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Abstract— The information outage probability of a shot-noise
limited direct detection multiple-input multiple-output (MIMO)
optical channel subject to block fading is considered. Information
is transmitted over this channel by modulating the intensity
of a number of optical signals, one corresponding to each
transmit aperture, and individual photon arrivals are observed
at multiple receive photodetector apertures. The transmitted
signals undergo multiplicative fading, and the fading occurs
in coherence intervals of fixed duration in each of which the
channel fade matrix remains constant. The channel fade matrix
varies across successive coherence intervals in an independent
and identically distributed fashion. The transmitter and the
receiver are assumed to have perfect channel state information
(CSI). The main contributions are a formulation of the outage
probability problem as an optimization problem and an exact
characterization of the optimal solution for the special case of
the MIMO Poisson fading channel with two transmit apertures.

I. INTRODUCTION

Free space optics is emerging as an attractive technology
for several applications, e.g., metro network extensions, last
mile connectivity, fiber backup, RF-wireless backhaul and
enterprise connectivity [10]. The many benefits of wireless
optical systems include rapid deployment time, high security,
inexpensive components, seamless wireless extension of the
optical fiber backbone, immunity from RF interference and
lack of licensing regulations. Consequently, free space optical
communication has received much attention in recent years
(cf. e.g., [2], [3], [5], [6], [8], [11] and the references therein).
In free space optical communication links, atmospheric tur-
bulence causes random fluctuations in the refractive index
of air at optical wavelengths, which in turn causes random
fluctuations in the intensity and phase of a propagating op-
tical signal. These intensity fluctuations, which can degrade
communication performance, are typically modeled in terms
of an ergodic lognormal process with a correlation time of the
order of 1–10 ms. Hence, the free space optical channel can be
effectively modeled as a slowly varying fading channel with
occasional deep fades that can affect millions of consecutive
bits [5].

Two general approaches are often followed to combat the
detrimental effects of fading, viz., (a) use of estimates of the
channel fade (also referred to as channel state information or
CSI) at the transmitter and the receiver, and (b) use of multiple
transmitter and receiver elements. For radio frequency (RF)
communication, comprehensive reviews of these approaches

can be found in [9], [4]. In optical fading channels, instan-
taneous realizations of the channel state can be estimated at
the receiver; then, depending on the availability of a feedback
link and the amount of acceptable delay, the transmitter can be
provided with complete or partial knowledge of the channel
state, which can be used for adaptive power control, thereby
achieving higher throughput [2], [3].

We consider a shot-noise limited direct detection MIMO
optical fading channel with peak and average transmitter
power constraints. At each receive aperture, the optical fields
received from different transmit apertures are assumed to be
sufficiently separated in frequency or angle of arrival, so that
the received total power is the sum of powers from individual
transmit apertures, scaled by the respective path gains [7]. We
consider the same block fading channel model as proposed in
[3], in which the channel fade is assumed to remain unchanged
for a coherence interval of a fixed duration Tc (seconds), and
changes across successive such intervals in an independent and
identically distributed (i.i.d.) fashion. A shortcoming of our
model is that it ignores bandwidth limitations associated with
the transmitter and receiver devices currently used in practice.
We also ignore the effects of infrared and visible background
light, and assume that the dark current at the photodetector
is the dominant source of noise. These assumptions lead to a
simple channel model which is amenable to an exact analysis.
Other models have also been proposed in the literature (cf.
e.g., [6], [8], [11]).

