated network topology when the rule (4)-(5) is used for the construction of $B_{ij}^{(i)}$.

Lemma 8. Suppose (i) $B = (b_{ij})_{1 \leq i,j \leq n}$ has zero row sums and nonnegative off-diagonal entries, and (ii) B is obtained from a digraph G such that $b_{ij} > 0$, $j \neq i$, if and only if (i, j) is an edge in G. Then given any $D \in \mathcal{D}$, the equation

$$B^T Q + Q B = -D$$

has a unique solution $Q \in \mathcal{D}$ if and only if G contains a spanning tree. The solution Q, if existing, has the representation $Q = \int_0^\infty \mathbf{e}^{D(t)} \mathbf{D} \mathbf{e}^T dt$.

Proof. See Appendix. □

5.1. An example

Let $G^{(k)}$, $k = 1, 2, 3$, be digraphs with the same set of nodes $\mathcal{N} = \{1, 2, 3\}$. Suppose $G^{(1)}$ has the edges $\mathcal{E} = \{(1, 2), (1, 3), (2, 1), (3, 2)\}$. We take the weight matrix $B^{(1)}$ and $D \in \mathcal{D}$ as follows

$$B^{(1)} = \begin{bmatrix} -1 & 0 & 0 \\ 0.5 & -1 & 0.5 \\ 1 & 0 & -1 \end{bmatrix}, \quad D = \begin{bmatrix} 2 & -1 & -1 \\ -1 & 2 & -1 \\ -1 & -1 & 2 \end{bmatrix}.$$}

For equation $(B^{(1)})^T Q + Q B^{(1)} = -D$, the solution is

$$Q = \int_0^\infty \mathbf{e}^{(B^{(1)})^T T} \mathbf{D} \mathbf{e}^{B^{(1)} T} dt = \begin{bmatrix} 17 & -8 & -9 \\ -8 & 22 & -14 \\ -9 & -14 & 23 \end{bmatrix}.$$ (27)

The eigenvalues of $B^{(1)}$ are $-0.15 \pm 0.5i$, and the eigenvalues of Q are $0, 0.847741$ and 1.218925.

Let $G^{(2)}$ have the edges $\mathcal{E} = \{(1, 2), (1, 3), (2, 1), (3, 2)\}$, and $G^{(3)}$ have the edges $\mathcal{E} = \{(1, 2), (2, 1), (3, 2)\}$. Let the corresponding weight matrices be given by

$$B^{(2)} = \begin{bmatrix} -1 & 1 & 0 \\ 1 & -1 & 0 \\ 1 & 0 & -1 \end{bmatrix}, \quad B^{(3)} = \begin{bmatrix} -1 & 1 & 0 \\ 1 & -1 & 0 \\ 1 & 0 & 0 \end{bmatrix}.$$ (28)

For Q given by (27), it may be verified that

$$-(B^{(k)})^T Q + Q B^{(k)} \in \mathcal{D} \quad \text{for } k = 2, 3.$$ Thus, for $B^{(k)}$, $k = 1, 2, 3$, (A7) is satisfied.

5.2. Convergence result

Denote $\mathcal{F}_t = (x_0, w_0, b_k, k \leq t)$.

Theorem 9. Assume (i) $(A6)$–$(A7)$ hold, and (ii) $\operatorname{E}[x_0^2] < \infty, \{w_i, t \geq 0\}$ is a sequence of martingale differences w.r.t. the σ-algebras \mathcal{F}_t and $\sup_{t \geq 0} \operatorname{E}[w_i^2] < \infty$. Then algorithm (24) ensures mean square consensus.

Proof. Letting Q be given by (A7), we have

$$x_{i+1}^T Q x_{i+1} = (x_i + a_i B_i x_i + a_i w_i) Q (x_i + a_i B_i x_i + a_i w_i) = x_i^T Q x_i + a_i^2 (B_i^T Q + Q B_i) x_i + a_i (w_i^T Q x_i + x_i^T Q w_i) + a_i^2 (Q B_i x_i + x_i^T Q w_i).$$ (29)

Given D_1 and D_2, both in \mathcal{D}, since they have the same null space span$[1_t]$, by elementary linear algebra it may be shown that there exist two constants $0 < c_1 \leq c_2$ such that

$$c_1 D_1 \leq D_2 \leq c_2 D_1.$$ (30)

See Huang and Mantovani (2009) for similar estimates. Since (A7) holds and B_i takes values from a finite set, we may find c_3 such that

$$B_i^T Q + Q B_i \leq -c_3 Q$$

for all t. Furthermore, we may find $c_4 > 0$ such that

$$B_i^T Q B_i \leq c_4 Q.$$ (31)

Combining (28) with (30) and (31), we may find a sufficiently large T_1 such that for all $t \geq T_1$ we have

$$\operatorname{E}[x_{i+1}^T Q x_{i+1} | \mathcal{F}_t] \leq (1 - c_3) x_i^T Q x_i + c_4^2 \operatorname{E}[|w_i|^2] | \mathcal{F}_t|$$

for some $\tau > 0$ and $C > 0$, which further implies

$$\operatorname{E}[x_{i+1}^T Q x_{i+1} | \mathcal{F}_t] \leq (1 - c_3) \operatorname{E}[x_i^T Q x_i] + c_4^2 \operatorname{E}[|w_i|^2].$$

Then by (A6), we obtain $\lim_{t \to \infty} \operatorname{E}[x_{i+1}^T Q x_{i+1}] = 0$, and using the method in Huang and Mantovani (2009, Section 5), we further obtain weak consensus.

