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Blind Equalization of IIR Channels Using Hidden
Markov Models and Extended Least Squares

Vikram Krishnamurthy, Member, IEEE, Subhrakanti Dey, and James P. LeBlanc

Abstract—In this paper, we present a blind equalization alge-
rithn for noisy IIR channels when the channel input is a finite
state Markov chain. The algorithm yields estimates of the IIR
channel coefficients, channel neise variance, transition probabili-
ties, and state of the Markev chain. Unlike the optimal maximum
likelihood estimator which is computationally infeasible since
the computing cost increases exponentially with data length,
our algorithm is computationally inexpensive. Our algorithm is
based on combining a recursive hidden Markov model (HMM)
estimator with a relaxed SPR (strictly positive real) extended
least squares (ELS) scheme. In simulation studies we show that
the algorithm yields satisfactory estimates even in low SNR. We
also compare the performance of our scheme with a truncated
FIR scheme and the constant modulus algorithm (CMA) which
is currently a popular algorithm in blind equalization.

1. INTRODUCTION

HE hidden Markov model (HMM) consists of a Markov

chain corrupted by additive white Gaussian noise (WGN).
For this simple case, the expectation maximization (EM)
algorithm (Baum-Welch re-estimation formulae) [8] is a com-
monly used numerical scheme to obtain ML estimates of
the HMM parameters. However, in many applications, e.g.,
communication systems, the Markov chain is first filtered by
an unknown channel and then corrupted by additive WGN. The
problem of estimating the coefficients of such an unknown
channel with unknown (stochastic) channel inputs is termed
“blind equalization.”

If the channel can be modeled as a finite impulse response
(FIR) filter and the channel input as a finite-state Markov
chain, then ML estimates of the coefficients of the channel

~ can straightforwardly be obtained using the EM algorithm (see
[2]). Also recursive versions of the EM algorithm can be used
to obtain on-line equalization schemes for the FIR channel [3].
Maximum a posteriori state estimates can be obtained and a
Viterbi algorithm can be used to obtain ML state sequence
estimates.
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Fig. 1. Signal model.

In this paper, we consider the case when the channel is
infinite impulse response (IIR). The EM algorithm can no
longer be used because the E-step requires computation of
the smoothed (posterior) probability density function. In the
case of a Markov chain corrupted by white noise, an induc-.
tive calculation is possible [12] using the forward-backward
scheme. However, in the case of a noisy IIR filtered Markov
chain, the lack of Markovianity of the channel output does
not permit an inductive calculation of the smoothed or even
the filtered probability density function. Direct computation
of these densifies are computationally prohibitive since they
require computing a weighted sum of the joint probability den-
sity functions of the observations over all N7 realizations of a
N-state T-point Markov chain. Similarly, the (optimal) Viterbi
algorithm cannot be applied for state sequence estimation.

Therefore, the only feasible algorithms for the estimation
of the state and parameters of noisy IIR filtered Markov
chains are suboptimal algorithms. In this paper, we propose
a suboptimal algorithm which couples a recursive HMM
estimator with an extended least squares (ELS) estimator. We
call cur algorithm the HMM-ELS algorithm.

Let us first describe our signal model and estimation ob-
jective. Then we discuss applications, related works and show
why some alternative estimation approaches are infeasible for
our problem.

Signal Model

The model we shall consider is schematically shown in
Fig. 1 and can be described as follows:
The observations yx, &k = 1,2, .-+, T are obtained as
Sk

Yo = oy T+ Wi

2
C’(z—l) W N(0,0’w>

(1.1
where wyg is zero mean white Gaussian noise (WGN) with
variance 2. '

C(z7Y) = 1~ %, c;z7° (where 27! is the delay
operator) denotes the urnknown autoregressive IIR channel.
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We assume that C(z71) is stable, i.e., it has all its zeros
outside the unit circle and that p is known. s; denotes a
N-state discrete~time homogeneous first-order Markov chain.
Consequently, the state s;, at time & is one of N known state
levels ¢ = (g1 g2---gn)’. The transition probability matrix
is A = (ai;) where a;; = P(st+1 = ¢j}s: = ¢;). Of course
a;; > 0,55, ai; = 1, for each i. We assume that s is
ergodic (see Section III for details). Let = denote the initial
state probability vector: m = (m;),m; = P(s1 = ¢;).

Let us denote the T length noisy filtered observation se-
quence as Y7 = (y1,- -, Y1)

Remark:. We assume an autoregressive (AR) channel only
for notational convenience. As described later in this section,
dealing with ARMA channels (minimum or nonminimum
phase) is a straightforward extension.

Aim
Given the observations Y7, the aim of our blind equalization
algorithm is two-fold:

1) State Estimates: Obtain filtered estimates S of the state
of the Markov chain at time k. ,

2) Parameter Estimates: Estimate the unknown IIR filter
coefficients C = (c; - - - ¢,)’, channel noise variance o2,

and transition probability matrix A. Let ¢ = (C, 02, A)

denote the unknown parameter vector. ,

Highlights of Our HMM-ELS Algorithm

The following are some of the highlights of our HMM-ELS
blind equalization algorithm:

1) Methodology: The crux of our equalization problem lies
in the fact that due to the IIR channel, the Markov chain is
imbedded in colored noise (or equivalently the channel output
is non-Markovian) which can be seen by rewriting (1.1) as
C(z Vyr, = 8p + W — CQWg—1 — *++ — CpWk—p. Standard
HMM signal processing assumes the noise to be white and
cannot be used. The presence of colored noise suggests using
the ELS algorithm in conjunction with a hidden Markov model
estimator. Before spelling out the details of our approach let
us first briefly recall ELS and recursive HMM estimation.

* The ELS algorithm is widely used in adaptive control for
linear ARMAX system identification (see Ljung [9], p.
317 for details). It yields consistent estimates of the sys-
tem parameters. The ELS algorithm has a certain strictly
positive real (SPR) condition on the polynomial C(z71)
for almost sure convergence in the parameter estimates.
In many cases this SPR condition is not satisfied. For
this reason modifications of the ELS algorithm have been
proposed to relax the SPR condition 1], [5]. We shall use
the relaxed SPR ELS scheme suggested in {1].

