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ABSTRACT

In this paper, we study asymptotic stability properties of risk-sensitive
filters with respect to their initial conditions.  In particular, we consider a linear
time-invariant systems with initial conditions that are not necessarily Gaussian.
We show that in the case of Gaussian initial conditions, the optimal risk-
sensitive filter asymptotically converges to a suboptimal filter initialized with
an incorrect covariance matrix for the initial state vector in the mean square
sense provided the incorrect initializing value for the covariance matrix results
in a risk-sensitive filter that is asymptotically stable, that is, results in a solution
for a Riccati equation that is asymptotically stabilizing.  For non-Gaussian
initial conditions, we derive the expression for the risk-sensitive filter in terms
of a finite number of parameters.  Under a boundedness assumption satisfied
by the fourth order absolute moment of the initial state variable and a slow
growth condition satisfied by a certain Radon-Nikodym derivative, we show
that a suboptimal risk-sensitive filter initialized with Gaussian initial condi-
tions asymptotically approaches the optimal risk-sensitive filter for non-
Gaussian initial conditions in the mean square sense.  Some examples are also
given to substantiate our claims.
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I. INTRODUCTION

Risk-sensitive filtering optimizes an exponential of
quadratic (or more general convex) cost criterion.  As
opposed to L2 filtering, risk-sensitive filtering penalizes
the higher order moments of the estimation error energy,
thus making the filters useful in uncertain plant and noise
environments.  It also allows a trade-off between optimal
filtering for the nominal model case and the average noise
situation, and robustness to worst case noise and model
uncertainty by weighting the index of the exponential by
a risk-sensitive parameter.  For example, it has been shown
in [13] that discrete-time risk-sensitive filters for hidden
Markov models (HMM) with finite-discrete states per-
form better than standard HMM filters in situations in-
volving uncertainties in the noise statistics.  A more recent
work Boel et al. [6] shows that such risk-sensitive filters

enjoy an error bound which is the sum of two terms, the
first of which coincides with an upper bound on the error
one would obtain if one knew exactly the underlying
probability model, while the second term is a measure of
the distance between the true and design probability models.
Although risk-sensitive filtering was introduced for dis-
crete-time linear systems in (Speyer et al. [23]), the term
“risk-sensitive filtering” was introduced in (Dey and Moore
[14]) and more general discrete-time nonlinear systems
were treated, using similar techniques of (James et al.
[17]) in the context of risk-sensitive control.  Apart from
the potential usefulness of risk-sensitive filters in uncer-
tain environments, risk-sensitive problems, in the small
noise-limit, have been shown to be closely related to
estimation/control problems in a deterministic worst-case
noise scenario given from a differential game (H∞ estima-
tion/control problems for linear systems) (Whittle [24,25],
James et al. [17], Moore et al. [19] and Charalambous [8]).

It is well known that the mean of the conditional
density of the state given the observations for a stochastic
state space signal model achieves the minimum variance
filter.  For a linear Gaussian system with deterministic or
Gaussian distributed initial conditions, the conditional
density is Gaussian and given by its mean and covariance
(which can be calculated off-line from a Riccati differen-
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tial or difference equation).  This is also popularly known
as a Kalman filter.  On the other hand, the optimal estima-
tion problem becomes an essentially nonlinear problem if
the initial condition does not have a Gaussian distribution.
However, for linear Gaussian systems, it has been shown
(Makowski [18], Ocone and Pardoux [20]) that the opti-
mal filter (or its density) can be given by a finite number
of statistics, which constitute the optimal (in the minimum
variance sense) filter for an augmented linear system.  The
initial condition is often not known and it is often unreal-
istic to assume that the initial condition has a Gaussian
density.  However, it has been shown in (Ocone and
Pardoux [20]) (continuous-time), (Sowers and Makowski
[22]) (discrete-time) that the conditional density filter
forgets the initial condition asymptotically in an exponen-
tial rate.  In other words, one can assume a Gaussian
density for the initial condition and use a suboptimal
Kalman filter which asymptotically becomes optimal,
provided the actual density of the initial condition has
finite first and second order moments.  Exponential stabil-
ity results for discrete-time filters have been shown in
(Budhiraja and Ocone [7]) and for (Benes filters Benes
[3]) in (Ocone [21]).  Also, stability results for filters based
on Lyapunov exponents have been explored in (Deylon
and Zeitouni [15], Atar and Zeitouni [2] and Atar and
Zeitouni [1]).

It is also well known that the optimal risk-sensitive
filter for a discrete-time linear Gaussian system with a
Gaussian initial condition is an H∞ filter (Speyer et al. [23],
Dey and Moore [14]).  Analogous results for continuous-
time systems can be found in (Charalambous et al. [9], Dey
et al. [12], Dey and Charalambous [11]).  In the case of a
non-Gaussian initial condition, the risk-sensitive estima-
tion problem, as can be expected, becomes a nonlinear
problem in general.

