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Optimal and Distributed Protocols for Cross-Layer
Design of Physical & Transport Layers in MANETs

John Papandriopoulos, Subhrakanti Dey and Jamie Evans

Abstract—We seek distributed protocols that attain the global
optimum allocation of link transmitter powers and source rates
in a cross-layer design of a mobile ad-hoc network. Although the
underlying network utility maximization is nonconvex, convexity
plays a major role in our development. We provide new convexity
results surrounding the Shannon capacity formula, allowing us to
abandon suboptimal high-SIR approximations that have almost
become entrenched in the literature. More broadly, these new
results can be back-substituted into many existing problems for
similar benefit.

Three protocols are developed. The first is based on a con-
vexification of the underlying problem, relying heavily on our
new convexity results. We provide conditions under which it
produces a globally optimum resource allocation. We show how
it may be distributed through message passing for both rate- and
power-allocation. Our second protocol relaxes this requirement
and involves a novel sequence of convex approximations, each
exploiting existing TCP protocols for source rate allocation.
Message passing is only used for power control. Our convexity
results again provide sufficient conditions for global optimality.
Our last protocol, motivated by a desire of power control devoid
of message passing, is a near optimal scheme that makes use of
noise measurements and enjoys a convergence rate that is orders
of magnitude faster than existing methods.

Index Terms—Cross-Layer Optimization, Network Utility
Maximization, Outage Probability, Rayleigh Fading, Mobile Ad-
Hoc Network, Power Control, Congestion Control.

I. INTRODUCTION

TRADITIONAL paradigms for communication network
design often call upon a layered approach: each slice

within the network stack should only utilize services from
those below, for design and implementation simplicity. Recent
research efforts have shown there exists a significant perfor-
mance benefit in undertaking a cross-layer networking design,
by optimizing functionality of the stack across the layers.

Nonlinear optimization has been instrumental in this pro-
cess. For example, in a multi-hop wired network, transmit con-
trol protocol (TCP) algorithms are used to address problems
of congestion at the transport layer. These algorithms have
recently been shown to implement approximate solutions to
an underlying network utility maximization (NUM)

max
x≥0

∑
s

Us(xs) (1)

s.t.
∑

s:l∈L(s)

xs ≤ cl, ∀l,
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where each source s attains some nonlinear utility Us(xs) by
transmitting at data-rate xs, doing so without overwhelming
the set of intermediate links L(s) along its route, and where
each link l contributes a shared capacity of cl. While this
problem has been well studied in the context of wired networks
having fixed link capacities [16], [19], more recent efforts have
focused on a cross-layer design of source rate allocation and
capacity provisioning [31].

The link capacities cl can be conveniently optimized through
power control in a mobile ad-hoc network (MANET): by
increasing the transmitter power on link l, its capacity also
increases and vice-versa. It is therefore of great benefit to con-
sider maximizing the utility (1) over both source rates and link
powers through a cross-layer design. In an interference limited
system—for example, one based on code-division multiple-
access (CDMA)—this optimization becomes nontrivial since
the power allocation is coupled across the entire network.

In [10], Chiang analyzed such a joint congestion and power
control problem by considering the Lagrangian dual of (1),
where the link capacities are functions of their signal-to-
interference ratio (SIR). A high-SIR approximation was taken
in order to formulate a convex problem that was solved with a
gradient-based algorithm and made distributed with message
passing. These messages carried congestion state and noise
measurements at each link. Network nodes would repeatedly
broadcast such messages to the network and each receiving
node would use the state for their own power-allocation. It
turned out that the “high-SIR optimal” rate-allocation was
achieved by the existing TCP algorithm, coupled to the power-
allocation through the link congestion state.

In that work, an underlying assumption was fixed (snap-
shot) or very slowly varying wireless channels. Under such
conditions, it is conceivable that such an algorithm is able
to track any changes in the channel as one would have the
luxury of iterating at a faster rate than the fading dynamics.
Now consider a more realistic scenario where the fading rate
is increased, due to mobility of the nodes and/or environment.
The iteration update-rate would also need to increase to keep
track of the dynamic fading state and so either the message
passing overhead would become excessive, or the instanta-
neous channel state varies too quickly to track properly—at
this point the scheme would collapse.

Our motivation for this paper came from situations where
the fading falls into this fast-varying dynamic category. Rather
than a search for optimum source data-rates based on the
instantaneous link capacities, we allow the network to expe-
rience a limited amount of fading-induced congestion, and by
doing so, avoid the fast-update problems outlined above. We
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make this concept rigorous in this paper through the notion
of a rate-outage probability: the probability of experiencing
fading-induced congestion.

The resulting cross-layer design problem becomes one to
jointly allocate power and source rates such that the rate-
outage probability is within some arbitrarily small target
tolerance. It turns out that resources should be allocated
according to some notion of an “average SIR”, rather than
the instantaneous SIR that is the basis for Chiang’s snapshot
model. The two paradigms are similar as far as the underlying
optimization is concerned; the main point of departure between
the development in this paper and related work lies in its
solution. We remove the need for a high-SIR approximation,
showing that in a dynamic fading environment we can no-
longer afford to presume as much anyway.

The underlying canonical optimization problem dealt with
here is an interesting one and deserves specific treatment:
solution methods for the particular snapshot or dynamic fading
environments easily flows from any positive development. The
problem was previously thought to be nonconvex, yet there is
much structure present. We show that for a restricted class
of utility functions, the canonical problem is indeed convex
under a transformation. We proceed with a Lagrangian solution
and observe that message passing for both power- and rate-
allocation is required.

Convexity plays an important role in this paper. Indeed,
some of our general convexity results can be back-substituted
into other power control problems found in the literature (for
example, [9], [10], [13], [21]) where a high-SIR assumption
has been a popular but unnecessary path to solution. With the
convexity results herein, such problems can now be solved for
true global optimality.

Our most exciting results involve an effort to preserve the
existing TCP stack. Consequently, measurement-based source
rate allocation becomes possible—for example, with the delay-
based Vegas protocol [20]. Our method involves relaxing the
nonconvex problem formulation into a sequence of convex
approximations. The solution to each approximation involves
the existing TCP stack, each producing successively more
accurate allocations until the approximation becomes exact
and converges. This sequence is shown to always converge to a
Karush-Kuhn-Tucker (KKT) solution of the original problem,
and is a consequence of its careful construction. Unbeknownst
to us, the underlying idea can be traced to the optimization
community as far back as 1966 [1], [22], [29]—our scheme
appears to be a rediscovery of a very useful mathematical
technique that we hope finds a greater prominence in com-
munication engineering circles. Our developments go further
still, where we provide sufficient conditions for the sequence
to produce a globally optimum allocation.

All developments thus far mentioned require some form of
broadcast message passing for power-allocation. We recognize
that in a practical setting it may be desirable to avoid such
overhead and so we include a near-optimal scheme that makes
use of autonomous SIR measurements at each link for power-
allocation.

This paper is organized as follows. In Section II we intro-
duce the system and fading model and derive an expression for

the rate outage probability. Section III outlines the underlying
optimization problem for the joint source rate- and power-
allocation, for both a snapshot channel model and one based
on a composite fading channel.

We review the high-SIR approximation in Section IV before
introducing some new convexity properties of the Shannon
link capacity in Section V. These are subsequently used in
Section VI to prove that the underlying problem is convex
under a transformation, when the utility functions are within a
suitable family. In Section VII we do away with this transfor-
mation by employing a sequence of convex approximations—
each making use of the existing TCP stack—to solve the orig-
inal nonconvex problem formulation. Both of these schemes
require message passing for power-allocation and is the focus
of Section VIII where we outline a third near-optimal protocol
making use of noise measurements instead.

