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Abstract

Time series homogenization for 299 of the available precipitation records for

the island of Ireland (IENet) was performed. Four modern relative homogeni-

zation methods, that is, HOMER, ACMANT, CLIMATOL and AHOPS were

applied to this network of station series where contiguous intact monthly

records range from 30 to 70 years within the base period 1941–2010. Break
detection results are compared between homogenization methods, and coinci-

dences with available documentary information (metadata) were analysed.

The lowest (highest) number of breaks were detected with HOMER

(ACMANT). Large differences of break frequency were found, namely

ACMANT and AHOPS detected 8 times as many breaks than HOMER, while

the break frequency with CLIMATOL was intermediate. Also, the ratio of

series classified to be homogeneous varies widely between the methods. It is

85% with HOMER, 60% with CLIMATOL, 31% with AHOPS, while only 22%

with ACMANT. In a further experiment, all the available time series for Ire-

land and Northern Ireland, (910 series) were used with ACMANT and

CLIMATOL to explore the stability of break frequency for the same 299 series

examined in the base experiment. While overall break frequency slightly

increased (by 6–13%), the break positions notably changed for individual time

series. The number of breaks changed for 59% (23%) of the series with

ACMANT (CLIMATOL). For the breaks detected coincidentally by at least

three methods including ACMANT and CLIMATOL in the base experiment,

the second experiment confirmed the break positions in 86–87% of the breaks.

The consequences of these results in relation to the reliability of statistical

homogenization are discussed. Sometimes markedly different step functions

provide comparable good approaches. However, the accuracy of homogenized

time series cannot be related directly to the instability of break detection

results.
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1 | INTRODUCTION

Climate change studies based only on raw long-term data
are potentially flawed due to the breaks introduced from
non-climatic sources, therefore quality controlled and
homogenized climate data are needed for improved
climate-related decision making. Fundamentally the
quality of long-term climate analysis depends on the
homogeneity of the underlying time series (Vertačnik
et al., 2015); and this need for homogeneity also reflects a
growing demand for climate services more generally
(e.g., Buontempo et al., 2014; Vaughan and Dessai, 2014),
sometimes expressed as “actionable knowledge” (Asrar
et al., 2013; Kirchoff et al., 2013) for use across a range of
decision-making environments.

A homogeneous climate time series is defined as one
where variability is only caused by changes in weather or
climate (Freitas et al., 2013). Most decade to century-scale
time series of atmospheric data have been adversely
impacted by inhomogeneities caused by, for example,
changes in instrumentation or observer practices, station
moves, or changes in the local environment
(e.g., urbanization). Some of these factors can cause
abrupt shifts; others gradual changes over time, which
can hamper identification of genuine climatic variations
or lead to erroneous interpretations (Peterson
et al., 1998). Since these shifts are often of the same or
greater magnitude as the climate signal (Auer et al., 2007;
Menne et al., 2009), a direct analysis of the original data
series can lead to incorrect conclusions about the evolu-
tion of climate. Seasonal cycles of precipitation in Ireland
are projected to become more pronounced as the climate
changes (e.g., Nolan, 2015), and regional extremes in
summer dry spells and winter heavy rainfall events have
been recorded in recent years (Nolan et al., 2013). There-
fore, to analyse and monitor the evolution of precipita-
tion patterns across Ireland, quality controlled and
homogeneous climate series are needed.

Homogeneity tests can be broadly divided into “abso-
lute” and “relative” methods. The former are applied
directly to individual candidate stations to identify statis-
tically significant shifts in the section means (referred to
as breaks or change points), while relative methods entail
comparison of correlated neighbouring stations with a
candidate station to test for homogeneity. Thus, relative
homogenization algorithms use the difference time series
of a candidate station with neighbouring stations to iden-
tify such breaks. Reference series, which have ideally
experienced all of the broad climatic influences of the

candidate but no artificial biases, are commonly used to
detect inhomogeneity in relative methods (World Meteo-
rological Organisation (WMO), 2011), as well as to assess
the quality of the homogenization process (Kuglitsch
et al., 2009). Reference series themselves do not need to
be homogeneous in modern homogenization methods
(Szentimrey, 1999; Zhang et al., 2001; Caussinus and
Mestre, 2004), but must encompass the same climatic sig-
nal as the candidate (Della-Marta and Wanner, 2006). Rel-
ative homogenization is more robust than absolute
methods provided station records are sufficiently corre-
lated (Venema et al., 2012) and that by definition absolute
homogeneity is incompatible with climate change. How-
ever, relative approaches can be confounded by lack of
long records at neighbouring stations for comparison, and
by simultaneous changes in measuring techniques across
a network (Peterson et al., 1998; Wijngaard et al., 2003).

Homogeneity approaches benefit from reliable docu-
mentary information of a station's operational history
(metadata) to account for breaks and potential outliers.
Metadata can provide information such as location of sta-
tion instruments, when and how observations were
recorded, notes on instrument changes and malfunctions
or any environmental changes such as vegetation
encroachment at the site (Aguilar et al., 2003). This infor-
mation is often useful in interpreting statistical homoge-
neity tests and for informing the nature and magnitude
of adjustments that might be applied to data.

New techniques are emerging for the detection
and adjustment of inhomogeneity in climate series
(Domonkos, 2011a; 2011b; Cao and Yan, 2012; Toreti
et al., 2012; Freitas et al., 2013; Mestre et al., 2013) and the
correction of multiple change points using reference
series. Modern multiple breakpoint methods search
for the optimum segmentation characterized by minimum
internal variance within the segments and maximum
external variance between the segment means (Caussinus
and Mestre, 2004; Lindau and Venema, 2016). A compre-
hensive assessment of homogenization techniques for cli-
mate series was included in the scientific programme of
the COST Action HOME ES 0601 Advances in Homogeni-
zation Methods of Climate series: An integrated approach.
The HOME objective was to test the existing statistical
homogenization techniques and develop more efficient
methods for homogenizing climate datasets. PRODIGE
(Caussinus and Mestre, 2004) was one of the best per-
forming methods at that time. Both its break detection
and correction methods gave outstanding results
(Domonkos et al., 2011; Domonkos, 2013), and it was also
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one of the most accurate methods in the blind test experi-
ments (Venema et al., 2012). Relying on the HOME blind
test experiments, five homogenization methods were rec-
ommended to use: PRODIGE, ACMANT (Domonkos,
2011a), MASH (Szentimrey, 1999), USHCN (Menne and
Williams, 2009) and the graphical method of Craddock
test (Craddock, 1979).

After the HOME blind tests, the methodological
developments were continued. In this study, four rela-
tively new methods, namely HOMER (HOME, 2013;
Mestre et al., 2013), ACMANT (Domonkos, 2015; Domo-
nkos and Coll, 2017a), CLIMATOL (Guijarro, 2018) and
AHOPS (Rustemeier et al., 2017) will be applied. Note
that although ACMANT and CLIMATOL were tested
during HOME, their new versions markedly differ from
the ones tested at that time. Three of the four methods,
that is, HOMER, ACMANT and AHOPS are developed
from PRODIGE, keeping the principal detection and cor-
rection methods of PRODIGE, but adding also new rou-
tines and new features to them.

