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Abstract. In this paper, the risk-sensitive nonlinear stochastic filtering problem is addressed in 
both continuous and discrete-time for quite general finite-dimensional signal models, including also 
discrete state hidden Markov models (HMMs). The risk sensitive estimates are expressed in terms 
of the so-called information state of the model given by the Zakai equation which is linear. In the 
linear Gaussian signal model case , the risk-sensitive (minimum exponential variance) estimates are 
identical to the minimum variance Kalman filter state estimates, and are thus given by a finite dimen­
sional estimator. The estimates are also finite dimensional for discrete-state HMMs , but otherwise, 
in general , are infinite dimensional . In the small noise limit , these estimates (including the minimwn 
variance estimates) have an interpretation in terms of a worst case deterministic noise estimation 
problem given from a differential game . The related control task, that is the risk-sensitive generaliza­
tion of minimum-variance control is studied for the discrete-time models . This is motivated by the 
need for robustness in the widely used (risk neutral) minimwn variance control, including adaptive 
control, of systems which are minimum phase, that is having stable inverses. 
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l. INTRODUCTIOK 

In optimal filtering, the usual index optimized is 
a state estimation error variance. This can be 
referred to as H2 filtering . This is appropriate 
when the (stochastic) signal model is known pre­
cisely but when there is uncertainty of the model 
dynamics and noise , there is a case for achieving 
robust filtering which is acceptable for a range of 
models. This is the motivation for so-called Hoc 
filtering which has the interpretation in terms of a 
minimizing estimation error in a worst case noise 
scenario . Risk-sensitive filtering is a more general 
robust / optimal filtering approach than H 2 or H DC 

filtering. It minimizes the expected value of the 
exponential of an (typically quadratic) estimation 
error cost, weighted by a risk-sensitive parameter . 

A linear risk sensitive problem has been studied 
in (Speyer et al., 1992) and more general nonlin­
ear problems studied in (Dey and Moore, 1995) . 
The latter paper tackles the risk sensitive estima­
tion problem using reference probability methods 
of (Elliott et al. , 1994) where the index works 
with the sum of quadratic estimation errors to the 
present . 

In this paper , an alternative simpler risk-sensitive 
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index to that of (Dey and Moore, 1995) is stud­
ied. For this index the risk-sensitive filter for very 
general nonlinear stochastic models is seen to be a 
simple augmentation of the information state filter 
(the linear Zakai equations) . For linear Gaussian 
models , the risk sensitive filter is identical to the 
H2 Kalman filter and is finite dimensional. Oth­
erwise, in the limit as the risk-sensitive parameter 
approaches zero, the risk sensitive filter becomes 
a risk-neutral filter , typically the minimum error 
variance H 2 filter . In the small noise limit , the 
risk-sensitive filtering problem has the interpreta­
tion of a deterministic differential game, as does 
the Hoc problem. 

Results are developed here for quite general non­
linear models in continuous time and for states in 
a continuous range . Corresponding results are in­
cluded for the discrete-time case and the discrete­
state case for completeness. Our model class re­
quires the nonlinearities to be linearly bounded 
and the index class to be quadratically bounded, 
rather than simply bounded as in the work of 
(James et al.,1994) for related control problems. 

Closely related problems of smoothing and pre­
diction are addressed briefly. We also present re-



suIts for a robust version of minimum variance 
control (including adaptive control) for minimum 
phase plants, namely risk-sensitive generalization 
of minimum variance control. In Section 2, the 
theory is spelt out for risk-sensitive filtering , and 
in Section 3, results are presented for the risk­
sensitive version of minimum variance control. 

2. RISK-SEKSITIVE ESTIMATION 

Estimation Problem Formulation: Recall 
that minimum variance estimation of a state at 
time t, denoted Xt E JRn based on measurements 
Yt E JRm up to time t , denoted Yt , is given from 
the definition 

with Q ~ O. (Of course Xtlt 
Q> 0) . 

E[Xt 1 Ytl with 

Here we work with a risk-sensitive version of this 
estimation task , and define a risk-sensitive esti­
mate with risk sensitive (scalar) parameter (), suit­
ably small to achieve existence of the expectation , 
as 

X~lt E arg min E[ exp{ -2(} (Xt - ~)/Q(Xt -~)} 
{elRn 

1 yt} (2) 

The significance of () is discussed after the optimal 
filter results are derived. 

