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Outage-Based Power Control for
Generalized Multiuser Fading Channels

John Papandriopoulos, Jamie Evans and Subhrakanti Dey
ARC Special Research Centre for Ultra-Broadband Information Networks (CUBIN),

Department of Electrical and Electronic Engineering,
University of Melbourne, VIC 3010, Australia

Abstract— We consider an uplink power control problem with
constraints on outage probability, for cellular CDMA systems
where allocation decisions are made on a slow time-scale. A
generalized framework to solve such problems for a wide range
of fading distributions is proposed, including an extension that
couples power control with a minimum outage probability mul-
tiuser receiver. The resulting algorithms are simple and iterative
in nature that yield the optimal minimum sum-power solution.
Deriving a general upper bound on outage probability, we map
these problems to equivalent, sub-optimal and computationally
efficient iterative algorithms. We give numerical results to vali-
date the methods developed for a variety of Nakagami-m fading
figures.

I. INTRODUCTION

ADVANCES in wireless services are continually relying
on higher bit rates and more stringent quality of service

(QoS) guarantees from carriers. The networks that support
them are constrained by the limited wireless spectrum and so
increased utilization is of paramount importance. Power con-
trol is one powerful technique to help achieve these conflicting
goals resulting in plentiful research over the years. In inter-
ference limited systems such as CDMA, multiuser detection
(MUD) may also be employed to significantly improve the
situation.

Only in recent years has joint power control and MUD
become of interest. Power control aims to intelligently balance
the received powers of all users such that no user creates
excessive interference to others. This is especially important
in the CDMA uplink as the near-far effect can significantly
degrade performance, however there are other benefits, such
as longer battery life of mobile devices as each user needs
only expend sufficient power to meet their QoS requirements.
MUD is similar, in the sense that it exploits the structure of the
multiple-access interference to suppress it [1], [2]. By jointly
optimizing both user powers and multiuser receivers, we may
gain the performance advantage of both [3], [4].

The classic papers on power control such as [5]–[10] specify
constraints on the signal-to-interference ratio (SIR) to quantify
QoS requirements. Resultant algorithms run at the same time-
scale as fast fades, potentially having a high computational
cost and associated DSP power penalty in battery powered
mobile devices. Such schemes may also incur a reduction
in capacity as there is significant exchange between the base
station and mobile device under fast closed loop power control.

This work was supported by the Australian Research Council.

This work deals with situations when it is not feasible or not
desirable to follow fast-fades directly. Rather than demanding
that users achieve a target SIR, we relax the constraints and
ask that each user maintains its SIR above some prescribed
threshold with high probability: we thus consider constraints
on outage probability rather than SIR.

The problem of power control with constraints on outage
probability is considered in [11] where interior point opti-
mization methods are employed to find the solution. In [12]
we developed a simple iterative algorithm to minimize total
transmit power subject to outage constraints. Both of these
papers dealt only with Rayleigh fading.

Work to date assumes a specific fading model and analysis
inherently follows from that selection. A more general frame-
work is needed, so that one may simply “plug in” a desired
fading distribution to cater for different cell landscapes. For
example, one may use a Rician model for indoor cells with
strong line-of-sight components, or a Nakagami-m model for
outdoor situations lacking strong specular signal components.

In this work, we specifically address the problem of jointly
optimizing user power and multiuser receivers so that each
user’s outage outage probability constraint is met with minimal
power expended. We do this with only modest conditions
on the associated fading distribution. This is a significant
paradigm shift from prior work dealing with joint power and
multiuser detection having SIR constraints [3].

The main contributions of this paper are:

1) A framework for developing conceptually simple, it-
erative algorithms that determine user uplink transmit
powers such that their sum is minimized, subject to
outage constraints. Modest assumptions are made on the
fading distribution yielding a generality whereby various
fading models can be “plugged in” with ease.

2) An extension to the framework for joint optimization
over user transmit powers and linear multiuser receivers.

3) A general procedure to obtain an upper bound on outage
probability. This enables a mapping from outage prob-
ability to constraints on average SIR, and thus allows a
simple and computationally efficient algorithm to solve
the above problems sub-optimally [3], [12].