» The HMM estimator yields optimal filtered estimates of
the Markov state and parameters of a Markov chain
in white noise. The state estimator is based on the
forward filter [8]. On-line parameter estimates including
transition probabilities A and channel noise variance o2,
are obtained via the recursive EM algorithm 4], [16].

Our HMM-ELS algorithm is based on cross-coupling the

relaxed SPR ELS and HMM estimators resulting in a compu-
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Fig. 2. HMM-ELS blind equalization algorithm.

tationally efficient recursive (on-line) scheme. The algorithm is
schematically shown in Fig. 2 and can be briefly described as
follows: At each time instant, ELS estimates of the noise and
channel coefficients C' are passed to the HMM estimator which
yields Markov state estimates and also parameter estimates of

" A,0Z%. The Markov state estimates are in turn passed. to the

ELS estimator at the next time instant, and so on. Heuristically
one would expect that the HMM-ELS scheme yields satis-
factory estimates when the initial estimates are sufficiently
close to the true values. The same philosophy is used in
adaptive control and is called the “certainty equivalence” [20,
p. 180]. We show in extensive simulation studies, the HMM-
ELS algorithm is extremely robust to initial conditions and
yields excellent estimates even in low signal to noise ratio
(SNR).

We have been unable to prove convergence of the HMM-
ELS algorithm. However, in Section III we present conver-
gence results for certain special cases of the algorithm.

2) Computational Requirements: Our HMM-ELS scheme
requires O(N2T) + O(p*T) computations for a T-point data
sequence. Recall that the ML estimator requires O(NT)
computations. Also, if the IIR channel was approximated by a
FIR channel of length  then the ML estimator would require
O(NPT) computations which is still significant, and hence,
impractical for large p.

3) Simulated Performance: In extensive simulations stud-
ies we show that our HMM-ELS algorithm yields excellent
estimates even in low SNR. Our simulations are conducted

“on oversampled BPSK signals (two-state Markov chains) and

also Markov chains with three and five states. Various IIR
channels are considered including time-varying channels with
jump changing coefficients. We show that the HMM-ELS
algorithm performs significantly better than standard HMM
schemes that assume white noise. Also the HMM-ELS scheme
is compared with a truncated FIR approximation algorithm and
the constant modulus algorithm (CMA).

Applications

1) Blind equalization of IIR channels: Often in communica-
tion systems, due to coding and oversampling, the input
to the channel is a finite-state Markov chain rather than
1ID (independent and identically distributed). Examples
include phase-shift-keyed (PSK) and frequency-shift-
keyed (FSK) signals. Of course IID inputs can also be
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handled using the techniques of this paper, since an IID
chain is merely a special case when all elements of the
transition probability matrix A4 are 1/IV (see Section 5.2
for simulation results and comparison with CMA).

2) Most often the input alphabets i.e., the levels g of the
Markov chain, are known a priori. Hence, we do not
consider the estimation of g in this paper. The transition
probability matrix A depends on the type of coding
and oversampling used. In the case when the transition
probabilities are unknown, we estimate them via the
recursive EM algorithm [4].

3) Because of the widespread use of the constant modulus
algorithm (CMA) in blind-equalization [14], [15], we
‘compare the performance of the HMM-ELS algorithm
with CMA in computer simulations.

4) 2. ARMAX HMM’s: Our signal model (1.1) is a spe-
cial case of the nonlinear ARMAX system (nonlinear
because of the Markov chain input $)

Az Ve = Bz V) sg + C(z7Hwy (1.2)
with A(z7!) = C(z7!) and B(z~!) = 1. In time-
series jargon our model is an Qutput-Error model [9],
p. 75. The HMM-ELS algorithm can be viewed as a
suboptimal scheme for estimating Markov chains in FIR
filtered colored noise C(z~1)wy,. Notice if the noise is
IIR filtered, ML estimates can be obtained via the EM
algorithm [6].

5) By a straightforward extension, the HMM-ELS algo-
rithm can be used with arbitrary (minimum or non-
minimum phase) polynomials B(z7!) in (1.2) since
B(z7Y)sy, itself is a Markov chain with N2 states
(where B is the degree of the polynomial B(z~')). This
model is very similar to the “Nonstationary Time Series”
model recently proposed for studying business cycles in
the econometrics literature [19].

6) Other applications: Virtually the same problem as blind-
equalization arises in geophysics in the modeling of
seismic impedances [12]. Also in biophysics, channel
currents in cell membranes are often modeled as finite-
state Markov chains [7]. Due to thermal noise and
filtering effect of the measurement probes, the measure-
ments can be modeled similarly to (1.1).

Other Approaches

Our signal model (1.1) is a special case of what is termed
in the statistics literature as a stochastic dynamic linear model
(DLM) [17]. Broadly speaking, there are four classes of
suboptimal schemes in the literature that are used to estimate
DLM’s [16]: decision directed schemes, probabilistic editor,
probabilistic teacher, and quasi-Bayes techniques. Of these the
most commonly used schemes in the communications litera-
ture are Decision Directed Schemes which involve cut-off rules
that assign a state estimate at each time instant. Our HMM-
ELS scheme falls in this category. Other examples include
decision feedback equalizers (DFE), suboptimal Viterbi algo-
rithms including reduced-sequence estimation schemes [21],
[23], and the CMA. The reduced-sequence estimation schemes
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have computational cost of O(N?) for an IIR approximation
of length p.

In [13], a truncated maximum likelihood scheme is proposed
for estimating DLM’s. Again, this scheme is a finite-memory
approximation to the IIR filter and so is computationally
expensive; the computational cost is O(IN?) for a truncation
of length p. In [12], an off-line estimation scheme is presented
which maximizes the joint probability density function of
the Markov chain and observations. The scheme involves
a continuous-discrete optimization problem which is quite
complicated. _ .

We have not found any works in the literature that use our
approach of combining a linear estimator (ELS in our case)
with an optimal nonlinear estimator (HMM estimator, in our
case).

This paper is organized as follows: In Section II, we present
details of our HMM-ELS blind equalization algorithm. In
Section ITI, we present some preliminary convergence results.
Section IV presents the results of computer simulation studies,
and Section V compares the HMM-ELS algorithm with a
truncated FIR algorithm and the constant modulus algorithm
(CMA). Section VI lists some conclusions.

II. HMM-ELS BLIND EQUALIZATION ALGORITHM

The HMM-ELS algorithm proposed in this paper combines
a relaxed SPR ELS scheme and recursive HMM estimator
resulting in a suboptimal computationally efficient recursive
(on-line) scheme.