In this paper, we consider the problem of risk-
sensitive estimation for discrete-time linear Gaussian time-
invariant systems with non-Gaussian initial conditions.
Our objective is to study the effects of initial conditions on
the risk-sensitive estimates and asymptotic stability or
forgetting properties of such estimates with respect to
initial conditions.  We first consider the case of arbitrary
Gaussian initial conditions, i.e., arbitrary initial covari-
ance matrices (the mean of the Gaussian distribution is
taken to be zero without loss of generality), a suboptimal
risk-sensitive estimate (initialized with an incorrect cova-
riance matrix) asymptotically approaches the optimal risk-
sensitive estimate (initialized with the true covariance
matrix) provided the incorrect initial covariance matrix
results in a stabilizing solution of the H∞-like Riccati
equation.  The case with non-Gaussian initial conditions is
slightly more complicated.  We first derive an expression
for the risk-sensitive estimate that is finite-dimensional,
and a sum of two quantities, the first of which asymptoti-
cally approaches the risk-sensitive estimate for the Gaussian
initial condition (with arbitrary but stabilizing initial cova-

riance matrix) and the second term approaches zero as-
ymptotically under a boundedness condition satisfied by
the fourth order absolute moment of the initial state vari-
able and a slow growth condition satisfied by a the fourth
order moment of a certain Radon-Nikodym derivative.
These convergence results are derived in the mean square
sense.

In Section 2, we introduce the signal model, the risk-
sensitive estimation problem and reformulate it under a
new probability measure.  In Section 3, we briefly present
the optimal risk-sensitive filter for linear Gaussian sys-
tems with Gaussian initial conditions and show the asymp-
totic stability of these filters with respect to arbitrary
Gaussian initial conditions in the mean square sense.
Section 4 deals with non-Gaussian initial conditions where
we first derive the optimal risk-sensitive filter using the
information state approach and then we show the asymp-
totic mean square convergence properties of such filters
with respect to their initial conditions.  Section 5 presents
some concluding remarks.

II. SIGNAL MODEL

Consider a probability space (Ω, F, P) on which we
define the following stochastic linear time-invariant dis-
crete-time state space model:

   xk +1 =Fxk +Gwk +1, x0 ~Π0(x0)

   yk =Hxk +υk (1)

Here xk ∈  IRn, yk ∈  IRp, k ∈  IN.  The process noise wk ∈  IRn

and the measurement noise υk ∈  IRp are i.i.d.  Gaussian
distributed with zero mean and covariance In and Ip

respectively.  Also, GG* = Σw > 0.  Π0 is not necessarily
Gaussian.

We assume that x0, wk, υk are mutually independent
and that (F, G) are stabilizable and (F, H) are detectable.

Denote the filtration generated by the observation
σ-algebra, namely, σ{y0, y1, …, yk} as {Yk}, the filtration
generated by σ{x0} ∨ σ{w1, …, wk – 1} as {Fk} and
the filtration generated by σ{y0, …, yk} ∨ σ{x0} ∨ σ{w0, …,
wk – 1} as {Gk}.

1. Risk-sensitive estimation

We define the risk-sensitive estimation problem for
the discrete-time system (1) as to obtain a Yk-measurable
process  xk  ∈  IRn (assumed to be well-defined) such that

    
xk ∈ argmin

ζ
E[exp µ{ l(xm, xm)Σ

m =0

k – 1

+ l(xk,ζ )} Yk ] (2)

Here, E[.] denotes expectation under P, µ > 0 and l : IRn ×
IRn → IR is measurable in (x, x) and continuous in x and is
of the following form
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  l(x, x) = 1
2

(x – x )*(x – x ) (3)

Remark 2.1 Note above that while estimating  xk , we do
not obtain new estimates of xm, m < k.  Hence this is a strict
filtering problem.  However, we consider a sum of estima-
tion error costs in the index of the exponential.  Note that
considering just the cost at one time point (instead of the
sum) will give rise to a different optimization problem.  In
the linear Gaussian case, this results in a Kalman filter
whereas a cost like (2) results in an H∞ filter.  For more
discussion on this, see (Moore et al. [19], Dey and Moore
[13]).