The aim of the study is twofold: (a) We will examine
the operation of the four modern homogenization
methods on a rather large precipitation dataset compli-
cated by varied lengths of observed time series and large
data gaps. (b) We will examine the degree of instability in
break detection results according to station density and
homogenization methods, and analyse the relation
between this instability and the practical applicability of
the selected methods. All of the four methods will be
examined for a medium-sized station network and two of
the four will also be examined with a denser station net-
work. Note that although the final purpose of homogeni-
zation is not the break detection but the removal of non-
climatic biases from the observed data, the break detec-
tion is an important step (Venema et al., 2012; Lindau
and Venema, 2013, 2016), and break detection errors
may seriously affect the final accuracy of homogenization
products (Lindau and Venema, 2018a). Note also that in
homogenization tasks including the exhaustive analysis
of station history, the skill of break detection may have a
large and direct impact on the accuracy of the homogeni-
zation results.

2 | DATA AND METHODS

2.1 | Study area

The study area is the whole island of Ireland, that covers
~84,421 km2 on the Atlantic margin of northwest Europe,
between ~51� and 56�N (Figure 1). Elevations reach up to
1,038 m above sea level (a.s.l.; Carrauntoohil, Co. Kerry).
Much of the island is lowland, partly surrounded by

mountains, with a characteristic temperate oceanic cli-
mate. Associated with Ireland's maritime location and the
prevailing wind direction, the bulk of precipitation comes
primarily from the Atlantic southwest and to a lesser
extent from the northwest, whereas cold and dry weather
comes from the east and continental Europe. On average,
annual precipitation ranges from 750 to 1,000 mm in the
drier eastern half of the country and >3,000 mm�year−1 in
parts of the western mountains (Rohan, 1986). Although
some snowy days occur in winter and early spring, the
majority of precipitation is as rainfall year round.

2.2 | Source data

Rainfall has been measured in Ireland since the early
nineteenth century with a peak of over 800 rainfall

FIGURE 1 Annotated map of the island of Ireland showing

the selected Met Éireann and Met Office, United Kingdom monthly

station locations for the network of (a) 299 stations (sub-IENet)

denoted by red squares; (b) 910 stations (whole-IENet) denoted by

blue circles. Station marks are overlain on a regular 10 × 10 km

grid to give an indication of density [Colour figure can be viewed at

wileyonlinelibrary.com]
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stations in the late 1950s. Currently, rainfall is recorded
at synoptic and climatological weather stations; in addi-
tion, there is a wide network of voluntary rainfall
observers (Walsh, 2012). The total dataset of IENet
consists of 703 time series of Ireland and further 207 time
series of Northern Ireland (NI). NI data were provided to
us by the UK Met Office. Station elevations are within the
range of 5–701 m a.s.l. with a mean elevation of 78 m.

Following an audit and quality control on the data,
an exploratory statistical analysis of the data was under-
taken to characterize the properties of the series, as well
as to identify missing values and outliers. Figure A1 pro-
vides a HOMER-derived summary of the extent of the
intact months and missing records across all the stations
in the network. Issues with missing data in climate time
series can be tackled with spatial interpolation using data
from nearby stations (WMO, 2011). However, in the
homogenization here we use only the raw data with miss-
ing values retained, since gap filling before a homogeni-
zation procedure can lead to deterioration of the
homogenization results (Auer et al., 2005; Domonkos and
Coll, 2019).

Based on experience with previous networks and
HOMER's and AHOPS's lower tolerance of missing
values than some of the other methods, short or fragmen-
ted series were excluded. As a result of this restriction, a
subset of 299 station series have remained, 287 stations
for Ireland and 12 NI stations (Figure 1). For each series
of this subset (referred to as sub-IENet hereafter), the
contiguous intact monthly records ranges from 31 to
70 years for the 1941–2010 period. Only sub-IENet is used
in the study except when the text indicates the use of the
entire IENet. Approximately two thirds of the selected
stations have metadata support. Despite the exclusions,
with a mean density of ~0.003 stations per km2 sub-IENet
is more dense than for HOMER network experiments
reported elsewhere (Vertačnik et al., 2015; Osadchyi
et al., 2018 for temperature; Prohom et al., 2016; Pérez-
Zanón et al., 2017 for precipitation). While Gubler
et al. (2017) used HOMER to homogenize precipitation
and temperature series, their denser Swiss precipitation
network was still sparser than sub-IENet.

2.3 | Break detection in relative
homogenization methods

Break detection is an important step of time series
homogenization. The base idea of break detection with
relative homogenization is that via the generation of dif-
ferences or ratios of a candidate series and reference
series of nearby stations, the regionally common climate
signal will be removed from the resultant relative time

series. The general model of relative time series (T),
includes terms for both station effect (S) and Gaussian
noise (ε). For a time series of length n containing K break
points, the relation is shown by Equation (1). If the sea-
sonal cycle is removed before the generation of T, cyclical
terms do not complicate the equation,

Ti=S kð Þ+εi; i=1,2,…n;k=1,2,…K+1: ð1Þ

As we examine monthly precipitation series, the time
unit is a month, or in certain steps of a break detection
procedure it can be year. If a station series is homoge-
neous, then its station effect is constant for the entire
series. If it is inhomogeneous, as almost all inhomogenei-
ties are sudden shifts of the means, then the station effect
will be a step function of K steps including K + 1 sections
with constant values. Even when some inhomogeneities
are not sudden shifts (but, e.g., gradual changes), this step
function model gives good results (Domonkos, 2011b),
and is used in the methods involved in our study. Station
effect may hold seasonal differences depending on, for
example, the proportion of winter precipitation received
as snow as opposed to liquid precipitation. For regions
without snow or with little snow in winter (as in our
case), the exclusion of this seasonality from the model
is widely recommended for the homogenization of
precipitation totals (Auer et al., 2005; Moisselin and
Canellas, 2005; Domonkos, 2015) for the typically too low
signal to noise ratio (SNR).

The principal task for break detection is to make a dis-
tinction between the station effect and background noise.
The noise term of Equation (1) is the composition of
weather and non-systematic observation errors. For
monthly or annual time series the noise is approximately
white noise (Hannart et al., 2014; Lindau and
Venema, 2016). However, since the climate is spatially
coherent, the true noise is temporally not fully independent
either on long time scales. The true content of ε includes
the spatial difference between the climate of the candidate
series and that of the reference series. For this climate
effect, ε tends to have persistence and is often modelled
with a first order autoregressive process (Lund et al., 2007;
Wen et al., 2011). However, in a separate Europe-wide
application of AHOPS, autocorrelation for monthly precipi-
tation was found to be low and not significant when the
annual cycle is removed (Rustemeier et al., 2017).

