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Abstract— We address a lifetime maximization problem for a
single-hop wireless sensor network where multiple sensors encode
and communicate their measurements of a Gaussian random
source to a Fusion Centre (FC). The FC is required to reconstruct
the source within a prescribed distortion threshold. The lifetime
optimization problem is formulated as a joint power, rate and
timeslot (for TDMA) allocation problem under the constraints
of the well known rate distortion constraints for the Gaussian
CEO problem, the capacity constraints of the wireless links,
the energy constraints of the sensor nodes and the strict delay
constraint within which the encoded sensor data must arrive at
the FC. We study the performances of TDMA and an interference
limited non-orthogonal multiple access (NOMA) (with single
user decoding) based protocols and compare them against the
upper bound provided by the optimal lifetime performance where
the capacity constraints are given by the Gaussian multiaccess
capacity region. While the constrained non-linear optimization
problems for the TDMA and the Gaussian multiaccess cases
are convex, the NOMA case results in a non-linear nonconvex
D.C. (difference of convex functions) programming problem.
We provide a simple successive convex approximation based
algorithm for the NOMA case that converges fast to a suboptimal
lifetime performance that compares favourably against the upper
bound provided by the Gaussian multiaccess case. Extensive
numerical studies are presented for both static and slow fading
wireless environments with full channel state information at the
fusion centre.

I. INTRODUCTION

Wireless sensor networks (WSN) have become a key tech-
nology for the 21st century due to its widespread applications
in security, health, disaster response, defense, telecommunica-
tions, structural health monitoring etc. Due to limited energy
resources and a distinct lack of centralized coordination (com-
pared to cellular networks), the usefulness of these networks
can become limited unless special care is taken to optimize
energy consumption in communication and computation. Op-
timizing the lifetime of a WSN is thus an important problem.
In many typical wireless sensor network applications, a set
of nodes or agents measure or collect data from a source or
phenomenon of interest (e.g, temperature in a bushfire prone
area or surveillance pictures of human movements etc.) and
then transmit them (possibly over a multi-hop relay network)
to a sink or a base station where all data are collected and
decisions or final estimates are made. In such a network,
energy consumption is affected by such diverse parameters
as choice of routes, MAC protocols, transmission scheduling,
data rates, transmit power, wireless channel quality and fading
etc. Thus, to optimize the lifetime of a WSN, one really has
to consider a cross-layer design. This often leads to very
complicated mixed-integer nonlinear optimization problems.
Some such cross-layer issues with joint power and rate control

This work was supported by the Australian Research Council. CUBIN is
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have been studied in [1], [2]. In particular, [2] studied a joint
power and rate control problem for lifetime optimization in a
multi-hop wireless sensor network with constraints on outage
induced by channel fading. In both [1], [2], nonconvex nonlin-
ear optimization problems were transformed into approximate
convex optimization problems and solved using sophisticated
convex optimization tools. Lifetime optimization with joint
rate and power control in interference limited ad hoc networks
has also been considered in [3], whereas some earlier work
has focused on specific key issues such as maximum lifetime
routing algorithms such as [4], [5].

However, the nature of data being communicated via the
WSN’s considered in the above articles as well as in many
other works (that cannot be mentioned here due to space
limitations) were considered to be generic, and the only
constraints (if any) on the rates of data transmission were
dictated by flow conservation laws and the maximum link
capacities. No particular attention was paid to the nature of
the source of the data and the specific task performed by the
WSN. Recently, however, a lifetime maximization problem
was considered with rate distortion constraints in [6]. In this
paper, the specific task for the WSN is considered to be
reconstruction of a remote random source. It is well known
from rate distortion theory that higher data rates may allow
high quality data reconstruction (e.g, in surveillance camera
applications), it may also result in large amount of energy
expenditure in a WSN due to multi-hop transmission. This
inherent trade-off between transmission rates (to achieve a
certain pre-specified distortion threshold) and lifetime of the
WSN was studied in [6] for an interference-free WSN where
transmission power was kept fixed and the only optimization
variables were the data rates in the various links of the
WSN. The rate distortion constraints were given by the data
rate constraints derived in [7] for sensors with unequal noise
variances for the well known Gaussian CEO problem. In order
to make their nonlinear optimization problem tractable, the
authors of [6] made some judicious linear approximations and
obtained upper and lower bounds on the optimal network
lifetime using linear programming methods. It was shown
in [8] however, that this nonlinear optimization problem can
be transformed into a convex problem by a clever variable
substitution and can be solved exactly by using standard
convex optimization tools such as interior point methods.