Of direct relevance to our work are the recent results of
[5], [2], [3]. In [5], the authors computed upper and lower
bounds on the capacity of the MIMO Poisson fading channel
with perfect CSI at the transmitter and the receiver. These
bounds were also used to compute approximate expressions for
the capacity versus outage probability for the MIMO Poisson
fading channel. In [3], an exact characterization of the capacity
was obtained for the MIMO Poisson fading channel in terms
of the average transmitter conditional duty cycles, conditioned
on the transmitter CSI. In this paper, we extend the results of
[3] to the more realistic setting of delay-limited applications,
where the delay constraints may prevent coding over several
coherence intervals. In this case, the capacity in the strict
Shannon sense is zero, because of a nonzero probability of the
channel being in such deep fade that the instantaneous mutual
information is below any desired rate [9]. A more relevant
performance metric is the capacity versus outage probability,
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which is a measure of the probability that the fading channel
can support a desired information rate.

The remainder of the paper is organized as follows. In
Section II, we provide a formal description of the outage
capacity problem for the MIMO Poisson fading channel. The
special case of N = 2 transmit apertures is addressed next
in Section III. In Section IV, some numerical examples are
provided. Finally, Section V contains our concluding remarks.

II. PROBLEM FORMULATION

We consider a shot-noise limited MIMO optical channel
corresponding to multiple apertures at the transmitter and the
receiver. We assume that the channel fades remain fixed over
intervals of width Tc, and change in an i.i.d. manner across
successive such intervals. For given IR+-valued1 transmitted
signals {xn(t), t ≥ 0}, n = 1, . . . , N , from the N transmit
apertures, the corresponding received signal at the mth receive
aperture, m = 1, . . . , M , is a Z+-valued nondecreasing (left-
continuous) Poisson counting process (PCP) {Ym(t), t ≥ 0}
with rate (or intensity) equal to2

Λm(t) =
N∑

n=1

Snm[dt/Tce]xn(t) + λ0m, t ≥ 0, (1)

where λ0m ≥ 0 is the (constant) dark current rate at the
mth receive aperture, and Snm[k] is the IR+-valued random
channel fade or path gain from the nth transmit aperture to the
mth receive aperture in the kth coherence interval. We shall
assume throughout that the transmitter and the receiver have
perfect CSI.

With [0, T ] being the time interval of transmission and
reception over the channel, the channel input from the nth

aperture is a IR+-valued signal {xn(t), 0 ≤ t ≤ T}, which
is proportional to the transmitted optical power, and which
satisfies peak power constraints and an average sum power
constraint of the form

0 ≤ xn(t) ≤ An, 0 ≤ t ≤ T,
1
T

∫ T

0

∑N
n=1 xn(t)dt ≤ σ

∑N
n=1 An,

(2)

where An > 0, n = 1, . . . , N , and 0 ≤ σ ≤ 1 are fixed.
Here An specifies the maximum instantaneous value of the
intensity of the optical signal transmitted from the nth transmit
aperture, n = 1, . . . , N , and σ specifies the weighted sum of
the ratio of the average-to-peak power from all the transmitted
apertures.

In [3], it was established that the optimal transmission
scheme that achieves channel capacity is binary signaling
through each transmit aperture with arbitrarily fast inter-
transition times. The two signaling levels correspond to no
transmission (“OFF” state) and transmission at the peak power
level (“ON” state). The conditional probability that the nth

transmit aperture is in the ON state when the channel state
is s ∈ IRNM

+ can be seen as the average conditional “duty
cycle” of the nth transmit aperture, n = 1, . . . , N . In general,
the transmitted signals are correlated across apertures but are
i.i.d. in time. Furthermore, whenever a transmit aperture is
in the ON state, then all the transmit apertures with the
same or higher values of average conditional duty cycles must

1We denote the set of nonnegative real numbers by IR+ and the set of
nonnegative integers by Z+.