Next, we show mean square convergence of x_i. Our method is to show that x_i is a fundamental sequence under the norm $\|x_i\| = (\operatorname{E}[|x_i|^2])^{1/2}$. Let $\epsilon > 0$ be any given small constant. Define
 networks for data fusion with quantized information (N. Luo, Goldsmith, 2005). We restrict our attention to undirected graphs. At time t, losses \mathcal{L}_t that for all t, \mathcal{L}_t satisfying $t \geq t_0 \geq T_0$, we have $E[|x_{t_0}^1 - x_{t_0}^0|^2] \leq \varepsilon$, where $2 \leq k \leq n$. Without loss of generality we may assume that T_0 is sufficiently large such that each $I + aB_t$ is a nonnegative matrix and hence a stochastic matrix for all $j \geq T_0$. Then for all $t \geq t_0 \geq T_0$, \mathcal{L}_{t_0-1} is a stochastic matrix for any given sample $\omega \in \mathcal{Q}$. We have

$$\mathcal{L}_{t_0-1} x_{t_0} - x_{t_0} = [\mathcal{L}_{t_0-1} - I][x_{t_0}^1 n + x_{t_0} - x_{t_0}^1 n],$$

where $x_{t_0}^1$ is the first component in x_{t_0}. By (33), we have

$$E[|x_{t_0} - x_{t_0}^0|^2] \leq n^3 \varepsilon,$$

for $t \geq t_0 \geq T_0$. Then by (32) it is straightforward to find a fixed constant C_0 independent of (t, t_0) such that

$$E[|x_{t+1} - x_{t}^0|^2] \leq n^3 \varepsilon + C_0 \sum_{k=0}^{\infty} \alpha_k^2.$$

Since $\sum_{k=0}^{\infty} \alpha_k^2 < \infty$, there exists a sufficiently large T_1 such that for all $t_0 \geq T_1$, we have $C_0 \sum_{k=0}^{\infty} \alpha_k^2 \leq \varepsilon$. Hence, for all $t \geq t_0 \geq T_0 \cap T_1$, we have $E[|x_{t+1} - x_{t}^0|^2] \leq (n^3 + 1)\varepsilon$. Since $\lim_{t \to \infty} E[|x_{t} - x_{0}^0|^2] = 0$, which combined with weak consensus implies mean square consensus. \qed

6.1. A heuristic description of probabilistic quantizers

To better convey the idea of generating unbiased quantization errors, we give a heuristic description of probabilistic quantization first. If node i observes $x_i^1 \in \{r_{ik}, r_{ik+1}\}$, the “randomized” output $Q_i(t)$ of the quantizer is a random variable taking r_{ik} and r_{ik+1}, respectively, with probabilities

$$p_{r_{ik}} = (r_{ik+1} - x_i^1)/(r_{ik+1} - r_{ik}),$$

$$p_{r_{ik+1}} = (x_i^1 - r_{ik})/(r_{ik+1} - r_{ik}).$$

At time t, if $(i, k) \in \mathcal{E} \setminus \mathcal{E}_t$, or $(i, k) \in \mathcal{E}_t$ but $l_{ij}^t = 1$, node i obtains the data

$$y_i^k = Q_i(t) = x_i^1 + [Q_i(t) - x_i^1].$$

We write

$$y_i^k = x_i^1 + w_i^k, \quad k \in \mathcal{N}_i,$$

where $w_i^k \delta Q_i(t) - x_i^1$ is the quantization error. If $l_{ij}^t = 0$ for $(i, k) \in \mathcal{E}_t$, then $y_i^k \equiv 0$. Now (36) may be viewed as a special case of (1)–(3) if we take $\alpha_k^2 \equiv 1$, $w_i^0 \equiv w_i^0$. Corresponding to (6), we apply the algorithm:

$$x_{t+1}^1 = [1 + a b_i(t)] x_i^1 + \sum_{k \in \mathcal{N}_i} b_k(t) y_i^k, \quad t \geq 0.$$ (37)

The weight matrix $B_t = (b_{ij}(t))$ is now constructed using the Metropolis weights as follows

$$b_{ij}(t) = \begin{cases} \frac{1}{\max(d_i(t), d_j(t)) + 1} & \text{if } (i,j) \in \mathcal{E}_t, \\ \sum_{k \in \mathcal{N}_i} b_{ik}(t) & \text{if } j = i, \\ 0 & \text{otherwise,} \end{cases}$$

(38)

where $d_i(t)$ is the number of neighbors of node i. So B_t takes values from a finite set and satisfies the ZRCS condition.