Illustrative numerical simulation results are provided in
Section IX that highlight the convergence speed, tracking
abilities and optimality of the protocols developed in this
paper. Our concluding remarks are given in Section X.

II. SYSTEM MODEL

We consider a MANET having L = {1, . . . , L} logical
links, shared by S = {1, . . . , S} sources.

A. Network Stack Decomposition

1) Network Layer: For each source s ∈ S there exists a
destination node and we denote the path (route) from this
source to the destination as an ordered set of links L(s) ⊆ L.
In this work, we assume that this layer is fixed. i.e. we
assume static routes. In practice, routing may be adapted and
optimized, with these improved routes communicated to the
transport layer. Provided that the time-scale of such updates
is much slower than the relevant time-scale of the cross-
layer optimization presented here, any such adaption will not
adversely interfere with the results provided.

2) Transport Layer: We make the usual fluid-flow model
assumption where each source has an infinite amount of data
to send. In this context, each source s attains a utility Us(xs)
when allocated a data-rate xs ≥ 0, where Us : R+→R is
an increasing strictly-concave function. In practice, however,
sources are often bursty. Our developments in the sequel are
iterative in nature and are nonetheless capable of handling such
dynamics.

3) Physical Layer: We extend the physical-layer model
considered in [10] to incorporate composite fading. This model
utilizes CDMA so that each link in the system may simulta-
neously communicate within the same spectrum allocation, at
the expense of multiple-access interference.

This model has an underlying assumption that nodes
are able to transmit and receive simultaneously. From an
information-theoretic perspective, such a mode of operation
is indeed possible: two-way channels have double the ca-
pacity of the corresponding one-way channel [24]. Moreover,
real implementations of simultaneous transceivers have been
demonstrated in practice [8], [30], where the self-interference
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problem has been mitigated through RF isolators and echo-
cancelers, coupled with base-band digital filtering (e.g. utiliz-
ing a CDMA spreading gain).

The alternative, that we will not consider in this paper
for simplicity, is to emulate full-duplex operation with dis-
tinct transmit and receive transmission modes (time-division
duplex). This is only possible if each node in the network
is globally synchronized through a link-activity schedule and
is akin to a hybrid CDMA-TDMA system. Finding optimal
schedules is a very difficult problem as it is combinatorial in
nature, and the topic is an important area of research in its own
right. Our results can easily be applied to such a paradigm,
through a similar time-slotted system model as outlined in
[17], [21] and references therein.

We consider fixed CDMA spreading sequences sl having
length N and unit energy (i.e. sT

l sl = 1). These sequences are
preassigned to each link l where matched filtering is employed.
Additionally, we make the simplifying assumption that the
self-interference cancellation at each node is perfect.

The instantaneous capacity of each link l ∈ L

cl(P) = W log (1 + KSIRl(P)) (2)

is modelled on the Shannon capacity, offset by the “SIR-gap”
K that reflects a particular modulation and coding scheme
[11]. For simiplicity of notation in the sequel, we will assume
without loss of generality, a gap K = 1 unless otherwise
stated. The base-band (unspread) bandwidth W is assumed
normalized by a fixed packet size, resulting in the capacity
(2) taking units ‘packets/sec’.

The SIR is defined as

SIRl(P) =
PlFllSll(sT

l sl)2∑
j 6=l

PjFljSlj(sT
l sj)2 + σ2

,

where P = [P1, . . . , PL]T is a vector of transmitter powers,
FijSij is the instantaneous gain from the transmitter on link j
to the receiver on link i, and we assume thermal noise power
σ2 at each receiver.

Without loss of generality, we will absorb the (sT
i sj)2

terms into the gain terms Sij using the “effective gains”
Gij = Sij(sT

i sj)2 to simplify the SIR expression

SIRl(P) =
PlFllGll∑

j 6=l

PjFljGlj + σ2
. (3)

B. Fading Model

We can decompose each instantaneous channel gain FijGij

into fast- and slowly-varying components Fij and Gij re-
spectively. We assume Rayleigh fast-fading, where random
variables Fij are iid exponentially distributed with unit mean.
The terms Gij model slow-fading (such as distance-dependent
path-loss and/or log-normal shadowing) and are assumed
constant over the time-scale of interest.

The independence assumption on each Fij is justified since
they represent the fading on distinct paths between nodes in
the network. The unity mean is without loss of generality, as
any non-unity value can be absorbed into the corresponding
Gij component.

It will be useful to define the “average SIR”,

SIRl(P) =
E [PlFllGll]

E
[∑

j 6=l PjFljGlj + σ2
]

=
PlGll∑

j 6=l

PjGlj + σ2
(4)

where we have made use of the unity mean of each Fij .

C. Rate-Outage Probability

Define the rate-outage probability as the probability that
ingress rate Rl to link l exceeds its randomly time-varying
capacity cl, resulting in fading-induced congestion. It is written

Pr {Rl > cl(P)}

= Pr

{
Fll <

Rth
l

PlGll

(∑
j 6=l

PjFljGlj + σ2

)}
, (5)

where we define the data-rate threshold Rth
l =

[exp (Rl/W )− 1].
For our Rayleigh model, we can write (5) in closed form

(cf. [15], [25]) as

Pr {Rl > cl(P)}

= 1− exp
(
−σ2Rth

l

PlGll

)∏
j 6=i

[
1 +

Rth
l PjGlj

PlGll

]−1

(6)

≤ 1− exp
(
−Rth

l /SIRl(P)
)

(7)

where the upper bound was derived in [25] and has been shown
to be very tight.

III. CROSS-LAYER DESIGN PROBLEMS

A. The Canonical Problem

Making use of our notion of link capacity (2), we can
write the joint power and congestion control problem as the
following canonical problem

max
x,P≥0

∑
s∈S

Us(xs)− ω
∑
l∈L

Pl (8)

s.t.
∑

s:l∈L(s)

xs ≤ cl(P), ∀l ∈ L,

where we jointly optimize over the vector of nonnegative
source rates x = [x1, . . . , xS ]T and link transmitter powers P.
The constraints ensure that the network is devoid of conges-
tion: that the rate-allocation of sources do no overwhelm any
intermediate links, where the link-capacity is now a quantity
that is optimized through the power-allocation.

Much like the general NUM problem (1), the objective
here is to maximize the utility of the network. In a MANET,
however, power also becomes an important consideration and
so the above optimization contains a second objective to
minimize power (helping to reduce interference and prolong
the life of nodes relying on batteries). We incorporate the fixed
weight ω ∈ [0,∞) that allows these conflicting objectives to
be traded by a specified amount, a common way in which to
treat multicriterion optimization problems [7, Sec. 4.7].
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Should we choose ω = 0 and ignore the fast-varying gains
Fij (i.e., assume them fixed and absorbing their value into the
slowly-varying gains Gij), this problem becomes the NUM
optimization that is the basis for Chiang’s work in [10].

This problem formulation is based on a somewhat implicit
assumption that all channel gains Fij and Gij are fixed:
a so-called snapshot channel model. Any optimum resource
allocation is then tied directly to the fading state. To cater
for a time-varying channel, a completely new search could be
undertaken for each fading state. From a practical perspective,
however, such an approach may be excessive and so iterative
algorithms designed to solve the snapshot optimization are
often employed even though the channel may change during
execution. To track such changes, it is often the case that the
iteration rate need be “fast-enough”, often greater than the
fading-rate.