2The notation dxe denotes the smallest integer greater than or equal to x.

also remain ON. Using these facts, the instantaneous mutual
information for the N ×M Poisson fading channel, when the
instantaneous channel fade is s = {snm}N,M

n=1,m=1 ∈ IRN×M
+

and the average conditional duty cycles are µN = {µn, n =
1, . . . , N} ∈ [0, 1]N , is obtained as [3]

I(µN , s)
=

∑M
m=1

[∑N
n=1 νnζ

(∑n
k=1 sΠ(k)mAΠ(k), λ0m

)

−ζ
(∑N

n=1 νn

∑n
k=1 sΠ(k)mAΠ(k), λ0m

)]
,

(3)

where we have defined

ζ(x, y)
4
= (x + y) log(x + y)− y log y, x, y ≥ 0 (4)

(with the convention 0 log 0
4
= 0); Π : {1, · · · , N} →

{1, · · · , N} is a permutation of {1, · · · , N} such that

µΠ(n) ≥ µΠ(n+1), n = 1, · · · , N − 1, (5)

and

νn
4
=

{
µΠ(n) − µΠ(n+1), n = 1, · · · , N − 1,
µΠ(N), n = N.

(6)

Noting that ζ(., y) is strictly convex on [0, ∞) for every y ≥
0, it can be verified that the instantaneous mutual information
is a strictly concave function of the duty cycles {µn}N

n=1 [3].
It can be also shown that for every s ∈ IRNM

+ , I(µN , s) is
continuous but not differentiable along the planes µi = µj ,
i, j ∈ {1, . . . , N}, i 6= j.

We are now ready to introduce the outage capacity op-
timization problem for the N × M MIMO Poisson fading
channel under average peak power constraints {An}N

n=1, and
an average sum power constraint σ:
Problem P: Given a basic rate r0 ≥ 0, minimize
P (I(µN (S), S) < r0) subject to 0 ≤ µn(S) ≤ 1 with
probability 1 and IE

[∑N
n=1

AnPN
n=1 An

µn(S)
]
≤ σ.

The solution to the optimization problem P will be referred
to as the information outage probability of the MIMO Poisson
fading channel evaluated at rate r0 subject to the aforemen-
tioned peak and average sum power constraints. One major
difficulty in obtaining a closed form analytical solution for the
outage probability is the nondifferentiability of I(·, s); stan-
dard variational techniques for differentiable functions cannot
be directly applied here. Nonsmooth optimization techniques
can be applied to determine the solution computationally, but
this is beyond the scope of this paper that seeks an analytic
solution. Our approach is to partition the N -dimensional unit
hypercube spanning the feasible range of average conditional
duty cycles µN into subsets in which the instantaneous mutual
information is smooth, and apply standard optimization tools,
e.g., Karush-Kuhn-Tucker (KKT) conditions, in these subsets.
The boundaries of these subsets, in which the instantaneous
mutual information is nondifferentiable, is treated separately.
Although in theory, this approach can lead to a characterization
of the outage probability problem P for an arbitrary positive in-
teger N , the exact characterization is extremely cumbersome,
and we limit our treatment to the special case of N = 2
transmit apertures.

ISIT2007, Nice, France, June 24 – June 29, 2007

2422



III. OUTAGE CAPACITY WITH N = 2 TRANSMIT
APERTURES

In this section, we study the outage capacity problem for
a 2 ×M MIMO Poisson fading channel, which corresponds
to a wireless optical communication system with 2 transmit
apertures and M receive apertures. In stating our results, it is
convenient to set

ξ(x) = 1
x

(
e−1(1 + x)(1+1/x) − 1

)
, x ≥ 0,

h(x) = (1 + x) log(1 + x)− x, x ≥ 0.
(7)

We also use the notation bnm = snmAi

λ0m
, n = 1, 2, Bm = b1m+

b2m, m = 1, . . . , M , b
4
= (b11, . . . , b1M , b21, . . . , b2M ) ∈

IR2M
+ , and a

4
= A1

A1+A2
.