6.2. Specification of the stochastic recursion

Below we focus on the central issue of how to characterize $Q_i(t)$, so that the quantization error has desired properties for ensuring convergence of algorithm (37). To have a rigorous specification of the probabilistic quantizer, we need to ensure that $(x_i, l, Q_i(t))$ corresponds to a well defined random process, where $Q_i(t) = \{Q_i(t), \ldots, Q_i(t)\}$. From the point of view of implementation, it will be convenient to introduce the following new random variables Z_i^t. Once $x_i^1 \in \{r_{ik}, r_{ik+1}\}$ is observed at node i, a random variable Z_i^t is generated, uniformly distributed on $\{r_{ik}, r_{ik+1}\}$. Let $F_{r_{ik}, r_{ik+1}}(y), y \in \mathbb{R}$, be the distribution function of the uniform distribution on $\{r_{ik}, r_{ik+1}\}$. Denote $Z_i^t = [Z_i^{t_1}, \ldots, Z_i^{t_n}]^T$. Let H_i denote an event in the σ-algebra $\sigma(x_i, l_i, Z_i^t, k \leq t)$. We specify the conditional probability distribution by the following rule

$$p \left(Z_i^t \leq z_i^t \mid l_{ij}^t = s_{ji} \right), \quad \text{all } j \in \mathcal{N}_i, \quad \text{all } j \in \mathcal{N}_i \setminus \mathcal{N}_i, \quad \text{all } k \in \mathcal{N}_i, \quad \text{all } j \in \mathcal{N}_i \setminus \mathcal{N}_i,$$

$$l_{ij}^t = s_{ji}, \quad \text{all } i \in \mathcal{N}_i, \quad \text{all } j \in \mathcal{N}_i \setminus \mathcal{N}_i \right)$$

$$= \left(\prod_{i \in \mathcal{E}_t} p_{s_{ji}}^{l_{ij}^t} \right) \prod_{i \in \mathcal{N}} F_{r_{ik}, r_{ik+1}}(z_i^t),$$

when $P(H_i \cap \{x_i^1 \in \{r_{ik}, r_{ik+1}\}, l_{ij}^t = s_{ji}, \text{ all } i \in \mathcal{N}, j \in \mathcal{N}_i\}) > 0$. In the above, s_{ji} and s_{ji}' take values from $\{0, 1\}$. Then it is
straightforward to determine the joint distribution of \(x_t, l_{t+1}, Z_k \) for \(k \leq t \). Next, we set \(Q^i \) as follows. If \(x_i^t \in [r_{i,k}, r_{i,k+1}) \) and \(Z_i^t \leq x_i^t \), we define \(Q_i^t = r_{i,k+1} \), and otherwise, \(Q_i^t = r_{i,k} \). After generating \(Q_i^t \) in this manner, we use \((37)\) to generate \(x_{t+1} \) as a function of \(x_i, l_i, Q_i, i \in \mathcal{A} \). So the joint distribution of \(x_t, l_t, Z_{t-1}, k \leq t + 1 \), is determined. Thus, by starting with \(x_0, l_0 \), we may construct a well defined process \((x_t, l_t, Z_t, Q_t) \) in a suitable probability space. Subsequently, we may show that \(\{w_i^t, t \geq 0\} \) forms a sequence of martingale differences, which is desired for eliminating the bias of the quantization error.

Define the quantization resolution parameter for node \(i \) by

\[
\Delta_i = \sup_{-\infty \leq k \leq +\infty} |r_{i,k+1} - r_{i,k}|.
\]

We make the following assumptions.

\((A8)\) For each \(i \in \mathcal{A}, \lim_{k \to -\infty} r_{i,k} = -\infty \) and \(\lim_{k \to +\infty} r_{i,k} = +\infty \). Moreover, \(\max_{i \in \mathcal{A}} \Delta_i < +\infty \). \(\square\)

\((A9)\) The Markov chains \(I_i^t, (k, i) \in \mathcal{E}_f \), are independent and \(\min_{i \in \{0, 1\}} P(I_i^{t+1} = 1 | I_i^t = s) > 0 \) for all \((k, i) \). \(\square\)

We state the following corollary on convergence.

Corollary 10. Suppose \(G \) is a connected undirected graph, \(E|x_0|^2 < \infty \), and \((A6), (A8)-(A9)\) hold. Then algorithm \((37)\) achieves both mean square and strong consensus.