The break detection methods of HOMER, AHOPS
and CLIMATOL are based on white noise
background noise, while ACMANT includes empirical
parameterisation (Domonkos and Coll, 2017a) adapted
from the homogenization of temperature test datasets of
Venema et al. (2012) and Willett et al. (2014), hence any
presumption about the content of ε is avoided there.
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2.4 | Homogenization methods

Break detection is performed with four homogenization
methods. Three of the methods, that is, HOMER,
ACMANT and AHOPS include the optimal step function
fitting (optimal segmentation; Caussinus and
Mestre, 2004) with dynamic programming (Hawkins,
1972; 2001) for break detection and the network wide
minimization of residual variance for correcting inhomo-
geneities (ANOVA correction; Caussinus and
Mestre, 2004; Mamara et al., 2014; Domonkos, 2015).
These techniques are known to be some of the most
effective statistical tools in the homogenization of cli-
matic time series with multiple breaks (Caussinus and
Mestre, 2004; Domonkos et al., 2011; Domonkos, 2013).
All of the three methods of HOMER, ACMANT and
AHOPS use some derivatives of the Caussinus–Lyazrhi
criterion (Caussinus and Lyazrhi, 1997) for calculating
the number of homogeneous segments. This criterion is
based on information theory and the penal term included
in it prevents the inclusion of insignificant breaks. In
spite of a lot of similarities, some important differences
exist between these methods. The most important differ-
ences are that while ACMANT and AHOPS use compos-
ite reference series (Peterson and Easterling, 1994;
Alexandersson and Moberg, 1997) for the time series
comparison, HOMER applies pairwise comparison
(Menne et al., 2009; Dunne et al., 2014) allowing a
detailed analysis of individual breaks and user interven-
tion when it is beneficial.

CLIMATOL uses composite reference series and
detects breaks one-by-one with the Standard Normal
Homogenization Test (SNHT; Alexandersson and
Moberg, 1997). Series are split at the detected break-
points, and then the detection process continues with the
search for possible further breaks in the subseries. The
core idea of this algorithm is well established, and the
hierarchic break detection algorithms applied are often
considered theoretically inferior in comparison to modern
multiple break detection algorithms (Mestre et al., 2013;
Domonkos, 2017; Szentimrey, 2017). However, efficiency
tests show that CLIMATOL is competitive with multiple
break methods in the accuracy of the homogenization
product delivered (Killick, 2016; Guijarro et al., 2017).

HOMER is better suited to small to medium sized net-
works with the use of metadata, while ACMANT,
AHOPS and CLIMATOL are excellent tools for the auto-
matic homogenization of large and dense networks or
the homogenization of any network when metadata is
not available, although CLIMATOL also has the facility
to incorporate metadata information. In this study, only
the HOMER method is applied together with
metadata use.

2.4.1 | HOMER

The HOMER (HOMogenization softwarE in R) package
was a key deliverable of the COST action HOME and rep-
resents a synthesis of homogenization approaches
(Mestre et al., 2013), including some homogenization
routines of PRODIGE (Caussinus and Mestre, 2004),
ACMANT (Domonkos, 2011a) and the network wide
joint segmentation method of Picard et al. (2011), as well
as some common quality control and visualization rou-
tines of the CLIMATOL homogenization method
(Guijarro, 2018). HOMER is an interactive, semi-
automatic method for homogenization where the user
can take advantage of available metadata in the detection
and correction of time series (Vertačnik et al., 2015).

In the pairwise comparison, series are compared with
all other series from the same climate region to produce
series of differences between the candidate and others in
a defined network. Difference series are then tested for
change points (Mamara et al., 2014). Once detected breaks
have been checked against metadata, non-homogeneous
series are corrected using the ANOVA model.

Creation of a reference network for a given candidate
station is a key step in the homogenization process. The
network can be defined based on geographic proximity or
station correlation. To ensure that candidate stations
have sufficient reference stations for each year of the
series, it is necessary to set the minimum number of ref-
erence stations (Vertačnik et al., 2015). Previous work
applying HOMER to monthly precipitation data in Ire-
land revealed that geographical or correlation distance
selections in HOMER yield overlapping neighbour series
which are largely statistically and spatially coherent (Coll
et al., 2014; Noone et al., 2015). Such a relationship is spe-
cific for geographical zones of maritime climate, where
the range of variation in precipitation totals is lower than
for a continental climate (Coll et al., 2015).

For the analysis reported here we chose to use the
geographical distance selection, as in our experience high
numbers of missing values may be creating spurious cor-
relations in some of the sub-networks identified by
HOMER. For each candidate station, the closest 15 sta-
tions were selected. These sub-networks facilitated the
homogenization and completion of all series to the com-
mon period of 1941–2010 while avoiding a known limita-
tion of the software to correct when there are many
blocks of missing contiguous data distributed across can-
didate and/or reference series (Coll et al., 2015).

We adopted a three-stage application of HOMER to
allow greater scrutiny of detected inhomogeneities before
the corrections were applied. First, basic quality control
and network analysis were performed. Outliers were
identified using both HOMER and visual inspection and
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by defining minimum and maximum monthly outliers as
values exceeding ±1.96 standard deviations from the
respective series mean (Coll et al., 2018). Outliers were
checked against a number of the nearest reference stations
as well as metadata and any likely cases were removed. Sec-
ond, HOMER was run to identify breaks within each time
series. The break detection comprised five iteration steps of
Pairwise Detection (PW) ! Joint Detection (JD) !
PW ! JD ! PW. Detected breaks were not corrected auto-
matically; all were checked for consistency with the relevant
reference stations and by scrutiny of metadata. Third, fol-
lowing confirmation of breaks with available metadata
HOMER was used to correct series for inhomogeneity and
infill data gaps. Following the recommendations of
HOME (2013) we applied multiplicative corrections. The
correction factors were constant within calendar years for
the reasons discussed in section 2.3.

2.4.2 | ACMANT

ACMANT is a fully automatic homogenization method,
and one where an automatic control of monthly outlier
values is provided based on the spatial comparison of simul-
taneous data. Infilling of missing data is a part of the
ACMANT procedure; however, there is also an option for
the user to choose if the homogenized output with the com-
pleted data is required, or whether the existing gaps associ-
ated with the raw data being retained are preferred. In this
study, ACMANTv3 (Domonkos and Coll, 2017a) is applied.
From this third generation of ACMANT, the method
includes an ensemble pre-homogenization whereby the
minimal adjustment term is always retained among the
adjustment terms derived from individual ensemble mem-
bers. A further novelty of ACMANTv3 is that the weighting
of reference composites includes ordinary kriging
(Szentimrey, 2008; Domonkos and Coll, 2017a).

Automatic networking (AN) has been developed
(Domonkos and Coll, 2019) as a preparatory operation
for homogenizing datasets of larger than 40 series with
the ACMANT method. In AN a specific network is con-
structed for each candidate series which provides optimal
spatial comparison with the candidate series always in
the centre of the network (Domonkos and Coll, 2017b).
The inclusion of AN increases the computational time
demand as the number of networks equal the number of
time series in the dataset, but the overall computational
time demand of ACMANT still remains below tolerable
limits. Note that AN can also theoretically be used with
any other homogenization method when the computa-
tional time demand remains feasible for a large number
of networks of 30 to 60 time series. Most recently,
ACMANTv4 is also available for interested users

(Domonkos, 2019) together with the full description of its
scientific content (Domonkos, 2020).