Note also that to have a meaningful estimation
problem as set out above, we need to make the following
assumption:

Assumption 2.1 We assume that  xk  exists for all k ∈  IN and
µ is small enough such that

    
lim
T →∞

1
T

logE[expµ{ l(xm, xm)}Σ
m =0

k – 1

YT ] ≤c1 < ∞,

for some c1 > 0 (4)

Remark 2.2 It is important to know when c1 in the
above assumption is finite, before evaluating  xk  as
defined by (2), (3).  A useful guideline for this can be found
in (Boel et al. [6]).  The idea, in short, is to verify that for
some small µ, there exists a finite number  c1

s  such that
log E[exp µ{    Σm =0

T l(xm,  xm
s )}   YT ] ≤  c1

s T where  xk
s  is some

sub-optimal estimator obtained through some heuristics.
For example, in the case where the signal model is linear
Gaussian as described by (1) and the initial condition is
Gaussian, one can use the Kalman filter (i.e., the condi-
tional expectation filter) as the sub-optimal estimator  xk

s

and show that such a finite  c1
s  exists.  This will then

automatically imply the existence of a finite c1 as in
Assumption 2.1

Next, we work under a probability measure P  such
that under P , {yk} is a sequence of i.i.d.  Gaussian distrib-
uted random variables with zero mean and covariance Ip

and independent of xk (and hence x0).  Using a discrete-
time change of measure formula (note that the continuous-
time counterpart is given by Girsanov’s theorem), the risk-
sensitive estimation can be re-formulated as

    
xk ∈ argmin

ζ
E[Λk exp µ{ l(xm, xm)Σ

m =0

k – 1

+ l(xk,ζ )} Yk ]

(5)

where Λk =    Π l =0
k  exp((Hxk)′yk – 1

2
(Hxk)′(HXk)).  For details

on this particular application of change of probability

measure technique, see (Elliott et al. [16]) (discrete-time)
and (Bensoussan [4], Dey et al. [12]) (continuous-time).

III. DISCRETE-TIME RISK-SENSITIVE
ESTIMATION WITH GAUSSIAN

INITIAL CONDITION

In this section, we present the risk-sensitive estima-
tion results for discrete-time linear Gaussian systems with
Gaussian initial conditions and study the asymptotic for-
getting property of the estimates with respect to initial
conditions.  Without loss of generality (see Makowski
[18]), we take the mean of the initial density to be zero.  It
is with respect to the covariance matrix of the initial state
that we study the asymptotic convergence properties.

Consider the signal model (1).  Also, suppose x0 ~ N
(0, Σ).  Suppose also that the following assumption is
satisfied:

Assumption 3.1 There exists a bounded positive definite
symmetric solution Σk to the following Riccati difference
equation:

   Σk
– 1 =H ′H +[Σw +F(Σk – 1

– 1 – µI)– 1F ′]– 1,

   Σ0 =(H ′H +Σ– 1)– 1
(6)

The following theorem summarizes the risk-sensi-
tive estimation results for the linear Gaussian systems with
Gaussian initial condition (for similar proofs, see (Dey and
Moore [14])).

Theorem 3.1 Consider the signal model (1) and the risk-
sensitive cost given by (2), (3).  Suppose x0 ~ N(0, Σ).  Also
suppose that Assumption 3.1 holds.  The optimal risk-
sensitive estimate  xk

G  is then given by the following
stochastic difference equation

   xk
G =Fxk – 1

G +ΣkH ′(yk – HFxk – 1
G )

   x0
G =(H ′H +Σ– 1)– 1H ′y0 (7)

where Σk satisfies (6).

Proof. A similar proof can be found in (Dey and Moore
[14]) and is not repeated here. ■

Remark 3.1 Note that Assumption 3.1 is equivalent to the
assumption that µ is small enough such that Σw + F(    Σk – 1

– 1  –
µI)–1F′ > 0, ∀ k > 0 (Speyer et al. [23]).

1. Asymptotic optimality of discrete-time risk-sensi-
tive filters with Gaussian initial conditions

In this subsection, we present the results for the
asymptotic optimality of the discrete-time risk-sensitive
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filters with respect to arbitrary Gaussian initial conditions.
Without loss of generality (Makowski [18]), we take the
mean of the Gaussian density to be 0.  It is well known
(from H∞ filtering theory) that the solutions to the Riccati
equation (6) are not necessarily stabilizing under the
previous stabilizability and detectability assumptions
(unlike Kalman filtering Riccati equations).  If Σ0 is
chosen such that limk → ∞ Σk (assuming that the limit exists)
is stabilizing, then we consider Σ0 to be a candidate for an
arbitrary initial condition for (6).  We denote the set of such
admissible initial choices for Σ0 as D.

The steady state solution Σ∞ is the solution to the
following algebraic Riccati equation:

   Σ∞
– 1 =H ′H +[Σw +F(Σ∞

– 1 – µI)– 1F ′]– 1 (8)

In what follows, we will always consider initializing
values for Σ0 that result in a stabilizing solution Σ∞.