For simplicity of notation, and increased general­
ity, let us work with the risk sensitive and risk 
neutral estimates, respectively, 

- 8 
E arg min E[exp{(}cl?(xL~)} IYt] XtJt 

{elR n 

(risk sensitive) (3) 
- 8 

E arg min E[cl?(xL~) 1 Yt ] XtJt 
{elRn 

(risk neutral) (4) 

where cl? E C(JR2n
) , the class of continuous func­

tions , and 1cl?(x , ~) 1 ~ x:(1 + IxI 2 + 1~ 1 2) for some 
x: > O. 

To proceed, let us work in the first instance with 
a continuous-time stochastic signal model , with 
t E [0 , 00) 

dx~ 

dyf 

a( x~ )dt + dwf 

c(xndt + d1;f (5) 

where wc, VC are standard independent \Viener 
processes scaled by Vi, and G, care Lipschitz con­
tinuous with 

la(x) 1, c(x) ~ x:(1+ I x I) for some r;, > 0 (6) 

424 

Also, we require that the a priori density of XC 
0 ' 

denoted f(x) , satisfy 

10gf(x)(E V) {l(x) E (JRn ) 

: l(x) ~ -rl 1 x 12 +r2, 
rl > 0, r2 ~ O} (7) 

Here the parameter c: is introduced so that subse­
quently we can conveniently consider our stochas­
tic results taking a small noise limit with c: ........ 0 
to achieve deterministic worst case estimation . 

We also generate results for a discrete-time model 
with k E {O, 1, 2 ·· .}. 

a(xk) + Wk+l 
c(xk) + 1;k (8) 

where Wk , Vk are white noise processes with densi­
ties "\b (-) , tPO, respectively. Here we assume Gaus­
sian densities N[O , d] . 

The special use of linear models are considered, 
namely 

dx~ 

dyf 

Ax~dt + dwf 

Cx~dt + dvf (9) 

for continuous time , and for the discrete-time case 
then we have 

AXk + Wk 
CXk + Vk 

The HMMs we consider are 

(10) 

( 11) 

where X k E {el , e2 ,' . " eN} with ei being the unit 
vector with unity in the ith positions and zero 
elsewhere, and A is the matrix of transitions prob­
abilities such that E [Xk+lIXk] = AXk. Again Vk 
is i.i.d with variance cP{O '" N[O , U] , and esti­
mates X~lk are defined analogously. (Other HMM 
models with discrete range measurements and/or 
in continuous time as studied in (Elliott et al. , 
1994) can be considered, but details are omitted 
here.) 

Risk sensitive smoothing and prediction estimates 
are defined from a mild generalization of (3) as 
follows 

X~I'" E arg min E[exp «(}cl?( Xt, 0) 1 YT] 
{elR n • 

For smoothing T > t , for prediction 7 < t , and for 
filtering T = t. 



Measure Change: The continuous-time 
stochastic system (5) is defined on a probability 
space (n, F, P) with 9t = a(xe ' YE; 0::; s ::; t) and 
Yt = a (ifs ; 0 ::; s ::; t). 

Let P denote the equivalent probability measure 
under which ift is a standard Wiener process inde­
pendent of the state process (Elliott, 1982). Such 
a measure exists and (since Vt is Gaussian) is given 
from 

Aa,t := ~;I 
g, 

For a proof of this Girsanov Theorem see (Elliott, 
1982) . 

For the discrete-time models (8) and (11) defined 
on (n, F, P) with 9k = a(xf, yf; 0 ::; I ::; k) and 
Yk = a(yf; 0 ::; I::; k), the corresponding measure 
change to yield Yk i. i. d. is 

Aa,k:= ~;I 
k 

IT A/(x/) 
gk /=0 

Ak(xk) 
tj;,,(Yk - C(Xk)) 

(13) 
<p" (Yk) 

For a proof see (Elliott et al., 1994). 

Information State: Let us denote the informa­
tion state associated with the model (5) and mea­
sure change (12) as q~lt(x), It satisfies the follow­
ing defining equation for all b : IRn 

-+ IR Borel 
test functions 

[ b(x)q~lt(x)dx 
JJR" 
lE [Ao ,tb(xnIYt ] (14) 

where lE is the expectation under P. Indeed, the 
information state satisfies the Zakai equation (EI­
liott , 1982) . 