B. Composite Fading Formulation

When the channel is fast-varying, it can become pro-
hibitively difficult to undertake a rate- and power-allocation
across the entire network. To illustrate, consider the rate-
allocation of a source s. The congestion state along the
route L(s) must be communicated back to the source, either
implicitly by measurement, or explicitly through message
passing. The congestion state is time-varying as it depends
directly on the link-capacities en route, that is in turn linked to
the fading state of each link. As the fading rate increases, more
timely feedback of the end-to-end congestion state becomes
increasingly difficult.

To alleviate this problem, we could allow the network to
experience a limited amount of fading-induced congestion.
The constraints of the canonical problem (8) are no-longer
adequate: they ensure a zero-level tolerance on fading-induced
congestion. We instead consider the rate-outage probability
and aim to constrain it to a small tolerable value. By doing
so, we show that such a problem in fact becomes decoupled
from the instantaneous state of the composite fading channel.
Resources can then be allocated on a much slower and
manageable time-scale.

Incorporating rate-outage constraints results in the new
NUM problem

max
x,P≥0

∑
s∈S

Us(xs)− ω
∑
l∈L

Pl (9)

s.t. Pr

{ ∑
s:l∈L(s)

xs > cl(P)

}
≤ Ωrate

l , ∀l ∈ L,

where we limit the probability to a maximum value of Ωrate
l ∈

(0, 1) on each link l. It turns out that at the optimum solution,
all constraints are met with equality and so we refer to these
as rate-outage probability targets. They are fixed parameters
of the system.

Although the expressions for rate-outage probability are
known in closed form for the Rayleigh channel [c.f. (6)], we
proceed by making use of the bound (7) to reformulate our

Fig. 1: Concept of the rate outage probability. The ingress rate
to a link (dotted) is adjusted below the average link capacity
by a fading-margin Ml that limits the severity of any fading-
induced congestion to within a target probability Ωrate

l .

constraints as follows,

Pr

{ ∑
s:l∈L(s)

xs > cl(P)

}
≤ 1− exp

(
−Rth

l

SIRl(P)

)
≤ Ωrate

l︸ ︷︷ ︸
new rate-outage constraint

.

This reformulation significantly simplifies subsequent analysis
while still ensuring that the original rate-outage probabilities
are met.

Taking the logarithm of both sides of this constraint and
simplifying, we form a new optimization problem:

max
x,P≥0

∑
s∈S

Us(xs)− ω
∑
l∈L

Pl (10)

s.t.
∑

s:l∈L(s)

xs ≤ W log
(
1 + MlSIRl(P)

)
, ∀l ∈ L,

where we have scaled the average SIR by a positive constant
Ml that is a function of the fixed rate-outage target probabil-
ities as given by

Ml = − log(1− Ωrate
l ). (11)

This optimization has the same form as the canonical
problem (8), however we now deal with average SIR. We
are not concerned at all with the instantaneous fading state
of the channel, only its average. To cater for the variation in
the channel, we employ the fading-margin (11), and allocate
source rates so that the total ingress traffic to any link does
not exceed this margin. In a Rayleigh fading environment,
this margin is “just the right amount” to meet the rate-outage
probability targets Ωrate

l , illustrated in Fig. 1.
The NUM problems (8) and (10) are mathematically equiv-

alent, in the sense that a technique to solve one can be used
to solve the other. In the interest of notational clarity, we will
concentrate on the canonical problem (8) in the sequel, with
reference to the composite fading formulation as appropriate.

IV. PRIOR TREATMENT: HIGH-SIR APPROXIMATIONS

The canonical problem (8) is not jointly convex in {x,P}.
The nonconvexity stems from the link capacity terms (2)
within the constraints: they are neither convex nor concave
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(a) Without fading margin (b) With fading margin

Fig. 2: Accuracy of the high-SIR assumption with and without
fading margins. With a fading margin, the minimum SIR to
support a rate of zero kbps on a link is over 15dB. For positive
link-rates, an exceedingly high SIR is required for accuracy.

in P. Consequently, local optima may not necessarily be
globally optimum solutions and under appropriate regularity
conditions, the well-known KKT optimality conditions are
merely necessary and not sufficient.

Prior work in this area employed a “high-SIR approxima-
tion” on these link capacities, followed by a variable transfor-
mation P̃l = log Pl. The resulting problem was then convex
in the new {x, P̃}-space so that any locally optimum solution
was then declared globally optimum, up to the approximation
[9], [10], [13], [14], [21].

That procedure can be interpreted as a lower bound approx-
imation, ∑

s:l∈L(s)

xs ≤ W log(SIRl(P))

︸ ︷︷ ︸
lower bound approximation

≤ cl(P) (12)

that reduces the size of the constraint set in relation to the
original problem. As such, there is no guarantee that the
feasible region of the high-SIR approximate problem includes
the true globally optimal point(s). The tightness of the bound
is what determines how close the solution to the high-SIR
approximate problem is to the true global optimum. In this
case, the bound becomes tight when SIR � 1.

Consider the following typical operating parameters:
• K = −1.5

log(5BER) for MQAM (see [11], [14], [27]), with
BER = 10−3;

• Ωrate
l = 10% (when a fading-margin is employed) .

Fig. 2 illustrates the tightness of the bound over different
SIR operating points. For the canonical problem without
fading margins, a 10–15dB SIR is required for reasonable
tightness. When fading margins are employed, this jumps
toward 20dB average SIR, and registers positive link-rates only
after a staggering 15dB average SIR.

Such high operating points are undesirable for CDMA
systems, as we must limit the interference between links
by employing extremely large spreading gains, or complex
interference suppression schemes so that channels appear near-
orthogonal. Moreover, it is often unclear whether one would
know a-priori whether a system will operate in a high-SIR
regime, as the SIR (3) itself depends on the power-allocation
and cross-gains Gji between links i and j.

On the surface, a high-SIR assumption may seem reasonable
in some circumstances. Nevertheless, it can also be embarrass-
ingly unacceptable—especially when a fading margin comes
into play. Fortunately such an approximation is not required,
as we next demonstrate.

V. SHANNON CAPACITY CONVEXITY PROPERTIES

In this section we expose some convexity properties of the
Shannon link capacity (2) in preparation for the development
of a method attaining a global solution to the canonical
problem (8) in the subsequent section. At the heart of our
investigations herein is a more general notion of convexity
that has been the subject of extensive research spanning the
last 50+ years.

One such important type of generalized convexity is the
class of quasiconvex functions. While not necessarily convex,
these functions have the property that their lower level sets
are convex [2, Ch. 3]. Consequently, optimization problems
comprising quasiconvex constraint functions have the desirable
property that any local optimum is also global and the KKT
conditions are sufficient for global optimality, much like a
regular convex program.

Result 1 The Shannon link capacity (2) is a quasiconcave
function.

Proof: We can re-write the Shannon link capacity as

cl(P) = W log
(

alP + σ2

a−lP + σ2

)
,

where al = [Fl1Gl1, Fl2Gl2, . . . , FlLGlL] is a row-vector of
channel gains, and a−l is exactly the same, with the l-th
element zeroed.

The argument to the logarithm is known as a linear frac-
tional and is quasilinear (both quasiconvex and quasiconcave)
[2, Sec. 5.2]. The required result follows by composition with
the nondecreasing concave function W log( · ) [2, Prop. 5.1].

In the context of the canonical problem (8), Result 1 might
lead us to believe that the constraint functions (comprising a
sum of linear terms and the negative of the link capacity) is
a quasiconvex function, in turn, giving us hope of sufficient
conditions on global optimality. Unfortunately quasiconvex
functions are not closed under addition, in contrast to the
convex case. Despite this fact, we include Result 1 as it may
prove useful in solving other problems involving the Shannon
link capacity.

