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the original system. In fact, we have solved an optimal parameter
selection problem. Instead of directly searching the poles and zeros
of a reduced-order transfer function, we searched the Routh 7y
parameters of the linear and quadratic factors of the numerator and
denominator polynomials. This approach allows one to represent
a reduced-order model in a unique form without prespecifying its
pole-zero configuration. More importantly, it converts the stability
constraints on the decision parameters into simple bounds. This
feature allows one to utilize existing unconstrained gradient-based
optimization techniques to find an optimal reduced-order model which
has the same numbers of RHP poles and zeros of the original unstable
and/or nonminimum-phase system. Finally, it should be mentioned
that the effectiveness of a gradient-based optimization technique
for model reduction depends closely on the initial guesses of the
decision variables. Usually, the Routh y parameters associated with
the dominant or unstable poles and zeros of the original system are
good initial guesses which can converge to the true optimal values.
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Risk-Sensitive Maximum Likelihood Sequence Estimation

R. J. Elliott, J. B. Moore, and S. Dey

Abstract—In this brief, we consider risk-sensitive Maximum Likelihood
sequence estimation for hidden Markov models with finite-discrete states.
An algorithm is proposed which is essentially a risk-sensitive variation
of the Viterbi algorithm. Simulation studies show that the risk-sensitive
algorithm is more robust to uncertainties in the transition probability
matrix of the Markov chain. Similar estimation results are also obtained
for continuous-range state models.

I. INTRODUCTION

The risk-sensitive optimization problem minimizes an exponential
of a quadratic cost criterion to achieve an optimal estimation or
control strategy. Risk-sensitive control problems have been studied
in [1]-[4]. Recently a solution to the output feedback problem

for linear and nonlinear discrete-time systems using information
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state techniques has been proposed in [5] and [7]. Risk-sensitive
estimation problems have received considerable attention recently
[6], and [8}-[10]. The motivation is to obtain estimation and contfol
strategies which are more robust than minimum variance estimation or
control techniques, particularly in situations involving plant and noise
uncertainties. This intended robustness is achieved by penalizing
the higher order moments of the estimation error energy by the
exponentiation operation. The index of the exponential is usually
weighted by a risk-sensitive parameter (usually positive) which is
a design parameter to be chosen based on the nature and extent
of the uncertainty in the plant and/or noise models. Specifically,
it has been mentioned in [9] that risk-sensitive filters for hidden
Markov models (HMM) with finite-discrete states perform better than
standard HMM filters in situations involving uncertainties in the noise
statistics. Also, in the small noise limit, risk-sensitive problems have
been shown to be closely related to worst-case estimation/control
problems in a deterministic worst-case noise scenario connected to
H, estimation/control [7] and [10].

The risk-sensitive filtering problem has been studied for general
nonlinear. signal models in [8] and similar results to [6] for linear
signal models have been obtained as a special case. The same problem
has been solved for hidden Markov models in [9] where recursive
estimates have been defined and the optimizing state estimate is
obtained as the minimizing argument of a function involving these
recursive estimates. These recursions are linear and finite-dimensional
as are the recursions for the “forward variable” or the true filtered
estimate for the state of the hidden Markov chain obtained in
[13]. A common feature of these recursions is that they involve a
summation over all possible past states. It is well-known that a similar
recursive structure with a maximization over the previous states
rather than a summation appears in the Viterbi algorithm [13]. This
was originally proposed for decoding convolutional codes in 1967.
But, since then, it has found applications in Maximum Likelihood
sequence estimation for a discrete-time finite-state Markov: process
observed in memoryless noise [14]. In this paper, we study a risk-
sensitive variation of the Viterbi-type recursions with the motivation
to achieve robust Maximum Likelihood sequence estimation. The
authors would like to stress on the fact that although ' the risk-sensitive
Maximum Likelihood sequence estimation strategy is an application
of the optimal risk-sensitive estimation of HMM’s, it -is a robust
but suboptimal variation of the Viterbi algorithm. Simulation studies
show that the risk-sensitive algorithm yields substantially less number
of decision errors in recovered data particularly when there is an
uncertainty in the transition probability matrix of the Markov chain.
This could be very useful in communication systems involving fast
time-varying channels or military communication systems. Also, in
the small noise limit, this risk-sensitive algorithm can be interpreted
in terms of a deterministic worst-case measurement noise estimation
strategy given from a differential game, which is closely related to
H. estimation theory. This is quite a nice result in its own right.
Details are not given this paper but the analysis follows closely that
of [10]. Signal models considered in this paper are discrete-time
and derivations involve change of probability measure techniques
(developed in [12] and used in [7]-[9]).