2.4.3 | AHOPS

The Automatic HOMogenization of Precipitation Series
(AHOPS; Rustemeier et al., 2017) is also developed from
PRODIGE, and similarly to ACMANT, break-points are
detected via automated comparisons with a selected group
of reference series. As Pearson correlation has a limited
application for variables with strongly asymmetric distri-
butions, AHOPS uses partial rank correlations for network
formation, and applies WARD's method for finding the
clusters of minimum variance (Wilks, 2006). Once these
clusters have been established, precipitation amounts are
converted to a semi-Gaussian additive variable by logarith-
mic transformation, and Spearman correlations of the
increment series are considered during the selection of the
reference series within clusters, which is repeated in each
iteration step. For correction of the monthly values the
Box-Cox transformation is applied to convert the precipita-
tion values into an additive variable. The break detection
and bias correction methods are the same as for those in
HOMER and ACMANT. AHOPS' detection works on an
annual scale to reduce the white noise and the temporal
resolution of the break positions is annual. Through an
ensemble approach AHOPS also displays the reliability of
the detected breaks and the homogenized series.

AHOPS is an iterative method. The break detection
and monthly bias corrections are repeatedly applied,
firstly with raw reference series, and in the later steps of
the procedure with pre-homogenized reference series.
The iteration terminates when the break positions
become stable. An additional two sample Wilcoxon sig-
nificance test to filter only the significant break-points
was disabled to see the actual AHOPS performance.

2.4.4 | CLIMATOL

CLIMATOL is a set of routines for processing climatologi-
cal data in R. The method is based on comparing each test
series with a reference series through interpolation of
ratios (the option used in this study), differences or stan-
dardized values of the closest surrounding data at each
time step (Guijarro, 2018). This approach has the advan-
tage of being both robust and simple. The method also
allows data from nearby stations to be used in cases where
there is no common period of observation (Guijarro, 2018)
and applies the use of the Reduced Major Axis model
(Clark, 1980), a kind of Orthogonal Regression. However,
this method requires the means of the series for the entire
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study period to be known, which is clearly problematic
where there is missing data. Therefore, and to counter
this, the first normalization of the series is done with
means computed only with the available data in each
series. Then missing data are estimated from them, new
means are calculated, and this procedure is repeated until
the means converge. Following these procedures the shift
detection is addressed by applying the SNHT test to the
series of anomalies (differences between the observed and
estimated data) and splitting the series at the detected
break-points. This process is also iterative, in order to
remove the major inhomogeneities in the first place, and
to refine the detection until no SNHT value over a pre-
scribed threshold is found. At this point all homogeneous
sub-series are completed in their entirety, that is, all miss-
ing data are infilled by means of the weighted mean of the
closest four sets of normalized data. This approach was
chosen in order to be able to use almost all the informa-
tion of a network, including short series.

2.5 | Comparison of the break detection
results

First the series comprising sub-IENet are used to homog-
enize all the series in that network, while in the second
part of the analysis, again the sub-IENet series are
homogenized, but the other series of the whole-IENet are
also used as reference series. This secondary analysis for
the denser network is performed only with ACMANT
and CLIMATOL, since HOMER and AHOPS were unable
to cope with the short and fragmented series associated
with the wider IENet. The objective of using the two dif-
ferent parent datasets is to examine the effect of network
density on the results.

The following statistical characteristics are examined
for method comparisons: frequency of detected breaks,
the ratio of time series found to be homogeneous, and
the magnitude of detected breaks. Break magnitudes are
only provided for HOMER and ACMANT, and this is
pragmatic as the other methods do not readily yield the
data on the break magnitudes.

3 | RESULTS

3.1 | Homogenization with the use of
sub-IENet (299 stations)

3.1.1 | Break frequency

Figure 2 shows the ratio of homogeneous series, series
with one break and series with multiple breaks,

according to the four homogenization methods applied.
There is considerable diversity in the results. With
HOMER, 255 series (85%) were found to be homoge-
neous, while multiple breaks were detected in only
12 records (4%). By contrast, with ACMANT and AHOPS
the ratio of homogeneous series is only 22 and 31%,
respectively, and multiple breaks were found in approxi-
mately half of the series. CLIMATOL has intermediate
results with its 178 homogeneous series (60%) and
34 series with multiple breaks (11%). Note, however,
that HOMER was used interactively, and 32 potential
breaks were removed based on operator interpretation
of the metadata and reference series evidence. This
removal contributed to the relatively low number of
detected breaks with HOMER, although even with the
break counts detected in automatic mode left in,
HOMER still detected less breaks than the other
methods (Figure A1).

Figure 3 shows the temporal evolution of the detected
break frequency for each of the four methods across our
base period. It can be seen that fewer breaks were
detected in the first decade and the last two decades of
the study period, which largely coincides with the tempo-
ral evolution of station density (Figure A2). The temporal
distribution of break frequency differs considerably
according to homogenization methods, for example, the
highest number of breaks were detected for the 1960s
with HOMER, for the 1950s with ACMANT, for the
1960s and 1980s with AHOPS and for the 1980s with
CLIMATOL. Nevertheless, the overall temporal variation
of break frequency between 1950 and 1990 is small, while
the mean break frequency varies greatly according to
homogenization methods. While the total number of
detected breaks is only 60 with HOMER, it is approxi-
mately 8 times as many with ACMANT and AHOPS
(499 and 483, respectively). CLIMATOL detected much
more breaks (172) than HOMER, but much less than
ACMANT and AHOPS.

In spite of the big differences in the frequency of
detected breaks, several concordant breaks were
detected by all or by most of the methods. There are
116 occurrences in sub-IENet when a break was
detected with at least three methods within a 24-month
period. Note that in the examination of detection coin-
cidences metadata was considered as an additional
break detection method for station series with available
metadata. Table 1 presents the list of these events,
showing the dates of the detected breaks with all the
homogenization methods and the related metadata we
found associated with the station history. Station his-
tory was available for 98 entries of Table 1, and in
69 cases (70%) of them the statistically detected breaks
are connected to coincidental metadata.
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3.1.2 | Break magnitudes

Break magnitudes indicating the size of adjustment terms
are monitored in the homogenization with HOMER and
ACMANT. Most of the adjustment terms applied by
HOMER approximate a normal distribution, although
there are some outlying values (Figure 4a). This is also
largely true for the ACMANT adjustment terms
(Figure 4b). In both parts of Figure 4 the normal distribu-
tion is truncated around zero, due to the missed breaks of
insignificant magnitudes (see also Menne et al., 2009;
Lindau and Venema, 2019).