Before presenting details, let us first briefly give a rational-
ization of the HMM-ELS algorithm. '

Notice that our signal model (1.1) can be rewritten as

C(z“l)yk =Sk + Wgp — C1Wg=1 — *+* — CpWh—p. (2.1)

If at each time instant &, the Markov chain state s, was
exactly known in (2.1) then the estimation problem reduces
to a standard ARMAX estimation problem (more specifically
an “output error” model, [5]). Then ELS yields asymptotically
consistent estimates of C' and also estimates of the previous
noise values. '

On the other hand, if the previous noise values

Wy—1,",Wr—p and also C were exactly known in (2.1),
then these values could be subtracted from the observations
resulting in g, corrupted by white noise wyg, which is a
standard HMM problem. The HMM estimator then yields
optimal filtered state estimates. Also, via the recursive EM
algorithm online estimates of the parameters A, o2 can be
obtained. .

As shown in Fig. 2, the HMM-ELS algorithm combines

these two steps as follows:

1) At time k, the recursive HMM estimator yields estimate
of the state of sj, noise variance o2 and transition
probabilities A.

2) The relaxed SPR ELS estimator gives on-line estimates
of the channel parameters c; and wy,—;,¢ € {1,2,---,p},

denoted by ¢*) and 1i_;, respectively.
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The two steps are described below in the following two
subsections.

Let ) = (C® 62" A(®)) denote the model estimates
at time k.

A. Recursive HMM Estimator

At time k, we have wy_q,---, W, and C*-D(z71)
available from the ELS scheme described in Section II-B.
Therefore, the HMM to be estimated is

HMM Signal Model:
P
é(k_l)(z—l)yk + Z@Ek‘l)wk—

=1

i=sp+we (22)

We shall use a recursive HMM estimator to estimate the
parameters 02, A and the state sj.

State Estimation: Let Wi = (g1, -
the symbol probability density function

, Wi—p)'. Define

n(yka 1¢(k))
: f(ylek—_p ; Sk = Qn, k-.p7¢(k))7
ne{1,2,---,N}

1

\/ 2m52®
2
(yk - Zc( i = gn+ Zc( Vi ,)

=1

oxp | - 557
w

(2.3)

where f(-) denotes the density function and the second equa-
tion follows since wy ~ N[0,02]. For convenience we shall
denote by, (yx; W= pl,¢>(’“)‘| as b, (yr,)-

Define the unnormalized filtered density ax(m) and the
filtered state estimate 355 as

ar(m) = f(sk = Gm, Yi|Wi-1,9®)
8 = E{s = g |V, Wi—1,6®}.

2.4
@2.5)

Lemma 1: The unnormalized filtered density ox(m), the
normalized filtered density ~xx(m),m € {1,2,---,N}, and
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Ti(1m) = ulm) 7
Z ak(m
m=1
8, = E{Sk = qm|Yk:a I/’Vk—la q;(k)}
N
Z ak(m)qm
= . me{L2,Nh  @9)
Z a(m)
m=1 -«

Proof: The proof is almost identical to that in [8]. [

Remark: The state estimate 3, computed in (2.8) is
called the conditional-mean (CM) state estimate. Extensive
simulations have confirmed that using CM state estimates
always results in better performance than maximum aposteriori
MAP state estimates. A heuristic reasoning is that unlike CM
estimates, MAP estimates are discrete valued. Therefore, errors
in the MAP estimate introduce a bursty noise signal which
degrades the performance of the subsequent ELS step.

Parameter Estimation

We use the recursive EM algorithm [4] to obtain on-line
estimates of o2 and A. For brevity, we omit details of the
algorithm (see [4], and the references therein).

Noise variance: Using the recursive EM algorithm up-
date for the variance (e.g., (3.35) in [4]) we have (2.9),
which appears at the bottom of the page, where aﬁ’“‘” and
wWy—; are the estimates of the channel parameters and the
past noise values, i € {1,2,---,p} and C*~D(z71) =
1-%; &,

Transition probabilities: The update equation for the
d,,’:)b is somewhat complicated by the constraints X, &Sr’f,), =1
and a&’:,)l > 0. As described in [6], these constraints can be
taken into account by dealing with square roots:

Smn(E) = V@,

The advantage of this new parametrization is that the constraint
manifold is differentiable at all points, and we now only have
the equality constraint %2_; s2, (k) = 1. The recursive EM
update equations for the transition probabilities are given as

(see [6])

mne{l,2,-,N}.  (210)

the filtered state estimate §; can be computed recursively as sgm(k) =8mn(k—1)+ 2@1@
follows: mngk)
k
()= 3 an s(m)omaba(ye),  @1(m) = Tnbin(31) o = = L s
ap(n) = Ok—1\M)0mnbn Yk )y @1(M) = TmOm (Y1
o] Z(s i())?
2.6)
ka(m) CED gk ~ gm + Z - Dwk ) -ey
6_3}(’6) — ,\120‘6“1) + m=1 2.9)

k
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which ensures that &E;C) satisfies the above constraints. In (2.11)

Gmnlk) = g‘%}% - 2'7k|k(m)5mn(k -1),
ﬂmn(k') :/\Aﬂmn(k - 1) + tzéﬁl—k(%n_{—z; + 27k[k(m)

’Yk[k(m)&gfgl)bn(yk—}—l)

Crpp(m,n) = — (2.12)

N
SN vk (m)aten Vbn(yera)

m=1n=1

B. Relaxed SPR ELS Algorithm

The HMM estimator described above yields filtered esti-
mates §; of the Markov chain sy.
Let e denote the error in the Markov state estimate, i.e.,

ex 2 sp — 3. We can rewrite (1.1) as
Clz™YYyr = &k + Clz7Hwy + e (2.13)

Assumption: Assume that the noise terms C(z 71 )wy+ey
can be represented as D(z7')wy, where

Dz =1- Zdiz_i
i=1

for some r > p (we give a heuristic justification for this at
the end of the section).
Then the ARMAX model to be estimated is

ARMAX Model:
Clz Yy = 8 + D(z7 1wy

(2.14)

(2.15)