For N = 2 transmit apertures and M ≥ 1 receive apertures,
the instantaneous mutual information can be written as (via
some algebraic manipulations of (3))

I(µ1, µ2, s)

=





∑M
m=1 λ0m

{
(µ1 − µ2)h(b1m) + µ2h(Bm)

−h(µ1b1m + µ2b2m)
}

, if µ1 ≥ µ2,
∑M

m=1 λ0m

{
(µ2 − µ1)h(b2m) + µ1h(Bm)

−h(µ1b1m + µ2b2m)
}

, if µ1 < µ2,

(8)

where we have suppressed the dependence of the average
conditional duty cycles 0 ≤ µ1, µ2 ≤ 1 on the channel fade
for notational convenience.

The outage capacity optimization problem for the 2 × M
MIMO Poisson fading channel subject to peak power con-
straints A1, A2 and an average sum power constraint σ, is
given by:
Problem P1: Given a basic rate r0 ≥ 0, minimize
P (I(µ1, µ2, S) < r0) subject to 0 ≤ µ1, µ2 ≤ 1 and
IE[aµ1 + (1− a)µ2] ≤ σ.

In order to solve the above problem, we need to first solve
the following problem:
Problem P1a: For a given channel realization s ∈ IR2M

+ ,
minimize (aµ1 + (1 − a)µ2) subject to 0 ≤ µ1, µ2 ≤ 1 and
I(µ1, µ2, s) ≥ r0.

Once the optimal solution to P1a is obtained, one can
characterize the solution to P1 in terms of the solution
to P1a and the average sum power constraint. For similar
techniques in outage capacity optimization for block-fading
AWGN channels, see [1].

Note that at optimality for P1a, we must have
I(µ1, µ2, s) = r0 as otherwise one can lower any of µ1, µ2

to achieve equality and in the process improve (lower) the
value of the objective function. However, unlike the Shannon
capacity for the AWGN channel, the instantaneous mutual in-
formation for the Poisson fading channel is not monotonically
increasing, although it is concave (for the SISO case, see [2]).
This implies that for a given channel realization, the mutual in-
formation I(µ1, µ2, s) achieves a maximum for some µ1, µ2

and for feasibility, we need to verify whether the basic rate
r0 is less than or equal to this maximum mutual information
for feasibility, given a particular channel realization. Thus we
need to first solve the following optimization problem:
Problem P2: Given a particular channel realization s ∈ IR2M

+
in a given fading block, maximize I(µ1, µ2, s) subject to 0 ≤
µ1, µ2 ≤ 1.

Lemma 3.1: The optimal solution to Problem P2 is given
by µ1 = µ2 = µopt where µopt satisfies

∑M
m=1 λ0mBm log

(
1+Bmξ(Bm)
1+µoptBm

)
= 0, (9)

and the maximum mutual information is given by

rmax(s) =
∑M

m=1 λ0m[µoptBm − log(1 + µoptBm)]. (10)

The proof of Lemma 3.1 is omitted due to space constraints.
Notice that this lemma implies that regardless of any average
sum power constraint, a basic rate r0 may not be feasible for
a particular channel realization s ∈ IR2M

+ if r0 > rmax(s),
and an outage will occur. In this case the optimal duty
cycles are clearly µ∗1 = µ∗2 = 0. When r0 = rmax(s),
the maximum achievable instantaneous mutual information,
clearly, the optimal duty cycles are µ∗1 = µ∗2 = µopt. In what
follows, we will denote feasibility for a given channel state
by assuming r0 is strictly less than the maximum value given
by Lemma 3.1.

The following Lemma presents the solution to Problem P1a
where the optimal duty cycles are denoted as µ∗1, µ

∗
2. Once

again, we omit the proof due to space constraints.
Lemma 3.2: Given a basic rate r0 ≥ 0 and a particular

channel realization (for a given fading block) s, if r0 >
rmax(s), the optimal duty cycles are clearly µ∗1 = µ∗2 = 0.
When r0 = rmax(s), the optimal duty cycles are µ∗1 = µ∗2 =
µopt. When r0 < rmax(s), µ∗1, µ∗2 are given by one of the
following five cases:
Case 1: Suppose there exist µ∗, λ∗1 > 0, ρ∗1, ρ∗2 ≥ 0 such that