Simulation results are provided to validate the methods nu-
merically for the Nakagami-m fading distribution with various
fading figures.
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II. SYSTEM MODEL

We consider the uplink of a synchronous direct sequence
CDMA communications system with K users and a processing
gain of N .

A. Received Signal Model

We assume BPSK modulation and chip-matched filtering.
The received signal at the base station (BS) assigned to user i
can be written as an N -dimensional signal vector for each
symbol interval, given by

ri =
K∑

j=1

√
GijFijPjbjsj + ni

where Pj is the transmit power of user j, bj are data bits
taking on values of ±1 with equal probability, sj is the N -
dimensional spreading sequence of user j and ni is AWGN
with zero mean and covariance σ2I. We assume fixed spread-
ing sequences, with elements of sj taking values ±1/

√
N .

As with prior work, we assume Gij to be the positive
slowly-varying path gain of user j to the assigned BS of user i.
All analysis to follow assumes fixed Gij terms. In practice,
this assumption implies that all results are valid only over a
finite time duration where factors affecting these gains do not
vary significantly.

The terms Fij model fast time-scale fading, all being i.i.d.
non-negative random variables with E[Fij ] = 1 for all i, j. We
assume further that the cumulative distribution function (CDF)
of Fij , denoted FF (·), is continuous and strictly increasing on
R+. This is the case for most fading distributions of interest.
e.g. Nakagami-m. We will denote by F−i the collection of
random variables {Fij : j �= i}.

Let ci denote the linear receiver filter coefficients for user i
at its assigned BS and C = [c1, . . . , cK ]. The filter output of
user i at its assigned BS is given by

yi = c�i ri =
K∑

j=1

√
GijFijPj(c�i sj)bj + ñi

where ñi = c�i ni is N(0, σ2c�i ci).

B. SIR and Outage Probability

The SIR γ of the i-th user is given by

γi =
Gii(c�i si)2FiiPi∑

j �=i

Gij(c�i sj)2FijPj + σ2(c�i ci)
(1)

where we treat receiver noise as interference.
The corresponding outage probability of user i is defined as

the proportion of time that some positive SIR threshold γth
i is

not met for sufficient reception at the BS receiver. The outage
probability for user i is given by

Oi = Pr{γi ≤ γth
i }. (2)

An alternative expression is obtained by writing

Oi = Pr{Fii ≤ Ψi}
= E

[
1{Fii≤Ψi}

]
= E

[
E
[
1{Fii≤Ψi} | F−i

]]
= E [Pr{Fii ≤ Ψi} | F−i]
= E

[
FF

(
Ψi

)]
(3)

where

Ψi = γth
i

∑
j �=i Gij(c�i sj)2FijPj + σ2(c�i ci)

Gii(c�i si)2Pi

and 1A is an indicator function of the event A.

III. USER POWER OPTIMIZATION WITH OUTAGE

CONSTRAINTS

We first consider the simplified problem of optimizing user
powers subject to outage constraints, where linear receivers
are fixed. Without a loss of generality, we can drop the fixed
linear receiver filter terms (c�i sj)2, since we can absorb them
into the fixed Gij terms.

A. Problem Definition

We wish to find each user’s power P = [P1, . . . , PK ] such
that the total power transmitted by all users is minimized,
while meeting all outage probability constraints. We have,

min
P

K∑
i=1

Pi

s.t. Oi ≤ Ωi, Pi ≥ 0, i = 1, . . . ,K

where Ω = [Ω1, . . . ,ΩK ] specifies all users’ outage con-
straints with Ωi ∈ (0, 1).

B. Outage Probability – Monotonicity

The following general results for outage probability are
crucial to the formulation of an algorithm to solve the above
optimization problem.

Result 1: Oi(P) is strictly decreasing in Pi.

i.e. Let β > α, then Oi

(
P
∣∣
Pi=α

)
> Oi

(
P
∣∣
Pi=β

)
.

Result 2: Oi(P) is increasing in Pj , j �= i.

i.e. Let β > α, then Oi

(
P
∣∣
Pj=α

)
≤ Oi

(
P
∣∣
Pj=β

)
, i �= j.