We shall use a relaxed SPR ELS algorithm to estimate the
parameters of (2.15). The standard ELS algorithm is too
restrictive because to ensure almost sure convergence (we
discuss convergence in Section III) in parameter estimates it
requires that {1/D(z~1) — 1/2} be SPR, i.e.,
Re[bé?“—) — %} >0 Yw —m<w<m.
In many cases, this SPR condition will not be satisfied.
Hence, we shall use a relaxed SPR algorithm to estimate the
parameters as follows:
Let us first transform (2.15) to the equivalent model

(2.16)

Transformed Model:
Fa(z1)C(z Yy
= Fy(z7 )8k — Galz ™ wi—m + wi

2.17)

where Fy(z71) = Ef‘ial fig™¢ with fo = 1 is the unique
(M ~ 1)th degree truncation of D~1(z~1) and Gy(z7') is
the unique remainder term given by Gq(z™1) = 2123 g:¢7%,
ie.,

1= D NFi(z1) + 27 VNGa(z7Y). (2.18)

The advantage of the transformed model (2.17) is that now
the SPR condition becomes relaxed

is SPR, (2.19)

1
1—Gy(z~h)
which is less restrictive than (2.16).
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Fig. 3. Relaxed SPR ELS algorithm.

By choosing M suitably in (2.18), the SPR condition (2.19)
will be satisfied. We give a design rule for selecting M, in
Section III. ~

The relaxed SPR ELS algorithm operates with the following
two steps carried out in parallel at each time instant k& (see
Fig. 3): '

Step 1: ELS Estimation of Transformed Model (2.17)

Assume that M has been chosen sufficiently large so that
(2.19) is satisfied.

Let # denote the vector of parameters associated with the
the coefficients of (2.17)

i.e. § = coefficients of Fy(z71)C(271), Fy(z™1), Ga(z71).
(2.20)

Then ELS parameter estimation is carried out on the trans-
formed model (2.17) yielding estimates of the coefficients of
the polynomials Fy(2~1)C(271), Fy(2~*) and Gy(2~') and
the past noise estimates wi—;,% € {1,2,--+,7} as follows:

Yk = (Yh—1"" Yhop—M+1,8%~1 " Sk—M+1,
~ g ps - —Wk—r_pr41)
W =y — Yebe—1 — 8k
Py = %{Pk—l - PX_——IE_IQ/},]CQ/};CPIC;I
+ 9 Pr_1%s
01, = 0x—1 + Prtprip

}, Py>0
(2.21)

where §; denotes the estimate of # at time k, is the
regression vector, A is the forgetting factor with 0 < A < 1. P,
in (2.21) is initialized to a positive definite symmetric matrix.

Step 2: Recursive Least Squares (RLS) Parameter Recovery

The above ELS step gives us consistent estimates of the
coefficients of the transformed model (2.17) providing the
relaxed SPR condition (2.19) is satisfied. The parameters of
the original system (2.15) denoted as

O=(cycpydy---dy) (2.22)

are obtained using the following RLS algorithm operating in
parallel to the above ELS algorithm.

A !

D = (Yh—1" Yrpr ~Whe1 - —Why)
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Pi1§ ¥ Py
-1 ed k-1
— 7, Py>0

— 1(_
Pk=:{Pk—1—_ —
A A+ P Pr_19y,

O =811+ Prtb(ye — 51 — PBe-1) 2.23)
where 0, denotes the estimate of # at time k and X is the
forgetting factor such that 0 <X < 1.

Note that the noise terms wg_1,- - -, Wg_, in the regression
vector 1, are regarded as measurable. Thus, the algorithm
(2.23) has an almost standard least squares form. The only
nonstandard feature is that the regression vector v, differs
from the true one where wy_; would be present instead
of Wy—;. In the next section, we shall present a theorem
(which we proved in [1]), that as long as the ELS algorithm
converges, this difference is asymptotically negligible, i.e., it
does not affect either the consistency or the asymptotic rate of
‘convergence of the RLS scheme.

Justification of Assumption (2.14)

Assumption (2.14) allows for estimation errors e; in the
HMM estimator. It models ey, as some stationary finite moving
average process driven by wj. We have been unable to give
a rigorous proof. Certainly, simulations show that using a
parametric model such as (2.15) yields significantly better
estimates than assuming C(z~1) = D(z7Y)(ex, = 0).

Notice that our assumption is weaker than assuming ez
is white. However, it assumes a finite moving average
parametrization.

For small e, and ¢*) = ¢ (the true model) the assumption
holds as heuristically explained below: By the innovations
theorem [11] e is white. Then C(z71)ws + ex can be
represented as D(z~1)uy, for some stable polynomial D(z™1)
where uy, is white (see [10], Theorem 2.1, pp. 214-215). For
small ex, ur — wg.

Interpretation of Relaxed SPR Condition (2.19)

The effect of increasing M in (2.18) is to relax the SPR
condition (2.19) by increasing the SPR region. Fig. 4 shows
the SPR conditions for a IIR(2) channel,i.e., N = 2for M =1
(standard ELS), M = 2, M = 4, and M = 8. Also shown is
the stability triangle, i.e., the region where C(271)is stable.
Fig. 4 shows the benefit of working with M > 1 as far as the
SPR condition is concerned. Notice that for large M, e.g.,
M = 8, there can only be “marginal” failure of the SPR
condition.

C. Computational Complexity

The cost for a T-length data sequence is:
Recursive HMM estimator: O(N2T)
Relaxed SPR ELS: O((p + r + M)*T).
Total cost: O(N?T) + O((p + v + M)2T).
Note, if the standard ELS is used, M = 1.

III. CONVERGENCE RESULTS

We have been unable to prove convergence of the ELS-
HMM algorithm. Indeed, proving convergence is extremely
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Fig. 4. Relaxed SPR regions for IIR(2) channel (N = 2).

difficult because any proof requires showing first that the
filtered estimate o, is exponentially stable. This itself has not
been proved in the literature yet.

However, we list here convergence results under the fol-
lowing special cases:

A If sp, = sg for All k

If the Markov chain was estimated without any errors, i.e.,
er = 0 in (2.13) then the ARMAX model (2.15) becomes an
output-error model with C(271) = D(z~1). We then have
the following convergence results for the relaxed SPR ELS
algorithm; see [5] for proofs.

The following two theorems show that the relaxed SPR
ELS algorithm gives consistent estimates providing the SPR
condition is satisfied and the input Markov chain is persistently
exciting.