Another key constraint in data communication over wireless
sensor networks is the delay incurred in receiving the data,
which may be critical in many applications such as video
surveillance, disaster response scenarios, or networked control
applications where actuators have to take timely decisions or
actions to stabilize a remotely observed system via a WSN. In
[9], the authors considered an energy optimal time scheduling
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problem with a strict delay constraint where a nonuniform
time division multiple access scheme (TDMA) is used for
downloading fixed amounts of data from various sensors into
a fusion centre within a strict time duration. In our paper, we
consider a similar single-hop sensor network where multiple
sensors (agents) encode and transmit noisy measurements
of a remote Gaussian source to a Fusion Centre (FC). The
encoding rates for the various sensors can be different and
are adjustable to suit the channel conditions and the delay
constraint. The sensors or agents transmit their their encoded
data at rates which may or may not be equal to the encoding
rates, depending on the multiple access scheme and the delay
constraint. Each sensor is equipped with a finite amount of
initial energy. The wireless channel between each sensor and
the fusion centre is taken to be static over the duration of the
strict delay constraint. This delay duration is assumed to be
long enough so that the maximum achievable data rate can be
expressed as the Shannon capacity for that channel realization,
but not too long so that the delay constraint loses its physical
significance (see [9] for a similar assumption). The channels
while being static during one time slot duration equal to the
delay, can change randomly from one time slot to the next.
In this paper we assume that the FC has perfect channel state
information (CSI) within a specific delay duration time slot,
since the channel fading is assumed to be slow.

We consider the problem of maximizing the lifetime of this
sensor network with respect to transmit power and encoding
rates (or transmission rates since they are related), subject
to the data transmission rates satisfying the channel capacity
constraints and the encoding rates satisfying the rate distortion
constraints. The network lifetime is assumed to be long enough
such that the sensor network is responsible for collecting
measurements from the random source and transmitting them
to the FC within the delay constraint a large number of times.
This assumption essentially justifies the use of information
theoretic capacity and rate distortion constraints in the formu-
lation of the lifetime optimization problem. We consider both
orthogonal time division multiple access (TDMA) (where an
individual sensor transmits only for a fraction of the delay
duration) and non-orthogonal interference limited multiple
access (where all sensors transmit for the entire time slot
but can create interference for each other) as the possible
multiple access schemes. We also show that the ideal Gaussian
multiaccess channel capacity constraints (assuming the sensor
data are independent, although this is clearly not the case here)
provide an upper bound on the achievable lifetime and use
this as a benchmark to compare the lifetimes achieved by the
TDMA and interference limited schemes. The corresponding
optimization problems can be convex (Gaussian multiaccess
and TDMA) or a nonconvex D.C. (difference of two convex
functions) programming problem (interference limited case).
We provide centralized solutions to the optimal power, rate
and transmission duration (in the case of TDMA) allocation
problems. The lifetime maximization problem for the Gaussian
multiaccess case and the TDMA case can be solved glob-
ally using well know convex optimization tools. In order to
solve the nonconvex optimization problem for the interference
limited case, we use clever (similar to [10]) successive con-
vex approximations of the original nonconvex optimization
problem. In contrast to complex algorithms based on outer
approximations or branch and bound methods [11] that take
a long time to converge, we present practical algorithms
that converge fast to suboptimal power and rate solutions
for the interference limited case. These solutions, although

suboptimal, compare favourably to the lifetime upper bound
obtained by the Gaussian multiaccess case. Essentially, we
argue that these algorithms can be run at the fusion centre and
the optimal (or suboptimal) variables can be fed back to the
sensors. Energy consumption is restricted to transmission only
although this framework can be readily extended to include
other forms of energy consumption such as due to sensing,
reception and computation etc. Also, the fusion centre is
assumed to have access to replenishable energy and therefore
the energy consumption in feedback is not considered. Finally,
we comment that we only focus on centralized (i.e, not
distributed) optimization algorithms as the number of sensing
agents we can consider in such networks is small in the context
of our problem. This is mainly due to the fact that the number
of rate distortion constraints increases exponentially with the
number of sensing nodes.

II. PROBLEM FORMULATION

The wireless sensor network considered in this paper is
presented in Figure 1 where multiple sensor nodes or agents
send their information to a fusion centre (FC) via wireless
links. The set of sensor nodes is denoted by V . The sensor
nodes {A1, A2, . . . , A|V|} observe a Gaussian random source
X where X ∼ N(0, σ2

x). The noisy measurement at the
sensor Ai is represented by X + ni where ni ∼ N(0, σ2

i ). In
general, the noise variances at the different sensor nodes are
unequal, representing an inhomogeneous set of sensors. Agent
Ai encodes information at a rate Ri and sends it to the fusion
centre at a transmission rate of RT

i . The transmission rate and
the encoding rate may or may not be the same depending on
the multiple access protocol. The FC has to reconstruct the
source X after receiving encoded measurements from all |V|
sensors.