µ∗ =
r0 +

∑M
m=1 λ0mh(µ∗Bm)∑M

m=1 λ0mh(Bm)
,

∑M
m=1 λ0m{h(b1m)− b1m log(1 + µ∗Bm)} = a−ρ∗1

λ∗1
,

∑M
m=1 λ0m{h(b2m)− b2m log(1 + µ∗Bm)} = 1−a−ρ∗2

λ∗1
,∑M

m=1 λ0m{h(Bm)−Bm log(1 + µ∗Bm)} = 1
λ∗1

.

Then µ∗1 = µ∗2 = µ∗ > 0.
Case 2: Suppose there exist µ̄1 > µ̄2 > 0, λ̄∗1 > 0 such that

∑M
m=1 λ0m

{
µ̄1h(b1m) + µ̄2 (h(Bm)− h(b1m))

}

= r0 +
∑M

m=1 λ0m (h(µ̄1b1m + µ̄2b2m)) ,∑M
m=1 λ0m{h(b1m)− b1m log(1 + µ̄1b1m + µ̄2b2m)} = a

λ̄∗1
,∑M

m=1 λ0m{h(Bm)−Bm log(1 + µ̄1b1m + µ̄2b2m)} = 1
λ̄∗1

.

Then µ∗1 = µ̄1, µ∗2 = µ̄2.
Case 3: Suppose there exist µ̃1 > 0, λ̃∗1 > 0 such that

µ̃1 =
r0 +

∑M
m=1 λ0mh(µ̃1b1m)∑M

m=1 λ0mh(b1m)
,

∑M
m=1 λ0m{h(b1m)− b1m log(1 + µ̃1b1m)} = a

λ̃∗1
,

∑M
m=1 λ0m{h(Bm)−Bm log(1 + µ̃1b1m)} ≤ 1

λ̃∗1
.

Then µ∗1 = µ̃1, µ∗2 = 0.
Case 4: Suppose there exist µ̂2 > µ̂1 > 0, λ∗2 > 0 such that

∑M
m=1 λ0m

{
µ̂1 (h(Bm)− h(b2m)) + µ̂2h(b2m)

}

= r0 +
∑M

m=1 λ0mh(µ̂1b1m + µ̂2b2m),
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Fig. 1. Plot of the optimal duty cycles versus increasing s11.

∑M
m=1 λ0m{h(b2m)− b2m log(1 + µ̂1b1m + µ̂2b2m)} = 1−a

λ∗2
,∑M

m=1 λ0m{h(Bm)−Bm log(1 + µ̂1b1m + µ̂2b2m)} = 1
λ∗2

.

Then µ∗1 = µ̂1, µ∗2 = µ̂2.
Case 5: Suppose there exist µ′2 > 0, λ̃∗2 > 0 such that

µ′2 =
r0 +

∑M
m=1 λ0mh(µ′2b2m)∑M

m=1 λ0mh(b2m)
,

∑M
m=1 λ0m{h(b2m)− b2m log(1 + µ′2b2m)} = 1−a

λ̃∗2
,

∑M
m=1 λ0m{h(Bm)−Bm log(1 + µ′2b2m)} ≤ 1

λ̃∗2
.

Then µ∗1 = 0, µ∗2 = µ′2.
We now present the following result, again without proof:
Lemma 3.3: Given r0 is feasible, the optimal sum duty

cycle for a given channel realization given by aµ∗1+(1−a)µ∗2,
is a continuous and nonincreasing function of any of the
channel gains sij , i = 1, 2, j = 1, . . . , M .