A more promising aspect of the growing body of research
on generalized convexity relates to the family of convex trans-
formable functions. These are functions that can be turned into
convex ones by a one-to-one transformation of their domain
and/or range. In an optimization context, such functions prove
useful as seemingly nonconvex optimization problems can
be convexified and solved with relative ease, using convex
programming techniques such as duality.

The most general notion of convexifiability was introduced
by Ben-Tal in 1977 [3]. A function f on D ⊂ Rn (not
necessarily convex), having a domain and range transformation
by functions h and φ respectively, is said to be (h, φ)-convex



SUBMITTED TO IEEE/ACM TRANSACTIONS ON NETWORKING 6

if the combined transformation given by its corresponding
function f̂(x̂) = φ

(
f
(
h−1(x̂)

))
is convex on h(D).

We now proceed with the following general convexity
results before providing our main Shannon link capacity
convexity results.

Result 2 The function h(x) = log (log(1 + ex)) is nonde-
creasing and concave in x ∈ R.

Proof: Omitted due to space restrictions; see [26].

Result 3 The high-SIR (lower bound) approximation of the
Shannon link capacity g(P) = W log(SIRl(P)) is (log, x)-
concave.

Proof: Under the transformation P̃l = log Pl, the approx-
imation can be written

g̃(P̃) = W

P̃l + log(FljGll)− log

(∑
j 6=l

FljGlje
P̃j + σ2

) .

The sum of a linear and concave negative-log-sum-exp term
is clearly concave.

Result 4 The Shannon link capacity is (log, log)-concave.

Proof: Under the range transformation, we can write the
Shannon link capacity as the composition h(gl(P)) where
h( · ) and gl( · ) are given as in Result 2 & 3. With Re-
sults 2 & 3 at hand, the proof follows after domain trans-
formation and scalar composition [7, pg.84].

Result 5 The Shannon link capacity is a so-called d.c. func-
tion (difference of two concave functions).

Proof: The proof follows after rewriting it as

cl(P) = W log(alP + σ2)−W log(a−lP + σ2),

where al and a−l are defined in the proof of Result 1.
Result 4 implies that we might transform the nonconvex

optimization (8) into a much easier convex problem. On the
other hand, Result 5 implies that in general, the Shannon
link capacity may lead to great difficulties, as it is known
that optimization problems having d.c. constraints are NP-hard
[12]. We resolve these seemingly conflicting statements in the
next section.

VI. GLOBAL OPTIMALITY VIA CONVEXIFICATION

Inspired by Result 4, we transform the canonical problem
(8) as follows:

max
x̃,P̃

∑
s∈S

Us (exp(x̃s))− ω
∑
l∈L

exp(P̃l) (13)

s.t. log

( ∑
s:l∈L(s)

exp(x̃s)

)
≤ log

(
cl

(
exp(P̃)

))
, ∀l ∈ L.

The link powers Pl are transformed logarithmically to en-
sure that the right-hand side of the constraints are concave. The
source rates xs are similarly transformed, to ensure convexity
of the left-hand side (recall that log-sum-exp is convex). We
therefore conclude that the constraint set is convex.

Have we succeeded in transforming the nonconvex canon-
ical problem (8) into convex form? We address this question
in the following theorems.

Theorem 1 The objective of the transformed problem (13)
comprises a sum of quasiconcave functions.

Proof: The function f(x) = exp(x) is quasilinear (both
quasiconcave and quasiconvex), since the lower level set
Sc = {x ∈ R | f(x) ≤ c} and the upper level set Sc = {x ∈
R | f(x) ≥ c} are each convex. Consequently, its negative
−f(x) is also quasilinear.

We can write the objective as the sum∑
s∈S

Us(f(x̃s)) +
∑
l∈L

−f(P̃l).

Each term in the first sum is quasiconcave by the concavity
of the utility and composition [2, Prop. 5.1]. The proof
is completed once it is recognized that each −f(x) term
appearing in the second sum is also quasiconcave.

Unfortunately quasiconcave functions are not closed under
addition, and in general, their sum is nonconvex. Theorem 1
tells us that in general, the transformed problem remains
nonconvex. This should not be surprising, given the d.c. nature
of the original problem as noted above. Fortunately there exists
an important exception that is the subject of our next result.

Theorem 2 The transformed problem (13) is convex if the
utility functions are all (log, x)-concave over their domain.

Proof: The objective is separable in each variable, and
clearly concave in P̃ (sum of negative exponentials). Concav-
ity in x̃ follows from the concavity of Us(exp(x̃s)), and is
satisfied whenever the utility functions are (log, x)-concave.

Theorem 2 essentially tells us that when each of the quasi-
concave functions comprising the objective are also concave,
the transformed problem is indeed convex. This depends
directly on the structure of the utility functions. Fortunately, as
the following examples show, many utility functions of interest
satisfy this property to a large degree.

A. Examples

1) Vegas: Associated with TCP Vegas is the utility function

U (v)
s (xs) = αsds log xs,

where αs is a parameter of Vegas and ds is the round trip
propagation delay of source s [20]. This utility function is
clearly (log, x)-concave.

2) Reno: The following utility functions are associated with
TCP Reno:

U (r1)
s (xs) =

√
3/2

Ds
tan−1

(√
2/3Dsxs

)
;

U (r2)
s (xs) =

1
Ds

log
(

Dsxs

2Dsxs + 3

)
,

where Ds is the propagation plus queuing delay of source s.
The first utility function models an older behavior of Reno,
while the second relates to newer variants. The differences
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qP̃ (λ) = min
P̃

{
LP̃ (P̃,λ)

4
=
∑
l∈L

ω exp(P̃l)− λl log
(
cl

(
exp(P̃)

))}
(15a)

qx̃(λ) = max
x̃

Lx̃(x̃,λ)
4
=
∑
s∈S

Us (exp(x̃s))−
∑
l∈L

λl log

( ∑
s:l∈L(s)

exp(x̃s)

) (15b)

relate to particular ways in which a multiplicative-decrease
in rate is implemented upon detection of a packet mark. Full
details and derivations are found in [18].

We are interested whether these utility functions are
(log, x)-concave. Taking the first function, we can write the
second derivative as follows, after a logarithmic domain trans-
formation:

Ũ ′′
s

(r1)(x̃s) =
ex̃s
[
1− (2/3Ds)2e2x̃s

]
[1 + (2/3Ds)2e2x̃s ]2

.

This second derivative is nonpositive only when
(2/3Ds)2e2x̃s ≥ 1. Unraveling the domain transformation
and rearranging reveals that U

(r1)
s (xs) is (log, x)-concave

only on the domain xs ≥
√

3
2Ds

. This utility function can
only satisfy the condition of Theorem 2 if we restrict its
domain to some minimum rate that is a function of the total
propagation and queuing delay. Nonetheless, this minimum
rate is usually small in practice: just over 8 packets/sec for a
delay of Ds = 20 ms.

The second utility function can be re-written as

U (r2)
s (xs) =

1
Ds

log(Dsxs)−
1

Ds
log(2Dsxs + 3)

and is clearly (log, x)-concave.
3) α-Bandwidth Utility: A general utility function given by

Uα
s (xs) =

{
log xs, for α = 1
(1− α)−1x1−α

s , otherwise

was introduced in [23] for the general NUM problem (1).
It provides a so-called α-bandwidth rate-allocation through
selection of the α-parameter: proportional fairness with α = 1,
harmonic mean fairness with α = 2, and that of max-min
fairness as α →∞ [6], [23].