In Section II, we describe the signal model and give brief details
of the change of probability measure techniques in Section III.
Section IV presents the results regarding recursive estimation of
products of general real functions of the state given observations. In
Section V, we study Viterbi-type recursions for estimating products
of a certain class of such functions related to risk-sensitive estimation
problems. These recursions along with a subsequent optimization
yield an algorithm for what we call as the risk-sensitive Maximum
Likelihood sequence estimation (RSMLSE). Section VI presents sim-

ilar results for continuous-range state models. In Section VII sim-

ulation studies demonstrate robustness of the RSMLSE, and in

Section VIII, we state some concluding remarks.

II. SiGNAL MODEL

Consider a probability space (2, F, P). Let X} be a discrete-time
homogeneous, first-order Markov process belonging to a finite-
discrete set in this probability space. Define € 2 {e1, €2, -+, en}
where e; = (0,--+,0,1,0,---,0) € RY with 1 in the ith
position. Without loss of generality, we can assume that X, € &
[15]. Define ¢ = ¢{Xo, -+, X&} and the corresponding complete
filtration as {F%}. Also, there is an observation sequence {y},
k € IN which is a function of the Markov chain X}, hidden in noise.
The complete state-space description is then defined by

X1 = AX + Wi
ye = C(Xy) + i 1)

where Wi, k € IN is a sequence of Fj-martingale increments and
hence E[Wiy1|Fi] = 0. Also, yx € R? and vx € R?, k € IN is
the measurement noise which is i.i.d with a strictly positive density
function ¢. Here, A is the transition probability matrix of the Markov
chain X) where, ai; = P(Xpqp1 = e|Xx = ej). Of course,
ai; > 0,V¢,5,0,7 € {1, LARERI N} and Zl a;; = 1,Vj €
{1,2,---, N}.

Remark II.1: Details about this formulation of the Markov process
can be found in [12]. Also, the idempotent property of X3 allows us to
express nonlinear functions of X as essentially linear functions and
thus many derivations become quite simple (see [12] for examples).

Define Gp = a{Xo, X1, -+, Xk, Yo, ¥1, -, yr_1} and Y =
o{y0, y1, -+, yx} and {Gx} and {Yx} are the corresponding com-
plete filtrations.

III. CHANGE OF PROBABILITY MEASURE

In this section, we use the change of probability measure technique
which is based on a discrete-time version of Girsanov’s. theorem
[11], Fubini’s theorem, and Kolmogorov’s extension theorem. A new
probability measure is defined where the observations are independent
and the estimation problem is solved in this new measure. The results
can be interpreted as those in the old measure (i.e., where the real
model is defined) as long as the Radon-Nikodym derivative of the
old measure with respect to the new measure is restricted to satisfy
a certain condition. More details can be found in [12].

Consider a new probability measure P under which the yz, k € IN
are i.i.d with density ¢. Define

v _ Blyx — C(X4)]
A= )

k
Ay = H X

If we set the Radon-Nikodym derivative dP/dP |g, = A, then
under P, the random variables vy, k& € IN are iid with density
functions ¢, where vy = yr — C(X}) (for proof, see [12]).

Remark II1.1: Note that instead of continuous observations in the
signal model (1), one can consider finite-discrete observations. In that
case, the definition of Az will be different. Details can be found in
[12].

Now, we use a version of Bayes’ Theorem to obtain the following
result which will be used often subsequently

E[R: 35|V
E[Ak[Vx]
where &}, is any G-adapted sequence.