Theorem 2: Consider the ELS algorithm (2.21) associated
with the transformed signal model (2.17). If M is chosen
sufficiently large such that the SPR condition (2.19) is satisfied
and if the input §; is persistently exciting, then

110 — Bk |12 = O(k " log k) a.s.

Z [w; —w;|? = O(log Amax Py, h.
i=1

@G.1

Proof: The proof is presented in [5]. The only condition
to be checked in our case is that the input Markov chain s is
persistently exciting. From [20], p. 73, Lemma 3.4.5, an input
is (weakly) persistently exciting of order p, if its two-sided
spectrum is nonzero at p points Oor more.

Our assumption in Section I that s; is a homogeneous
ergodic (more precisely “mixing” [22, pp. 32-33]) Markov
chain ensures that s, is persistently exciting. This is because
a homogeneous Markov chain is ergodic if it contains a single
recurrent class of states that is aperiodic [18, Theorem 3.2.5, p.
191). This, for example, precludes s;, being a constant valued
process that is not persistently exciting.

Theorem 3: Consider the RLS algorithm (2.23) with signal
model (2.15) under the relaxed SPR condition (2.19), where
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1y, is generated from the ELS algorithm (2.21). Then

16 — 8, < Ok log k) as (3.2)

Proof: See [5]. O
Remark: Tt should be pointed out, in general, Theorem 2
also requires that for persistence of excitation of the regression
vector 1, the noise polynomial and input polynomial are
coprime. This condition is automatically satisfied here, since
input polynomial (that multiplying s ) is unity.
We now give a design rule for selecting M in (2.18). The
following theorem is proved in ([5]).
Theorem 4: Consider the polynomial D(z~
since 8 = 8k, Vk) ,

Dz = i diz™t = ﬁ(l — 22"
=0

=1

D (=0E

1Y with dg =1 (3.3)

such that |z;] < R<1 for all 4. Consider also for any M
a polynomial pair {Fy(z~1),G4(271)} with degrees M — 1
and r — 1, respectively, defined uniquely by the long division
(2.18). Then, there exists an integer Mp(R) such that for all
M > My(R), the relaxed SPR condition (2.19) is satisfied.
Moreover, Mo(R) can be defined as the smallest values of M
such that

R (M + 2r)"
’ (M +2r —1)"

The above theorem says that if the zeros of the colored noise
polynomial D(z~1) lie inside a circle centered at the origin
of radius R, then selecting M = My(R) will always result in
the SPR condition being satisfied. So My(R) can be used as
a design rule (albeit a very conservative rule [5]) for selecting
M if a priori knowledge is available that the roots of D lie
in a circle of radius R.

RMp(M +2r—1)72""1 <1 <1. 3.4)

B. If Assumption (2.13) Holds

Again, Theorems 2—4 hold. For persistence of excitation
of the regressor, it is required that C(z~1) and D(z7!) are
coprime.

C. If wy = wy, for All k

If (g1, Wr—p) = (Wg—1,- -+, Wk—p), then it can be
proved that the recursive EM algorithm is a Gauss—Newton
scheme for maximizing the Kullback information measure [4].

In the following theorem, let ¢ denote the true model.

Theorem 5. The recursions (2.9) and (2.11) are de-
rived by using a Gauss—Newton algorithm to maximize
the Kullback-Leibler information measure J(¢*)) =
E{log f(Yx|$*))|¢}. Moreover, under sufficient regularity
¢™ — ¢ as. and in mean square.

Proof: See [4] and [16, pp. 205-207] for the regularity
conditions required. O

IV. SIMULATION STUDIES OF HMM-ELS ALGORITHM

In this section, we present detailed computer simulation
studies to evaluate the performance of our HMM-ELS al-
gorithm. This section is organized as follows: We present
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simulation results for various IIR channels, including time-
varying channels with over-sampled binary phase-shift-keyed
(BPSK) signal inputs, which can be modeled as a two-state
Markov chain. We then show that the HMM-ELS ‘equalizer
also yields excellent estimates for higher order Markov inputs
(three and five states). The necessity of using a relaxed
SPR ELS criterion in the HMM-ELS algorithm is illustrated.
Finally, a comparison between the error probability in state
estimates as obtained via the standard HMM algorithm (which
assumes the noise is white) and HMM-ELS algorithm is
presented.

For each of the channel models conmdered in this section,
by replicating each simulation experiment 50 times, the mean
estimate and root mean square (rms) error were computed as

50

mean estimate = g5 Z é
=1
50

1ms error = z5 Z(CZ —&)2
=1

4.1

In all cases initial channel estimates were chosen as C(o) = 0.

A. Blind Equalization of IIR Channels for
BPSK Signaling Scheme

Consider a binary phase-shift keyed (BPSK) signal of the
form (pp. 394-403 [24])

T
Z arlly, [t — (k — 1)Ts] cos(ws )
k=1

4.2)

where T is the bit duration, w, = 27 /T, 17, is the “boxcar”
function

1 0<t<T;
rlg={ .
z! 1 elsewhere “3)
and 4; is a two-state Markov chain with levels {—1,-+1}
and transition probability matrix 9. To a good approximation
[2], s can be regarded as a two-state Markov chain with
g = (-1,1) and

1—oa11
a2

a1

1 — i
A¥<1_a22 '

T
@.4)

) where a4 =1 —

Thus, oversampling (i.e., increasing the bit duratlon T ) results
in a diagonally dominant A.

Accordingly, the results in this section are obtamed by
simulating a two-state Markov chain 1nput

0.9 0.1 -1
A’<0.1 0.9)’ q‘( 1)'

In addition, we chose M = 2 and r = 4.