Proof. Denote \(w_i = [w_i^1, \ldots, w_i^T] \) for the quantization errors. Under \((A8), \{w_i, t \geq 0\} \) forms a sequence of martingale differences w.r.t. the \(\sigma \)-algebras \(\mathcal{F}_t = \sigma(x_0, w_0, \ldots, w_t, l_0, \ldots, l_{t-1}) \) and has bounded second moments. Hence the corollary follows from Theorem 6. \(\square\)

7. Simulations

7.1. Simulation with analog channels

Let the network topology with the maximal set of communication links be denoted by \(G \cong G^{(1)} \) as shown in Fig. 2(a). The edge \((1, 2)\) in \(G^{(1)} \) is failure-prone, and the Markov chain \(I_{12}^t \) has the transition probability matrix

\[
P = (p_{ij})_{1 \leq i,j \leq 2} = \begin{bmatrix} 0.9 & 0.1 \\ 0.1 & 0.9 \end{bmatrix}.
\]

where \(p_{11} = P(I_{12}^{t+1} = 0 | I_{12}^t = 0) \) and \(p_{22} = P(I_{12}^{t+1} = 1 | I_{12}^t = 1) \), etc. The choice of these parameters in \(P \) suggests relatively slow switches between the failure and recovery of the link. When \(I_{12}^t = 0 \), let the resulting graph be denoted by \(G^{(2)} \); see Fig. 2(b). In the output equation

\[
y^{(k)} = g^{(k)}x^t + w^{(k)},
\]

all link gains \(g^{(k)} \) are i.i.d. and uniformly distributed on the interval \([0.07, 0.13]\). All i.i.d. Gaussian noises \(w^{(k)} \) have zero mean and variance \(\sigma^2 = 10^{-4} \).

For \(G^{(1)} \) and \(G^{(2)} \), the associated coefficient matrices for averaging are, respectively, given by

\[
B^{(1)} = \begin{bmatrix} -1 & 1 & 0 \\ 0.5 & -1 & 0.5 \\ 0.5 & 0 & -0.5 \end{bmatrix}, \quad B^{(2)} = \begin{bmatrix} -1 & 1 & 0 \\ 0 & -1 & 1 \\ 1 & 0 & -1 \end{bmatrix}.
\]

which satisfy the ZRCS condition. By applying algorithm \((6) \), the convergence behavior of \(x_t \) is shown in Fig. 3, where the three trajectories converge to approximately 3.51. The associated channel gain process \(g_{12}^t \) is displayed in Fig. 4 for the first 100 steps.
7.2. Simulation with arbitrary switches

We take $B^{(1)}$, $B^{(2)}$ and $B^{(3)}$ given in Section 5.1. Algorithm (24) is applied where w_i is an i.i.d. Gaussian noise process with covariance matrix $0.04I_{3 \times 3}$, where $I_{3 \times 3}$ is the identity matrix. The initial state vector $x_0 = [3, 1, 4]^T$. The step size $a_t = 1/(t+2)^{0.85}$ for $t \geq 0$. In the simulation, for a simple generation of the arbitrary switches of B_t, they are mimicked by a sample path of a Markov chain I_i taking values from $\{1, 2, 3\}$ so that $B_t = B^{(i)}$. The trajectory of I_i is displayed in Fig. 5. The convergence of x_t is shown in Fig. 6.

7.3. Simulation with quantized data and packet losses

The network topology is modelled as the undirected graph G shown in Fig. 7. Each link in G is subject to packet losses. The loss processes I_t^k are modelled by 3 independent Markov processes, with initial states $I_{0}^{12} = 1$, $I_{0}^{23} = 1$ and $I_{0}^{34} = 0$, respectively. Each of the 3 Markov chains has the transition probability matrix

$$P = \begin{bmatrix} 0.2 & 0.8 \\ 0.1 & 0.9 \end{bmatrix}. \quad (39)$$

So $P(I_{t+1}^{12} = 0|I_t^{12} = 0) = 0.2$, etc. We take $x_0 = [1, 3, 2, 4]^T$.

7.4. A large random network

Let $n = 100$ nodes be independently and uniformly distributed in a unit square; see Fig. 12. Each node has a sensing radii of 0.25, which further determines the underlying network topology as an undirected graph G. Each node selects L_1 and L_2 in (40) with equal probability, where $\Delta = 0.1$, and then retains the selected quantizer.

Suppose each link in G is described by a Markov chain with transition probability matrix P given in (39), and these Markov chains are stationary and independent.

In the simulation, the initial states $x(0)$ are i.i.d. Gaussian $N(\mu, \sigma^2)$ with $\mu = 6$ and $\sigma^2 = 4$. In the initialization, the...
minimum and maximum values of $x'(0)$ are respectively, 1.244132 and 11.573608. The initial state average is $\text{Ave}(x(0)) = (1/100) \sum_{i=1}^{100} x'(0) = 6.323485$. We run algorithm (37) for 1200 iterares with $\tilde{a}_t = 2(t + 31)^{-0.05}$. At time t, denote the empirical mean square error (with respect to $\text{Ave}(x(0))$) by

$$\text{MSE}(t) = \frac{1}{N} \sum_{i=1}^{N} |x'(t) - \text{Ave}(x(0))|^2,$$

which measures the deviation of $x'(t)$'s from the initial state average. We have $\text{MSE}(0) = 4.898526$. Denote $x_{\min}(t) = \min x'(t)$ and $x_{\max}(t) = \max x'(t)$, which, respectively, give the lower and upper envelopes of all agents’ trajectories. Fig. 13 shows the trajectories of x_{\min}, x_{\max}, x^1, x^2, and x^3. These four representative nodes are marked by '*' and displayed in Fig. 12. At the terminal time $T = 1200$, $x_{\min}(1200) = 6.283289$, $x_{\max}(1200) = 6.401205$, $\text{MSE}(1200) = 9.8 \times 10^{-4}$.