We have already established the (log, x)-concavity for the
case of α = 1 (Vegas). Concentrating on the other case, we
write its corresponding function after domain transformation
as follows:

Ũα
s (x̃s) = (1− α)−1 exp ((1− α)x̃s) .

By inspection, it can be seen that the second derivative Ũ ′′
s

α( · )
is nonpositive only when α ≥ 1. We conclude that this utility
function is (log, x)-concave only when α ≥ 1. Nonetheless,
this α-range captures all notions of fairness that are of interest.

B. Globally Optimal Solution

Assuming that the condition of Theorem 2 is satisfied, we
now derive an algorithm that solves the transformed problem
(13) for the globally optimum rate- and power-allocation. We
will refer to the following development as Algorithm A.

The Lagrangian dual of (13) is given by

min
λ≥0

qP̃ (λ) + qx̃(λ) (14)

where λ = [λ1, . . . , λL] is a vector of dual variables, and (15)
are partial dual functions, thanks to the separable nature of the
problem.

The following result tells us that we can solve this dual
problem in lieu of the primal problem (13) for the globally
optimum result.

Lemma 1 The solution to the dual problem (14) has zero
duality gap.

Proof: The objective of the primal problem (13) is
concave, under the (log, x)-concave utility assumption of
Theorem 2, while the constraints are convex. There exists a
strictly feasible point (c.f. {x̃s = −∞, P̃l = −∞|∀s, l}) and
so Slater’s constraint qualification holds. The proof follows
from [4, Prop. 5.3.1].

We will take an iterative approach to solve the dual problem
(14): at iteration t, the inner minimizations (15) are solved for
fixed λ, then a gradient method is employed to update the
dual variables. Subsequent iterations t + 1, t + 2, . . . would
repeat this process until convergence to the globally optimum
resource allocation.

1) Link Algorithm: Link powers are obtained by solving
(15a).

Lemma 2 Repeated transmitter power updates

P
(t+1)
l =

∆(t)
l

ω +
∑
n 6=l

GnlM(t)
n

(16a)

with

∆(t)
n = λ(t)

n

SIR(t)
n

1 + SIR(t)
n

1

log(1 + SIR(t)
n )

, (16b)

M(t)
n = ∆(t)

n

SIR(t)
n

GnnP
(t)
n

(16c)

solve (15a), for a specified λ.

Proof: Omitted due to space restrictions; see [26].
Each Mn are messages in R+ comprising local information at
each link n: a scaled measurement of the receiver interference-
plus-noise.

These equations combine into a distributed power-update
protocol through message passing, in a conceptually similar
manner to the protocol described in [10]: each receiver on
link n broadcasts their message Mn. In turn, each transmit-
ter l receives each of the broadcasts and estimate Gnl through
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training sequences. They utilize the quantity to update their
power with (16a).

Due to strict concavity and strict convexity of the partial
Lagrangian functions Lx̃(x̃,λ) and LP̃ (P̃,λ) respectively,
the optimizations (15) have unique solutions, for λ fixed.
By [4, Prop. 6.1.1], the dual functions qx̃(λ) and qP̃ (λ)
are differentiable everywhere, therefore we can employ the
gradient-descent

λ
(t+1)
l =

λ
(t)
l + ε

log

( ∑
s:l∈L(s)

x(t)
s

)
− log cl(P(t))


+

(17)

to solve the dual problem (14). This update is shown after
transformation back to the original co-ordinate space and
where ε is a sufficiently small step-size. Only local information
is required for this update: a measurement of the SIR(t)

l and
the ingress rate.

In a similar spirit to prior work in congestion control, the
dual variables λl can be interpreted as “congestion prices”
[10], [20], here in logarithmic form.

2) Source Algorithm:

Lemma 3 The source rate update

x(t+1)
s = x(t)

s exp

(
x(t)

s ε
[
U ′

s(x
(t)
s )−

∑
l∈L(s)

Λ(t)
l

])
(18a)

solve the inner maximization (15b), where ε is a sufficiently
small step size and

Λ(t)
l =

λ
(t)
l∑

m:l∈L(m)

x
(t)
m

(18b)

are normalized congestion prices. The function U ′
s( · ) is the

first derivative of the utility.

Proof: The inner Lagrangian maximization (15b) is
strictly concave for fixed λ, and so we can use a gradient
ascent with a sufficiently small fixed step-size to find the
maximizer. The ascent direction is given by

∂Lx̃

∂x̃s
= xs

(
U ′

s(xs)−
∑

l∈L(s)

λl∑
m:l∈L(m)

xm

)
,

shown after returning to the original co-ordinate space.
The proof follows after the ascent direction in the trans-

formed space

x̃(t+1)
s = x̃(t)

s + ε
∂Lx̃

∂x̃s

is placed back into the original space:

x(t+1)
s = x(t)

s exp
(

ε
∂Lx̃

∂x̃s

)
.

This update can figure into a distributed protocol by making
use of explicit message passing. A field is reserved in an
acknowledgment (ACK) packet header that is sent from the
receiver back to the source. Along the path, each intermediate
link m accumulates its normalized congestion price Λm into
this field. When the ACK reaches the source, this reserved
field forms the summation within (18a).

VII. PRESERVING THE EXISTING TCP STACK

Alg. A requires explicit message passing for both power-
and rate-allocation. In this section we develop a new scheme
that makes use of the existing TCP stack for rate-allocation.
Each source can then control their rate in a distributed manner
through (implicit) measurement of the congestion prices en-
route. The associated power-allocation remains along similar
lines to previous developments.

Our new scheme guarantees a globally optimum resource
allocation when sources’ utility functions are (log, x)-concave,
and otherwise provides a solution that satisfies the first-order
necessary condition for optimality. Unlike related work, we
make no assumptions on the SIR regime and therefore aim
to solve the nonconvex canonical problem (8) for the global
optimum, and doing so in a distributed fashion. Analogous
results in [10] are based on a fixed (suboptimal) convex
approximation under a high-SIR regime.

A. A Series of Convex Approximations

We begin by making use of the inequality

α log(z) + β ≤ log(1 + z) (19)

that is tight (exact) at z = z0 when the approximation
constants are chosen as

α =
z0

1 + z0
, (20a)

β = log(1 + z0)−
z0

1 + z0
log z0. (20b)

These relations are easily derived by equating the slope and
function values at z0 and therefore a unique correspondence
exists between each z0 and the pair {α, β}.

We now form a new lower bound approximation to the
constraint of problem (8):∑

s:l∈L(s)

xs ≤ W (αl log(SIRl(P)) + βl)︸ ︷︷ ︸
new lower bound approximation

≤ cl(P), (21)

where we have the benefit of making this approximation exact
for a given z0 = SIRl(P) by choosing {αl, βl} as in (20).

Making use of the parameterized lower-bound capacity,
defined as

čl(P;α, β) = W (α log(SIRl(P)) + β) , (22)

optimization (8) becomes

max
x,P≥0

∑
s∈S

Us(xs)− ω
∑
l∈L

Pl (23)

s.t.
∑

s:l∈L(s)

xs ≤ čl(P;αl, βl), ∀l ∈ L.

where the approximation vectors α = [α1, . . . , αL] and β =
[β1, . . . , βL] are fixed.