Consider the following suboptimal risk-sensitive
estimate   βk

G  which satisfies the following stochastic dif-
ference equation:

   βk
G =Fβk – 1

G +Q kH ′(yk – HFβk – 1
G )

   β0
G =Q 0H ′y0 (9)

where Qk satisfies the following Riccati difference equation:

    Q k
– 1 =H ′H +[Σw +F(Q k – 1

– 1 – µI)– 1F ′]– 1, Q 0 ∈ D (10)

In other words, (9), (6) describe a suboptimal risk-
sensitive estimate with an arbitrary initial covariance
matrix Q ∈  D.  We will show that   βk

G  converges to  xk
G  in

the mean square sense, that is as k → ∞,    E xk
G – βk

G
2

 → 0.

In order to be able to derive the intended asymptotic
stability results, we modify Assumption 3.1 and assume
the following is true:

Assumption 3.2 There exists a bounded symmetric posi-
tive definite solution Σk to (6) for all k > 0, where Σ0 ∈  D
such that limk → ∞ Σk = Σ∞ exists and ρ(F – Σ∞H′HF) < 1
where ρ(A) is the spectral radius of the matrix A.

At this stage it is important to note that (except for the
scalar case) obtaining a necessary and sufficient condition
bounding µ such that Assumption 3.2 holds is hard.
However, it is likely to hold for a small enough µ, in
analogy to results for H∞-like Riccati equations.  Instead,
we give an example of a system for which Assumption
3.2 is satisfied.

Example. Consider (1). Choose F = 
 – 0.8 0.9

– 0.2 0.7
 and H =

[0.8 0.1], G = I2.  Clearly, (F, G) is completely stabilizable

and (F, H) is completely detectable.  For µ = 0.2, one can
work out that in this case D is nonempty that is for many
choices of Σ0, Σ∞ exists and is a positive definite symmetric
matrix with ρ(F – Σ∞H′H F) < 1.  In particular, Σ∞ =

 0.9531 0.2968
0.2968 1.5546

 and ρ(F – Σ∞H′H F) = 0.4132.  There are

also other choices of µ for which Assumption 3.2 holds
true for this example

Remark 3.2 Assumption 3.2 implies that the following
discrete-time unforced time-varying linear system

   Ψk +1 =(F – ΣkH ′HF)Ψk, Ψ0 = I (11)

is exponentially stable.  This follows from the fact that (see

Sowers and Makowski [22])    limk →∞
1
k

lnλ max(Ψk
′ Ψk) ≤ 2 ln

ρ(F – Σ∞H′H F).

Based on the above discussions, we have the follow-
ing two propositions which we state without proof:

Proposition 3.1 There exist    ln ρ(F – Σ∞H ′HF)  > ρ > 0,
   M σ
1  > 0 such that

   ΨkΨj
– 1 ≤M σ

1 exp( – σ(k – j)), ∀ k > j ≥0 (12)

Proposition 3.2 There exists a σ > 0,    M σ
2
 > 0, k0 ≥ 0 such

that

   Σk – Q k ≤M σ
2 exp( – σk), ∀ k ≥k 0 (13)

For similar proofs in continuous-time literature, see
(Ocone and Pardoux [20]) and the references therein.
Related results in monotonicity and stability properties of
discrete-time Riccati equations can be found in Bitmead et
al. [5].

In other words, it follows that both limk → ∞ Qk → Σ∞,
limk →∞ Σk → Σ∞ exponentially fast and also that the
unforced linear system

   Ψk +1 =(F – Q kH ′HF)Ψk (14)

is exponentially stable.
We now present the main results of this section in the

following theorem and the subsequent corollary.  We do
not include the proofs since they are very similar to the
proofs for asymptotic stability for conditional density
filters with arbitrary Gaussian initial conditions (Sowers
and Makowski [22], Ocone and Pardoux [20]).  These
results essentially follow from Propositions 3.1, 3.2 and
the exponential stability of (14).
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Theorem 3.2 Consider the risk-sensitive optimization
problem given by (2), (3) with x0 ~ N(0, Σ).  Consider also
the evolution equations for the optimal and suboptimal
estimates given by (7), (9) and the associated Riccati
difference equations (6), (10).  Suppose Assumptions 2.1,
3.2 holds.  Then,

   lim
k →∞

E xk
G – βk

G
2

→0 (15)

One can also obtain the following corollary which
specializes the previous theorem to the case of zero initial
conditions for the risk-sensitive estimate and the Riccati
equation (6):

Corollary 3.1 Consider the risk-sensitive optimization
problem given by (2), (3) with x0 ~ N(0, Σ).  Consider also
the evolution equations for the optimal risk-sensitive esti-
mate given by (7), (6).  Consider the following suboptimal
risk-sensitive estimate given by