A large number of repeats of the simulation show similar convergence behavior. The MSE at $T = 1200$ has noticeable variability, but it is generally at the order of 10^{-3} or even smaller. Also, it is observed that $\text{MSE}(T)$ is relatively insensitive to the change of Δ from 0.1 to 0.025, 0.05 or 0.2.

8. Conclusions

This paper considers stochastic consensus problems where agents exchange state information via lossy analog or digital communication channels. Stochastic approximation type algorithms are applied to obtain mean square and almost sure convergence. We also consider consensus models with arbitrary switches, and the convergence analysis is based on a common stochastic Lyapunov function. Finally, we apply the algorithm to models with quantized data and packet losses by combining probabilistic quantization with a decreasing step size. For future work it will be of interest to consider more general connectivity conditions in switching networks.

Acknowledgements

We thank the referees for their comments and for bringing to our attention several latest references appearing after our first submission, and thank an anonymous referee for suggesting the use of the joint connectivity condition.

Appendix

Proof of Theorem 6. Let z^1_t and \tilde{z}_t be given by (17)--(18). Below we prove that there exists a mean square integrable random variable z^1_{∞} such that

$$\lim_{t \to \infty} E|z^1_t - z^1_{\infty}|^2 = 0, \quad \lim_{t \to \infty} E|\tilde{z}_t|^2 = 0.$$

Taking squares of the Euclidean norm on both sides of (18) gives

$$|\tilde{z}_{t+1}|^2 = |\tilde{z}_t + a_t \tilde{B}_t\tilde{z}_t|^2 + \sigma_t^2[\langle \phi^T \Delta B^{(h)} \phi \rangle |\tilde{z}_t|^2 + \sigma_t^2 |\tilde{v}_t|^2 + 2a_t (\tilde{z}_t + a_t \tilde{B}_t\tilde{z}_t) \phi^T \Delta B^{(h)} \phi \tilde{z}_t + 2a_t (\tilde{z}_t + a_t \tilde{B}_t\tilde{z}_t)^T \tilde{v}_t (\triangleq 2a_t Y_1) + 2\sigma_t^2 \phi^T \Delta B^{(h)} \phi |\tilde{z}_t|^2 |\tilde{v}_t| \triangleq 2\sigma_t^2 Y_2. \quad (A.1)$$

Denote the σ-algebra

$$\mathcal{F}_t = \sigma (x_0, w_0, \ldots, w_{t-1}, y_0, \ldots, y_{t-1}, l_0, \ldots, l_{t-1}).$$

In view of (17)--(18), it is evident that z^1_t and \tilde{z}_t are adapted to \mathcal{F}_t. Since (A3) ensures that $G^{(h)} / \lambda_{\mu} - 1$ contained in $\Delta B^{(h)}$ has zero mean and is independent of $(w_t, l_t, z_t, 0 \leq k \leq t)$, we may apply (10) to show that

$$E[|Y_1| \mathcal{F}_t] = (\tilde{z}_t + a_t \tilde{B}_t\tilde{z}_t) \phi E[|\Delta B^{(h)}| \mathcal{F}_t] \phi^T \tilde{z}_t = 0.$$

Since $\mathcal{F}_t \subset \mathcal{F}_t$, it follows that

$$E[|Y_1| \mathcal{F}_t] = E[E[|Y_1| \mathcal{F}_t] | \mathcal{F}_t]^2 = 0. \quad (A.2)$$

Similarly, we apply (A2) to show that

$$E[Y_2] | \mathcal{F}_t] = E[Y_2] | \mathcal{F}_t] = 0. \quad (A.3)$$

By (A.1)--(A.3), it is straightforward to show that

$$E[|\tilde{z}_{t+1}|^2 | \mathcal{F}_t] \leq |\tilde{z}_t|^2 + a_t \sigma_t^2 E[|\tilde{B}_t + \tilde{B}_t| | \mathcal{F}_t] |\tilde{z}_t|^2 + C_t \sigma_t^2 E[|w_t|^2 | \mathcal{F}_t] + |\tilde{z}_t|^2 + |\tilde{z}_t|^2). \quad (A.4)$$

where C_t is a constant independent of t and we have used the fact that $|\tilde{v}_t|^2 \leq C |w_t|^2$ for some constant C_t.

Since under (A4), l_t will take a value $1 \in \{1, \ldots, K_0\}$ (so that $G^{(h)}$ is strongly connected) with a positive probability irrespective of l_{t-1}, it follows from Lemma 4(ii)--(iii) that

$$E[|\tilde{B}_t + \tilde{B}_t| | \mathcal{F}_t] \leq -c_0 \delta.$$

for some constant $c_0 > 0$.