Figure 1 shows how the optimal conditional duty cycles vary
for a 2×2 MIMO Poisson fading channel, with increasing s11

while s12, s21 and s22 are kept fixed. Here λ01 = λ02 = 1,
A1 = A2 = 1, so that a = 1

2 , and the target instantaneous
mutual information is r0 = 1 nats/secs/Hz. The various regions
µ∗1 = µ∗2 = 0 (within the outage set), µ∗1 = µ∗2 > 0, µ∗1 > µ∗2 >
0 and µ∗1 > µ∗2 = 0 can be easily seen while the optimal sum
duty cycle decreases with increasing s11 within the feasible
set.

With the two Lemmas 3.2 and 3.3 established, we can now
present the complete solution to Problem P1. We introduce
the following definitions:

R(p) = {b ∈ IR2M
+ : 〈µ〉 < p},

R(p) = {b ∈ IR2M
+ : 〈µ〉 ≤ p},

where for convenience we have used the notation 〈µ〉 = [aµ1+
(1− a)µ2]. The boundary surface B(p) of R(p) is defined as
the set of points b such that 〈µ〉 = p. We further define the
following two average duty cycle sums as

Σ(p) =
∫

R(p)

〈µ〉dF (b), Σ(p) =
∫

R(p)

〈µ〉dF (b),

where F (b) is the c.d.f. of b. The duty cycle sum threshold
p∗ is defined as p∗ = sup{p : Σ(p) < σ} and the weight w∗
is defined as

w∗ =
σ − Σ(p∗)

Σ(p∗)− Σ(p∗)
.

The following theorem, which summarizes the solution to
Problem P1, constitutes the main result of this paper. The proof
follows the techniques of Proposition 4 of [1] (see Appendix
D in [1]).

Theorem 1: If IE[aµ∗1 + (1 − a)µ∗2] ≤ σ, where µ∗1, µ
∗
2

are given by Lemma 3.2, the optimal duty cycles that solve
Problem P1 are given by µ1 = µ∗1, µ2 = µ∗2. On the other
hand, if IE[aµ∗1 + (1− a)µ∗2] > σ, the solution to P1 is given
by:

µ1 = µ∗1, µ2 = µ∗2, if b ∈ R(p∗),
µ1 = 0, µ2 = 0, if b /∈ R(p∗). (11)

If b ∈ B(p∗), then µ1 = µ∗1, µ2 = µ∗2 with probability w∗
and µ1 = 0, µ2 = 0 with probability 1− w∗.
Remark: The above result implies that when the average sum
duty cycle constraint is active, that is, IE[aµ∗1 + (1− a)µ∗2] >
σ, the optimal duty cycle allocation amounts to finding an
optimal threshold p∗ such that when aµ∗1 + (1 − a)µ∗2 > p∗,
the transmitters are turned off and they are turned on when
aµ∗1 + (1 − a)µ∗2 < p∗, where µ∗1, µ∗2 are the solutions to
Problem P1a, i.e, they achieve the minimum sum duty cycle
while meeting the basic rate r0. The threshold p∗ is chosen
such that the average (long-term) sum duty cycle constraint is
equal to σ. If F (b) is not continuous, then a randomization is
necessary when aµ∗1 +(1−a)µ∗2 = p∗, and w∗, the probability
of transmitting is chosen to satisfy the long term sum duty
cycle constraint IE[aµ1+(1−a)µ2] = σ. Although, in the case
of the free-space optical fading channel, usually the fading
distribution is believed to be continuous (log-normal) and thus,
the value of w∗ can be chosen to be any real number between
0 and 1 without affecting optimality.

The outage probability can be obtained as

1−
∫

R(p∗)
dF (b) = 1− w∗P (b ∈ B(p∗))− P (b ∈ R(p∗)).