E[®x| Vi) =
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IV. RECURSIVE ESTIMATION OF PRODUCTS

In this section, we present the results regarding recursive estimation
of products of real functions of the state given the observations. We
define an unnormalized measure which can also be interpreted in
terms of an information state. Linear finite-dimensional recursions
involving these recursive estimates are then derived. We also provide
some specific choices for such real functions which are motivated by
practical applications in robust estimation and filtering etc.

Suppose mj, (X} is any scalar-valued real function of X3, £ € IN.
Define M. = H;":O m(X;). We wish to obtain a recursion for

E[AL My | Vi
E[A Y]

Note that the denominator in the right hand side of the previous
equation is just a normalizing factor.
Now, define

E[M|Vi] =

[ olyr — Clen)]
B (yx) = dia {
() = diag ¢ (yx)
Dr(yx) = diag {m(e1), -
and {a, b) as the inner product of two vectors a and b.
Definition IV.1: The unnormalized measure oy is .

B C(eN)]}
)

» mi(en)}

o, = E[Ax Me Xk | Vi) (@)

Lemma IV.1: The unnormalized measure oy obeys the following
recursion

ak = Bi(yx)Dr(yr)Aak—1. 3)
Proof:
o =E{Kk_1Mk_ @fﬁ@ k<Xk>Xk|yk}

N
= Z E[Ak—1 Mr—1{Xk, e)|Vile:

-C
—¢[yk¢<y;>(e )
¢[yk = C(e)]
= Z yk) mi(ei)
. <AE[Ak71Mk—1Xk—-1|yk—1]7 ei)e
= Br(yr)Di(yr) Aci—1. 4
Note IV.1: Note that; n
a0 = E[AoMoXo|Vo] ®)]
and also,

BAuMi|YVi] = {ax, L) ©

where 1 = (1,1, ---, 1),

Choices for My: Now we present two specific choices for Mj
that have practical applications.
1) Take

mi(Xe) = (Xk, ¢5,)

where ji € {1, 2, -+, N}, k € IN. In this case, the diagonal
matrix Dy, Yk € IN has only one nonzero entry, namely the
jrth term in its diagonal which is 1. Further,

(o, 1) = [Ak<Xka €5, ) {Xk-1, €j_ 1) o {Xo, ejo) |Vk].

This is the unnormalized conditional probability that, given Vs,
the path of the Markov chain was ej,, ej;, - -, €j,. In fact,
writing b(yx, ej5,) = ¢lyr — C(ej;)]/¢(yx), we have

(ks 1) =b(Yks €5, )05 si_ 1 b(YE—15 €jx_1) Bk _1ik—2

E[Xo|Yo)- 0]
2) Consider
mi(Xk, &) = exp {0(Xr — &)'Q(Xk — &)} ®)
k

My = Hmz(Xz, &) ®

=0

where Q = Q' > 0 and £, k € IN is a sequence of real-valued
vectors to be chosen. Note that in this case,

(o, 1) = E[Ap My V]

The parameters o, £1, -+, & € IRY are chosen (for 6 > 0)
such that {«x, 1) is minimized. With the choice of m Xk, &)
given by (9), the problem of optimal estimation of &k, k €
IN has been denoted as the risk-sensitive filtering/smoothing
problem and solved for general nonlinear signal models in [8]
and for hidden Markov models in [9].

Sequential computation of &, &1, + -+, &k to yield the optimizing
values 50, 51, N Ek relates to the problem of risk-sensitive filtering.
But note that they can be chosen at the same time & to yield
smoothed estimates. In this brief, we will be concerned about
obtaining filtered estimates and not smoothed estimates. Hence, let us

consider sequential estlmatlon Assume that 50, ﬁl, EEEN £k 1 have
been chosen. Then §k € RY can be chosen such that
€, = argmin (ax (€, 1)
£LERN
= E[Axmo(Xo, &)
i1 (Xeo1, &) me(Xk, €0V (10)

Theorem IV.1: The optimizing value & defined previously is
given by the solution of the system of equations