With HOMER, both the largest positive and negative
shifts were found for Glenvickee (Caragh River Area) in
1963 (with ratio 1.59) and 1967 (with ratio 0.67), respec-
tively. This inhomogeneity of Glenvickee precipitation
between 1963 and 1967 was also detected with ACMANT,
indicating 46–47% positive, non-climatic bias of the raw
data for that period.

Figure 5 shows the magnitude distribution for all
breaks detected with ACMANT, and for breaks detected
with both ACMANT and CLIMATOL. The largest fre-
quency was found for breaks of 6–9% change, likely
because the detection of smaller breaks is more difficult
for lower SNR. The proportion of breaks detected with
both ACMANT and CLIMATOL monotonously increases
with break magnitude when the amount of these breaks
is compared to that of all ACMANT detected breaks.

3.2 | Homogenization with the use of the
whole IENet (910 stations)

The operation of ACMANT and CLIMATOL remained
stable in homogenizing the datasets with large ratios of
missing data. The results are reliable in the sense that vis-
ible large homogenization errors have not appeared.

Overall break-frequency has increased with the use of
the denser dataset compared with the results in sec-
tion 3.1, in the case of ACMANT (CLIMATOL) with 6%
(13%). The number of homogeneous series decreased very
slightly with CLIMATOL (from 178 to 172), while it
increased with ACMANT from 65 to 76. In the case of

FIGURE 2 Ratios of homogeneous

series for the four programmes.

Homogeneous series are denoted in

blue; series with one detected break in

yellow and series with multiple breaks

detected in red [Colour figure can be

viewed at wileyonlinelibrary.com]

FIGURE 3 Break detection count summary for the four

methods for sub-IENet by decades (the 1940s start in 1941) [Colour

figure can be viewed at wileyonlinelibrary.com]
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TABLE 1 List of breaks detected concordantly by year and month for at least three homogenization methods of HOMER, ACMANT,

AHOPS, Climatol and metadata for sub-IENet; n for year and month indicates no detection

Method
Homer ACMANT AHOPS Climatol

Metadata explanation
Station
ID Year Month Year Month Year Month Year Month

ID1004 1954 12 1956 9 1954 12 1955 10 Dec 1955: Switch to new station Dec 1955

ID1018 1949 12 1949 11 1949 12 n n No station history available

ID1034 n n 1956 5 1956 12 1957 2 Sep 1956: New station established at new
location

ID1036 n n 1952 10 1952 12 n n Mar 1952: Funnel pipe broken

ID1042 2000 12 2002 12 2002 12 n n n

ID108 n n 1988 8 1989 12 n n May 1987: Gauge replaced

ID109 1956 9 1957 1 1956 12 1957 1 May 1956: New observer

ID109 1960 12 1960 12 1961 12 1962 4 n

ID1137 1948 1 1948 4 1948 12 1948 4 Mar 1949: Station moved

ID1137 n n 1957 2 1958 12 1957 2 Feb 1957: Funnel broken

ID1210 n n 1980 7 1980 12 1980 7 No station history available

ID1240 n n 1996 5 1996 12 1996 3 Sep 1996: Too sheltered note

ID1304 n n N n 1961 12 1961 12 Jul 1962: Tree encroachment recorded

ID1310 n n 1981 4 1982 12 1981 4 No station history available

ID1431 1962 12 1963 1 1962 12 1963 10 Jan 1963: Rain measure broken. Young tree
which had grown within 10 ft of gauge had
to be removed

ID1431 1967 12 1967 8 1967 12 1968 3 n

ID1437 n n 1959 7 1958 12 1959 8 No station history available

ID1437 n n 1965 6 1965 12 1966 5 No station history available

ID1514 1946 3 1948 3 1947 12 1948 3 Apr 1946: Gauge levelled

ID1519 n n 1986 2 1985 12 1986 10 n

ID1529 1965 12 1966 12 1963 12 1967 8 Sep 1965: New mm measure issued, previously
measured in inches

ID1529 1968 12 1968 11 1968 12 1968 11 Feb 1969: Gauge replaced

ID1604 n n 1984 9 n n 1983 9 Jul 1983: Gauge replaced

ID1605 1963 12 1963 9 1962 12 1963 9 n

ID1605 1967 10 1967 9 1967 12 1967 9 Nov 1967: Gauge replaced

ID1605 n n 1983 7 1982 12 n n May 1982: New gauge installed 50 m from
original site

ID1605 n n 1997 5 1997 12 1997 5 n

ID1605 n n 2006 2 2005 12 2006 2 n

ID1612 1962 12 1964 12 n n 1964 11 Nov 1964: Rim of gauge out of shape and
incorrect height above ground

ID1619 1946 12 1947 8 1946 12 1947 6 n

ID1619 n n 1958 1 1957 12 n n Mar 1958: 500 measure half inch capacity issued

ID1619 n n 1969 10 1969 12 n n Nov 1968: Gauge replaced

ID1637 n n 1991 4 1990 12 1990 5 n

ID1637 n n 1996 12 1997 12 1998 3 Mar 1998: Gauge exposure issues noted; gauge
replaced and not read very often

ID1712 n n 1953 12 1953 12 1954 2 n

(Continues)
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TABLE 1 (Continued)

Method
Homer ACMANT AHOPS Climatol

Metadata explanation
Station
ID Year Month Year Month Year Month Year Month

ID1714 1978 12 1978 9 n n 1978 9 n

ID1729 n n 1959 5 n n 1958 4 Apr 1958: New rain measure issued. 1960
readings low for the past 2 years

ID1828 n n 1974 9 1974 12 1974 11 n

ID1829 n n 1944 2 n n 1944 2 Mar 1944: Leaking gauge replaced

ID1829 n n 1961 12 1961 12 1961 12 n

ID19023 n n 2003 6 2003 12 2003 6 n

ID1929 1958 12 1959 5 1959 12 1959 5 From Jan 1954: 6-year gap in inspection
reports

ID1940 n n 1968 4 1967 12 1967 11 Nov 1965: Daily readings from this date,
weekly readings prior to this

ID19723 n n 2003 1 2001 12 2003 6 No station history available

ID19923 n n 1998 12 1997 12 1997 12 n

ID2005 n n 1983 9 n n 1983 10 Dec 1983: Gauge moved

ID2112 n n 1959 7 n n 1961 7 May 1961: New gauge installed, previous
gauge had a shallow funnel

ID2127 n n 1954 12 1954 12 n n Sep 1955: Rain measure reported broken and
replaced

ID2223 1966 3 1966 4 1965 12 1966 4 Apr 1966: Defective gauge; change from 800 to
500

ID2227 n n 1994 11 1992 12 n n Between 1984–1998: Intermittent gauge and
readings issues. New observer 1998

ID2229 n n 1963 1 1962 12 n n Aug 1963: Outer can leaking report.
Jul 1964: Gauge replaced

ID2231 n n 1975 7 1975 12 1975 8 No station history available

ID2337 n n 1955 9 1955 12 1955 1 No station history available

ID2404 n n 1967 7 1966 12 n n Apr 1967: Gauge rim raised

ID2406 n n 1975 12 1975 12 1975 9 n

ID2427 n n 1955 6 1955 12 n n Sep 1955: Inspection report, suspected errors
in data since 1948