(4.5)
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TABLE I
HMM-ELS PARAMETER ESTIMATION ERROR
FOR IIR(2) CHANNEL, N = 2,04, = 0.6

[_Ttrue [ mean | rms error | | true | mean | rms error
c,JDA 0.3526 | 0.0476 | ¢ ;0.8 [0.7787 10.0220
¢z | -0.6 | -0.5629 | 0.0375 ¢z | -0.8 |-0.7836 | 0.0176
true | mean rmscni‘ true | mean | rms error
cy | 0.4 | 0.4783 | 0.0789 0.2 10.3046 | 0.1048
c3 | 0.5 | 0.4223 | 0.0785 e | 0.7 | 0.5997 | 0.1045
true | mean | rms error [ true | mean | rms error
¢ [ 0.8 | 06582 ] 0.0593 cy | 0.5 104730 |0.0286
eg | 0.3 | 0.2422 | 0.0589 e | -0.4 | -0.3765 | 0.0280
true | mean rms error true ) mean TINS &rror
¢ |15 | 1.4988 [ 0.0041 cy | 1.0 | 1.0275 | 0.0285
cg | -0.9 | -0.8951 | 0.0062 cy | -0.3 {-0.3270 | 0.0283
TABLE 1II
HMM-ELS PARAMETER ESTIMATION ERROR FOR IIR(4) CHANNEL, N = 2
0w =102 oy =10
true AMM-ELS std MM true HMM-ELS std AMM
mean | rms error | estimate mean | rms error | estimate
6 | 05981 | 0.0093 | 0.4931 o [0 | 0.6057 | 0.018 | 0.1895
cp | 05 [-0.4973 | 0.0122 | -0.3094 o1 [-05 |-0.4607 | 0.0426 | 0.0204
ez | 0.3 0.2965 | 0.0194 0.1444 ez |03 0.2577 | 0.0513 0.0164
cs {-0.16 | -0.1544 | 0.0366 -0.0907 cq | -0.16 | -0.1540 { 0.0182 -0.0122
oy =0.4 oy =1.0
True AMM-ELS std AMM true HMM-ELS std AMM
mean | rms error | estimate mean | rms error | estimate
¢ [-0.5 | -0.5119 [ 0.0195 -0.3619 ¢ | -0.5 | -0.5082 | 0.0222 -0.1898
c | -0.4 | -0.3951 | 0.0135 | -0.3303 ¢z | -04 | -0.2006 | 0.1017 | -0.1864
cs | 03] 0.3013 | 0.0096 0.2151 ez ] 0.3 | 0.2361 | 0.0661 0.0723
cs [ 0.2 | 0.2149 | 0.0386 0.0920 cq | 0.2 | 0.1663 | 0.0424 -0.0068
TABLE III
HMM-ELS PARAMETER ESTIMATION FOR TIR(4) CHANNEL, N = 2
ow =14 oy =14
true | mean Ims error true | mean IS €rrox
c; | 0.6 | 06121 | 0.0514 ¢ | -05 | 0.4672 | 0.0511
¢y [ -0.5 | -0.4026 | 0.1258 ¢y | -0.4 | -0.2685 | 0.1334
ez | 0.3 | 0.1703 | 0.1507 ¢z | 0.3 |0.1999 | 0.1030
cq | -0.16 | -0.1357 | 0.0459 cs | 0.2 | 0.1314 | 0.0817
TABLE IV
HMM-ELS PARAMETER ESTIMATION ERROR FOR TTR(8) CHANNEL, N = 2
oy =02 0w =04
true mean rms error true mean TS €rror
¢ |01 0.0982 | 0.0027 ¢ | 0.1 0.0803 | 0.0196
¢y | -0.6 -0.5967 | 0.0043 ¢ | -0.6 -0.5683 | 0.0314
ez | 0.59 | 0.5862 | 0.0053 e3 | 0.59 | 0.5555 | 0.0323
¢y | -0.19 | -0.1834 | 0.0090 cq | -0.19 | -0.1441 | 0.0460
cs | 0.07 | 0.0624 | 0.0093 es | 007 | 0.0233 | 0.0451
¢ | -0.054 | -0.0485 | 0.0066 cg | -0.054 | -0.0242 | 0.0287
ez [ -0.012 | -0.0171 | 0.0065 cz | -0.012 | -0.0347 | 0.0233
cs | 0.032 | 0.0346 | 0.0039 cg | 0.032 { 0.0449 | 0.0137
oy =02 - oy = 0.4
true mean I'MS eIT0r true mean IS error
e | 05 0.4950 | 0.0052 ¢ |05 0.4822 | 0.0236
cg | -0.8 -0.7914 | 0.0102 e, |-0.8 -0.7696 | 0.0421
c3 | 0.95 {09405 |0.0123 c3 | 0.95 | 0.9320 | 0.0407
cq | -0.47 | -0.4593 | 0.0148 ¢y | -0.47 | -0.4675 | 0.0492
¢s | 017 | 0.1621 | 0.0138 ¢s | 0.17 | 0.1698 | 0.0510
cs | -0.174 | -0.1698 | 0.0101 cg | -0.174 | -0.1902 | 0.0388
¢z | -0.032 | -0.0319 | 0.0074 ¢z | -0.032 | ~0.0169 | 0.0349
cg | 0.072 | 0.0706 | 0.0004 cg | 0.072 | 0.0620 | 0.0165

Mean Estimate and rms Error: Tables I-IV show the mean
estimates and rms errors of the channel coefficient estimates
for IIR(2), IIR(4), and IIR(8) channels, respectively. For
comparison, Table II also lists the corresponding estimates
obtained via the standard HMM algorithm, which are seen
to be unsatisfactory and get even worse with increasing noise.

Notice that despite the fact that the channels C =
(0.8,-0.8)’,(1.5,-0.9)’, (0.5, —0.4)' in Table I are non-SPR,
the HMM-ELS algorithm (with relaxed ELS algorithms) yields
excellent estimates. Similarly, all the channels in Tables II and
IIT are non-SPR; still the estimates are excellent.
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Fig. 5. Time evolution of IIR(4) channel parameters estimates.

Fig. 5 show how the estimates of the channel parameters
converge with time for two different time-invariant IIR(4)
channel models. The noise variance and the channel parame-
ters are specified below each figure.

Equalization of time-varying channel: Consider a jump
time varying IIR(4) channel with coefficients

o [(-05-040302) 1<k<10000
(1.0 0.9 0.7 —0.36)" 10000 < k < 50000

and o, = 0.6. 4.6)

Fig. 6 shows how the HMM-ELS algorithm tracks the channel
coefficients for different forgetting factors. With no forgetting
(A = 1), the convergence is slow and the estimates do not
converge to the true values even after 50000 samples. Fig. 6
also shows that by using a forgetting factor A = 0.998 and
A = 0.995, the convergence is significantly faster. As expected
with increasing forgetting (smaller \), there is increasing local -
drift in the estimates around the true parameter values.
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Fig. 6. Equalization of “jump” time-varying channel.