   βk

G =Fβk – 1

G +Σ
kH ′(yk – HFβk – 1

G )

   β0
G =0 (16)

where  Σk  satisfies the following Riccati difference equation:

   Σk

– 1 =H ′H +[Σw +F(Σk – 1

– 1 – µI)– 1F ′]– 1, Σ0 =0 (17)

Suppose Assumptions 3.2, 2.1 hold.  Then,

   
lim
k →∞

E xk
G – βk

G
2

→0 (18)

Similarly,

   
lim
k →∞

E βk
G – βk

G
2

→0 (19)

Remark 3.3 Note that  Σ0 = 0 implies  Σ1 = [H′H +    Σw
– 1]–1

and we assume  Σk  > 0, ∀ k > 0.

IV. DISCRETE-TIME RISK-SENSITIVE
ESTIMATION WITH NON-GAUSSIAN

INITIAL CONDITIONS

In this section, we first derive the optimal risk-
sensitive estimate for discrete-time linear time-invariant
systems with non-Gaussian initial conditions.  We derive
a recursive update formula for a modified information
state and express the optimal risk-sensitive estimate as a
function of the parameters of the information state and the
non-Gaussian distribution of the initial condition.  Through-
out this section, we assume that x0 ~ Π0(x0), where Π0(x0)
is not Gaussian but has zero mean and satisfies certain
properties.  We will make the formal assumptions later on.

Also, the superscript NG will stand for estimates with non-
Gaussian initial condition.

Now, we define the risk-sensitive information state
conditioned on the initial state.  Note that this is a slightly
modified definition than the one used in (Dey and Moore
[14]).

Definition 4.1 Define the unnormalized conditional mea-
sure qk(x, ξ) where

    
q k(x,ξ)dx =E[Λk exp(µ l(xl, xl)Σ

l =0

k – 1

)I(xk ∈ dx) Yk , x0 = ξ]

   q 0(x,ξ) =exp[ – 1
2

ξ′H ′Hξ + ξ′H ′y0]δ(x – ξ) (20)

Remark 4.1 Note that the risk-sensitive information state
defined in (Dey and Morre [14]) can be written as qk(x)
(which is only conditioned on Yk) where

   q k(x) = q k(x,ξ)
IR n

Π0(ξ)dξ (21)

Using the Definition 4.1, one can easily prove the
following Lemma:

Lemma 4.1 The information state qk(x, ξ) obeys the
following recursive equation:

   q k(x,ξ) =Z w exp[(Hx)′yk

   – 1
2

(Hx)′(Hx)] exp[ – 1
2

(x – Fz)′
IR n

Σw
– 1(x – Fz)]

   exp[µ
2

(z – xk – 1)′(z –xk – 1)]q k – 1(z,ξ)dz (22)

where Zw =    1

(2π Σw )
n
2

.

Proof. The proof simply follows from Definition 4.1.  A
similar proof can be found in (Dey and Moore [14]) and is
not repeated here. ■

It also follows from the Definition 4.1 that the
optimal risk-sensitive estimate is given by

   xk ∈ argmin
ζ IR n

q k(x,ξ)
IR n

exp(µl(x,ζ))Π0(ξ)dxdξ
(23)

It is obvious from the above Definition 4.1 that the
information state achieves an expression similar to that for
the information state with a known initial state vector.  It
is also well known that for known initial state vectors, the
information state achieves an unnormalized Gaussian ex-
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pression for linear Gaussian systems.  The proof follows
by induction.  We can use similar proof techniques to
prove the following Theorem:

Theorem 4.1 The risk-sensitive information state defined
as the unnormalized conditional measure in Definition
4.1 for the linear time invariant system (1) is given by

   q k(x,ξ) =sk(ξ) exp( – 1
2

(x – mk(ξ))′Σk
– 1(x – mk(ξ)))

(24)

where  Σk  satisfies the Riccati difference equation (17)
such that  Σk  > 0, ∀ k > 0,   V k – 1

– 1  = F ′     Σw
– 1F +    Σk – 1

– 1  – µI > 0, ∀ k
> 1 and mk(ξ) is given by the following equations:

   mk(ξ) =βk
NG +Φkξ, m0(ξ) = ξ

   Σk
– 1βk

NG =Σw
– 1FV k – 1(Σk – 1

– 1 βk – 1
NG – µ xk – 1

NG ) +H ′yk,β0
NG =0
(25)

Φk is given by

   Φk =[F – ΣkH ′HF + µΣkΣw
– 1FV k – 1]Φk – 1,Φ0 = I (26)