ID2514 1949 12 1949 12 1950 12 1950 2 Jan 1950: Gauge replaced

ID2635 1976 6 1975 5 1975 12 1976 5 Jul 1976: Gauge dug up and re-levelled

ID2635 1997 12 1998 5 1997 12 1998 5 n

ID2731 n n 1958 4 1957 12 n n n

ID2737 n n 1984 5 1983 12 1984 1 Mar 1984: Shaded by trees note. Gauge moved
slightly in 1987

ID2802 n n 1997 2 1997 12 1996 9 Jun 1996: Gauge moved

ID2802 n n 2005 2 2004 12 2005 2 1998–2010 lots of accumulations

ID3035 1986 12 1987 2 1986 12 1985 9 No station history available

ID3127 1967 12 1967 12 1967 12 n n From 1964: 5-year gap in inspections

ID3135 1983 9 1984 5 1983 12 n n Aug 1984: Gauge replaced

ID3223 n n 1947 3 1946 12 n n May 1946: Fencing repairs report

ID3223 n n 1951 2 1951 12 n n n
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TABLE 1 (Continued)

Method
Homer ACMANT AHOPS Climatol

Metadata explanation
Station
ID Year Month Year Month Year Month Year Month

ID3513 1972 12 1973 8 1972 12 n n Site moved 1971 as shaded by trees

ID3519 1982 12 1983 6 1983 12 1983 6 n

ID3604 1990 7 1991 11 1989 12 1991 11 n

ID3604 1994 9 1994 11 1994 12 1994 4 Oct 1994: Gauge replaced and tree shelter
noted

ID3704 n n 1969 2 1969 12 1969 6 Jan 1970: 2 rain measures received report

ID4129 n n 1979 10 1979 12 1979 10 Aug 1979: Gauge moved

ID418 n n 1988 5 1988 12 n n Aug 1987: Bad site and gauge reports

ID4223 n n 1998 1 1997 12 n n Aug 1997: Change of exposure report, gauge
moved

ID430 n n 1968 7 1968 12 n n Sep 1967: Gauge slightly off level report

ID4819 n n 1969 8 1968 12 1969 8 Jul 2001: Gauge moved slightly, moved again
1/4 mile in 2002

ID4819 n n 2001 1 2001 12 2001 1 Jul 2000: Gauge moved

ID5012 n n 1964 8 1965 12 n n Feb 1964: Gauge and recorder moved

ID5012 1997 12 1998 12 1997 12 1998 4 n

ID541 n n 1994 3 1993 12 1994 3 No station history available

ID542 1960 12 N n 1962 12 1960 12 Aug 1960: Damaged gauge replaced

ID542 n n 1974 8 1974 12 n n Sep 1974: Leaking rain gauge replaced

ID617 1949 12 1949 3 1948 12 n n No station history available

ID626 1975 8 1977 4 1975 12 1976 11 Sep 1975: New site (100 yard move)

ID626 1980 7 1980 8 1980 12 1980 8 Aug 1980: Gauge replaced and new observer

ID636 n n 1958 4 1957 12 1958 4 No station history available

ID703 n n 1956 3 1956 12 1956 12 Jun 1956: Leaking gauge replaced. No mention
of daily gauge, it was monthly mountain
gauge that was leaking

ID705 n n 1978 2 1978 12 1977 9 Mar 1978: Conifer shaded gauge moved

ID7060 n n 1957 2 1956 12 1956 11 n

ID834 1943 12 N n 1945 12 1943 11 Oct 1944: Gauge leaking report

ID834 1951 12 1952 3 1951 12 1952 3 Mar 1952: Leaking gauge report, gauge leaking
1944–1952

ID836 n n 1948 1 1948 12 n n Mar 1948: Gauge replaced

ID836 n n 1977 2 1976 12 1977 2 n

ID844 1970 4 1970 10 1970 12 n n May 1970: Guard rail broken and too near
gauge. Both observers ill

ID844 1979 12 1980 5 1979 12 n n n

ID844 n n 1998 5 1997 12 1998 5 Jun 1998: Gauge replaced

ID9005 n n 2003 10 2001 12 2003 10 n

ID9103 n n 1956 3 1955 12 n n Nov 1955–Mar 1956: Problems reported with
readings. New observer 1956

ID9103 n n 1969 3 1968 12 n n Dec 1968: Low readings report for the month
of December

ID9120 n n 1989 12 1990 12 1990 11 No station history available

(Continues)

COLL ET AL. 11



some series where breaks were detected using sub-IENet,
inhomogeneities are no longer indicated with the use of
the denser whole IENet. This latter change was noted for
20 (34) series with CLIMATOL (with ACMANT).

The number of series with multiple breaks is slightly
increased both with CLIMATOL and ACMANT. Also,
the break positions often changed markedly by compari-
son with sub-IENet, particularly with ACMANT. The
change in the number of detected breaks for individual
time series is recorded for 63 series (21%) with
CLIMATOL and in 177 series (59%) with ACMANT.

The stability of break positions for large breaks and
concordant break detections was examined. Table 1
includes 83 breaks detected concordantly with ACMANT,
CLIMATOL and at least one more method with the use
of sub-IENet. Of these breaks, 72 (87%) were detected
with CLIMATOL in the same or nearby position with the
use of the whole IENet, and in this case the ACMANT
results are similar (71 breaks, 86%). “Nearby” here means

that the coincidence with the metadata and at least one
more statistically detected break remained in the same
24-month period defined for the entries of Table 1. By
way of further comparison, of the 73 breaks recording a
magnitude of at least 15% according to ACMANT detec-
tion with sub-IENet, when whole IENet was used
57 (78%) of these were detected at the same or nearby
positions as for the smaller network.

The temporal distribution of detected breaks changed
with both CLIMATOL and ACMANT in comparison with
the sub-IENet results, but with notably different patterns
(Figures 6 and 7). CLIMATOL detected about 20% more
breaks in the first three decades and last two decades of
the period, while break frequency remained practically
unchanged between 1970 and 1990. By contrast, with
ACMANT the break frequency increased in the 1960s
and 1970s, decreased in the 1980s, and hardly changed in
the other sections of the period. As with sub-IENet, the
temporal evolution of break frequency is partly

TABLE 1 (Continued)

Method
Homer ACMANT AHOPS Climatol

Metadata explanation
Station
ID Year Month Year Month Year Month Year Month

ID922 1966 12 1966 3 1965 12 n n No station history available

ID9303 n n 1976 7 1976 12 1976 7 n

ID9303 n n 1982 11 1981 12 n n Mar 1983: No. 3 Reading low for a number of
years

Suspect leaking
Gauge replaced

ID9403 n n 1991 4 1990 12 1991 5 n

ID9403 1994 12 1995 6 1995 12 1995 4 Sep 1995: Slight deterioration of station noted