B* q~ltdt + ~c/(x)q~ltdy~ 
c 

= p(x) (15) 

where * denotes the adjoint and the operator B is 
defined as 

c obex) 
B(b(x)) = 2".6 b(x) + a(x)---ax-

Here .6 is the Laplace operator (.6 = b + ... + 
vX, 

",(22) ' Also p( x) is the a priori density of x. The 
vX" 

Zakai equation is linear and infinite-dimensional 
in general. 
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For the discrete-time model (9), the information 
state defining equation is (14) with t replaced by 
k, and for the Zakai equation see (Elliott et al., 
1994). For the HMM (11), the information state 
is defined analogously but with x E IRn replaced 
by X E {el, ... ,eN}. Also we denote qklk as a 
vector with i-th elementqklk(ei). Of course, now, 

(b, q~lt) = Li b(ei)q:lt(e;) in (14). 

The Zakai equation for the HMM model (11) is, 
(see (Elliott et al., 1994)) 

(16) 

where 

Bk+l = diag {c;6,,(Yk+l - Ced,·· ·, c;6"(Yk+l - Cen )} 

With smoothing or prediction in mind, the infor­
mation state is readily generalized to define q* 
from 

(17) 

Smoothed information state estimates with T > t 
can be obtained from a forward filter for q~lt and 
a backward filter from T to t (see (Elliott et al., 
1994) for details). 

Risk-sensitive Estimates in terms of Infor­
mation State: The optimization task can be ex­
pressed in terms of the information state as fol­
lows. First apply a version of Bayes' Theorem 
(see (Elliott et al., 1994)) as 

E [exp (e<I>(x~, ~)) IYt] 

lE [Ao,t exp (e<I>( x~ , ~)) IYt] 

E [Ao ,tIYt] 
( 18) 

Now application to (3) gives, for e sufficiently 
small such that the expectation exists , 

E arg min lE [Aa t exp (B<I>(x~. 0) I Ytl 
€EJR'" . 

E arg min / exp (B<I>(x , ~)) ,q~lt(x))(19) 
€EJRn \ 

Likewise, risk-neutral estimates are defined from 

(20) 

Risk Neutral Filtering: Using a power series 
expansion for the exponential , it is straightfor­
ward to show that in the limit as e -+ 0, then 
risk-neutral filter results are recovered from risk­
sensitive filtering, that is , for the indices (19), 
(20) 

(21) 

Linear Filters: Consider the special case of the 



linear Gaussian signal models (9) and (10) , and 
quadratic indices as in (1) and (2) with Q > o. 
In this case, the information state is a scaled 
Gaussian with mean Xtlt and variance denoted 
I:tl t . Now the minimization (19) to achieve risk­
sensitive filtering can be carried out analytically 
by completing-the-square arguments. Thus we 
have the key property that the risk-sensitive es­
timates x:lt are identical to the risk-neutral (min­
imum variance) estimates xtIt 

(22) 

Trivially, also liIIlB_o x:lt = Xtlt . This result ap­
plies in discrete-time also with t replaced by k. 

Small Noise Limit: To consider small noise re­
sults as € - 0, express f) in terms of € as 

(23) 

Let us work first with the continuous time model 
(5) and define 

St7 (q) ~ inf / exp (t:<I?(x, 0) , q~(x)) (24) 
{EIR." \ € 

Also , as in (James et al. , 1993) , recall that 

lim ~ log qf (x) = pr (x) 
~-o I-" 

where, as long as "!It - J; ysds , 

apr(x) 
at = [ 

apl'(x) 
sup --;-(a(x) + w) 

wElRn uX 

(25) 

1 2] 1 [1 2, ] --Iwl - - - lc(x)1 - c (x)Yt 
21-" I-" 2 

lim ~ log p(x) 
t-0l-" 

(26) 

At this stage, recall a version of the Varadhan­
Laplace limiting result from (James et al., 1994) 

lim ~ log / exp 7/(X ), exp 7 m (X)) 
~-o I-" \ 

sup{l(x) + m(x)} (27) 
x 

(27) 

Mildly generalising the result of (James et ai, 
1994) , this result holds for m(x) + lex) E 'D 
and convergence is uniform on compact subsets 
of'D x 'D. 