Denote $s_t = E[|z^1_t|^2]$ and $V_t = E[|\tilde{z}_t|^2]$. Then (A.4) gives

$$V_{t+1} \leq (1 - c_0 a_t) V_t + C_t \sigma_t^2 (1 + \Delta + V_t), \quad (A.6)$$

for all $t \geq 0$. And furthermore, (17) gives

$$S_{t+1} \leq S_t + C_\mu a_t^2 (1 + \Delta + V_t), \quad (A.7)$$

for some C_μ. Then by (A.6), (A.7) and Lemma 12 in Huang and Mantovani (2010), we obtain

$$\lim_{t \to \infty} s_t = s_{\infty}, \quad \lim_{t \to \infty} V_t = 0. \quad (A.8)$$

for some finite value s_{∞}. Hence, \tilde{z}_t converges to 0 in mean square. And mean square convergence of z^1_t to a limit z^1_{∞} follows readily from (A.8) and (17).
We proceed to prove the almost sure convergence of \(z_i^n \) and \(\tilde{z}_i \). Denote \(\xi_t = |z_i|^2 \). By (A.4)–(A.5), it follows that
\[
E[\xi_{t+1}| \mathcal{F}_t] \leq (1 - c_0 a_t) \xi_t + C a_t^2 (E[|w_i|^2] + |z_i|^2 + |\tilde{z}_i|^2)
\]
for some \(C > 0 \) and all \(t \geq 0 \). By Lemma 5 and
\[
\sum_{t=0}^{\infty} a_t^2 (E[|w_i|^2] + s_t + V_t) < \infty,
\]
it follows that \(\xi_t = |z_i|^2 \) converges a.s. But on the other hand, it has been shown that \(\tilde{z}_i \) converges to 0 in mean square. Hence, both \(\xi_t \) and \(\tilde{z}_i \) converge to 0 a.s.

Next, by (A2) and (9), \(\{v_i^2, t \geq 0\} \) is a martingale difference sequence w.r.t. the \(\sigma \)-algebras \(\mathcal{F}_t \) defined by (7). Also, \(\{1_n \Delta B_t^k \mathcal{F}_{t-1}, t \geq 0\} \) is a martingale difference sequence w.r.t. the \(\sigma \)-algebras \(\mathcal{F}_t \). Since \(\sup_{t \geq 0} (E[v_i^2]) + E[|1_n \Delta B_t^k \mathcal{F}_{t-1}|^2] < \infty \) due to (A3) and (A8), the a.s. convergence of \(z_i^n \) follows from (17) and the martingale convergence theorem (Hall & Heyde, 1980; Stout, 1974).

Finally, by the relation \(x_t = \Phi_z t = (1/\sqrt{\lambda}) \sum_{i=1}^\infty (\phi_i^T \Delta B_t^i \mathcal{F}_{t-1}) z_{i-1} \) and \((z_i^n, \tilde{z}_i) \to (z_{i,0}, 0) \), as \(t \to \infty \), both in mean square and a.s., mean square and strong consensus follows. \(\square \)

Before proving Theorem 7, we give a technical lemma.

Lemma 11. Let \(l_0 \) be fixed and \(t \geq l_0 \), and assume (23). If each value in \(G \) defined by (20) appears in the sequence \(B_{l_0}, \ldots, B_t \) as least once, then there exists \(c > 0 \) such that
\[
\sum_{k=l_0}^t a_k (\tilde{B}_k + \tilde{B}_k^T) \leq -c a I,
\]
for all \(t \geq l_0 \), where \(\tilde{B}_k \) is determined by Lemma 4, i.e., \(\Phi^{-1} B_k \Phi = \text{Diag}(0, \tilde{B}_k) \).

Proof. Denote
\[
H = \sum_{k=l_0}^t (a_k/a_t) (\tilde{B}_k + \tilde{B}_k^T) \triangleq \sum_{k=l_0}^t \gamma_k (\tilde{B}_k + \tilde{B}_k^T).
\]
Then \(H \) is the Laplacian of a strongly connected digraph. For given coefficients \((\gamma_{t-1}, \ldots, \gamma_t) \), by Lemma 4, we have
\[
\sum_{k=l_0}^t \gamma_k (\tilde{B}_k + \tilde{B}_k^T) \leq -c'I
\]
for some \(c' > 0 \). Since \(\gamma_\infty \triangleq (\gamma_{t-1}, \ldots, \gamma_t) \) is from a compact set by (23), there exists \(c > 0 \) independent of \(\gamma_\infty \) such that
\[
\sum_{k=l_0}^t \gamma_k (\tilde{B}_k + \tilde{B}_k^T) \leq -cI.
\]
Finally, \(c \) may be taken to be independent of the particular values of \(B_{l_0}, \ldots, B_t \) since there are only a finite number of such sequences (not distinguished by the starting time \(t - l_0 \)) such that each value in \(G \) appears at least once. \(\square \)