Also sk(ξ) is given by

   
sk(ξ) =γk exp – 1

2
ξ ′L kξ + ξ ′ρk

NG

   γk =γk – 1Z kS k(xk – 1,βk – 1, yk),γ0 =1

   L k =L k – 1 +Φk – 1
′ (Σk – 1

– 1 –Σk – 1
– 1 V k – 1Σk – 1

– 1 )Φk – 1

   – Φk
′ Σk

– 1Φk, L 0 =H ′H

   ρk
NG =ρk – 1

NG +Φk
′ Σk

– 1βk
NG – Φk – 1

′ (Σk – 1
– 1 – Σk – 1

– 1 V k – 1Σk – 1
– 1 )βk – 1

NG

   – µΦk – 1
′ Σk – 1

– 1 V k – 1xk – 1
NG

   ρ0
NG =H ′y0 (27)

where Zk is a deterministic constant and Sk(   xk – 1, βk – 1, yk)
is a function involving exponential of quadratic expres-
sions of   xk – 1, βk – 1, yk.

Proof. First of all, one can obtain an unnormalized Gaussian
expression like (24) for q1(x, ξ) using the expression for q0

(x, ξ) given in (20).  q0(x, ξ) also gives us the expressions
for  Σ0,    β0

NG, Φ0, γ0, L0,    ρ0
NG.  One can then apply the method

of induction to obtain the expression for qk(x, ξ) for any k
using Lemma 4.1.  In view of the fact we are considering
a linear Gaussian system with exponential of quadratic
cost, the mean of the information state (as a function of ξ)

naturally assumes an affine structure like that given in (25)
(this approach is similar to that in Bensoussan [4]).    βk

NG,
  ρk

NG ,  xk
NG bear the superscript NG to denote that we are

dealing with non-Gaussian initial conditions.

The recursive expressions for   βk
NG,  Σk , γk, Lk and   ρk

NG

are obtained equating two sides of (22) and expressing the
right hand side of (22) in the form of the left hand side. ■

Remark 4.2 Note that the above theorem expresses the
information state in terms of finite number of parameters

  βk
NG,  Σk , γk, Lk and   ρk

NG.  Also, Φk,  Σk  and Lk can be calcula-
ted off-line.

Also note that  Σ0  = 0 merely implies that the initial
condition is known.

One can now apply the above theorem to obtain the
expression for the optimal risk-sensitive estimate using
(23), which we state in the following theorem.

Theorem 4.2 Consider the linear time-invariant system
given by (1).  Consider also the cost objective given by (2)
, (3).  Suppose x0 ~ Π0(x0).  Then the optimal risk-sensitive
estimate denoted by  xk

NG is given by

   xk
NG =βk

NG +ΦkD k(Nk
NG) (28)

where Dk(  Nk
NG ) is given by

   

D k(Nk
NG) =

ξ
IR n

exp[ – 1
2

ξ ′M kξ + ξ ′Nk
NG]Π0(ξ)dξ

IR n
exp[ – 1

2
ξ ′M kξ + ξ ′Nk

NG]Π0(ξ)dξ
(29)

and Mk,  Nk
NG  are given by

   M k =L k +Φk
′ Σk

– 1Φk – Φk
′ Σk

– 1(Σk
– 1 – µI)– 1Σk

– 1Φk, M 0 =L 0 – µI

   Nk
NG =ρk

NG – Φk
′ Σk

– 1βk
NG +Φk

′ Σk
– 1(Σk

– 1 – µI)– 1Σk
– 1βk

NG

   – µΦk
′ Σk

– 1(Σk
– 1 – µI)– 1xk

NG

   N 0
NG =ρ0

NG – µx0
NG (30)

Proof. The proof follows easily by using (23) along with
the expression for qk(x, ξ) given by (24), (26).  Differenti-
ating with respect to  xk

NG and equating the derivative equal
to zero, some algebraic manipulations result in (29), (30).
The fact that the cost function is convex and approaches ∞
as  xk

NG  → ∞, implies that the solution is a minimum and
the desired solution.  It also guarantees the existence of

 Nk
NG , ∀ k from above. ■

Remark 4.3 Note that the difficulty in obtaining a closed
form expression for  xk

NG is that it is given by an implicit
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equation.  This makes the analysis for asymptotic optimality
of such estimates difficult and to simplify the analysis, we
make certain assumptions in the next subsection.  Al-
though these assumptions are sufficient to guarantee the
asymptotic optimality of risk-sensitive filters with respect
to non-Gaussian initial conditions, it is essentially hard to
verify some of the assumptions in practice.  However, for
µ = 0, one can solve the implicit equations explicitly to
obtain solutions for risk-neutral estimation and similar
results as in (Makowski [18]) can be obtained.