Fig. 1. Sensor Network measuring a random source

It is well known that the encoding rates from various sensors
need to satisfy a set of rate distortion constraints to achieve
a maximum distortion threshold. For the multi-sensor case,
these results were obtained as the solution to the Gaussian
CEO problem for the inhomogeneous sensor case in [7]. These
constraints were rewritten in a slightly different form in [8] in
the context of a lifetime optimization problem for a multi-
hop sensor network. Below we quote these rate distortion
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constraints from [8], which can be easily shown to be convex:
∑

v∈Wk

rv +
1
2

log
1

Dth
− Uk

2
−

∑
v∈Wk

Rv ≤ 0

k = 1, . . . , 2|V| − 1 (1)

eUk − 1
σ2

X

−
∑

v∈V\Wk

1 − e−2rv

σ2
v

≤ 0 k = 1, . . . , 2|V| − 1

1
Dth

− 1
σ2

X

−
∑
v∈V

1 − e−2rv

σ2
v

≤ 0

where Dth is the maximum allowed distortion threshold after
reconstruction at the fusion centre and r ∈ R

+ and U ∈
R are auxiliary variables. The set W contains all the non-
empty subsets {W1,W2, . . . ,W2|V|−1} of V . Here, R =
[R1, . . . , R|V|]T where T denotes the transpose operation.
Clearly, to achieve a distortion less than or equal to Dth

at the fusion centre the amount of information FC fetches
from the various agents needs to be great than or equal to
R = [R1, . . . , R|V|]′ in bits/sec/Hz. The rate distortion region
(Dth,R) is called achievable when the inequalities (1) hold
for the pair Dth and R.

We assume that the sensors are sensing data at constant
rates and the FC has to download all data encoded by each
sensor within a strict time schedule T . This delay constraint
essentially implies that all data encoded by sensor Av within
a time duration T have to be received at the FC within the
same time duration for all v. Note that if the sensors are
transmitting all the time, such as in an interference limited
scheme, then this delay constraint is equivalent to having
the transmission rate equal to the encoding rate. However,
if a TDMA scheme is chosen for transmission, where Av

transmits only for a duration tvT , where 0 ≤ tv ≤ 1,
and

∑
v tv = 1, then the transmission rate RT

v = Rv

tv
,

which is clearly greater than the encoding rate. The channels
between the sensor nodes and the FC are assumed to suffer
distance based attenuation in the first instance and later assume
that the channels additionally undergo independent identically
distributed Rayleigh fading. In the case of fading, the channel
dynamics are assumed to be slow enough so that the maximum
achievable rate of transmission for each channel is given by
the Shannon capacity for that particular channel realization,
which is assumed to be static within the delay duration T for
all sensors. Consequently, we consider perfect CSI at the FC
for the fading scenario as well.

Assuming that the v-th sensor is equipped with an initial
energy Ev , we define the lifetime of the network as

LTnet
�
= min

v∈V
LTv = min

v∈V
Ev

P avg
v

(2)

where P avg
v is the average power consumed in data transmis-

sion. This concept of lifetime is intuitive in the sense that it
denotes the minimum time before the first node runs out of
energy. Note that we do not consider any other form of energy
expenditure such as sensing, computation etc. and also the
energy expenditure at the FC is not taken into account since the
FC is assumed to have access to a substantial energy reserve.
In this paper, we seek to maximize this network lifetime (as
given in (2) subject to the rate distortion constraints, the delay
constraint and the channel capacity constraints mentioned
above, by optimally allocating transmit power, encoding rates
and (in the case of TDMA) transmission time duration at the
various sensors. These optimization algorithms are performed

as the FC and the optimal variables are fed back to the sensors
with negligible communication delay. We consider the two
usual multiple access schemes: an orthogonal TDMA and a
non-orthogonal interference limited case and compare their
performance with an upper bound provided by a (idealized)
protocol that can achieve the Gaussian multiaccess capacity
region for independent sensors. In the next section, we present
the nonlinear optimization problems for the above three cases.
A. TDMA system

In a TDMA based transmission scheduling scheme, we
allow the sensor node/agent Av to transmit during a fraction tv
of the available time slot (which is also taken to be equal to the
delay duration within which all data have to be downloaded
into the fusion centre). Clearly, we have

∑
v∈V tv ≤ 1. As

alluded to earlier, the transmission rate of node v is decided
by the encoding rate Rv in (1) and allocated timeslot tv , and
is given by Rv

tv
. In addition, the rate of transmission is upper

bounded by the the continuous-time Shannon capacity (assum-
ing full CSI at the FC) with channel bandwidth normalized to
(W = 1) such that:

W log(1 +
gvPv

N0W
) = log(1 +

gvPv

N0
) ≥ Rv

tv
(3)

where Pv is the transmission power for the v-th sensor
node, gv denotes the propagation gain of the wireless channel
between node v and the FC, and N0 is the average power of
the background noise at the FC receiver.