Proof of Theorem 7. Let \(z_i^n \) and \(\tilde{z}_i \) be given by (17)–(18). Denote \(s_t = E[|z_i|^2] \) and \(V_t = E[|\tilde{z}_i|^2] \). Following the method in proving Theorem 6, we can first show that
\[
V_{t+1} \leq V_t + C a_t^2 (1 + s_t + V_t),
\]
where differs from (A.6) by removing \(1 - c_0 a_t \). Note that \(C \) is a generic constant. In parallel, we may show that
\[
s_t \leq s_{t+1} \leq s_t + C a_t^2 (1 + s_t + V_t).
\]
By using (A.9)–(A.10) and adapting the proof of Lemma 12 in Huang and Manton (2010), we obtain \(V_{t+1} \leq (1 + C a_t^2) \max_{0 \leq s \leq t} V_t + C a_t^2 \), which implies
\[
\max_{0 \leq s \leq t} V_t \leq (1 + C a_t^2) \max_{0 \leq s \leq t} V_t + C a_t^2.
\]
By iterating (A.11), it may be shown that \(\sup_{t \geq 0} V_t < \infty \), which further implies that \(\sup_{t \geq 0} s_t < \infty \).

By (18), we obtain
\[
E[|\tilde{z}_{t+1}|^2] \leq E[(I + a_t \tilde{B}_t)(I + a_t \tilde{B}_t - 1) \tilde{z}_{t-1}^2] + a_{t-1} (\phi^T \Delta B_{t-1} \tilde{z}_{t-1} + a_{t-1} \tilde{v}_t)^2 + C a_t^2 (1 + s_t + V_t).
\]
Let
\[
\xi_t = (I + a_t \tilde{B}_t)(I + a_t \tilde{B}_t - 1) \tilde{z}_{t-1},
\]
\[
\xi_2 = (I + a_t \tilde{B}_t) \tilde{v}_t,
\]
\[
\xi_3 = (I + a_t \tilde{B}_t) \tilde{v}_t.
\]
We may use conditioning to show that the cross terms
\[
E[|\tilde{z}_t|^2] = E|\tilde{z}_t|^2 \xi_3 = E|\tilde{z}_t|^2 \xi_1 = 0.
\]
Then it follows from (A.12) that
\[
E[|\tilde{z}_{t+1}|^2] \leq E[(I + a_t \tilde{B}_t)(I + a_t \tilde{B}_t - 1) \tilde{z}_{t-1}^2] + C a_t^2 (1 + s_{t-1} + V_{t-1}^2) + C a_t^2 (1 + s_t + V_t).
\]
Repeating this and using (23) and \(\sup_{t \geq 0} s_t \), we obtain,
\[
E[|\tilde{z}_{t+1}|^2] \leq E[(I + a_t \tilde{B}_t) \cdots (I + a_{t-1} \tilde{B}_{t-1}) \tilde{z}_{t-1}^2 + C a_t^2,
\]
where \(l_0 > 0 \) is any fixed integer. It follows from (A.13) that
\[
E[|\tilde{z}_{t+1}|^2] \leq E[|\tilde{z}_{t-1}^2| + E \left[|\tilde{z}_{t-1}^2| \sum_{k=l_0}^t a_k (\tilde{B}_k + \tilde{B}_k^T) \tilde{z}_{t-1} \right] + C a_t^2 \left[E \left[|\tilde{z}_{t-1}^2| \right] + C a_t^2 \right],
\]
where the second inequality follows from \(\sup_{t \geq 0} E[|\tilde{z}_{t-1}^2|] < \infty \).

We choose a sufficiently large \(l_0 \) such that regardless of the state at time \(t - l_0 \), the Markov chain \(B_k \) will visit all its states from \(t - l_0 \) to \(t \) with probability at least \(c_0 > 0 \), where \(c_0 \) does not depend on \(t \). Then using conditioning and Lemma 11, we can show that for some \(\delta_0 > 0 \),
\[
E \left[|\tilde{z}_{t-1}^2| \sum_{k=l_0}^t a_k (\tilde{B}_k + \tilde{B}_k^T) \tilde{z}_{t-1} \right] \leq -\delta_0 a_t E[|\tilde{z}_{t-1}^2|].
\]
By (A.14), (A.15) and (23), it follows that for some \(c_0 > 0 \),
\[
V_{t+1} \leq (1 - c_0 a_t) V_t + C a_t^2.
\]
Then by (A6), \(\lim_{t \to \infty} V_t = 0 \). By (A10) we further obtain
\[
\lim_{t \to \infty} s_t = s_\infty \text{ for some finite } s_\infty. \text{ Then mean square consensus follows. Again, by a martingale convergence argument we obtain almost sure convergence of the algorithm.} \square
\]

Proof of Lemma 8. Since \(G \) contains a spanning tree, \(B \) has the eigenvalue 0 and another \(n - 1 \) eigenvalues with strictly negative
real parts (Ren & Beard, 2005) and there exists a real matrix $\Phi \triangleq (I + \phi_{n \times n})$, where $\phi_{n \times n}$ is an $n \times (n - 1)$ matrix, such that

$$
\Phi^{-1}B \Phi = \begin{bmatrix} 0 & 0 \\ 0 & \tilde{B}_{n-1} \end{bmatrix},
$$

where \tilde{B}_{n-1} is Hurwitz (Huang & Manton, 2007). The rest part showing for the existence and uniqueness of a solution with the integral representation follows the same method as in proving Theorem 5 in Huang and Manton (2007).