Taking a logarithmic transformation of co-ordinates P̃l =
log Pl in the link powers only results in an equivalent convex
problem: the objective is a sum of exponentials and negative-
concave (thus convex) utilities; the constraint set is convex by
Result 3.
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Not surprisingly, we arrive at the same high-SIR problem
as Chiang [10] when we fix α = 1,β = 0. In our
formulation (23), we have choice over these approximation
vectors. The following procedure for “tuning” them becomes
natural:

1: Initialize all source rates x(0) = 0; link powers P(0) = 0
2: Initialize α(0) = 1,β(0) = 0 (a high-SIR approximation)
3: Initialize iteration counter τ = 1
4: repeat
5: Maximize: solve (23) for solution {x(τ),P(τ)}
6: Tighten: update α(τ+1),β(τ+1) at z0 = SIRl(P(τ))

with (20)
7: Increment τ
8: until convergence

Lemma 4 Each iteration τ results in a monotonically improv-
ing objective. The sequence always converges, at which point
the lower bound approximation (21) becomes exact.

Proof: We first establish that, at the τ -th iteration, the
previous iterate {x(τ−1),P(τ−1)} is a feasible solution to
subproblem (23). Clearly the all-zero vector is feasible for
the first subproblem when τ = 1. For τ > 1, we have that∑

s:l∈L(s)

x(τ)
s

a= čl(P(τ);α(τ)
l , β

(τ)
l )

b
≤ cl(P(τ))
c= čl(P(τ);α(τ+1)

l , β
(τ+1)
l )

for each link l, and our desired result follows.
We show (a) by contradiction. On the left-hand side is the

ingress rate; our approximation (21) of the link capacity is on
the right-hand side. Suppose that at the optimum solution to
the subproblem, the ingress rate is instead strictly less than
the approximate capacity. We could then lower the link power
Pl so that we achieve equality. This increases the objective of
subproblem (23) and so our solution was clearly not optimum.

Inequality (b) follows from the definition of the bound (19),
while equality (c) is a consequence of the tightening step (“T-
step”) and (20).

We therefore conclude that the maximization (“M-step”)
will either improve the objective on the τ -th iteration, or
remain at the same point as the previous (τ − 1)-th iterate
(since it is feasible). The T-step can only lead to an improved
objective on the next iteration: recall that all constraints
are satisfied with equality at the optimum solution to each
subproblem; where they are not, an improved objective can
be had. By the above development, we observe that the point
{x(τ),P(τ)}, while feasible for the (τ +1)-th iteration, may
not be optimal for the (τ+1)-th subproblem, as the constraints
may not be met with equality at that point. Consequently, an
improved objective could be had.

Convergence is brought about when (b) becomes an equal-
ity. That is, the T-step results in the same approximation
vectors for the following iteration: α(τ) = α(τ+1) and
β(τ) = β(τ+1). Clearly then, performing an M-step would
be futile as the solution would also remain the same.

We are also guaranteed convergence, since the monoton-
ically improving objective is bounded above by the global

optimum of the original canonical problem (8), and each
subproblem remains within its feasible region due to the lower
bound constraints (21).

The proof of Lemma 4 does not change if, rather than
finding the optimum to each subproblem during an M-step,
a feasible point that improves the objective is found instead.
This is the key to the formation of a distributed protocol: in
practice, each T-step is achieved through local information (a
measurement of the SIRl) and each link l need not know when
“subproblem τ has been solved”; each link performs a T-step
when the constraint function

gl(x,P) =
∑

s:l∈L(s)

xs − čl(P;αl, βl)

is sufficiently close to zero, corresponding to an equilibrium
between the ingress- and egress-rates at that link. A first-order
approximation to this rule could be a periodic T-step every D
iterations, where D is chosen sufficiently large so that each
subproblem safely converges within the D iterates.

B. Subproblem Solution
The dual problem associated with each subproblem (23) is

min
µ≥0

q̂P̃ (µ) + q̂x(µ) (24)

where µ = [µ1, . . . , µL] is a vector of dual variables, and

q̂P̃ (µ) = min
P̃

{
L̂P̃ (P̃,µ)

4
=
∑
l∈L

ωeP̃l − µlčl

(
eP̃;αl, βl

)}
(25a)

q̂x(µ) = max
x≥0

L̂x(x,µ)
4
=
∑
s∈S

Us(xs)−
∑
l∈L

µl

∑
s:l∈L(s)

xs


(25b)

are partial dual functions, since each subproblem is separable.
1) Link Algorithm: Solving (25a) gives the optimum link

powers for a fixed µ. The fixed-point update

P
(t+1)
l =

Wµ
(t)
l αl

ω +
∑
n 6=l

GnlM(t)
n

(26)

with

M(t)
n = Wµ(t)

n αn
SIRn(P(t))

GnnP
(t)
n

(27)

can be shown to converge to such a solution, where the proof
is similar the one provided for Lemma 2, available in [26].

Links update their power according to (26), with messages
M(t)

n passed via broadcasts from other links, in a similar way
to the operation of Alg. A.

Like the convex problem (13) of the previous section,
the partial Lagrangian functions L̂x(x,µ) and L̂P̃ (P̃,µ) are
strictly concave and strictly convex, respectively, for µ fixed.
The solutions to (25) are therefore unique and the dual problem
(24) can be solved by updating the link congestion prices µl

by the gradient descent

µ
(t+1)
l =

[
µ

(t)
l + ε

{ ∑
s:l∈L(s)

x(t)
s − čl(P(t);αl, βl)

}]+

, (28)
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∂L̂P̃

∂P̃l

= 0 = ωP ∗
l −Wµlαl +

∑
n 6=l

WµnαnSIRn(P∗)
GnlP

∗
l

GnnP ∗
n

(30a)

= ωP ∗
l −Wµl

SIRl(P∗)
1 + SIRl(P∗)

+
∑
n 6=l

Wµn
SIR2

n(P∗)
1 + SIRn(P∗)

GnlP
∗
l

GnnP ∗
n

(30b)

ωPl −
λ∗l

W log(1 + SIRl(P∗))
SIRl(P∗)

1 + SIRl(P∗)
+
∑
n 6=l

λ∗n
W log(1 + SIRn(P∗))

SIR2
n(P∗)

1 + SIRn(P∗)
GnlP

∗
l

GnnP ∗
n

= 0 (32a)

U ′
s(xs)−

∑
l∈L(s)

λ∗l∑
m:l∈L(m) x∗m

= 0 (32b)

λ∗l ≥ 0 (32c)

where ε is a sufficiently small step-size. We observe that these
congestion prices are updated in exactly the same way as the
well-known duality-model solution [20], except that the link
capacity is no-longer a constant: it is our approximation (22).
Should the egress-rate of each link be artificially restricted to
this approximate capacity čl(P(t);αl, βl) instead of the true
value cl(P(t)) given by (2), then it follows from [20] that the
network implicitly performs this update: at equilibrium, the
congestion prices are given by µ∗l = b∗l /č∗l , where bl is the
buffered backlog at the link.

2) Source Algorithm: Solving (25b) gives the optimum
source rate allocation for a fixed µ. We need only consider the
stationary point of the Lagrangian function L̂x(x,µ) since is
strictly concave in x. This results in the well-known duality-
model solution [20]:

x(t+1)
s = U ′

s
−1

( ∑
l∈L(s)

µ
(t)
l

)
, (29)

where U ′
s
−1( · ) is the inverse of the first derivative of the

utility. The inverse is always guaranteed to exist, since each
utility function is strictly increasing.

This is an important result. It implies that existing TCP
algorithms can be used to allocate source rates in this cross-
layer optimization. We can therefore reuse existing TCP algo-
rithms that are fully distributed, such as TCP Vegas that em-
ploys delay measurements for estimating the total congestion
λs =

∑
l∈L(s) λ

(t)
l en-route appearing in (29). Going further

still, it enables a MANET cloud to become transparently
interconnected between other wired internet networks that use
existing TCP algorithms, and doing so without breaking end-
to-end semantics.

C. Global Optimality

Although the canonical problem (8) has nonconvex form,
the following results tell us that Alg. B can truly converge to
a globally optimum resource allocation.