ID9503 1956 5 1954 10 n n 1954 9 Sep 1954: Number of issues with gauges
reported. No 5 gauge replaced 1956

ID9503 1957 12 1957 12 1957 12 1957 10 Jan 1957: Rain measure broken and replaced
report

ID9503 n n 1991 4 1990 12 1991 1 n

ID9505 n n 1955 8 1955 12 1955 10 No station history available

ID9604 n n 1993 4 n n 1993 9 Jul 1993: Gauge replaced

ID9605 n n 1955 9 1955 12 1955 10 No station history available

ID9705 n n 1982 6 1981 12 1982 6 n

ID9904 1956 5 1956 1 1955 12 n n 1956 gauge readings too low, definitely
interfered with

ID9940 n n 1980 12 1980 12 1982 3 Jul 1980: Stolen funnel replaced.
Jul 1980: New site

ID99950 n n 1983 3 1982 12 1983 5 No station history available (Met Office,
United Kingdom NI station)

ID99990 1960 12 1960 12 1960 12 1960 12 No station history available (Met Office,
United Kingdom NI station)

Note: Metadata is considered as an additional break detection method; n in metadata explanation denotes no metadata support.
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coincident with that of station density and hence with
the overall data availability in whole-IENet (Figure A3).

4 | DISCUSSION

We have found large differences in the ratio of homoge-
neous series according to the homogenization methods
applied. With HOMER, the majority of the precipitation
records seem homogeneous, while in ACMANT and
AHOPS the majority seem inhomogeneous. By compari-
son CLIMATOL returned a more intermediate assess-
ment. Note that neither the ratio of homogeneous series,
nor the number of detected breaks indicates the accuracy
of homogenization, which is characterized by the resid-
ual deviation from the true climate signal after

homogenization. However, the detection statistics give
useful indications in relation to the strengths and weak-
nesses of homogenization methods used. One likely
explanation of the divergence in the estimated ratio of
homogeneous series is that in many time series the inho-
mogeneities are small or relatively small; hence, the SNR
is too low for accurate break detection. Breaks of low
SNR mean that the dataset cannot be separated into the
two classical clusters of a fully homogeneous subset and
a subset with significant inhomogeneities, but rather
indicate that there is an intermediate cluster in which
not all of the homogenization methods find breaks. The
results show that the frequency of detected breaks with
ACMANT and AHOPS were approximately 8 times as
high as than with HOMER. A larger number of detected
breaks with ACMANT than with HOMER has also been
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FIGURE 4 Kernel density plots illustrating the range and distribution of break magnitude corrections by (a) HOMER and

(b) ACMANT. The difference in y-axes scales reflects the different detection frequencies between the two methods [Colour figure can be

viewed at wileyonlinelibrary.com]

FIGURE 5 Break size

distribution for ACMANT detected

breaks. Blue bars indicate

coincidences with CLIMATOL

breaks, white bars those for

ACMANT only [Colour figure can be

viewed at wileyonlinelibrary.com]
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reported in a comparative study on the homogenization
of temperature data in the Spanish Pyrenees (Pérez-
Zanón et al., 2015). Therefore, it would appear that this
kind of difference is an artefact of the homogenization
methods themselves, rather than the characteristics of
the data subjected to homogenization. Another outcome
supporting this finding is that in a study homogenizing
precipitation data in Norway, MASH was found to detect
six times as many breaks than HOMER (Lundstad
et al., 2017). It is also worth noting that a relatively high
false alarm rate has already been reported in relation to
the use of both ACMANT and MASH (Killick, 2016), that
is, that in testing the accuracy of daily temperature
homogenization methods, these methods more often

than not introduced unnecessary adjustments to homoge-
neous series compared with other methods.

The relatively high frequency of detected breaks in
the IENet dataset in comparison with other precipitation
datasets (Domonkos, 2015 and references therein) likely
stems from the relatively high spatial correlations of the
IENet dataset which provide high SNR for the relative
time series examined. However, the SNR is not necessar-
ily high for all the inhomogeneities, or at least the fre-
quent change in the detection results associated with the
changes of the reference networks (i.e., sub-IENet or
whole IENet) suggests this. With the use of the denser
whole IENet, the number of breaks for individual time
series changed in comparison with the sub-IENet results
for 23% (59%) of the series using CLIMATOL
(ACMANT). ACMANT detected more breaks and more
small breaks than CLIMATOL for instance, and it may
offer one explanation of the particularly high instability
of the ACMANT detection results. It is known that for
low SNR breaks the recognition of the breaks and the
estimation of break positions are characterized by high
uncertainty (Menne and Williams, 2009). This uncer-
tainty has recently been quantified by Lindau and Ven-
ema (2016; 2018b). The uncertainty of break detection
results for low SNR breaks follows directly from the
Caussinus–Lyazrhi Equation (2).

Z Kð Þ= ln 1−

PK+1

k=1
lk �Tk− �Tð Þ2

Pn
i=1

ti− �Tð Þ2

8>>><
>>>:

9>>>=
>>>;
+

2K
n−1

ln nð Þ: ð2Þ

In Equation (2) Z stands for the Caussinus–Lyazrhi
score, l denotes the length of homogeneous section k, and
upper stroke denotes the arithmetical average. In the
break detection process the K with the lowest Z is always
selected. The numerator within the first logarithmic
expression is defined as external variance. This external
variance always increases with K such that Z would
decrease monotonously without the second term, the
so-called penalty term. The core idea of the Caussinus–
Lyazrhi criterion is that if a large break splits the series
into two sections then the external variance increases
faster than the change of the penalty term, while for
insignificant breaks and noise the increase of external
variance is relatively small. As a consequence, most of
the insignificant breaks do not appear as detected breaks
and it limits K. When small breaks or unusually shaped
noise structures are detected as breaks, they may result in
a similar increase of the external variance to that of the
penalty term. It cannot be excluded either theoretically
or for practical homogenization tasks that the Z score for

FIGURE 6 Break detection frequency change (percentage) by

decades, for whole-IENet by comparison with sub-IENet (the 1940s

start in 1941) [Colour figure can be viewed at

wileyonlinelibrary.com]

FIGURE 7 Histogram break detection count summary for the

two methods (ACMANT and CLIMATOL) for the sub-IENet and

whole-IENet by decades [Colour figure can be viewed at

wileyonlinelibrary.com]
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K = 0 is similar to a Z of K > 0, and then a little change
in the reference series selection can change the detection
result. Similarly, the Z score can be similar for two differ-
ent K > 0 values. Lindau and Venema (2018b) analyse
this problem from other perspectives and based on this
recommend an alternative method for estimating K; how-
ever, their suggested method has not yet been used in
practical time series homogenization.

The results for IENet break detection show that the
break positions for large breaks are mostly stable as
predicted by Equation (2). Note that the SNR also
depends on factors other than break size. These factors
are the shape and magnitude of background noise and
the persistence of the bias resulting from the break. The
role of these factors may explain that a certain ratio of the
breaks with at least 15% change still showed instability.