To show necessity, we construct the deterministic consensus algorithm $x_{z,i} = \sum_{j=1}^{n} K_{ij} x_{z,j}$, where K_{ij} is the weight of agent i on agent j. To show necessity, we construct the deterministic consensus algorithm $x_{z,i} = \sum_{j=1}^{n} K_{ij} x_{z,j}$, where K_{ij} is the weight of agent i on agent j.

Mathématiques Pures et Appliquées, 89(3), 278–296.

Minyi Huang received the B.Sc. degree from Shandong University, Jinan, Shandong, China, in 1995, the M.Sc. degree from the Institute of Systems Science, Chinese Academy of Sciences, Beijing, China, in 1998, and the Ph.D. degree from the Department of Electrical and Computer Engineering, McGill University, Montreal, Canada, in 2003, all in the area of systems and control.

From February 2004 to March 2006, he was a Research Fellow with the Department of Electrical and Electronic Engineering, the University of Melbourne, Victoria, Australia. From April 2006 to June 2007, he was a Research Fellow with the Department of Information Engineering, Research School of Information Sciences and Engineering, the Australian National University, Canberra, Australia. He joined Carleton University, Ottawa, ON, Canada, in July 2007, where he is an Assistant Professor in the School of Mathematics and Statistics. His research interests include stochastic control and game theory, multigain stochastic systems, stochastic algorithms, and wireless networks.

Subhrabandhu Dey was born in Calcutta, India, in 1968. He received the B.Tech. and M.Tech. degrees from the Department of Electronics and Electrical Communication Engineering, Indian Institute of Technology, Kharagpur, India, in 1990 and 1993, respectively. He received the Ph.D. degree from the Department of Systems Engineering, Research School of Information Sciences and Engineering, Australian National University, Canberra, Australia, in 1999.

He has been with the Department of Electrical and Electronic Engineering, University of Melbourne, Parkville, Victoria, Australia, since February 2000, where he is currently a full Professor. From September 1995 to September 1997 and September 1998 to February 2000, he was a postdoctoral Research Fellow with the Department of Systems Engineering, Australian National University. From September 1997 to September 1998, he was a postdoctoral Research Associate with the Institute for Systems Research, University...
of Maryland, College Park. His current research interests include networked control systems, wireless communications and networks, signal processing for sensor networks, and stochastic and adaptive estimation and control. Dr. Dey currently serves on the Editorial Board of the IEEE TRANSACTIONS ON SIGNAL PROCESSING and ELSEVIER SYSTEMS AND CONTROL LETTERS. He was also an Associate Editor for the IEEE TRANSACTIONS ON AUTOMATIC CONTROL during 2005–2007. He is a Senior Member of IEEE.

Girish N. Nair was born in Petaling Jaya, Malaysia. He obtained a B.E. (Electrical, 1st class honours) in 1994, B.Sc. (Mathematics) in 1995, and Ph.D. (Electrical Engineering) in 2000, on scholarships from the Australian government and the University of Melbourne. He is currently an associate professor in the Department of Electrical and Electronic Engineering at the University of Melbourne and has also held visiting positions at the University of Padova, Italy and Boston University, USA. He has received several prizes, including a SIAM Outstanding Paper Prize in 2006 and the Best Theory Paper Prize at the UKACC International Conference on Control, Cambridge University, 2000. His research interests lie in communications, information theory and control and he serves as an associate editor for the SIAM Journal on Control and Optimization.

Jonathan H. Manton received his Bachelor of Science (Mathematics) and Bachelor of Engineering (Electrical) degrees in 1995 and his Ph.D. degree in 1998, all from the University of Melbourne, Australia. From 1998 to 2004, he was with the Department of Electrical and Electronic Engineering at the University of Melbourne. During that time, he held a Postdoctoral Research Fellowship then subsequently a Queen Elizabeth II Fellowship, both from the Australian Research Council. In 2005 he became a full Professor in the Department of Information Engineering, Research School of Information Sciences and Engineering (RSISE) at the Australian National University. From July 2006 till May 2008, he was on secondment to the Australian Research Council as Executive Director, Mathematics, Information and Communication Sciences. Currently, he holds a distinguished Chair at the University of Melbourne with the title Future Generation Professor. He is also an Adjunct Professor in the Mathematical Sciences Institute at the Australian National University. Professor Manton’s traditional research interests range from pure mathematics (e.g. commutative algebra, algebraic geometry, differential geometry) to engineering (e.g. signal processing, wireless communications). Recently though, led by a desire to participate in the convergence of the life sciences and the mathematical sciences, he has commenced learning neuroscience. Professor Manton also has extensive experience in software development.