Combining all the constraints (rate distortion, delay and
capacity constraints) and the objective function (2), we have
the following optimization problem for the TDMA scheme:

max
t,P,R

LTnet (4)

s.t.
Ev

Pvtv
≥ LTnet v = 1, . . . , |V|

log(1 +
gvPv

N0
) ≥ Rv

tv
v = 1, . . . , |V|

∑
v∈V

tv ≤ 1

{R : (1) holds for distortion threshold Dth}
t,P,R � 0.

It can be easily shown to be a non-linear nonconvex opti-
mization problem. However, one can transform this nonconvex
problem to a convex optimization problem by defining the
following variables: q̄ = 1

LTnet
, P̄v = tvPv . One can then

rewrite the energy and capacity constraints and transform
the above nonconvex optimization problem into the following
convex formulation, which can be solved by well established
convex optimization tools based on interior point methods.

min
q̄,t,P̄,R

q̄ (5)

s.t. − qEv + P̄v ≤ 0, v = 1, . . . , |V|
tv(exp

Rv

tv
− 1) − gv

N0
P̄v ≤ 0, v = 1, . . . , |V|

∑
v∈V

tv ≤ 1

{R : (1) holds for distortion threshold Dth}
q̄, t, P̄,R � 0.
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B. Interference Limited System

In the interference limited scheme, all sensors transmit
throughout the entire delay duration, and hence there always
exists interference from other sensors which degrade the
quality of reception at the FC. The capacity constraint on the
transmission rate is then given by (note that here transmission
rate is the same as the encoding rate and bandwidth has been
normalized to W = 1)

log(1 +
gvPv∑

k �=v gkPk + N0
) ≥ Rv (6)

Note that in this formulation, each sensor sees the interference
created by other sensors as noise and hence this scheme
is non-orthogonal as opposed to the TDMA scheme. While
this results in an inferior channel capacity, the FC uses a
very simple single user decoding policy (instead of joint
decoding), which allows for a low-complexity receiver. We call
this simple multiple access scheme (6) as the non-orthogonal
multiple access scheme (NOMA) in the rest of the paper.

Clearly, one can obtain better channel capacity and conse-
quently, better network lifetime by considering multiple access
schemes such as CDMA with multiuser detection such as
linear minimum mean square error (LMMSE) receivers [12]
or other more complex nonlinear receivers such as successive
interference cancellation (SIC). Lifetime optimization prob-
lems for CDMA with complex multiuser detection schemes
will be studied in a separate paper. We emphasize however,
that the optimization technique developed in this paper for the
interference limited case can be easily extended to cope with
such problems.

Note that the energy requirements in the NOMA system
are different to the ones in TDMA, since all sensor nodes are
transmitting throughout the entire time the network is alive.
Therefore, for all v, we have Ev

Pv
≥ LTnet.

In summary, the lifetime maximization problem in the
NOMA case is given by:

max
P,R

LTnet (7)

s.t.
Ev

Pv
≥ LTnet v = 1, . . . , |V|

log(1 +
gvPv∑

k �=v gkPk + N0
) ≥ Rv v = 1, . . . , |V|

{R : (1) holds for distortion threshold Dth}
P,R � 0

This optimization problem is non-linear and nonconvex. In
Section III, we will propose a successive convex approxima-
tion based methodology to solve the optimization problem
given by (7).

C. Gaussian Multiaccess Channel

It is obvious that in the problem we consider, the sensor
nodes are transmitting to the FC via a Gaussian Multiaccess
Channel. Note that here all sensors measure the same source,
hence their data are correlated. Obtaining the capacity region
for the Gaussian multiaccess channel with correlated sources
is known to be a difficult problem. However, here we consider
the capacity region for the Gaussian multiaccess channel
(pretending that the sensor data are independent) and show
that the corresponding optimal lifetime provides an upper
bound on those achieved by the TDMA and NOMA schemes.

This capacity region is given by (with normalized bandwidth
W = 1) [13]{ ∑

v∈Wk

Rv ≤ log
(
1 +

∑
v∈Wk

gvPv

N0

)
; where Wk ∈ W,

k = 1, 2, . . . , 2|V| − 1
}

. (8)

Accordingly, the optimization problem can be described as

max
P,R

LTnet (9)

s.t.
Ev

Pv
≥ LTnet v = 1, . . . , |V|

∑
v∈Wk

Rv ≤ log
(
1 +

∑
v∈Wk

gvPv

N0

)
k = 1, . . . , 2|V| − 1

{R : (1) holds for distortion threshold Dth}
P,R � 0.