Now from (24) 

426 

So that , taking limits and applying the result (2) , 
we have, 

€ I:. (I-" ) lim-Iog{St(exp -p)} 
£-01-" € 

= infsup{pr(x) + <I?(x,O} 
{ x 

(28) 

This holds if pr(x) + <I?(x ,. ) E 'D , which in turn 
holds for log p( x) E 'D and I-" > 0 suitably small. 
At the limit of this condition holding as I-" in­
creases , there is a correspondence to H CXl filtering , 
see (Glover , 1988) . 

Thus the small noise state estimate is, for I-" > 0 
suitably small 

I:. 

lim x/ E argminsup{prcx) + <I?(x , ~)} 
£-0 {x 

(29) 

which has the interpretation of a deterministic 
differential game in which state estimation is 
achieved in a worst case deterministic noise en­
vironment . An alternative nonrecursive interpre­
tation of pr (x) is given from (see (J ames et al., 
1993)) 

pr(x) = sup {(l"(TJO-~ t(-21 1 ~s-a(TJs)12 
T/EC(O ,t ) I-" lo 
1 2 

+2 Ic(TJs)1 - c'(TJs)Ys)ds: TJt = x} (30) 

We see that pr (x) serves the role of an informa­
tion state in the deterministic setting, telling us as 
much as we can know about the states from the 
measurements in this setting. For the discrete­
time model (8) , the above results also hold with 
t replaced by k and (26) replaced by, (see (J ames 
et al. , 1994)) 

sup [-~ Ix - a(v)12 
vElRn 21-" 

-;[~ Ic(v )1 2 - c'(v)Ykl + Pk(V)] 

P6(x) lim ~logp(x) (31) 
t-0l-" 

It is immediate from this equation that Pb (x) E 'D 
implies p~(x) E'D for all k, and p~(x) + <I?(x , 0 E 
V for I-" suitably small. The nonrecursive version 
of (31) derived by successive application of (31) 
yields 



We remark that in the linear Gaussian model case 
when the risk-sensitive estimate is identical to the 
minimum variance estimate, then of course this 
minimum variance estimate also has the interpre­
tation of worst case estimate in the above sense. 
We believe this observation has not been made in 
earlier literature . 

The results of this section can be summarised in 
the following theorem 

Theorem 1 Continuous time: Suppose there is 
given the model (5) with the assumptions (6) and 
(7) holding and the risk-sensitive performance in­
dex given by (3) . Then the optimum risk-sensitive 
estimate is given by (19) . In the limit , as () --+ 0, 
the risk-sensitive estimate approaches the risk­
neutral estimate (20). Moreover , with () = ; , 
where c: is the noise variance , then in the limit 
as c: --+ 0, the risk-sensitive estimate is given by 
(29) and (30) . 

Further , for linear signal model (9), (22) holds . 

Discrete-time: For the discrete-time signal 
model (8) , all the results for the continuous-time 
signal model hold with t replaced by k and (30) 
replaced by (32). 

For the HMM case, only the measurement noise 
approaches zero as c: -t O. In this case the differ­
ential game is not completely deterministic. Only 
the measurement noise is interpreted as determin­
istic, so that estimation of the stochastic discrete 
state X k is achieved in the worst case determinis­
tic measurement noise environment. 

Of course, we would have studied the other signal 
models with only the process noise or measure­
ment noise variance approaching zero; and in this 
case the limiting case is of a partially stochastic 
model in a deterministic noise environment. 

Risk-sensitive Indices with Memory: In ear­
lier works (Dey and Moore, 1994; Dey and Moore: 
1995) the following risk-sensitive optimization is 
considered (in discrete-time) 

E argm~nE [exp {I:8<l>(Xi ,Xfl ;) 
~ER ;=0 

+8<l>(Xk :';)} !Yk] (33) 

We observe here that this task can be tackled us­
ing the techniques of this paper by working with 
an augmented plant model and associated infor­
mation state. Thus consider the augmented model 
(8) 

a(Xk) + Wk+l 

Ji: + <l>(xk ' X~lk) 
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Yk = c(xk) + vk (34) 

with states (xj" In. Now (33) can be rewritten 
as 

where qkl k (x, J) is the information state associ­
ated with the augmented plant (34) . Analysis can 
proceed using techniques of this section . The algo­
rithms are formulated differently than in the ear­
lier work. Here: the small noise limit results apply 
in a straightforward manner , giving new results . 