IV. NUMERICAL STUDIES

In this section, we present some illustrative simulation
results for a 2× 2 MIMO Poisson fading channel where S11,
S12, S21 and S22 are i.i.d. lognormal random variables such
that 1

2 log Sij ∼ N (µG, σ2
G). As in [2], we take µG = −σ2

G
such that the fade is normalized i.e, E[Sij ] = 1. We consider
σ2

G = 0.1, which corresponds to a moderately turbulent
fade. We also take (for simplicity) A1 = A2 = 1 (or
a = 0.5) and λ01 = λ02 = 1. For the simulations, we choose
r0 = 0.25 nats/ unit time, whereas the expected unconstrained
optimal mutual information, i.e., IE[rmax(S)] was found to
be approximately 0.57 nats/unit time. The following plots are
obtained through computer simulations averaged over 100, 000
channel realizations.

Figure 2 illustrates how Σ(p∗) varies with p∗, the optimal
sum duty cycle threshold. In practice, one can use this graph
to obtain p∗ for a given average sum duty cycle threshold
constraint σ. It was noticed that the unconstrained optimal
average sum duty cycle IE[12 (µ∗1 + µ∗2)] = σ0 = 0.12 (approx-
imately). So, for all σ larger than this value, the optimal duty
cycle allocation law is given by Lemma 3.2. Note also that
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the choice of w∗ is not crucial here as the fade distribution is
continuous and hence w∗ can be chosen as any real number
in [0, 1]. We chose w∗ = 0.5. Figure 3 shows the outage
performance of the optimal duty cycle allocation algorithm
as opposed to a constant duty cycle allocation µ1 = µ2 = σ
(such that the average sum duty cycle constraint is satisfied). It
is easily seen that the optimal allocation scheme outperforms
the constant duty cycle allocation scheme quite substantially.
As σ → σ0, the outage probability clearly attains a floor
(as expected), since for all σ > σ0, the outage probability
is given by the probability that the maximum achievable
mutual information (for a given channel fade) falls below the
basic rate r0. Thus, increasing average power does not reduce
outage probability beyond this point. Recall that this is due to
the fact that for optical wireless transmission over Poisson
fading channels, the instantaneous mutual information is a
concave but not a monotonically increasing function of the
duty cycles, as opposed to the AWGN fading channel. Note
also that if one further lowered the basic rate requirement r0,
the unconstrained average sum duty cycle σ0 will increase
beyond 0.12 and gradually approach 0.5. However, due to
space limitations we do not provide further graphs as they
are similar to the ones provided here.

We do not provide a direct comparison of these results with
the existing upper and lower bounds on the outage capacity
derived in [5] due to the following reasons. In [5], individual
average power constraints were imposed on all the transmit
apertures, while here we consider a constraint on the sum of
the average powers across all transmit apertures. Therefore, the
optimal allocation of duty cycles as computed in Theorem 1 do
not constitute the optimal solution for the problem considered
in [5]. We remark that we provided an exact solution to the
outage capacity problem under our formulation and that it
is also possible to use the techniques outlined in this paper
to solve the outage capacity problem with individual average
power constraints, but we do not discuss it in this paper.

V. DISCUSSION

We have studied the outage capacity problem for a single-
user shot-noise limited direct detection block fading MIMO
Poisson channel. Under the assumption of perfect transmitter
and receiver CSI, a characterization of the information outage
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Fig. 3. Plot of outage probability versus average sum power constraint σ.

probability is obtained when the transmitted signals from the
different transmit apertures are subject to peak and average
sum power constraints. For the special case of two transmit
apertures, the optimal average conditional duty cycles, and
hence the outage capacity, have been explicitly determined.

The exact value of the average sum power constraint σ
plays a critical role in the characterization of the optimal
duty cycles. There are two distinct regimes, depending on
whether the average sum power constraint is active or inactive.
However, regardless of the value of σ, a basic rate r0 will not
be feasible for channel states s such that r0 > rmax(s), where
rmax(s) satisfies (10), and denotes the maximum supportable
instantaneous mutual information for the channel state s.
These channel states will always be in the outage set for
the basic rate r0, and cumulatively constitute the floor of the
outage probability performance.
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