These results follow directly from the assumed properties
of the CDF, FF (·). The proofs can be found in [13] and are
omitted due to space limitations.

C. Optimal Solution

Assuming a non-empty feasible set, we have the following
results relating to the optimal solution:

Lemma 1: The optimal solution P∗ will have outage con-
straints satisfied with equality (a generalization of the observa-
tion made in [11] for the Rayleigh fading environment). That
is: Oi(P∗) = Ωi ∀i.

Proof: Suppose P is a power vector in the feasible
set and that there exists a user with Oi(P) < Ωi. Using
Results 1 and 2 we see that we can lower the power of user i
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while keeping all outage constraints satisfied. This means that
there is a feasible set of powers with smaller sum than P so
that P is clearly not optimal.

Lemma 2: With Pj fixed for all j �= i, the equation
Oi(P) = Ωi has a unique positive solution P ∗

i .
Proof: Immediate from Result 1.

Denote the unique solution of Lemma 2 as

P ∗
i = Ii(P−i), (4)

where P−i are (K−1)-length vectors, having the same form
as the full length power vector with the i-th element omitted.

The function Ii(·) specifies the power required by user i
to meet its outage constraint when interfering users have fixed
powers P−i. Envisage an algorithm where, starting from some
initial power vector, each user independently updates its power
to meet its outage constraint — assuming that the other users
powers are fixed. This leaves us with a new set of powers
which form the starting point for the next iteration. This is
an intuitively pleasing algorithm but will it converge to the
solution of our optimization problem?

With the above algorithm in mind define

I(P) = [I1(P−1), . . . , IK(P−K)]. (5)

We shall refer to (5) as the interference function, to maintain
consistency with the framework in [14] and prior work [12].

We propose a new power control algorithm (PCA) having
the standard form

Pn+1 = I(Pn) (6)

where n denotes the iteration step. The algorithm is initialized
with powers set to the receiver noise power: P 0

i = σ2, ∀i.
Theorem 1: I(P) is a standard interference function.
The proof involves showing that I(·) satisfies the three

properties required of a standard interference function given in
[14] (positivity, monotonicity and scalability) and is deferred
to [13] due to space limitations.

Since I(P) is a standard interference function, the PCA
(6) converges to the final optimal solution P∗ = I(P∗). This
solution is the minimum power required to meet all users’
outage constraints.

Remark: While the original problem involved solving a
coupled system of K nonlinear equations in K unknowns,
each step of the proposed algorithm requires the separate
solution of K equations, each in one variable.

IV. JOINT POWER AND MUD OPTIMIZATION WITH

OUTAGE CONSTRAINTS

We now consider the situation where we have choice over
linear receivers and no-longer neglect the terms (c�i sj)2.

A. Revised Problem Definition

We wish to jointly find each user’s power P = [P1, . . . , PK ]
and linear receivers C = [c1, . . . , cK ] such that the total

power transmitted by all users is minimized, while meeting
all outage probability constraints. We now have,

min
P,C

K∑
i=1

Pi

s.t. Oi ≤ Ωi, Pi ≥ 0, ‖ci‖2 = 1, i = 1, . . . ,K

that is equivalent to:

min
P

K∑
i=1

Pi

s.t. min
ci,‖ci‖2=1

Oi ≤ Ωi, Pi ≥ 0, i = 1, . . . ,K.

See [3] and [12] for similar refinements.

B. Optimal Solution

Define a new function

J(P) = [J1(P−1), . . . , JK(P−K)] (7)

where each component is given by

Ji (P−i) = min
ci,‖ci‖2=1

Ii(P−i, ci) (8)

and where Ii(P−i, ci) was defined in (4) with a fixed ci.
Mirroring the development in Section III, we propose a new

PCA having the standard form

Pn+1 = J(Pn) (9)

where n denotes the iteration step. The algorithm is again
initialized with powers set to the receiver noise power.

Theorem 2: J(P) is a standard interference function.
The proof is straightforward (see [13]) and is based heavily
on the fact that I(·) is a standard interference function.

Since J(P) is a standard interference function, the PCA
(9) converges to the optimal solution P∗ = J(P∗). This
solution is the minimum power required to meet all user
outage constraints, with linear receivers having converged to
the Minimum Outage Probability (MOP) receiver [12].