The non-linear optimization problem (9) can be converted to
a convex minimization problem simply after a single variable
substitution q̄ = 1

LTnet
:

min
P,R

q̄ (10)

s.t. Pv − Ev q̄ ≤ 0 v = 1, . . . , |V|

e
∑

v∈Wk
Rv −

∑
v∈Wk

gvPv

N0
− 1 ≤ 0 k = 1, . . . , 2|V| − 1

{R : (1) holds for distortion threshold Dth}
P,R, q̄ � 0

Therefore, the rate and power allocation problems for the
Gaussian multiaccess capacity region with rate distortion
constraints can be solved using standard convex optimization
tools. It can be shown in a fairly straightforward manner that
the optimal lifetime solution of (10) provides an upper bound
for the optimal solutions achieved by the TDMA and NOMA
schemes, as the following result states. The proof can be found
in the Appendix for the TDMA case, the proof for the NOMA
case can be obtained in a similar fashion and is not provided
due to lack of space. For a simple intuitive explanation of this
result, see Chapter 6, pages 232-233 of [14].

Proposition 1: The optimal lifetime solution to the convex
optimization problem for the Gaussian multiaccess rate region
given by (10) provides an upper bound to the optimal lifetime
solutions for nonconvex optimization problems for the TDMA
and the NOMA cases given by (4) and (7), respectively.

III. SUCCESSIVE CONVEX APPROXIMATIONS FOR THE
NONCONVEX NOMA PROBLEM

In Section II, we formulated the lifetime optimization
problem with the rate distortion constraints for the NOMA
environment which resulted in a non-linear nonconvex opti-
mization problem. In fact, by suitable variable transformations,
one can pose this nonconvex problem as a D.C. (representing
difference of convex functions) programming problem which
can be converted to a corresponding canonical D.C. program-
ming problem. Canonical D.C. problems can be solved by
outer approximation and branch and bound methods [11].
However, the complexity of D.C. programming is NP hard and
convergence time is quite long [15]. In our work, we adopt
a simpler strategy and approximate the original nonconvex
problem (7) with a sequence of convex approximations. For
a similar sequential convex optimization algorithm for power
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and rate allocation in an interference limited MANET, see
[10]. Starting at some suitably chosen initial point, we solve
an approximate convex problem and then use the results of this
optimization procedure to obtain a new convex approximation
of the original nonconvex problem. Thus this method leads to a
sequence of convex problems which can be shown to converge
(under certain conditions) to a sub-optimal solution. Below,
we describe this successive convex approximation algorithm
in detail for the NOMA case.

It was shown in [8] that the rate distortion constraints are
convex in R, r, and U. We now consider the energy and
capacity constraints for the nonconvex NOMA problem (7).

Suppose we make the following variable transformations:

LTnet = eq, tv = et̃v , Pv = eP̃v v = 1, . . . , |V|. (11)

Accordingly, the energy constraints in (7) can be represented
in q, and P̃v as follows (after taking logarithm of both sides)
q + P̃v − log(Ev) ≤ 0 v = 1, . . . , |V|, which is obviously
convex.

Now define an auxiliary variable Qv, v = 1, . . . , |V| such
that the capacity constraint can be rewritten as

Rv ≤ log(1 + eQv ) and eQv ≤ gveP̃v∑
k �=v gkeP̃k + N0

.

Taking log on both sides of the inequalities, we can rewrite
the above set of constraints as:

log(Rv) − log
(
log(1 + eQv )

) ≤ 0

log
(N0

gv
eQv−P̃v +

∑
k �=v

gk

gv
eQv+P̃k−P̃v

) ≤ 0

Here the second set of constraints are convex as they are in
the standard log-sum-exponential form. It is the first set of
constraints that are not convex. It is easy to demonstrate that
log

(
log(1 + eQv )

)
is a concave function in Qv . However,

note that log Rv is not convex, in fact, it is concave. Note that
each of these nonconvex capacity constraints can be written
as a difference of two convex functions and hence the original
nonconvex problem can be converted to a canonical D.C.
problem. Our strategy, however, is to approximate log Rv by
a convex expression (as in [2]). Consider the tangent line that
touches the concave curve log Rv at the point (R0, log R0).
The equation representing this tangent line is obviously given
by y = x

R0
+log R0−1 where x refers to the Rv axis. Consider

another point (R, log R) nearby and the corresponding point
on the tangent line with an ordinate value of HR = avR+ bv ,
where av = 1