Lemma 5 All constraints are active at any (local or global)
optimum solution to each of the canonical (8), convexified
(13) and convex subproblems (23).

Proof: Observe that the objective function associated with
each problem is a decreasing function of the link powers. In
each problem, each constraint function can be represented by
the inequality fl(x) ≤ gl(P) where we understand that x
and P are the logarithmically transformed variables in the
case of the convexified problem. Suppose that at any (locally
or globally) optimum solution, these inequalities are strict.
We could then lower the link power Pl (or P̃l) so that we
achieve equality. By our earlier observation, this increases
the objective and so our solution was clearly not (locally or
globally) optimum.

Theorem 3 The series of convex approximations converges
to a KKT-point of the original canonical problem (8).

Proof: Due to the separability of the original canonical
problem, and each subproblem, we can investigate the KKT
conditions for x and P separately.

We begin with the link powers. By Lemma 4, the sequence
of convex subproblems converges when iteration t satisfies:

čl(P(t);α(t)
l , β

(t)
l ) = cl(P(t)) = čl(P(t);α(t+1)

l , β
(t+1)
l ).

It follows that the solution P∗ = exp(P̃(t)) satisfies (30),
where (30a) is the KKT condition for the t-th convex subprob-
lem, and (30b) follows from (20a). It is easily verified that
(30b) is exactly the KKT condition for the original canonical
problem (8).

We now consider the source rates. The associated KKT
condition of the t-th convex subproblem is given by

∂L̂x

∂xs
= 0 = U ′

s(xs)−
∑

l∈L(s)

µl, (31)

and is exactly the same condition for the original canonical
problem (8).

We have demonstrated that any solution {x∗,P∗} of the
final subproblem in the series of approximations satisfies
the KKT conditions of the original canonical problem (8).
The proof is completed by recognizing that complementary
slackness is always satisfied, since all constraints are active
(by Lemma 5) and dual variables satisfy µl ≥ 0.

Corollary 1 When the condition of Theorem 2 is satisfied,
the series of convex approximations converges to a globally
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optimum solution to the nonconvex canonical problem formu-
lation (8).

Proof: With the condition of Theorem 2 satisfied, the
problem (13) is convex. Therefore the associated KKT con-
ditions become sufficient for global optimality. That is, the
primal-dual triplet {x∗,P∗,λ∗} solves the convex problem
(13) if the conditions (32) are satisfied and {x∗,P∗} is primal-
feasible. Conditions (32a) and (32b) arise from the stationary
points of the partial Lagrangian functions LP̃ and Lx̃ respec-
tively (shown after returning to the {x,P}-space). Condition
(32c) follows from Lemma 5, and implies complementary
slackness.

Suppose now that the sequence of convex approximations
converge to the triplet {x̂∗, P̂∗,µ∗}, along with approximation
vectors {α∗,β∗}. By our supposition, this solution is feasible
and satisfies the KKT equations (30b) and (31). Recall that the
constraints are all active (Lemma 5) and that our link capacity
approximation is exact (Lemma 4). That is, for all links l ∈ L:∑

m:l∈L(m)

x̂∗m = čl(P̂∗;α∗l , β
∗
l ) = cl(P̂∗). (33)

We can now construct new dual-variables

λ̂∗l = µ∗l cl(P̂∗) = µ∗l
∑

m:l∈L(m)

x̂∗m ≥ 0, (34)

by making use of condition (33) and recognizing that
each term is nonnegative. By inspection, the new triplet
{x̂∗, P̂∗, λ̂

∗
} satisfies the KKT conditions (32a)–(32c), where

we remind the reader of the link capacity definition (2). It
then follows that {x̂∗, P̂∗} is a globally optimum rate- and
power-allocation.

Corollary 1 tells us that the multipliers µ∗ arising from
the sequence of approximations are a scalar multiple of the
optimum multipliers λ∗ associated with the convex optimiza-
tion (13). A straightforward rearrangement of (34) further
reveals that they are exactly the normalized congestion prices
(18b).

VIII. DISPOSING OF POWER-ALLOCATION OVERHEADS

In pursuit of the (globally) optimum solution to the canoni-
cal problem (8), algorithms A and B require explicit message
passing between links for power-allocation. While broadcasts
are a viable way in which to realize such inter-link commu-
nication, an ideal scheme would use some kind of indirect
measurement to achieve a similar goal.

In this section, we formulate an algorithm having this
property: each link’s power-allocation is based on the locally
measured interference level caused by other links. No explicit
message passing is required. For the logarithmic utility func-
tions of TCP Vegas, we outline a scheme that makes use
of limited message passing only for source rate allocation.
These messages are embedded in a header field within ACK
packets that traverse the source’s reverse-path and presents
little overhead.

Of course, we can opt to simply and completely omit pass-
ing of messages Mn in an implementation of Alg. B, creating
a fully distributed algorithm at the expense of optimality.

How its subsequent performance compares to the following
development is an interesting direction of future research.

1) Link Algorithm: The following development pivots on
the fact that, at the optimum solution, the ingress rate to a
link is matched to its capacity (all constraints are active).
Considering a particular link l, we can rearrange the constraint
in terms of the link transmit power, resulting in the following
power update:

P
(t+1)
l =

P
(t)
l

SIRl(P(t))

exp

 1
W

∑
s:l∈L(s)

xs

− 1

 . (35)

This update rule is very simple. The fraction outside of
the brackets is a scaled noise measurement, observed to
be independent of P

(t)
l on comparison with (3), while the

bracketed quantity makes use of an estimate of the ingress
rate. With x fixed, we can interpret the bracketed quantity as
a SIR-threshold; convergence of the update then follows from
[32].

2) Source Algorithm: General Utility: We now obtain a
rate-allocation under the assumption that link powers are
fixed. Substituting (35) into (8) results in the unconstrained
optimization

max
x≥0

∑
s∈S

Us(xs)− ω
∑
l∈L

Pl

SIRl(P)

exp

( ∑
s:l∈L(s)

xs

W

)
− 1

 .

(36)

This approach is not entirely ideal: it does not guarantee
that we will arrive at the jointly optimum rate- and power-
allocation of the original problem (8). To do so would require
that we instead consider the above optimization with Pj

replaced by the function P ∗
j (x). This function, in vector form

P∗(x) = [P ∗
1 (x), . . . , P ∗

L(x)], gives the simultaneous mini-
mum power solution to (35) for the specified x. Unfortunately
we do not have a closed-form expression for this function: it is
the solution to L coupled nonlinear equations. In the previous
sections, the congestion prices λl played a go-between the
physical and transport layers and helped us avoid this issue.

Returning to (36) with P fixed, we observe that the objective
is strictly concave in x. We can therefore make use of the
source-rate update

x(t+1)
s =

[
x(t)

s + ε∂(t)
s

]+
(37)

to find the optimum rate-allocation, where ε is a sufficiently
small step-size and

∂(t)
s = U ′

s(x
(t)
s )− ω

W

∑
l∈L(s)

Pl

SIRl(P)
exp

 1
W

∑
n:l∈L(n)

x(t)
n


is an ascent direction for source s.

3) Source Algorithm: Vegas Utilities: An alternative to the
gradient-update (37) is the nonlinear Gauss-Seidel algorithm
that solves (36) by successively maximizing the objective in
each component xs while holding all others fixed [5].