Note above that one can express Dk(  Nk
NG ) as the

conditional mean of x0 under a different probability mea-

sure P  such that  dP
dP

 =  Λk  where  Λk  is a {Yk ∨ σ{x0}}-

adapted process given by

   
Λk =

exp[ – 1
2

x0
′ M kx0 +x0

′ Nk
NG]

exp
IR n

[ – 1
2

ξ ′M kξ + ξ ′Nk
NG]Π 0(ξ)dξ

(31)

Defining Ex0
 to be the expectation operator under

measure P with respect to the initial condition x0, Dk(  Nk
NG )

= Ex0
[x0  Λk   Y k ] and also, Ex0

[  Λk ] = 1.

1. Asymptotic optimality of risk-sensitive filters for
non-Gaussian initial conditions

In this section, we present the results on the mean
square asymptotic convergence of the optimal risk-sensi-
tive estimate to a suboptimal risk-sensitive estimate with
a Gaussian initial condition with zero mean and arbitrary
covariance matrix Q ∈  D (defined as   βk

G  in the previous
Section).

Before presenting the main theorem on the conver-
gence result, we make the following assumptions:

Assumption 4.1 µ is chosen small enough and Π0(.) has

such regularity properties that   exp
IR n

   [ – 1
2

ξ ′M kξ  +

   ξ ′Nk
NG]    Π0 (ξ)dξ  is well-defined for all k.

Example. For the example discussed in Section 3.1 with
µ = 0.2, it can be worked out that limk → ∞ Mk = M∞ exists
and is positive definite symmetric.  In fact, as evaluated
from (30), Mk is positive definite symmetric for all k for µ
= 0.2.  We can certainly find examples of non-Gaussian
densities Π0(.) for which Assumption 4.1 holds in this
case.  One such example is

  Π0(ξ) = 1
4(Γ(1 /4))2

exp ( – ξ 1
4 – ξ 2

4 ) (32)

where Γ(x) =    t x – 1

0

∞

 exp(–t)dt and ξ = (ξ1 ξ2)′ .  Note

however that the requirement of Mk being a positive
definite symmetric matrix for all k is certainly not neces-
sary but only a sufficient condition for Assumption 4.1 to
hold for the above example.

Denote F –  Σk H′HF + µ  Σk
   Σw

– 1FVk – 1 ∆  Ak.  Then the
existence of limk → ∞ Ak = A∞ follows from the fact that
limk → ∞  Σk  =  Σ∞ exists.

Assumption 4.2 ρ(A∞) < 1.

Example. Again, for the same example as in Section 3.1,
one can work out that for µ = 0.2, ρ(A∞) = 0.6211 < 1.

Remark 4.4 Obviously, Assumption 4.2 guarantees that
the following linear time-varying unforced linear system
(see (26)):

   Φk =[F – ΣkH ′HF + µΣkΣw
– 1FV k – 1]Φk – 1,Φ0 = I (33)

is exponentially stable, i.e., there exist    lnρ(A ∞)  > σ1 > 0,
Mσ1

 > 0 such that

   Φk ≤M σ1
exp( – σ1k) (34)

Assumption 4.3 There exists a 0 < Mx < ∞ such that E
[   x0

4
] < Mx.

Remark 4.5 Note that this assumption is satisfied for the
example given by (32).

Assumption 4.5 There exist Md > 0 and 0 < σd < σ1 for

some 0 < σ1 <    lnρ(A ∞)  such that   Λk
–
 is a {Yk ∨ σ{x0}}-

adapted process where supk E[    Λk
– 4

] ≤ Md exp(4σdt).

Remark 4.6 Note that Assumption 4.3 and Assumption 4.

4 together imply that 
  

E D k(Nk
NG)

2

 ≤ Mz exp(2σd t), ∀ k ∈ IN

where Mz > 0 is a constant.  To see this, note that 
  

D k(Nk
NG)

2

≤     E x 0
[ x0

2 Λk
2 Y k ] from Jensen’s inequality.  Hence

  
E D k(Nk

NG)
2

 ≤    E[ x0
2 Λk

2]   E[ x0
4
]    E[Λk

4]  where the

last step follows from Schwartz’s inequality.  Now, using
Assumption 4.3 and Assumption 4.4, it follows that

  
E D k(Nk

NG)
2

 ≤ Mz exp(2σdt), ∀ k ∈  IN.  One can possibly

look for a sufficient condition by imposing regularity
properties on Π0(.) and boundedness properties on the
process  Nk

NG  such that Assumption 4.4 is satisfied.  But due
to the complicated nature of the process  Nk