R0
and bv = log R0 − 1. Clearly, HR ≥ log R

since the tangent lies above the concave log Rv curve. It is
now easily seen that if one satisfies the constraint

avRv + bv − log
(
log(1 + eQv )

) ≤ 0,

v = 1, . . . , |V|, (12)

with an appropriately chosen (av, bv), then the original NOMA
capacity constraint is also satisfied. Thus, in general, a subop-
timal solution to the original nonconvex lifetime maximization
with rate distortion constraints in the NOMA case can be found
by solving the following convex optimization problem

min
q,P̃,R,Q

−q (13)

q + P̃v − log(Ev) ≤ 0 v = 1, . . . , |V|
avRv + bv − log

(
log(1 + eQv )

) ≤ 0 v = 1, . . . , |V|
log

(N0

gv
eQv−P̃v +

∑
k �=v

gk

gv
eQv+P̃k−P̃v

) ≤ 0 v = 1, . . . , |V|

{R : (1) holds for distortion threshold Dth}
R � 0.

A. A Successive convex approximation algorithm based on
updating of tangent points

In the previous section, we illustrated how the nonconvex
NOMA optimization problem can be converted to an approx-
imate convex optimization problem by suitably choosing an
initial point around which a tangent approximation is made,
such that the resulting convex problem is feasible. Once this
convex (approximate) problem is solved, the resulting rate Rv

can then be used as a new point of approximation to form
a new approximate convex problem. Thus, one can form a
sequence of convex approximations where the solution from
the previous stage becomes the point of tangent approxima-
tion for the next stage. Below, we show that this sequence
of convex approximations results in a sequence of optimal
solutions that asymptotically converge to unique steady state
values, provided that the initial convex approximate problem
is feasible. In practice, one can stop this successive convex
approximation method once a certain accuracy is reached in
the optimal solution values.

Theorem 1: Suppose after solving the approximate convex
problem (13) k successive times, the logarithm of the inverse
of the optimal lifetime value is given by p(k), i.e. p(k) = −q(k),
where q(k) is the logarithm of the achieved optimal lifetime
value after solving k successive convex approximations. If the
initial convex approximation is feasible resulting in an optimal
inverse lifetime p(1), then the sequence {p(k)} converges to a
(not necessarily unique) steady state value p∗.

Proof: Suppose the feasible region for the k-th convex
approximate optimization problem is F (k). As above, the
superscript k means ‘after k updates’. We will show that
sequence {p(k)} is nonincreasing and lower bounded, and
consequently it converges.

• Monotonicity:
Suppose [q(k), R(k), P̃ (k), Q(k)] is the optimal allocation
scheme to the k-th convex approximation. Therefore, the
parameters for the tangent approximation in the next
round will be a

(k+1)
v = 1

R
(k)
v

, b
(k+1)
v = log R

(k)
v −1, v =

1, . . . , |V|. We now show that [q(k), R(k), P̃ (k), Q(k)] is
within the feasible region F (k+1) for the next iteration.

a(k+1)
v R(t)

v + b(k+1)
v − log

(
log(1 + eQ

(k)
v )

)
=

1

R
(k)
v

R(k)
v + log R(k)

v − 1 − log
(
log(1 + eQ

(k)
v )

)

= log R(k)
v − log

(
log(1 + eQ

(k)
v )

)
≤ a(k)

v R(k)
v + b(k)

v − log
(
log(1 + eQ

(k)
v )

) ≤ 0

The last inequality follows from the fact that log R
(k)
v ≤

a
(k)
v R

(k)
v + b

(k)
v by virtue of the tangent approximation

after the (k − 1)st iteration of the successive con-
vex approximation scheme. Combining this with the
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fact that all the other constraints hold for the solution
[q(k), R(k), P̃ (k), Q(k)], we can conclude that

[q(k), R(k), P̃ (k), Q(k)] ∈ F (k+1).

Since p(k+1) is the logarithm of the inverse optimal
lifetime after k + 1 updates, we have p(k+1) ≤ p(k).

• Boundedness: Note that once the network is activated, we
can easily find Pv′ for at least one activated sensor node
v′, where Pv′ > 0. This implies that the lifetime of the
network has a finite upper bound, since the initial node
energy values are finite. It then follows that p(k) is lower
bounded by a finite lower bound.