~ N ~ -t N . ~
& = {Z pimi(€j, ék)} [Z pima(ejs ék)e,] an
=1

J=1 )
where
pi = b(yx, ;) E[Ax—1mo(Xo, &)
. mk—l(Xk-«l,ék—l)(Xk’ e | Vk]-
Proof: Write
U(¢) = EAxmo(Xo, €0) -+ mi—i (Xp—1€e—1)

N
Z b(yk7 Bj)F[Kk_lmo(Xo, EO)

=1

cmi_ 1 ( Xk, b1 /(X ks €5)|Vilma (e, €)

N
> ps exp{8(e; = €)'Qle; — O}

=1

12)

Differentiating with respect to £, we have

N
V() =20Q Y (ej — E)pimulej, €)-

=1
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As [¢] — oo, ¥(£) — oco. Hence the minimum of ¥ will occur at
the critical point when V'¥(€) = 0, that is when

N

> (es = &pimile;, €) = 0.

j=1

Consequently, the critical point is the solution of the system of
equations

N ‘ =lrN \
= [Z pimi(e;, 5)} [Z pimi(es, é)ej] (13)
j=1

j=1

and the proof is complete. ]

Remark IV.1: Choosing ¢ = (o, €1, +++, &) at the same time
given Vi, gives a robust estimate of the distribution of the whole
path to time k. In fact, for 1 < i < N, 0 < j < k, write

P35 (&) =b(yi, ;) Ei—1Nix1 - - - Xemo(Xo, &)
coomo (X, &1 )X, e)miv1{ Xy, &)
e my( Xk, E6)IVR]

Then, given )i, the minimizing values (Eo, &L, ék) of
(€0, &1, +++, &) chosen at the same time are the solution of the
System equations )

b= [ Omiten 0] [ e 0]

=1

14

V. VITERBI-TYPE RECURSIONS

In this section, we use recursions derived in the previous section
and show how we can derive well-known recursions like recursions
for the “forward variable” in HMM estimation [13] and recursions
for Viterbi algorithm for Maximum Likelihood sequence estimations.
Then, we present a risk-sensitive version of the Viterbi recursion
and show how we can obtain more robust state estimates using this
risk-sensitive estimation scheme similar to [8] and [9].

We have seen above from (7) that

) E[Kk<Xk7 ejk><Xk-1= 8]'1%1) T (X(h 6j0>|yk]

= b(Yks €55) 54 55— O(Yk—1, i1 )%k 1k s " E[XODJO]-

15)

Now, supposing that we sum over all possible values
for ej, ., €5 o, " €55, We can evaluate o (Jx)

E[Aw{Xk, €5, )|Vi] using the fact that Ex_lzl(Xk_l, €1y =1
etc.
Performing the same summation up to time % for a1 (jes1), we
see that \
N
Akt 1(Jr+1) = b(Yrt1s €54 yy) Z @ ya50 k(T )
Jp=1

(16)

This is the usuval recurrence for the HMM forward variable, which,
in other words is the true filtered estimate of the ‘state given the
observations. Similar summations give. the recurrence relations for
the HMM backward variables, smoothers and transitions (see [12]).

Now consider a similar recurrence relation; but instead of summing
over all possible values of the state, let us incorporate a maximization
operation. In other words, suppose this recursive variable has been
computed up to time k giving a “state” [6x(1), 6x(2), ---, 6x(N)].
Then 8x41 (%) is defined by

Sk+1(8) = b(Yrt1, €i) max ai;6x(7)- an

This is the usual recurrence relation for the classical Viterbi algorithm
for Maximum Likelihood sequence estimation (see [13]). It associates
with state ¢ at time k + 1 a weighted version of the most likely
transition to that state. )
Now, consider the selection
mi (X, &) = exp {0(Xx — &) Q(Xk — &)}

. :
My = [ mi(X1, &)
=0
"Suppose states [6:(1), -+, 6;(N)] have been defined for | =
0, 1, ---, k. Let us define the following recursive process with &y,

Sr41(1) = b(Yr+1, € )mut1(ei, Eptr) mjax a6 (4)- (18)

However, note that x4 is still a free variable. It should be chosen
so that it is a good estimate of Xy11 given V4.