With the increase of station density an increase of the
frequency of detected breaks is expected. Detection of
smaller breaks is favoured due to the higher spatial corre-
lation and SNR. Our results show only a very slight
increase in the break frequency when the use of sub-IENet
was changed to the use of the whole IENet. One unex-
pected aspect of the results is that the ratio of series quali-
fied to be homogeneous by ACMANT increased with the
use of the denser dataset from 21.7 to 25.4%. Although this
increase is small, the sign of change is opposite to what
might be expected, hence it is a likely indication that in
some cases spatial climatic differences are erroneously
considered to be inhomogeneities when the sub-IENet was
used in ACMANT homogenization. The base model of rel-
ative homogenization presumes that the climate signal is
identical for stations where the series are homogenized
together (see section 2.3). Persistent spatial differences in
weather and climate are often considered in break detec-
tion methods via the calculation of first order autocorrela-
tion from the observed data (Wang, 2008; Li and
Lund, 2012). A weakness of this approach is that the
empirical autocorrelation of T series often considerably
differs from the autocorrelation of the weather term ε
(Equation (1)). However, the empirical parameterization
of ACMANT also has a weakness, namely the representa-
tiveness of the parameterization for climatic regions and
climatic variables not tested is unknown.

In explanatory research of station history it is impor-
tant to provide reliable break detection results. Our results
show that ACMANT and AHOPS are not the best choices
for this purpose, while HOMER has the particular advan-
tage that potential breaks can be examined interactively
during the detection process. Note, however, that there are
15 entries in Table 1 related to metadata, which all the
homogenization methods detected with the exception of
HOMER. This suggests that HOMER might miss the
detection of some significant breaks during precipitation

homogenization. It has been suggested that it might be
easier for HOMER to find breaks in the middle of time
series rather than at the beginning or end for temperature
data (Osadchyi et al., 2018). However, and in our experi-
ence with precipitation data, series missing contiguous
data blocks early or late in a series pose significant chal-
lenges for HOMER. For this reason the WMO Task Team
on homogenization recommends a missing data tolerance
of 15 years for HOMER (WMO, 2017), while, for example,
Météo-France works with a 10–15% missing value toler-
ance depending on the length of series in operational
homogenization using HOMER (B. Dubuisson Météo-
France, September 2016, personal communication). A fur-
ther problem found with HOMER is that its inbuilt
calculation of spatial correlation sometimes fails when
data gaps are present in time series, thus the use of the
geographical distance option is recommended for the
HOMER homogenization of incomplete series. All these,
together with another problem with HOMER discussed by
Gubler et al. (2017) and Domonkos (2017) indicate that
HOMER should be revised and tested.

Metadata use may elevate the efficiency of homogeni-
zation, particularly for areas and periods of spatially rare
observations. The quantification of this benefit has not
been solved yet by the scientific community. Some basic
problems of a possible quantification for metadata are
the varied completeness of metadata according to net-
works and stations, and also the varied individual value
of the pieces of metadata (e.g., in Table 1; “Switch to new
station” at ID1004 is likely more important than “Gauge
replaced” at ID108).

In spite of the frequent instability of break detection
results with ACMANT, this method gives the most accu-
rate homogenization in terms of residual root mean
squared error and trend bias (Venema et al., 2012;
Killick, 2016; Guijarro et al., 2017), at least when the effi-
ciency of homogenization methods is tested without meta-
data use. An explanation for this seeming contradiction is
that in the case of small breaks the homogenization
results are generally imperfect with any K when the
Caussinus–Lyazrhi criterion are applied, hence the impact
of the number of detected breaks on the accuracy of
homogenization is not decisive. However, this and many
other aspects of the results suggest that more tests with
realistic test datasets could only consolidate our knowl-
edge about the reliability and potential accuracy of
homogenization products.

5 | CONCLUSIONS

In this study the break detection results with HOMER,
ACMANT, AHOPS and CLIMATOL for a subset of
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299 series (sub-IENet) were compared and analysed
partly with the help of the series from a larger network of
910 series from Ireland and Northern Ireland (whole-
IENet). The characteristics of the monthly total precipita-
tion data of whole-IENet, that is, a fairly dense network
allied to the climatic characteristics of a maritime region
with low amplitudes of variation between series result in
relatively close geographic proximities and high correla-
tion coefficients among many series. Although compris-
ing fewer stations, sub-IENet is still a dense subset with
high spatial correlations. These properties of the data are
excellent for the application of relative homogenization
methods. Our main findings are as follows.

We have found 116 concordant breaks indicated with
at least three homogenization methods including metadata
analysis. This together with some other aspects of the
results suggests that the break frequency for whole and
sub-IENet is higher than in several other European precip-
itation datasets. However, spatial correlations are generally
higher in whole and sub-IENet than in many other precip-
itation datasets. For time series highly correlated with
other series of nearby stations, smaller breaks can be more
readily detected than is the case for less highly correlated
series; and hence the small breaks detected might give the
unfounded impression that the time series of whole and
sub-IENet are less homogeneous than those of other pre-
cipitation datasets. Additionally, the ratio of series found
to be homogeneous and the frequency of detected breaks
are strongly method dependent, thus a valid comparison
between detection statistics of different station networks
would need the use of the same break detection methods.

The homogenization of whole and sub-IENet proved
that ACMANT and CLIMATOL can easily be applied for
the homogenization of large datasets. With these two
methods, varied lengths of time series or data gaps within
time series do not affect neither the operation of the soft-
ware programmes nor the reliability of the homogeniza-
tion results. The operation of HOMER is characterized by
limited missing data tolerance, while AHOPS does not
detect breakpoints when there are not enough observa-
tions to build a reference series, though the correction
can handle gaps in the time series.

The differences between the frequencies of detected
breaks according to homogenization methods are much
larger than the differences between the accuracies of the cli-
mate signal reconstruction (Guijarro et al., 2017), due to the
different strategies of homogenization methods in using
detected breaks within the homogenization procedure. The
comparison of our results with some other studies indicates
that the instability of break detection results does not have
direct relation to the accuracy of homogenized time series.

The break frequency results of CLIMATOL seem to
be the closest to the reality among the four methods

examined here; therefore, we recommend the use of
CLIMATOL break detection results when the aims of
the homogenization include the analysis of station
histories.
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APPENDIX

FIGURE A2 Summary of the

overall intact and absent monthly

data for the 1941–2010 period of the

299 series of the IENet precipitation

dataset. The blue line denotes the

greater number of available records

for the 1950s–1980s relative to the

earlier and later decades [Colour

figure can be viewed at

wileyonlinelibrary.com]

FIGURE A1 Break detection count summary for the four

methods for sub-IENet by decades (the 1940s start in 1941).

HOMER manual and automatic (Auto) break counts included for

comparison [Colour figure can be viewed at

wileyonlinelibrary.com] FIGURE A3 Summary of the overall intact and absent

monthly data for the 1941–2010 period of the 910 series of the whole-

IENet precipitation dataset. The blue line denotes the greater number

of available records for the 1950s–1980s relative to the earlier and
later decades
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