In summary, as a nonincreasing lower-bounded sequence (with
a finite lower bound) {p(k)} converges (asymptotically) to a
steady state value p∗ which implies that q(k) also converges to
a steady state value and by uniqueness of the solution to each
of the approximate convex problems, all other variables of
optimization converge to their respective steady state values.
Note that the choice of the first convex approximation may
dictate the final steady state values, hence uniqueness of the
steady state solutions cannot be guaranteed in general.
Although it is difficult to provide analytical results regarding
the speed of convergence, we illustrate via simulations below
that the successive convex approximation algorithm converges
quite rapidly. These simulation results are for a six sensor
network the details of which can be found in Section IV.
Figure 2 illustrates the convergence for the NOMA case,
where it is seen that after only 4 or 5 updates, the successive
convex approximation based algorithm yields solutions within
a reasonable accuracy. Recall that convergence is guaranteed
as long as the problem is feasible at the initial iteration.
These simulation results were achieved both by the MATLAB-
based fmincon program and well known Barrier Method based
interior point techniques [16].
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Fig. 2. Convergence of lifetime for the NOMA based WSN: Dth = −1dB

IV. SIMULATION STUDIES

In this section, we carry out extensive simulation studies
mainly focusing on a 6-sensor single hop network where each
sensor is connected via a wireless link to the fusion centre. The
geometric configuration of this network is given in Figure 3,
where the variance of the measurement is based on the distance
between the source X (representing the random phenomenon)
and the sensor itself, σ2

v = σ2
0d2

Xv [6]. The propagation gain
for the wireless channel between the sensors and the fusion
centre is proportional to the line-of-sight (LOS) distance with
loss factor n. The distance parameters for the simulation

Fig. 3. Wireless Detection System with 6 Sensors (Unit: Meters)

studies with the 6-sensor network can be derived from Figure
3, where the coordinates of the source, the sensors and the FC
are given. All other relevant parameters are provided in Table
I below.

Frequency 900(MHz)
loss factor n 3
σ2
0 0.01

σ2
X 10

N0 1 × 10−12(Watts)
Bandwidth 1(Hz)
Ev , v = I, II, III, IV, V, V I 1000(Joules)

TABLE I
SIMULATION PARAMETERS

A. Static Propagation Gain

In this subsection, we assume that the link propagation gains
between the sensors and the FC are deterministic and depend
only on the distances between the sensors and the FC with a
loss factor of n = 3.
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Fig. 4. Lifetime for the network with 4 Sensors

In Figure 4, we first illustrate the comparison among the
results of three optimization problems (10), (5), and (13)
for the 6-sensor situation. As expected, the network lifetimes
for TDMA (optimal) and NOMA (suboptimal) are upper-
bounded by the solutions achieved by the constraints defined
by the Gaussian Multiaccess Channel capacity region. The
suboptimal solutions obtained by the sequential convex ap-
proximations for the NOMA case performs reasonably well,
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as compared to the upper bound provided the globally optimal
solution to the Gaussian MAC case (albeit with the assumption
of independence amongst sensor data). In these simulations,
although TDMA seems to perform better, note that this may
not always be the case depending on the network configuration
and the relative distances amongst the nodes and the fusion
centre.
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Fig. 5. Advantage of Optimal TDMA over Uniform TDMA

Figure 5 demonstrates the normalized improvement the
network can achieve through an optimal TDMA scheme as
opposed to a uniform TDMA scheme, where each sensor
transmits for an equal 1

6 -th portion of the time. The x-axis
is the normalized distortion threshold given by 10 log(Dth

σ2
X

).
In the uniform TDMA case, the length of the activated time
is the same for each sensor, hence the lifetime depends on
the most power-consuming agent. On the other hand, optimal
scheduling improves the performance by adaptively tuning
the length of the individual sensor timeslots. Clearly, since
uniform TDMA is a special case of a nonuniform TDMA,
the optimal scheduling always performs better than uniform
TDMA. However, when the distortion constraint is stricter,
the improvement achieved by the optimal scheduling is more
evident - since a lower distortion threshold requires higher
transmission rate, the optimal assignment of timeslot fractions
gives more flexibility to the network to improve its lifetime.
performance of the network. Clearly, the normalized value of
the optimal lifetime over that achieved by the uniform TDMA
scheme decreases as the distortion threshold is relaxed.
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Fig. 6. Lifetime for the TDMA based Wireless Sensor Network

Figures 6 and 7 illustrate the relationship between the
network lifetime and the number of sensor nodes (agents) in
the system for the TDMA and the NOMA case respectively,
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Fig. 7. Lifetime for the NOMA based Wireless Sensor Network

where the network consists of 1({II}), 2 ({I, II}), 4({I, II,
III, IV}), and 6({I, II, III, IV, V, VI}) sensors along with
the FC. In general, the network lifetime increases as the rate
distortion requirement is relaxed. Also, in general, increasing
the number of sensors in the TDMA case helps to extend the
network lifetime due to the diversity available to the network.
However, note that this is not always the case in the NOMA
scheme, e.g, in the normalized distortion threshold domain of
(-5dB, -2.5dB) in the NOMA system, increasing the number
of sensors from 2 to 4 does not give any advantage in lifetime
performance, as shown in Figure 7. The reason is simple:
nodes III and IV is too far from the phenomenon and hence
it is not wise to use those two sensors when the distortion
threshold is strict. Therefore, the optimal solution for the 4-
sensor case is to shut down node III and IV in order to
eliminate the interference to the receiver. On the other hand,
when the distortion threshold is less strict, the performance of
the 4-sensor system will be better than that of the 2-sensor
one.