Consequently, a possible value of £x4; would be E[Xj41|Vit1]
and this could be obtained from a separate HMM filter. Alternatively
a robust estimate for £x41 could be used, as defined above in Theorem
IV.1. However, an estimate obtained from the available parameters
would be more satisfactory. Note that if

Biot1(i) = b(yrs1, ) max ai;8(7)

N N . i
then by 2 [0k41(1), -+, 641 (V)] is approximately an unnor-
malized conditional distribution for Xj11 given YVi41. Therefore, a

surrogate for Elexp {6(Xi+1 ~ &rp1) @(Xot1 — Eeg1) HVrt1] is
given by

N
U(Cpt1) = Z 5k+1(i) exp {0(e; — &xt1) Qlei — &ry1)} (19

i=1
Then, following the same derivation as for Theorem IV.1, the critical

values &xp1 = [Ger1(1), Eeya(2), -+, Epra(V)]for W(Erys) are
the solutions of the system of equations

" .
{z Skt ()M (&5, §k+1)6;}

=1

i = ~ (20)
{E Skg1 (G)mga (ej, ék+1)}

=1

Definition V.1: The risk-sensitive Viterbi state is 6x+y =
[5k~|—1<1)7 ey, ($k+1(N)] where .

Se1(i) = 51¢.|.1 (@)mut1(ei, £k+1)-

Remark V.1: Note that as 8 — 0, 6x11(i) — bry1(i), Vk €
IN, which implies that RSMLSE approaches the standard Viterbi
algorithm. .

Remark V.2: Note that a hard decision about the state sequence
can be made by storing the arguments argmax; [6x(j)ai;], Vi €
{1,2,---, N}, Vk = 0,1,---,T — 1 when a data sequence of
fixed length T' is available, and then a state sequence backtracking
as discussed in [13] for standard Viterbi algorithm for Maximum
Likelihood sequence estimation. But, simulation studies show that
choosing argmax;c(; 5 ... vy} €x(j) as the relevant state estimate en-
sures-improved estimation in the presence of parameter uncertainties,
particularly, uncertainties in the transition probability matrix A.

VI. CONTINUOUS-RANGE STATE MODELS

In this section, we present the risk-sensitive Maximum Likelihood
estimation results for- continuous-range state models. Consider the
probability space (€2, F, P), under which {w;} and {y)} are se-
quences of i.i.d random variables with densities 1/ and ¢, respectively.
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Suppose the state variable evolves according to the following
dynamics
Zpt1 = flar) + wet 21
where 2, € IR is scalar for simplicity.

Remark VI.1: All our results are easily extendible to a vector state
process although we will consider a scalar state process here for

simplicity.
Define
5 _ Slyr — c(@i)]
Ap =
y é(yr)
— k —_—
Ae=1IN
=0
where

vk = yr — c(zk)

Also define G = o{Xo, X1, -+, Xk, Yo, ¥1, -+, Yk—1} and
Y2 = a{yo, v1, -+, yx} and the corresponding complete filtrations
as {Gr} and {Vi}. Using the change of probability measure tech-
niques discussed in Section III, we define a measure P by setting
dP/dP|g, = Ak. Then (see [12]) under P, vx, k € N are i.i.d with
densities ¢.

Let g be any bounded, measurable test function and suppose gx(.)
is the unnormalized conditional density so that

B(Reg(on) Vi) = /R o()a (@) da. 2)

Then it is shown in [12] that ¢, satisfies the recurrence relation

Blyry1 — c(x)]

S(Yr+1) /R Ylz — f(2)]gr(2) d. (23)

grti(z) =

Replacing the integration by a maximization, we have the following
recursion for a continuous-range state Maximum Likelihood estima-
tion algorithm.