Equalization of Time-Varying Channel with Time-Varying
Input Statistics: We consider the case where the channel co-
efficients, as well as the Markov chain transition probabilities
jump change as follows:

_ { ~0.5-0.40.30.2) 1<k< 15000 “n
(1.0 —0.9.0.7 —0.36) 15000 < k < 50000

a;1 =0.5, ag =08 1<k < 15000

a1 =0.7, ag =0.6 15000 < k < 50000. 4.8)
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Fig. 7. Equalization of jump time-varying channel with jump time-varying
transition probabilities.

In addition, ¢, = 0.6. Fig. 7 shows the time evolution of
the channel and transition probability estimates with different
forgetting factors.

Very Low SNR Performance: With increasing noise vari-
ance, the bias in the estimates increases, as can be seen
from the tables, particularly from Table IIT as compared to
Table II. However, since the SNR in typical communica-
tion systems is much higher than this example, the authors
are confident of the performance of the HMM-ELS in such
systems.

B. HMM with Higher Number of States

In this subsection, estimates obtained for Markov chains
with higher number of states are presented. Recall that the
computational cost is O(N?) which is much less than using
a FIR channel approximation to the IIR channel, where the
complexity is O(N?) for a § length approximation.
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Fig. 8. IIR(4) channel estimates for five-state Markov input.

Three State Markov Chains (N = 3): Table V is for three
different IIR(4) channels with M = 2,7 = 6.

08 01 0.1 -1
0w,=05 A=101 08 01}, ¢g=| 0] @9
01 01 08 1

Five State Markov Chains (N = 5): Fig. 8 shows
the channel estimates of an IIR(4) channel with M = 2,7 = 6,

0.5 0.05 015 0.15 0.15
0.15 0.5 0.05 0.15 0.15
0y =05 A=1]015 015 0.5 0.05 0.15 ],
0.15 0.15 0.15 0.5 0.05
0.05 0.15 0.15 0.15 0.5
-2
-1
g=| 0 (4.10)
1
2

C. Comparative Study of Unrelaxed and
Relaxed SPR Algorithms

The HMM-ELS algorithm was was applied to a non-SPR
IIR(2) channel with C = (-1 —0.9)

0.9 0.1 ~1
A—(o,l 0.9)’ ‘I—( 1>, and o, =10 (4.11)

Fig. 9 plots the channel coefficient estimates using the HMM-
ELS algorithm with i) standard (unrelaxed) ELS with r» = 2, ii)
standard overparametrized ELS with » = 20, and iii) relaxed
SPR ELS algorithms r = 4, M = 2, respectively. Fig. 9 shows
that the bias in the estimates is quite large for the standard ELS
scheme and reduces somewhat when overparametrization is
applied. In comparison, the relaxed SPR algorithm performs
extremely well to give an estimate of C' = (—0.9493 —0.84)’.
Numerous simulations show that overparametrization does not
always help, and hence, relaxed SPR ELS algorithm emerges
as the obvious choice.

3003
TABLE V :
HMM-ELS PARAMETER ESTIMATION ERROR FOR IIR(4) CHANNEL, N = 3
oy =05 oy =05
true mean rms error true. | mean Tms error
e |1 0.9820 | 0.0212 ¢ | 0.6 0.5836 | 0.0194
¢z | -0.9 | -0.9086 | 0.0202 ¢z | -0.5 | -0.5097 ] 0.0220
cs | 0.7 0.7208 | 0.0276 c3 | 03 0.3104 | 0.0259
cs | -0.36 | -0.3961 | 0.0377 cq | -0.16 | -0.1753 | 0.0211
oy = 0.5
true | mean rms error
¢; | -0.5 |-0.4944 | 0.0117
¢ | -0.4 | -0.3901 | 0.0180
c3 | 0.3 | 0.2806 | 0.0222
cq | 0.2 | 0.1692 | 0.00323
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400 500 . 600
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300
time x 50

HMM-ELS algorithm with relaxed SPR ELS
N=2C=(-1—09), 0, =10

Fig. 9. Necessity of using relaxed SPR ELS.

D. Error Probability Comparison with
Standard HMM Algorithm

Since one of the objectives of the HMM-ELS algorithm is
to obtain the filtered state estimates, it is of interest to see how
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Fig. 10. Error probability in state estimates versus SNR.

they are compared to state estimates as obtained via standard
HMM algorithm assuming the actually colored noise to be
white. HMM-ELS algorithm performs substantially better than
the standard HMM algorithm as is seen from Fig. 10. The bit-
error rate (BER) is obtained as the fraction of number of errors
out of 50000 sample points averaged over 50 sirnulation runs.
The signal to noise ratio (SNR) is computed as

SNR(dB) = —10log o2, (4.12)

This is the normalized SNR (normalized wrt o, = 1) since the
channel C' = (0.6 —0.5 0.3 —0.16)" is fixed, and the Markov
chain has a fixed transition probability matrix (as specified in
Fig. 10).

We do not study state estimation and error probabilities in
detail because once the channel has been equalized by the
HMM-ELS algorithm, various “standard” methods (such as
Adaptive Viterbi-type schemes) may be more suitable for data
recovery.

V. COMPARISON OF HMM-ELS
ALGORITHM WITH OTHER ALGORITHMS

We now compare the HMM-ELS algorithm with a truncated
FIR approximation algorithm and the CMA. While compar-
ing with CMA, IID, as well as Markov chain inputs, are
considered.