B. Slow Fading Environment

In this subsection, we assume that the wireless link gains
between the sensors and the fusion centre are not only path loss
dependent, but also randomly varying due to slow Rayleigh
fading. Under this assumption, the fading is slow enough so
that even though the channel is random, it can be accurately
estimated at the FC and and used to compute the optimal
power, rate etc. which are fed back to the sensors. We assume
that the propagation gain between the v-th node and the FC
is effected by Rayleigh Fading parameters Fv , where Fv has
an exponential distribution with unity mean (without loss
of generality), and gv (as before) represents the path loss
dependent part. As a result, the channel capacity is given as

log(1 +
FvgvPv

N0
) and log(1 +

FvgvPv∑
k �=v FkgkPk + N0

)

for the TDMA and NOMA systems respectively. Similarly,
the capacity constraints for the Gaussian Multiaccess Channel
case are given by

∑
v∈Wk

Rv ≤ log
(
1 +

∑
v∈Wk

FvgvPv

N0

)
,

Figure 8, shows the optimal network lifetime obtained by
the TDMA and NOMA schemes and the Gaussian MAC
capacity limited case for the 4-sensor configuration studied
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before under slow Rayleigh fading (as described above) where
the results are averaged over 1000 fading realizations. In
order to make a fair comparison between the fading and no
fading cases, the simulation results in Figure 4 (no fading)
are repeated here. In Figure 8, all the lifetime curves in dotted
lines represent the numerical results for the original non-fading
cases, while those with solid curves represent the lifetimes
achieved under a slow Rayleigh Fading environment. It is clear
that the lifetime performance is comparable between the ones
with and without such effects. Although fading shortens the
network lifetime as a result of increasing transmission power
to combat fading, the diversity available by using multiple
sensors helps the network allocate resources to the sensors
with better channel conditions and hence offset the power loss
and extend the network lifetime.
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APPENDIX

Proof of Proposition 1:
Here, we provide the proof for the TDMA case only, the proof
for the NOMA case can be derived in a similar fashion.

Consider the TDMA optimization problem given by (4) and
the Gaussian MAC optimization problem given by (10) and
note that it is the capacity constraints that set them apart.

Suppose the TDMA optimization problem has been opti-
mized with respect to tv, v = 1, 2, . . . , |V| only and the
resulting optimal solutions are given by t∗v, v = 1, 2, . . . , |V|
Consider any nonempty subset Wk of |V|. Note that feasibility
of the solutions t∗v, v = 1, 2, . . . , |V| implies that

∑
v∈Wk

t∗v ≤
1 (in fact it can be shown that

∑
v∈V t∗v = 1). This implies

that summing over the TDMA capacity constraints: Rv ≤
t∗v log(1 + gvPv

N0
) for v ∈ Wk, we get

∑
v∈Wk

Rv ≤
∑

v∈Wk

t∗v log(1 +
gvPv

N0
)

≤ log(1 +
∑

v∈Wk

t∗vgvPv

N0
)

≤ log(1 +
∑

v∈Wk

gvP̄v

N0
), ∀k = 1, . . . , 2|V|(14)

where P̄v = t∗vPv and the second last inequality follows as a
special case of Jensen’s inequality.

Using the transformation P̄v = t∗vPv one can now
rewrite the energy constraints in the TDMA problem as
Ev

P̄v
≥ LTnet, ∀v ∈ V , where P̄v ≥ 0. Denote P̄ =

(P̄1, P̄2, . . . , P̄|V|).
Therefore the new transformed TDMA problem (after opti-

mizing over tv) can be written as

max
P̄,R

LTnet

s.t.
Ev

P̄v
≥ LTnet v = 1, . . . , |V|

t∗v log(1 +
gv

P̄v

t∗v
N0

) ≥ Rv v = 1, . . . , |V|
{R : (1) holds for distortion threshold Dth}
P̄,R � 0 (15)

Clearly, the capacity constraints in the above problem imply
(due to inequality (14)) the capacity constraints in the Gaussian
MAC problem. Hence an optimal solution of the TDMA
problem (4) belongs to the feasible set of the Gaussian MAC
problem (10). Therefore, the optimal lifetime obtained from
the Gaussian MAC problem is equal or greater than that
obtained by an optimal solution of the TDMA problem.
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