We refer to this algorithm as the MOP-PCA.

V. BOUNDS ON OUTAGE PROBABILITY

For a Rayleigh distribution, it has been shown that the
outage expression above can be bounded by an expression
dealing with average SIR, consequently allowing the power
control problem to be transformed to a more familiar one
involving average SIR constraints [12]. The algorithm that
solved such a transformed problem utilized the closed form
MMSE receiver, relieving the need for an expensive N -
dimensional minimization over a complicated non-linear func-
tion as required by the MOP-PCA above.

We now develop an upper bound on outage probability for
a wide variety of distributions. When the bound applies, the
optimizations above can be solved efficiently using simple
iterative methods, albeit sub-optimally. Large system approx-
imations can also be applied for decentralized solutions with
a single iteration [12]. We show through numerical studies
in Section VI that even when the bound does not apply,
the resulting algorithms give excellent approximations to the
optimal solution.
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A. Certainty Equivalence Margin (CEM)

The CEM represents a margin of error for average SIR
when representing a system by its certainty-equivalent form,
ignoring all statistical variation in the instantaneous signal and
noise power, and replacing such terms with their expected
values [11], [12]. We write,

CEMσ
i =

SIRi

γth
i

=
1

γth
i

Gii(c�i si)2Pi∑
j �=i

Gij(c�i sj)2Pj + σ2(c�i ci)
(10)

where the average SIR is defined as

SIRi =
Gii(c�i si)2Pi∑

j �=i

Gij(c�i sj)2Pj + σ2(c�i ci)
. (11)

B. Upper Bound on Outage Probability

Suppose the fading CDF, FF (·), is concave on R+. Then
by Jensen’s inequality, we have

Oi = E [FF (Ψi)]
≤ FF (E [Ψi])

= FF

(
γth

i

∑
j �=i Gij(c�i sj)2E[Fij ]Pj + σ2(c�i ci)

Gii(c�i si)2Pi

)

= FF

(
1

CEMσ
i

)
. (12)

This bound allows us to map outage constraints to con-
straints on CEM or average SIR; constraints that are much
easier to deal with.

C. Example: Nakagami-m Fading Distribution

1) m = 1 (Rayleigh): A received signal having power y
with a Rayleigh distributed envelope has a cumulative power
distribution

FY (y) = 1 − e−y, y ≥ 0 (13)

when E[y] = 1.
It is trivial to show that (13) is concave for all y ≥ 0.

Utilizing (12), we have the upper bound on outage

Oi ≤ 1 − e−1/CEMσ
i

and is exactly the expression found previously via different
means [12].

2) m �= 1: The received signal power y for a general m �= 1
has cumulative power distribution

FZ(y) =
1

Γ(m)
mm

∫ y

0

zm−1e−mzdz, y ≥ 0

when E[y] = 1.
We can differentiate twice to yield

d2FZ

dy2
(y) =

1
Γ(m)

mmym−2e−my [(m − 1) − my] .

Observe that d2FZ

dy2 (y) < 0 for all y > 0 provided m ≤ 1.
Thus an upper bound applies for m ≤ 1:

Oi ≤ FZ

(
1

CEMσ
i

)

=
1

Γ(m)
mm

∫ 1
CEMσ

i

0

zm−1e−mzdz

=
1

Γ(m)

∫ m
CEMσ

i

0

tm−1e−tdz

= Γ
(

m

CEMσ
i

,m

)
where

Γ(x, a) =
1

Γ(a)

∫ x

0

e−tta−1dt

is an incomplete Gamma function.

D. Mapping from Outage to Average SIR Constraints

Assume the upper bound (12) holds. We can further bound
this quantity by the outage constraint of user i:

Oi ≤ FF

(
1

CEMσ
i

)
≤ Ωi. (14)

By doing so, the right-hand inequality defines a new constraint
on CEMσ

i . By formulating and solving a new problem con-
sidering only these new constraints rather than the originals,
we guarantee that the original outage constraints are also
met. However, such an approach is sub-optimal with the error
dependent on the tightness of the left-hand inequality.