For the logarithmic utility function Us(xs) = αsds log xs

of TCP Vegas, we can find the component-wise maximizer by
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considering the stationary point of the objective, with all other
source rates fixed. This leads to the fixed-point equation

xs =
W

ω

αsds∑
l∈L(s)

Φs
l (x−s)

exp(−xs/W ) (38)

where

Φs
l (x−s) =

Pl

SIRl(P)
exp

(
1
W

∑
m:l∈L(m)

m6=s

xm

)

is considered fixed, as it depends on the vector x−s of
source rates that does not include xs. It can be shown that
the associated fixed-point is not attractive over all xs ≥ 0
and so the associated iterative rate-update may not converge.
Fortunately, our next result provides a remedy.

Result 6 With φ ≥ 0 fixed, the equation

z = log
(

φ + ez

1 + z

)
(39)

has a unique fixed-point, that is attractive for z ≥ 0. Moreover,
it shares the same fixed-point as

z = φe−z. (40)

Proof: Omitted due to space restrictions; see [26].
Making use of Result 6 with{

φ = 1
ω

αsds∑
l∈L(s) Φs

l (x−s)

z = xs/W

results in the convergent source rate update:

x(t+1)
s = x(t)

s + W log

 1 + αsds

ωM(t)
s

1 + x
(t)
s /W

 , (41)

where

M(t)
s =

∑
l∈L(s)

Φs
l (x−s) exp(−x(t)

s /W )

=
∑

l∈L(s)

Pl

SIRl(P)
exp

(
1
W

∑
m:l∈L(m)

xm

)
(42)

are messages that are accumulated from each link along the
route of a source s. Each of these terms involves a noise
measurement that is scaled by the total ingress rate, a per-
link, locally measurable quantity. As in Section VI-B2, these
terms may be progressively accumulated into an ACK packet
header as it traverses from the receiver back to the source.

This source rate update is guaranteed to converge should
(41) and (42) be iterated until convergence for a single
source s, holding fixed other sources, and before proceed-
ing to the next source. In practice, we have observed it to
converge even when these messages are used for continuous
asynchronous updates.

Fig. 3: MANET with four sources having routes shown. Nodes
are spaced 100m apart.
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Fig. 4: Illustrative example (snapshot channel gains).

IX. NUMERICAL RESULTS

In this section, we provide illustrative numerical examples
of Algs. A–C, where we highlight the speed of convergence,
suitability under composite-fading and tracking ability.

We consider a MANET with topology illustrated in Fig. 3.
Each link is assigned a random CDMA spreading sequence of
unit energy having length N = 8. A transmission bandwidth
of 1MHz is selected, giving a W = 125kHz baseband on
each link. We model the SIR gap as K = −1.5/ log(5BER)
with BER = 10−3 corresponding to MQAM modulation [11].
Vegas logarithmic utilities are employed throughout, for a fair
comparison between algorithms. A scaled base-RTT of αsds =
20ms is arbitrarily chosen for each source. An equal trade-off
between power-allocation and network-utility is chosen with
ω = 1. All simulations are initialized from an all-zero state.

A. Static Channel

We begin with the snapshot channel model, where fading
is ignored (all Fij = 1) and the slowly-varying gains are
assumed fixed with Gij = Sij(sT

i sj)2. Each Sij = d−4
ij is

a loss depending on distance dij from transmitter on link j to
the receiver on link i.

Fig. 4a compares the evolution of all algorithms. Alg. B
converges much faster than Alg. A, and both to the global
optimum within 50 and 250 iterations respectively. This is
significant, as Alg. B has solved the nonconvex canonical
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(b) Composite formulation (0.1kHz update rate)

Fig. 5: Snapshot- and composite-fading algorithm comparison.

problem formulation (8) for the global optimum with a dis-
tributed algorithm, while preserving the existing TCP Vegas
stack: no explicit message passing is required for source
rate allocation. Corresponding power- and rate-allocations are
shown in Figs. 4b & 4c.

While Alg. C is clearly not optimal, it is very close.
Performance is observed to be similar to the high-SIR based
protocol, although it was observed to use roughly double the
transmission power as compared to the optimal (Alg. A & B).
Of great importance is the observed rate of convergence—
within just a few iterations—even though only one sub-
iteration of the fixed-point updates (41) and (42) are taken.

B. Composite Fading Channel

We now consider a channel subject to fading, where we
compare the snapshot- and composite fading-based schemes.
Only Alg. C is considered, for brevity and due to its attractive
convergence rate and fully-distributed power-updates.

At each symbol period t, fading realizations F
(t)
ij Gij are

computed with Clarke’s model [28, Ch. 5] at a carrier fre-
quency of 2.4GHz and maximum node velocity 5km/hr.1 Each
slowly-varying gain Gij is fixed (taking the same value as
the static scenario). Gains are normalized so the time-series
F

(t)
ij has unity mean for all i, j. We make use of the same

sequence of channel realizations for each simulation, under
the assumption of perfect channel knowledge.

Although the snapshot-based scheme assumes fixed chan-
nels, we implement it blindly though changes occur between
iterates. Experimentally, we found a minimum update fre-
quency of 10kHz sufficient for the algorithm to adequately
track the fading without severe fading-induced outage, illus-
trated in Fig. 5a for links 2 & 3. Recall that each update

1We use v = 10km/hr to calculate the maximum Doppler frequency for
the worst-case situation of nodes moving in opposite directions.

includes message-passing of (42) along each route. At a rate of
10kHz, this presents an prohibitive implementation overhead.

An update frequency of just 0.1kHz was found to be
sufficient for the composite fading based algorithm to converge
within just 50ms from an all-zero state, as illustrated in Fig. 5b.
In comparison to the snapshot-based algorithm, this update
frequency is much more manageable, although at the expense
of lower source rates and a limited amount of fading-induced
congestion, in this case, controlled by a rate-outage target of
Ωrate

l = 20% for all links.
In reality, perfect channel state is not available and we

must obtain estimates of the slowly-varying gains Gij from
the composite instantaneous fading state F

(t)
ij Gij . This can be

achieved for example, by averaging out the fast-fading gains
F

(t)
ij with a first-order filter. The iterative algorithm would

then track estimates of Gij until some degree of accuracy is
achieved. In practice, the gains Gij also vary with time and so
the the algorithm should run continuously, allowing changes
in these gains to be tracked.

X. CONCLUSION

This paper has revisited a cross-layer design problem for
MANETs involving power- and rate-allocation. The primary
focus was on the analysis and solution of the underlying
canonical optimization problem. Complicated by Shannon link
capacity terms that are neither convex nor concave, previous
attempts at solution involved high-SIR approximations that can
result in allocations far from the true global optimum.

We have shown that the Shannon link capacity is in
fact quasiconcave and, under a suitable range and domain
transformation, can be “concavified”’ without resorting to
approximation. These new developments revealed that the
canonical problem is actually convex, under a transformation
and suitable choice of NUM utility function. A new optimal
protocol was subsequently derived, devoid of any high-SIR
approximation.

Due to message-passing requirements of the optimal proto-
col, a second new solution method was proposed, involving a
series of convex approximations. Each made use of the existing
TCP stack for rate-allocation—a desirable attribute since these
TCP protocols are distributed in nature. Convergence results
to the global optimum of the underlying nonconvex canonical
problem formulation were given when utilities are within the
family already mentioned. It was further outlined how each
approximate problem may be solved only partially, leading to
a new distributed protocol.

A third protocol was also developed, having near-optimal
performance in simulation with a convergence rate orders of
magnitude faster than previous developments. It enjoyed the
additional advantage of fully-distributed measurement based
power-allocation, greatly simplifying implementation of such
cross-layer designs in practice.

The results of this paper extend beyond the applications
described. Many existing problems in the literature relying on
high-SIR convex approximations can now be solved for true
global optimality with the results and ideas presented herein.
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