NG we postpone
such investigation for the time being.  However, it is
clearly seen that Assumption 4.4 is not that restrictive
since it allows an exponential growth (slow enough).
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With the above assumptions and Assumption 3.2
holding, one can summarize the main result of this section
in the following theorem:

Theorem 4.3 Consider the signal model (1) where x0 ~ Π0

(x0), Π0 being non-Gaussian.  Consider also the risk-
sensitive estimation problem given by (2),(3).  Suppose
Assumptions 3.2, 4.1, 4.2, 4.3 and 4.4 hold.  Then the
optimal risk-sensitive estimate given by (28), (29), (30)
asymptotically approaches the suboptimal risk-sensitive
estimate given by (16), (17) in the mean square sense, i.e.,

   
lim
k →∞

E xk
NG – β

k

G
2

→0 (35)

Proof. Note that one can write

   xk
NG – βk

G =(xk
NG – βk

NG) +(βk
NG – βk

G)

which implies

   
xk

NG – βk

G
2

≤ [ xk
NG – βk

NG + βk
NG – βk

G ]2

Now, one can apply Minkowski’s inequality to obtain

   
E xk

NG – βk

G
2

≤ E xk
NG – βk

NG
2

+ E βk
NG – βk

G
2

2

(36)

Also, from Remark 4.6 and (34), we have

   
E xk

NG – βk
NG

2

≤M σ1
M z exp( – 2σγk) (37)

where 0 < σγ = σ1 – σd.

Now, consider the process    e k ∆ βk
NG – βk

G .  Using
(25), (16), one can write

   e k =(F – ΣkH ′HF)e k – 1

   – µΣkΣw
– 1FV k – 1Φk – 1 D k – 1(Nk – 1

NG ), e 0 =0 (38)

Denoting µ    ΣkΣw
– 1FVk – 1 as Rk – 1, one can then obtain

   
E e k

2
=E ΨkΣ

j =0

k – 1

Ψj +1
– 1 R jΦjD j

2

(39)

where   Ψk  is the transition matrix associated with
F –  Σk

H′HF.  Using the assumption that  Σk
 is stable for all

k > 0, one can have supk  R k  < ∞ which implies

   
E e k

2 ≤KaE[ ΨkΨj +1
– 1 Φj D j ]2Σ

j =0

k – 1

   ≤M σ, σ1
E[ expΣ

j =0

k – 1

[ – σ(k – j – 1)]exp( –σ1 j) D j ]2

   ≤M σ, σ1

a kE[ expΣ
j =0

k – 1

[ – 2σ(k – j)]exp( – 2σ1 j) D j

2
]

   
≤M σ, σ1

a M z k exp( – 2σk) expΣ
j =0

k – 1

[2(σ – σγ) j]

   ≤M σ, σ1, σγM zk exp( – 2σγk)[1 – exp[ – 2(σ – σγ)k]]

   ≤M σ, σ1, σγM z k exp( – 2σγk) 40)

where we have assumed σ > σγ.  If σ < σγ, we have the
following expression for the above bound

   E e k
2 ≤M σ, σ1, σγ

b M z k exp( – 2σk) (41)

In the above derivation, the exponential stability of    ΨkΨj +1
– 1

has been used following (14).  Also, Ka, Mσ, σ1
,    M σ, σ1

a ,
Mσ, σ1, σγ,    M σ, σ1, σγ

b  are constants independent of k.  We
have also used the so-called Cr-inequality (Chen and Guo
[10]) which states

   E( u jΣ
j =1

n

)r ≤n r – 1E u j
rΣ

j =1

n

, r ≥1 (42)

It is clear from the above that as k → ∞, we have   E e k
2
 →

0 and 
   

E xk
NG – βk

NG
2

 → 0.  Combining these two results, we

have (35). ■

Remark 4.7 One can prove a corollary similar to Corol-

lary 3.1 stating 
   

E xk
NG – βk

NG
2

 → 0 as k → ∞.

V. CONCLUSIONS

In this paper, we investigated the problem of asymp-
totic forgetting of initial conditions by risk-sensitive fil-
ters for linear time-invariant systems.  For Gaussian initial
conditions, we show that under an asymptotic stability
condition satisfied by a state transition matrix associated
with the H∞-like Riccati difference equation, with appro-
priate stabilizability and detectability condition holding
for the linear system under consideration, the optimal risk-
sensitive estimate initialized with the true initial covari-
ance matrix approaches a suboptimal risk-sensitive esti-
mate initialized with an incorrect covariance matrix in the
mean square sense.  For non-Gaussian initial conditions,
the analysis is more complex.  However, under a certain
boundedness condition satisfied by the fourth order abso-
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lute moment of the initial state distribution and a slow
growth condition satisfied by a certain Radon-Nikodym
derivative, we have a similar mean square convergence
result.
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