A. Comparison of HMM-ELS Algorithm with
Truncated FIR Approximation

As mentioned in Section 1, it is possible to approach our
equalization problem by approximating the IIR channel by a
FIR channel and then estimating the FIR channel coefficients
using the recursive EM algorithm as in [2]. We now compare
this approach with the HMM-ELS algorithm. »

Consider the TIR(4) channel C' = (~0.5 —0.4 0.3 0.2) of
Table V. For the same data as in Table V, assuming a FIR(4)
channel, we ran the recursive EM algorithm in [2] to estimate
the FIR coefficients. The estimate of the FIR channel after
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TABLE VI
CMA PARAMETER ESTIMATION ERROR FOR TIR(2) CHANNEL, N = 2, 0y, = 0.6

true mean rms error true mean rms error

c; | 0.4 |-0.3771 ] 0.7789 c; | 0.8 |[0.1841 | 0.6180

cy | -0.6 | -0.6513 | 0.0677 cy | -0.8 | -0.7670 | 0.0614
true | mean Ims error true | mean | rms error

c1 | 04 | -0.0240 | 0.4242 ¢ | 0.2 }0.0174 | 0.1830

cz | 0.5 0.8139 | 0.3142 ¢ | 0.7 |0.7927 | 0.0942
true | mean TS error true | mean IS error

c; | 0.6 | -0.0690 | 0.6691 cy | 0.5 |-0.9368 | 1.4385

ca | 0.3 | 0.8414 | 0.5416 ¢y | -0.4 | -0.7330 | 0.3360
true | mean TINs error true | mean IS error

cp | 1.5 1.1153 | 0.3881 cy | 1.0 | -3.0463 | 4.0545

cy | -0.9 | -0.8074 | 0.0973 ¢y | -0.3 | -3:13569 | 2.8477

50000 points is 1 — 0.55592~1 — 0.04462~2 + 0.41487~3 —
0.3350z~%. The equivalent IIR(4) channel obtained by long
division is € = (—0.5559 —0.3536 0.1934 —0.0127)". This
estimate is much worse than the HMM-ELS estimate (see
Table V). ‘

To obtain better estimates, longer FIR channel approxi-
mations are required. This involves exponentially increasing
computational cost; for a § length FIR approximation the
cost is O(NPT'). This demonstrates the attractiveness of our
HMM-ELS algorithm.

B. Comparison of HMM-ELS Algorithm with
Constant Modulus Algorithm '

We now compare the HMM-ELS and CMA algorithms. We
compare the mean and rms error of the channel estimates once
the algorithms have converged. -

We do not compare convergence rates of the two algorithms
because i) the convergence of the CMA is highly dependent
on initial conditions, and ii) the convergence rate- of the
CMA can drastically be changed by choosing different step
sizes. Similarly, by using different forgetting factors, the
convergence rate of the HMM-ELS algorithm can also be
changed.

The CMA simulations were run for data lengths of 100000
points. Each simulation experiment was replicated fifty times.
In addition, the CMA was initialized at the true channel
inverse, i.e., k(1 — c;---—cp)" where r is the scale factor
so chosen that the variance of the output of the equalizer
matches the known unit variance of the source. Notice that
+ will change as a function of channel and correlation.

Markov Chain Input: Tables VI and VII show the mean
estimates and rms errors of the channel coefficient estimates
using CMA for a Markov chain input. They are to be compared
with Tables I and II, which show the corresponding results
using the HMM-ELS algorithm. '

IID Input: Since CMA was originally designed for IID
data, it is worthwhile comparing the performance of HMM-
ELS and CMA for IID input (i.e., when a(4,5) = 1/N for
all 4, 7).
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TABLE VII
CMA PARAMETER EsTIMATION ERROR FOR ITR(4) CHANNEL, N = 2
oy =02 oy = 1.0
true | mean rms error true | mean rms error
¢ |06 0.1704 | 0.4300 ¢y | 06 -1.9175 | 2.5263
cg | -0.5 | -0.2059 | 0.2943 cy | -0.5 | -2.3782 | 1.9051
c3 | 0.3 0.0736 | 0.2265 e3 | 0.3 -1.7365 | 2.0514
cg | -0.16 | -0.0891 | 0.0712 cq | -0.16 | -1.1848 l 1.0304
oy = 0.16 oy =10
true | mean rms error true | mean IS, error
¢ | -05 | -1.6764 | 1.1982 ey | -0.5 | -1.2577 | 0.7994
cy | -0.4 | -5.6491 | 5.3053 ¢y | -0.4 | -1.7417 { 0.3890
c3 { 0.3 | 3.94556 | 4.2730 cz | 0.3 |.-1.6927 | 2.0125
cqg | 0.2 | 2.8070 | 3.0265 cs | 0.2 ) 1.3354 | 1.5452
TABLE VII

HMM-ELS PERFORMANCE FOR i.i.d. IPUT
AND IIR(2) McDEL, N = 2,0, = 0.6

true | mean estimate | rms error true | mean estimate | rms error

106 105864 0.0152 Fer (1.6 09485 0.0524
o |03 ] 03134 0.0151 ey | 03 | -0.2485 0.0524
TABLE IX

CMA PERFORMANCE FOR i.i.d: INPUT WITH IIR(2) CHANNEL, N = 2,0, = 0.6

true | mean estimate | rms error trie | mean estimato | TTms error
ci | 0.6 [ 05277 0.0762 ¢ | 1.0 [ 0.7224 0.2804
cs | 0.3 | 0.3499 0.0534 ez | 0.3 |1-0.0712 0.2317

Table VIII shows the HMM-ELS parameter estimation error
for IID data for an TIR(2) channel. Table IX shows the
parameter estimation errors obtained by CMA using the same
input. v

Discussion: By comparing the tables we conclude the fol-
- lowing:

1) Even at high SNR, the HMM-ELS algorithm yields
significantly better channel estimates.

2) At moderate to low SNR, the rms errors from the
HMM-ELS are orders of magnitude lower than CMA.
(Compare Table II with Table VII when o, = 1).

3) When the source is IID instead of Markov, the CMA
performance improves (compare Table IX with Table
VI). However, HMM-ELS still performs significantly
better than CMA (compare Table VIII with Table IX).

4) Of course, CMA involves O(p) computations at each
time instant, which is computationally much cheaper
than HMM-ELS.

VI. CONCLUSION

We have presented a suboptimal computationally efficient
recursive blind equalization algorithm for IIR channels with
finite-state Markov inputs. The algorithm combines a hidden
Markov model estimator with a relaxed SPR extended least
squares estimator, and is termed the HMM-ELS algorithm.
Although, we have not been able to prove convergence of the
algorithm, simulations show that it performs extremely well,
even in low SNR. :
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We believe that similar combinations of cross-coupled linear
estimators (e.g., Kalman filters) and nonlinear estimators (e.g.,
HMM estimator) can be used for a variety of other problems
like speech coding and puise train de-interleaving.

As a future research topic, it is worthwhile treating the above
equalization problem as a linear estimation problem with
correlated noise (filtered Markov chain). It may be possible to
use instrumental variable techniques [9] to effectively whiten
this noise and then estimate the channel coefficients.
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