Suppose 31(:c) has been defined for 0 < ¢ < k. Then, the relevant
recursion in &y (z) is given by

2 Sy @] R (s
ort1(z) = T I Yle — f(2)] 0k (2). (24)
Define ¥(¢) = [y, bkr1(x) exp {6(z — €)' Q(z — £)} dz. Then
VU(£) = 0, when

' /R wbrpr (z) exp {B(x — €)' Q(z — £)} da

- . 25)
/R biy1(2) exp {8(z — €)' Q(a — €)} da

f:

Writing £r41 for the solution of (25), we have the risk-sensitive
Maximum Likelihood estimate defined as

Sip1(x) = exp {0(2 — &) Q2 — &kt1) k1 (2).  (26)
Remark VIL.2: Note that when the dynamics are linear and the

noise is Gaussian, the recursive Maximum Likelihood estimate
Sk+1(x) is the same as that given by the Kalman filter.
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TABLE 1
PERFORMANCE COMPARISON OF RSMLSE AND STANDARD VITERBI ALGORITHMS
c=050=20
Algorithm No: of decision errors
a1 =0.1a; =091 a3 =03ay =0.7
Viterbi 1279 464
RSMLSE 560 338
c=10,0=2.0
Algorithm No: of decision errors
a11 =0.1a =09 | a;; =03ay =0.7
Viterbi 4136 2851
RSMLSE 2668 2110
c=20,0=2.0
Algorithm No: of decision errors
a1 =03a31 =0.7 | @11 =04 as; = 0.6
Viterbi 4444 3925
RSMLSE 3692 3468

VII. SIMULATION STUDIES

In this section, simulation results are presented regarding the
robustness of the risk-sensitive Maximum Likelihood estimation
algorithm over the standard Viterbi algorithm for Markovian input
data. It is seen that the standard Viterbi algorithm is quite sensitive
to uncertainties in the transition probabilities, particularly if the
transition probability matrix being used by the standard Viterbi
algorithm is quite different to the actual one. In such cases, the robust
(risk-sensitive) algorithm gives less number of errors in the recovered
data. The details of the simulations are given below.

Simulations have been carried out with a 2-state Markov chain X
generated with transition probability values a11 = 0.9, a12 = 0.1.
C(Xy) is given by C'Xy where C = (=1 1), v, k € N
is distributed with N (0, ¢®). They are based on a set of 10000
data points. Table I shows the improvement achieved by the robust
algorithm over the standard Viterbi algorithm in terms of number of
errors obtained in recovered data, for different incorrect transition
probability values and different noise variances. Simulations with
other sets of random data have been done and the results obtained
are consistent.

Remark VIL1: In cases where the transition probability matrix
used by the algorithms is close to the actual one, the robust algorithm
does not give a substantial improvement over the standard Viterbi
algorithm. Simulations have been carried out for other sorts of
uncertainties, particularly in the noise statistics. In these situations
the risk-sensitive algorithm does not perform any better than the
standard Viterbi algorithm. But it has been noted in [9], risk-
sensitive state estimation for HMM’s gives better performance than
standard minimum variance estimation under uncertainties in the
noise statistics. Hence, the authors suggest that in situations where
there are uncertainties in the transition probability matrix and the
noise statistics, a hybrid algorithm consisting of risk-sensitive filtering
and risk-sensitive Maximum Likelihood estimation combined in an
effective (of course suboptimal) way can be applied. Details are still
under investigation.

Remark VIL2: It is also worth pointing out that applications
of risk-sensitive algorithms are slowly emerging in literature such
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as fault detection [16]. The authors’ experience says that such
applications are very specific and case-sensitive. Hence, the risk-
sensitive algorithm proposed in this paper is not expected to perform
better than the standard Viterbi algorithm under all sorts of uncertain
situations. Of course, further research in this direction is necessary.

VIII. CONCLUSION

In conclusion, it will be fair to say that the proposed risk-sensitive
Maximum Likelihood sequence estimator achieves the robustness
expected from risk-sensitive algorithms in the case of uncertainty in
the transition probability matrix of the Markov chain. More research
is still needed to understand the behavior of risk-sensitive algorithms
with changing values of ¢, the risk-sensitive parameter. Also, using
the techniques of [10], RSMLSE can be interpreted in terms of an
estimation problem in a deterministic worst-case noise scenario. Of
course, RSMLSE becomes the standard Viterbi algorithm as § — 0.
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