We remark that in the linear Gaussian model case, 
the risk-sensitive estimate is no longer identical to 
the minimum variance estimate, and consequently 
this particular index is perhaps the more appeal­
ing one to work with. Both indices approach the 
minimum variance index in the risk-neutral case 
as () -t O. 

3. RISK-SENSITIVE GENERALIZATION OF 
MINIMUM VARIANCE CONTROL 

Consider the discrete-time signal model 

Xk+l a(xL uk) + Wk+l 

Yk c(xk) + vk (35) 

with control variable uk E IR.P is Yk measurable. 
Minimum variance control for such models is usu­
ally formulated as 

. E[l c I cl] uklk E argmm . -2Yk+1 Yk+l Yk 
uER' 

(36) 

or more generally, 

(37) 

with 1 ~(y, u) I::; ~(1 + lyI2 + lu l2) for some ~ > O. 

The risk-sensitive generalization of minimum vari­
ance control is defined from 

Clearly, this problem is a special case of one-step­
ahead prediction defined in its most general form 
in the previous section. Working under the mea­
sure F, 

Now substituting (35) , taking expectation under 
E and using inner product notation , we have 

u~lkEargmin (exp {()~ ((a(x , u) + w) + v, u)} , 
uER' 

9c(V)7,!;c (w) qk lk(X) (39) 



Linear Gaussian Model Case: The optimal 
control (39) can be solved analytically in the lin­
ear Gaussian model case since ve we qE: are nor-, , 
mally distributed. Thus , applying completing-the 
square arguments , as in derivation of (22) , it can 
be shown that 

U~lk = [B'WB - B'WA(A'WA -1:kli)-lA'WBri 

B'W A(A'W A - I:kIU-i~klixklk (40) 

where 

W V - V(V - g-i I)V 

V OC'C [1- 0(0 - g-itij 

Indeed, observe that as 0 ........ 0, W ........ OC'C and 
U~lk ........ -[B'C'CB]-i B'C'CAxklk which is the 
risk-neutral minimum variance control 

( 41) 

The results of this section can be summarised in 
the following theorem 

Theorem 2 The risk-sensitive generalization of 
minimum variance control ut1k defined by (38) for 
the discrete-time model (35) is given in terms of 
the information state by (39) . 

For the linear Gaussian signal model , the risk­
sensitive version of minimum variance control is 
given by (40). As e ........ 0, the risk-sensitive ver­
sion of minimum variance control approaches the 
risk-neutral minimum variance control (41). 

Adaptive Risk-sensitive Version of Mini­
mum Variance Controllers: An important ap­
plication of the above risk-sensitive generalization 
of minimum variance control results is to indirect 
adaptive control , which is of course on-line. The 
control calculation is based on the most recent es­
timates of plant parameters , which in turn can be 
viewed as plant states and part of the state esti­
mation process. As in minimum variance control 
of linear plants, for a closed-loop stability there is 
a severe restriction namely a minimum phase re­
striction on the plant. Equivalently: the inverse of 
the plant must be stable. Further details on this 
application, and extensions to more general sit­
uations will be omitted here. However . we stress 
that the motivation for using a risk-sensitive index 
is clear in the sense that in the small noise limit 
as g ........ 0, given 0 = ;. and J.l suitably small , then 
the control is optimum for a worst case determin­
istic noise environment . Details follow closely the 
analysis of the previous section . • 
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4. CONCLUSION 

Risk-sensitive filtering, prediction and smoothino­
results have been developed for continuous-tim: 
and discrete-time stochastic models including hid­
den Markov models as augmentations to infor­
mation state filtering, p~ediction and smoothing. 
In the small noise limit , for suitably small risk­
sensiti~i~y param.eter, the risk-sensitive filtering 
and mmimum vanance filtering in the linear Gaus­
sian case can be the interpretation of a determinis­
tic estimation in a worst case deterministic noise 
environment and an information state has been 
derived for this case. Risk-sensitive estimation in­
volving memory is achieved by application of the 
risk-sensitive estimation results to a signal model 
augmented by a state associated with the perfor­
mance index. 

Also, risk-sensitive versions of minimum variance 
controllers have been developed in terms of an 
optimization task involving the information state 
for discrete-time stochastic models . In the small 
noise limit the control is optimum for a solution 
with worst case deterministic noise. Application 
to adaptive risk-sensitive control is immediate. 
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