In effect, we are mapping outage constraints to average SIR
constraints. Taking the right-hand inequality from (14) yields

CEMσ
i ≥ 1

F −1
F (Ωi)

SIRi ≥ γth
i

F −1
F (Ωi)

SIRi ≥ Γth
i

where F −1
F (·) denotes the inverse of the appropriate CDF, and

we have redefined the outage-mapped average SIR threshold

Γth
i =

γth
i

F −1
F (Ωi)

(15)

for a general fading distribution, which was first introduced in
[12] for the Rayleigh fading environment. The inverse CDF
can be found numerically with a simple line search when it
cannot be found easily in closed form.

The mapped problem can be formulated as

min
P

K∑
i=1

Pi

s.t. max
ci,‖ci‖2=1

SIRi ≥ Γth
i , Pi ≥ 0, i = 1, . . . ,K

and there exists a known iterative algorithm to find the optimal
solution to this new problem [3], [12].

We refer to this algorithm as the MMSE-PCA, since the
inner optimization utilizes the MMSE receiver to maximize
the average SIR.
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TABLE I

AVERAGE NORMALIZED USER POWERS FOR NAKAGAMI-m

K
m Algorithm

4 8 16 32

1
2

MOP 1.1140 1.5369 2.4541 430.8579

MMSE 1.1142 1.5408 2.4589 430.9965

1
MOP 1.1118 1.5199 2.4031 286.4167

MMSE 1.1118 1.5199 2.4031 286.5411

2
MOP 1.1086 1.4901 2.3206 108.1565

MMSE 1.1078 1.4900 2.3197 107.4755

3
MOP 1.1067 1.4732 2.2733 56.7039

MMSE 1.1066 1.4730 2.2728 56.0825

VI. SIMULATION RESULTS

We consider an isolated circular cell having radius 1km
and uniform locations of users within. Slowly varying gains
Gij are modeled by a distance dependent loss (exponent
4) superimposed by log-normal shadowing (zero mean, 8dB
variance), and are fixed once chosen. We select processing
gain N = 32 and AWGN power σ2 = 10−13 corresponding
to approximately a 1MHz bandwidth.

We define three QoS classes, each having outage probability
and SIR threshold pairs as {(5%, 9dB), (10%, 8dB), (20%,
7dB)} and assign 25% of users to the first class, 50% to
the second and the remaining to the third. User signatures
are selected randomly and fixed once chosen; initial filter
coefficients are set to the matched filter and initial user powers
to the AWGN power. We utilize the results from [15] to
compute the outage probability.

Figure 1 shows the total sum power of all users as a function
of the iteration step for K = 32 users. In all scenarios, the
converged results of the MOP- (shown dotted) and mapped
MMSE-PCAs (solid) are almost indistinguishable. For m ≤ 1,
this is due to the tightness of the bound. Where the bound does
not apply, we still see an almost indistinguishable result. This
is important, as it validates the use of (12) as an approximation
of the outage probability.

Table I lists average normalized user powers at convergence
in more detail as we vary K = {4, 8, 16, 32} users. Firstly,
each user’s transmit power is normalized by the power required
to meet its outage constraint with equality in a single-user
situation having the now optimal matched-filter. Secondly, an
average is taken over these normalized powers in each scenario
to produce the tabulated results.

Results for the MMSE-PCA are very close to the optimal
powers resulting from the MOP-PCA, even when m = {2, 3}
and the bound does not apply. In these two cases, the outage
probabilities resulting from the MMSE-PCA are just above
the corresponding outage constraints Ωi, however for practical
engineering purposes we may still consider the solution to be
acceptable: user outage constraints are met with equality to
four significant figures.

VII. CONCLUSION

This paper introduced a new framework to solve power
control problems incorporating outage probability constraints
for a wide range of fading distributions. Solutions were
presented as iterative algorithms that optimize user powers
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Fig. 1. Total transmission power for the MOP- and MMSE-PCAs (K = 32).

and linear receivers to the jointly optimum values. Utilizing
an upper bound on outage, a mapping to a sub-optimal and
computationally efficient algorithm was demonstrated having
exceptionally small error for those simulations considered.
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